1
|
Lv J, Chen Q, Wang J, Guo N, Fang Y, Guo Q, Li J, Ma X, Zhan H, Chen W, Wang L, Yan Q, Tong J, Wang Z. Downregulation of MLF1 safeguards cardiomyocytes against senescence-associated chromatin opening. Nucleic Acids Res 2025; 53:gkae1176. [PMID: 39657728 PMCID: PMC11754730 DOI: 10.1093/nar/gkae1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Aging-associated cardiac hypertrophy (AACH) increases susceptibility to heart failure in the elderly. Chromatin remodeling contributes to the gene reprogramming in AACH; however, the intrinsic regulations remain elusive. We performed a transcriptome analysis for AACH in comparison with pressure-overload-induced pathological cardiac hypertrophy in mice and identified myeloid leukemia factor 1 (MLF1) as an aging-sensitive factor whose expression was reduced during aging but could be reversed by anti-aging administrations. In human AC16 cardiomyocytes, silencing MLF1 suppressed H2O2-induced cell senescence while the phenotype was exacerbated by MLF1 overexpression. RNA-seq analysis revealed that MLF1 functioned as a transcription activator, regulating genomic-clustered genes that mainly involved in inflammation and development. ATAC-seq analysis showed a prominent reduction in chromatin accessibility at the promoter regions of senescence effectors, like IL1B and p21, after MLF1 knockdown. Despite a potential interaction of MLF1 with the histone methyltransferase PRC2, its inhibition failed to reverse the impact of MLF1 knockdown. Instead, MLF1-mediated regulation was blunted by inhibiting the acetyltransferase EP300. CUT&Tag analysis showed that MLF1 bound to target promoters and recruited EP300 to promote H3K27ac deposition. Collectively, we identify MLF1 as a pro-aging epigenetic orchestrator that recruits EP300 to facilitate opening of the condensed chromatin encompassing senescence effectors.
Collapse
Affiliation(s)
- Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Junmei Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Jiajie Li
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xiao Ma
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongchao Zhan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Weihao Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingqing Yan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
2
|
Elabd S, Pauletto E, Solozobova V, Eickhoff N, Padrao N, Zwart W, Blattner C. TRIM25 targets p300 for degradation. Life Sci Alliance 2023; 6:e202301980. [PMID: 37770115 PMCID: PMC10539465 DOI: 10.26508/lsa.202301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
p300 is an important transcriptional co-factor. By stimulating the transfer of acetyl residues onto histones and several key transcription factors, p300 enhances transcriptional initiation and impacts cellular processes including cell proliferation and cell division. Despite its importance for cellular homeostasis, its regulation is poorly understood. We show that TRIM25, a member of the TRIM protein family, targets p300 for proteasomal degradation. However, despite TRIM25's RING domain and E3 activity, degradation of p300 by TRIM25 is independent of TRIM25-mediated p300 ubiquitination. Instead, TRIM25 promotes the interaction of p300 with dynein, which ensures a microtubule-dependent transport of p300 to cellular proteasomes. Through mediating p300 degradation, TRIM25 affects p300-dependent gene expression.
Collapse
Affiliation(s)
- Seham Elabd
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe, Germany
- Human Physiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eleonora Pauletto
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe, Germany
| | - Valeria Solozobova
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe, Germany
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nuno Padrao
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christine Blattner
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe, Germany
| |
Collapse
|
3
|
Song H, Geng Q, Wu X, Hu M, Ye M, Yu X, Chen Y, Xu J, Jiang L, Cao S. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:193-208. [PMID: 36721966 DOI: 10.1111/tpj.16130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Iron (Fe) is an indispensable trace mineral element for the normal growth of plants, and it is involved in different biological processes; Fe shortage in plants can induce chlorosis and yield loss. The objective of this research is to identify novel genes that participated in the regulation of Fe-deficiency stress in Arabidopsis thaliana. A basic helix-loop-helix (bHLH) transcription factor (MYC1) was identified to be interacting with the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) using a yeast-two-hybrid assay. Transcript-level analysis showed that there was a decrease in MYC1 expression in Arabidopsis to cope with Fe-deficiency stress. Functional deficiency of MYC1 in Arabidopsis leads to an increase in Fe-deficiency tolerance and Fe-accumulation, whereas MYC1-overexpressing plants have an enhanced sensitivity to Fe-deficiency stress. Additionally, MYC1 inhibited the formation of FIT and bHLH38/39 heterodimers, which suppressed the expressed level for Fe acquisition genes FRO2 and IRT1 during Fe-deficiency stress. These results showed that MYC1 functions as a negative modulator of the Fe-deficiency stress response by inhibiting the formation of FIT and bHLH38/39 heterodimers, thereby suppressing the binding of FIT and bHLH38/39 heterodimers to the promoters of FRO2 and IRT1 to modulate Fe intake during Fe-deficiency stress. Overall, the findings of this study elucidated the role of MYC1 in coping with Fe-deficiency stress, and provided potential targets for the developing of crop varieties resistant to Fe-deficiency stress.
Collapse
Affiliation(s)
- Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yifan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiena Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
4
|
Ghosh AK. p300 in Cardiac Development and Accelerated Cardiac Aging. Aging Dis 2020; 11:916-926. [PMID: 32765954 PMCID: PMC7390535 DOI: 10.14336/ad.2020.0401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The heart is the first functional organ that develops during embryonic development. While a heartbeat indicates life, cessation of a heartbeat signals the end of life. Heart disease, due either to congenital defects or to acquired dysfunctions in adulthood, remains the leading cause of death worldwide. Epigenetics plays a key role in both embryonic heart development and heart disease in adults. Stress-induced vascular injury activates pathways involved in pathogenesis of accelerated cardiac aging that includes cellular dysfunction, pathological cardiac hypertrophy, diabetic cardiomyopathy, cardiac matrix remodeling, cardiac dysfunction and heart failure. Acetyltransferase p300 (p300), a major epigenetic regulator, plays a pivotal role in heart development during embryogenesis, as deficiency or abnormal expression of p300 leads to embryonic death at early gestation periods due to deformation of the heart and neural tube. Acetyltransferase p300 controls heart development through histone acetylation-mediated chromatin remodeling and transcriptional regulation of genes required for cardiac development. In adult hearts, p300 is differentially expressed in different chambers and epigenetically controls cardiac gene expression. Deregulation of p300, in response to prohypertrophic and profibrogenic stress signals, is associated with increased recruitment of p300 to several genes including transcription factors, increased acetylation of specific lysines in histones and transcription factors, altered chromatin organization, and increased hypertrophic and fibrogenic gene expression. Cardiac hypertrophy and myocardial fibrogenesis are common pathological manifestations of several stress-induced accelerated cardiac aging-related pathologies, including high blood pressure-induced or environmentally induced cardiac hypertrophy, myocardial infarction, diabetes-induced cardiomyopathy, and heart failure. Numerous studies using cellular and animal models clearly indicate that pharmacologic or genetic normalization of p300 activity has the potential to prevent or halt the progression of cardiac aging pathologies. Based on these preclinical studies, development of safe, non-toxic, small molecule inhibitors/epidrugs targeting p300 is an ideal approach to control accelerated cardiac aging-related deaths worldwide.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
|
6
|
Kinyamu HK, Bennett BD, Bushel PR, Archer TK. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem 2019; 295:1271-1287. [PMID: 31806706 DOI: 10.1074/jbc.ra119.011174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Indexed: 11/06/2022] Open
Abstract
Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Brian D Bennett
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709.,Integrative Bioinformatics Support Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
| |
Collapse
|
7
|
Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. Cells 2018; 7:cells7090118. [PMID: 30150556 PMCID: PMC6162602 DOI: 10.3390/cells7090118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Histone post-translational modifications influence many fundamental cellular events by regulating chromatin structure and gene transcriptional activity. These modifications are highly dynamic and tightly controlled, with many enzymes devoted to the addition and removal of these modifications. Interestingly, these modifying enzymes are themselves fine-tuned and precisely regulated at the level of protein turnover by ubiquitin-proteasomal processing. Here, we focus on recent progress centered on the mechanisms regulating ubiquitination of histone modifying enzymes, including ubiquitin proteasomal degradation and the reverse process of deubiquitination. We will also discuss the potential pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Zhaoping Qiu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
8
|
Tsimokha AS, Kulichkova VA, Karpova EV, Zaykova JJ, Aksenov ND, Vasilishina AA, Kropotov AV, Antonov A, Barlev NA. DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 2015; 5:3555-67. [PMID: 25004448 PMCID: PMC4116502 DOI: 10.18632/oncotarget.1957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs.
Collapse
Affiliation(s)
- Anna S Tsimokha
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | | | | - Nikolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; Department of Biochemistry, University of Leicester, Leicester, LE1 9HN; Molecular Pharmacology laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg 190013, Russia
| |
Collapse
|
9
|
Cardiac transcription factor Nkx2.5 interacts with p53 and modulates its activity. Arch Biochem Biophys 2015; 569:45-53. [DOI: 10.1016/j.abb.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/01/2015] [Indexed: 01/30/2023]
|
10
|
Davies AH, Reipas KM, Pambid MR, Berns R, Stratford AL, Fotovati A, Firmino N, Astanehe A, Hu K, Maxwell C, Mills GB, Dunn SE. YB-1 transforms human mammary epithelial cells through chromatin remodeling leading to the development of basal-like breast cancer. Stem Cells 2015; 32:1437-50. [PMID: 24648416 DOI: 10.1002/stem.1707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial cells under the control of a tetracycline-inducible promoter. The induction of YB-1 promoted phenotypes associated with malignancy in three-dimensional breast acini cultures. This was attributed to YB-1 enhancing the expression and activity of the histone acetyltransferase p300 leading to chromatin remodeling. Specifically, this relaxation of chromatin allowed YB-1 to bind to the BMI1 promoter. The induction of BMI1 engaged the Polycomb complex resulting in histone H2A ubiquitylation and repression of the CDKN2A locus. These events manifested functionally as enhanced self-renewal capacity that occurred in a BMI1-dependent manner. Conversely, p300 inhibition with anacardic acid prevented YB-1 from binding to the BMI1 promoter and thereby subverted self-renewal. Despite these early changes, full malignant transformation was not achieved until RSK2 became overexpressed concomitant with elevated human telomerase reverse transcriptase (hTERT) activity. The YB-1/RSK2/hTERT expressing cells formed tumors in mice that were molecularly subtyped as basal-like breast cancer. We conclude that YB-1 cooperates with p300 to allow BMI1 to over-ride p16(INK4a) -mediated cell cycle arrest enabling self-renewal and the development of aggressive breast tumors.
Collapse
Affiliation(s)
- Alastair H Davies
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet 2014; 5:375. [PMID: 25408700 PMCID: PMC4219506 DOI: 10.3389/fgene.2014.00375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
Cardiac myocytes (CMs) proliferate robustly during fetal life but withdraw permanently from the cell cycle soon after birth and undergo terminal differentiation. This cell cycle exit is associated with the upregulation of a host of adult cardiac-specific genes. The vast majority of adult CMs (ACMs) do not reenter cell cycle even if subjected to mitogenic stimuli. The basis for this irreversible cell cycle exit is related to the stable silencing of cell cycle genes specifically involved in the progression of G2/M transition and cytokinesis. Studies have begun to clarify the molecular basis for this stable gene repression and have identified epigenetic and chromatin structural changes in this process. In this review, we summarize the current understanding of epigenetic regulation of CM cell cycle and cardiac-specific gene expression with a focus on histone modifications and the role of retinoblastoma family members.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Patima Sdek
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| |
Collapse
|
12
|
Wang J, Sontag D, Cattini PA. Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine Growth Factor Rev 2014; 26:59-66. [PMID: 25106133 DOI: 10.1016/j.cytogfr.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Fibroblast growth factor 16 (FGF-16) was originally cloned from rat heart. Subsequent investigation of mouse FGF-16, including generation of null mice, revealed a specific pattern of expression in the endocardium and epicardium, and role for FGF-16 during embryonic heart development. FGF-16 is expressed mainly in brown adipose tissue during rat embryonic development, but is expressed mainly in the murine heart after birth. There is also an apparent switch from limited endocardial and epicardial expression in the embryo to the myocardium in the perinatal period. The FGF-16 gene and its location on the X chromosome are conserved between human and murine species, and no other member of the FGF family shows this pattern of spatial and temporal expression. The human and murine FGF-16 gene promoter regions also share an equivalent location for TATA sequences, as well as adjacent putative binding sites for transcription factors linked to cardiac expression and response to stress. Recent evidence has implicated nonsense mutation of FGF-16 with increased cardiovascular risk, and FGF-16 supplementation with cardioprotection. Here we review the important role of FGF-16 in embryonic heart development, its gene regulation, and evidence for FGF-16 as an endogenous and exogenous cardiac-specific and protective factor in the postnatal heart. Moreover, given the conservation of the FGF-16 gene and its chromosomal location between species, the question of support for a cardiac role in the human population is also considered.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada.
| | - David Sontag
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| |
Collapse
|
13
|
Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2014; 4:1338-48. [PMID: 23907514 PMCID: PMC3824523 DOI: 10.18632/oncotarget.1060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stability of proteins is largely controlled by post-translational covalent modifications. Among those, ubiquitylation plays a central role as it marks the proteins for proteasome-dependent degradation. Proteolytic activities of proteasomes are critical for execution of various cellular processes, including DNA damage signaling and repair. However, very little is known about the regulation of proteasomal activity in cells during genotoxic stress. Here we investigated post-translational modifications of the 20S proteasomal subunits upon DNA damage induced by doxorubicin. Using mass-spectrometry, we found novel sites of phosphorylation and ubiquitylation in multiple proteasome subunits upon doxorubicin treatment. Ectopic co-expression of proteasome subunits and tagged ubiquitin confirmed the presence of ubiquitylated forms of PSMA5, PSMA1, PSMA3 and PSMB5 in cells. Moreover, we demonstrated that ubiquitylation in vitro inhibited chymotrypsin-like and caspase-like activities of proteasomes. In vivo, doxorubicin increased the activity of proteasomes, paralleling with attenuation of the overall level of proteasome ubiquitylation. Collectively, our results suggest a novel mechanism whereby the proteolytic activities of proteasomes are dynamically regulated by ubiquitylation upon DNA damage.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | | | | | | |
Collapse
|
14
|
WILLERMAIN FRANÇOIS, JANSSENS SARAH, ARSENIJEVIC TATJANA, PIENS ISABELLE, BOLAKY NARGIS, CASPERS LAURE, PERRET JASON, DELPORTE CHRISTINE. Osmotic stress decreases aquaporin-4 expression in the human retinal pigment epithelial cell line, ARPE-19. Int J Mol Med 2014; 34:533-8. [DOI: 10.3892/ijmm.2014.1791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/20/2014] [Indexed: 11/06/2022] Open
|
15
|
Zou C, Mallampalli RK. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:694-702. [PMID: 24389248 DOI: 10.1016/j.bbamcr.2013.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
Histone post-translational modification is a key step that may result in an epigenetic mark that regulates chromatin structure and gene transcriptional activity thereby impacting many fundamental aspects of human biology. Subtypes of post-translational modification such as acetylation and methylation are executed by a variety of distinct modification enzymes. The cytoplasmic and nuclear concentrations of these enzymes are dynamically and tightly controlled at the protein level to precisely fine-tune transcriptional activity in response to environmental clues and during pathophysiological states. Recent data have emerged demonstrating that the life span of these critical nuclear enzymes involved in histone modification that impact chromatin structure and gene expression are controlled at the level of protein turnover by ubiquitin-proteasomal processing. This review focuses on the recent progress on mechanisms for ubiquitin-proteasomal degradation of histone modification enzymes and the potential pathophysiological significance of this process.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
16
|
Zheng W, Lu YB, Liang ST, Zhang QJ, Xu J, She ZG, Zhang ZQ, Yang RF, Mao BB, Xu Z, Li L, Hao DL, Lu J, Wei YS, Chen HZ, Liu DP. SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes. Basic Res Cardiol 2013; 108:364. [PMID: 23744058 DOI: 10.1007/s00395-013-0364-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
Nkx2.5 plays protective roles in cardiac homeostasis and survival in the postnatal hearts. However, the underlying molecular mechanisms that mediate the protective functions of Nkx2.5 remain unknown. Here, we showed that Nkx2.5 was downregulated in response to various stresses and was required for protection against the stress-induced apoptosis of cardiomyocytes. SIRT1, a member of the sirtuin family of proteins, was found to be a direct transcriptional target of Nkx2.5 and was required for the Nkx2.5-mediated protection of cardiomyocytes from doxorubicin (DOX)-induced apoptosis. Moreover, using chromatin immunoprecipitation assays, we found that Nkx2.5 was able to bind to the SIRT1 promoter and that this binding was significantly decreased in DOX-treated mouse hearts. Furthermore, the cardiac-specific overexpression of SIRT1 decreased the DOX-induced apoptosis of cardiomyocytes in SIRT1 transgenic mouse hearts compared with the hearts of their wild-type littermates. These findings demonstrate that SIRT1 acts as a direct transcriptional target of Nkx2.5 that maintains cardiomyocyte homeostasis and survival.
Collapse
Affiliation(s)
- Wei Zheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
cAMP signalling decreases p300 protein levels by promoting its ubiquitin/proteasome dependent degradation via Epac and p38 MAPK in lung cancer cells. FEBS Lett 2013; 587:1373-8. [PMID: 23523631 DOI: 10.1016/j.febslet.2013.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 01/21/2023]
Abstract
The transcriptional coactivator p300 functions as a histone acetyltransferase and a scaffold for transcription factors. We investigated the effect of cAMP signalling on p300 expression. The activation of cAMP signalling by the expression of constitutively active Gαs or by treatment with isoproterenol decreased the p300 protein expression in lung cancer cells. Isoproterenol promoted the ubiquitination and subsequent proteasomal degradation of p300 in an Epac-dependent manner. Epac promoted p300 degradation by inhibiting the activity of p38 MAPK. It is concluded that cAMP signalling decreases the level of the p300 protein by promoting its ubiquitin-proteasome dependent degradation, which is mediated by Epac and p38 MAPK, in lung cancer cells.
Collapse
|
18
|
Lin HH, Chen YH, Chiang MT, Huang PL, Chau LY. Activator protein-2α mediates carbon monoxide-induced stromal cell-derived factor-1α expression and vascularization in ischemic heart. Arterioscler Thromb Vasc Biol 2013; 33:785-94. [PMID: 23393395 DOI: 10.1161/atvbaha.112.301143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increased cardiac stromal cell-derived factor-1α (SDF-1α) expression promotes neovascularization and myocardial repair after ischemic injury through recruiting stem cells and reducing cardiomyocyte death. Previous studies have shown that heme oxygenase-1 and its reaction byproduct, carbon monoxide (CO), induce SDF-1α expression in ischemic heart. However, the mechanism underlying heme oxygenase-1/CO-induced cardiac SDF-1α expression remains elusive. This study aims to investigate the signaling pathway and the transcriptional factor that mediate CO-induced SDF-1α gene expression and cardioprotection. APPROACH AND RESULTS CO gas and a CO-releasing compound, tricarbonyldichlororuthenium (II) dimer, dose-dependently induced SDF-1α expression in primary neonatal cardiomyocytes and H9C2 cardiomyoblasts. Promoter luciferase-reporter assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation demonstrated that the activator protein 2α (AP-2α) mediated tricarbonyldichlororuthenium (II) dimer-induced SDF-1α gene transcription. Tricarbonyldichlororuthenium (II) dimer induced AP-2α expression via protein kinase B (AKT)-dependent signaling. AKT inhibition or AP-2α knockdown reduced tricarbonyldichlororuthenium (II) dimer-induced SDF-1α expression. Coronary ligation induced transient increases of cardiac AP-2α and SDF-1α expression, which were declined at 1 week postinfarction in mice. Periodic exposure of coronary-ligated mice to CO (250 ppm for 1 hour/day, 6 days) resumed the induction of AP-2α and SDF-1α gene expression in infarcted hearts. Immunohistochemistry and echocardiography performed at 4 weeks after coronary ligation revealed that CO treatment enhanced neovascularization in the myocardium of peri-infarct region and improved cardiac function. CO-mediated SDF-1α expression and cardioprotection was ablated by intramyocardial injection of lentivirus bearing specific short hairpin RNA targeting AP-2α. CONCLUSIONS Our data demonstrate that AKT-dependent upregulation of AP-2α is essential for CO-induced SDF-1α expression and myocardial repair after ischemic injury.
Collapse
Affiliation(s)
- Heng-Huei Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | | | | | | | |
Collapse
|
19
|
Kuno A, Hori YS, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J Biol Chem 2013; 288:5963-72. [PMID: 23297412 DOI: 10.1074/jbc.m112.392050] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiomyopathy is the main cause of death in Duchenne muscular dystrophy. Here, we show that oral administration of resveratrol, which leads to activation of an NAD(+)-dependent protein deacetylase SIRT1, suppresses cardiac hypertrophy and fibrosis and restores cardiac diastolic function in dystrophin-deficient mdx mice. The pro-hypertrophic co-activator p300 protein but not p300 mRNA was up-regulated in the mdx heart, and resveratrol administration down-regulated the p300 protein level. In cultured cardiomyocytes, cardiomyocyte hypertrophy induced by the α(1)-agonist phenylephrine was inhibited by the overexpression of SIRT1 as well as resveratrol, both of which down-regulated p300 protein levels but not p300 mRNA levels. In addition, activation of atrial natriuretic peptide promoter by p300 was inhibited by SIRT1. We found that SIRT1 induced p300 down-regulation via the ubiquitin-proteasome pathway by deacetylation of lysine residues for ubiquitination. These findings indicate the pathological significance of p300 up-regulation in the dystrophic heart and indicate that SIRT1 activation has therapeutic potential for dystrophic cardiomyopathy.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang QE, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani AA. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res 2012; 41:1722-33. [PMID: 23275565 PMCID: PMC3561975 DOI: 10.1093/nar/gks1312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Mayo MW, Nagji AS, Hall EH, Shock LS, Xiao A, Stelow EB, Jones DR. BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Res 2012; 73:1308-17. [PMID: 23269275 DOI: 10.1158/0008-5472.can-12-2489] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms through which the metastasis suppressor gene BRMS1 functions are poorly understood. Herein, we report the identification of a previously undescribed E3 ligase function of BRMS1 on the histone acetyltransferase p300. BRMS1 induces polyubiquitination of p300, resulting in its proteasome-mediated degradation. We identify BRMS1 as the first eukaryote structural mimic of the bacterial IpaH E3 ligase family and establish that the evolutionarily conserved CXD motif located in BRMS1 is responsible for its E3 ligase function. Mutation of this E3 ligase motif not only abolishes BRMS1-induced p300 polyubiquitination and degradation, but importantly, dramatically reduces the metastasis suppressor function of BRMS1 in both in vitro and in vivo models of lung cancer metastasis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
da Silva MG, Mattos E, Camacho-Pereira J, Domitrovic T, Galina A, Costa MW, Kurtenbach E. Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases. Exp Clin Cardiol 2012; 17:101-109. [PMID: 23620696 PMCID: PMC3628421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models.
Collapse
Affiliation(s)
- Marcia Gracindo da Silva
- Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro
- Ecodata Exames Médicos Ltda
- Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT
| | | | - Juliana Camacho-Pereira
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Domitrovic
- Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho
| | - Antonio Galina
- Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro W Costa
- Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Eleonora Kurtenbach
- Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho
- Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT
| |
Collapse
|
23
|
Abstract
The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328) in the regulatory domain, an event also requiring the MST3(341–376) sequence which acts as a putative docking domain. MST3(Thr178) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr328) phosphorylation. Interestingly, MST3(Thr328) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178/Thr328) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328) phosphorylation was necessary for formation of the activated MST3–MO25 holocomplex.
Collapse
|
24
|
Jain S, Wei J, Mitrani LR, Bishopric NH. Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Res Treat 2012; 135:103-14. [PMID: 22562121 DOI: 10.1007/s10549-012-2069-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 12/15/2022]
Abstract
The nuclear acetyltransferase p300 is rapidly and stably induced in the heart during hemodynamic stress, but the mechanism of this induction is unknown. To determine the role of oxidative stress in p300 induction, we exposed neonatal rat cardiac myocytes to doxorubicin (DOX, 1 μM) or its vehicle, and monitored p300 protein content and stability for 24 h. Levels of p300 rose substantially within 1 h and remained elevated for at least 24 h, while p300 transcript levels declined. In the presence of cycloheximide, the estimated half-life of p300 in control cells was approximately 4.5 h, typical of an immediate-early response protein. DOX treatment prolonged p300 t(1/2) to >24 h, indicating that the sharp rise in p300 levels was attributable to rapid protein stabilization. p300 stabilization was entirely due to an increase in acetylated p300 species with greatly enhanced resistance to proteasomal degradation. The half-life of p300 was dependent on its acetyltransferase activity, falling in the presence of p300 inhibitors curcumin and anacardic acid, and increasing with histone deacetylase (HDAC) inhibition. At the same time, acetyl-STAT3, phospho-STAT3-(Tyr 705) and -(Ser 727) increased, together with a prolongation of STAT3 half-life. SiRNA-mediated p300 knockdown abrogated all of these effects, and strongly enhanced DOX-mediated myocyte apoptosis. We conclude that DOX induces an acute amplification of p300 levels through auto-acetylation and stabilization. In turn, elevated p300 provides a key defense against acute oxidative stress in cardiac myocytes by acetylation, activation, and stabilization of STAT3. Our results suggest that HDAC inhibitors could potentially reduce acute anthracycline-mediated cardiotoxicity by promoting p300 auto-acetylation.
Collapse
Affiliation(s)
- Sumit Jain
- Departments of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
25
|
Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2012; 36:296-305. [PMID: 21656050 DOI: 10.1007/s00059-011-3470-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.
Collapse
Affiliation(s)
- Y Shi
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Toronto General Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovasc Res 2012; 95:147-55. [PMID: 22362814 DOI: 10.1093/cvr/cvs098] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differentiated vascular smooth muscle cells (SMCs) retain the capacity to modify their phenotype in response to inflammation or injury. This phenotypic switching is a crucial component of vascular disease, and is partly dependent on epigenetic regulation. An appreciation has been building in the literature for the essential role chromatin remodelling plays both in SMC lineage determination and in influencing changes in SMC behaviour and state. This process includes numerous chromatin regulatory elements and pathways such as histone acetyltransferases, deacetylases, and methyltransferases and other factors that act at SMC-specific marker sites to silence or permit access to the cellular transcriptional machinery and on other key regulatory elements such as myocardin and Kruppel-like factor 4 (KLF4). Various stimuli known to alter the SMC phenotype, such as transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF), oxidized phospholipids, and retinoic acid, appear to act in part through effects upon SMC chromatin structure. In recent years, specific covalent histone modifications that appear to establish SMC determinacy have been identified, while others alter the differentiation state. In this article, we review the mechanisms of chromatin remodelling as it applies to the SMC phenotype.
Collapse
Affiliation(s)
- Joshua M Spin
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA 94305, USA
| | | | | |
Collapse
|
27
|
Sishi BJN, Bester DJ, Wergeland A, Loos B, Jonassen AK, van Rooyen J, Engelbrecht AM. Daunorubicin therapy is associated with upregulation of E3 ubiquitin ligases in the heart. Exp Biol Med (Maywood) 2012; 237:219-26. [PMID: 22328594 DOI: 10.1258/ebm.2011.011106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Daunorubicin (DNR) and doxorubicin (DOX) are two of the most effective anthracycline drugs known for the treatment of systemic neoplasms and solid tumors. However, their clinical use is hampered due to profound cardiotoxicity. The mechanism by which DNR injures the heart remains to be fully elucidated. Recent reports have indicated that DOX activates ubiquitin proteasome-mediated degradation of specific transcription factors; however, no reports exist on the effect of DNR on the E3 ubiquitin ligases, MURF-1 (muscle ring finger 1) and MAFbx (muscle atrophy F-box). The aim of this study was to investigate the effect of DNR treatment on the protein and organelle degradation systems in the heart and to elucidate some of the signalling mechanisms involved. Adult rats were divided into two groups where one group received six intraperitoneal injections of 2 mg/kg DNR on alternate days and the other group received saline injections as control. Hearts were excised and perfused on a working heart system the day after the last injection and freeze-clamped for biochemical analysis. DNR treatment significantly attenuated cardiac function and increased apoptosis in the heart. DNR-induced cardiac cytotoxicity was associated with upregulation of the E3 ligases, MURF-1 and MAFbx and also caused significant increases in two markers of autophagy, beclin-1 and LC3. These changes observed in the heart were also associated with attenuation of the phosphoinositide 3-kinase/Akt signalling pathway.
Collapse
Affiliation(s)
- Balindiwe J N Sishi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | | | | |
Collapse
|
28
|
Xiong L, Darwanto A, Sharma S, Herring J, Hu S, Filippova M, Filippov V, Wang Y, Chen CS, Duerksen-Hughes PJ, Sowers LC, Zhang K. Mass spectrometric studies on epigenetic interaction networks in cell differentiation. J Biol Chem 2011; 286:13657-68. [PMID: 21335548 DOI: 10.1074/jbc.m110.204800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrest of cell differentiation is one of the leading causes of leukemia and other cancers. Induction of cell differentiation using pharmaceutical agents has been clinically attempted for the treatment of these cancers. Epigenetic regulation may be one of the underlying molecular mechanisms controlling cell proliferation or differentiation. Here, we report on the use of proteomics-based differential protein expression analysis in conjunction with quantification of histone modifications to decipher the interconnections among epigenetic modifications, their modifying enzymes or mediators, and changes in the associated pathways/networks that occur during cell differentiation. During phorbol-12-myristate 13-acetate-induced differentiation of U937 cells, fatty acid synthesis and its metabolic processing, the clathrin-coated pit endocytosis pathway, and the ubiquitin/26 S proteasome degradation pathways were up-regulated. In addition, global histone H3/H4 acetylation and H2B ubiquitination were down-regulated concomitantly with impaired chromatin remodeling machinery, RNA polymerase II complexes, and DNA replication. Differential protein expression analysis established the networks linking histone hypoacetylation to the down-regulated expression/activity of p300 and linking histone H2B ubiquitination to the RNA polymerase II-associated FACT-RTF1-PAF1 complex. Collectively, our approach has provided an unprecedentedly systemic set of insights into the role of epigenetic regulation in leukemia cell differentiation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang QE, Han C, Milum K, Wani AA. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat Res 2011; 708:59-68. [PMID: 21310163 DOI: 10.1016/j.mrfmmm.2011.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/26/2023]
Abstract
Piwil2 (mili in mouse or hili in humans), a member of the PIWI/Argonaute gene family, plays important roles in stem cell self-renewal, RNA silencing, and translational regulation in various organisms. Recent demonstration of stable Piwil2 expression in pre-cancerous stem cells and in various human and animal tumor cell lines suggests its association in tumorigenesis. Here, we show that cisplatin induces chromatin relaxation in Mili-wild type (WT) mouse embryonic fibroblasts (MEFs), but not in Mili-knockout (KO) MEFs. Moreover, in contrast to Mili-WT MEFs, Mili-KO MEFs showed a discernable H3 hypoacetylation response upon cisplatin treatment. Levels of the histone acetyltransferase (HAT), p300, were dramatically different due to a consistent cisplatin post-treatment decrease in Mili-WT and an increase in Mili-KO MEFs. Concomitant reduction of specific HAT activity of p300 could explain the decrease of H3 acetylation in Mili-KO MEFs. Our data also shows Mili is required for maintaining the euchromatic marks in MEFs upon cisplatin treatment. In addition, Mili-KO MEFs exhibited a significant deficiency in repairing cisplatin-induced DNA damage and displayed higher sensitivity to cisplatin. Further analysis revealed that Piwil2 was also enhanced in two completely different cisplatin-resistant ovarian cancer cell lines. Interestingly, knockdown of Piwil2 expression in these two cell lines also resulted in their enhanced sensitivity to cisplatin and decreased their efficiency for removing cisplatin-induced DNA intrastrand crosslinks (Pt-GG). The overall data showed that Piwil2 is a key factor in regulating chromatin modifications especially in response to cisplatin. To conclude, the overexpression of Piwil2 in some cancers could lead to cellular cisplatin resistance, possibly due to enhanced chromatin condensation affecting normal DNA repair.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
30
|
Higazi A, Abed M, Chen J, Li Q. Promoter context determines the role of proteasome in ligand-dependent occupancy of retinoic acid responsive elements. Epigenetics 2011; 6:202-11. [PMID: 20948287 DOI: 10.4161/epi.6.2.13658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinoid acid receptors are DNA-binding proteins mediating the biological effects of ligands through transcriptional activation. It is known that the activity of the 26S proteasome is important for nuclear receptor-activated gene transcription. However, the molecular mechanism by which the 26S proteasome participates in this process is not well understood. Here we report that the proteasome activity is essential for ligand-dependent interaction of RAR with its co-regulators such as SRC, p300 and RXR. We also determined that the proteasome activity is required for the association of liganded RAR to the genomic DNA and, consequently, for the recruitment of the coactivator complex to the retinoic acid responsive elements. Moreover, the requirement of proteasome activity for the activator activity of RAR is determined by the promoter context. Our study suggests that the 26S proteasome regulates directly the activity of RAR as an activator.
Collapse
Affiliation(s)
- Aliaa Higazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Spin JM, Quertermous T, Tsao PS. Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300. PLoS One 2010; 5:e14301. [PMID: 21179216 PMCID: PMC3001469 DOI: 10.1371/journal.pone.0014301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background Phenotypic alteration of vascular smooth muscle cells (SMC) in response to injury or inflammation is an essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory processes. P300, a histone acetyltransferase (HAT), activates crucial muscle-specific promoters in terminal (non-SMC) myocyte differentiation, and may be essential to SMC modulation as well. Results We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform) showed significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement, including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation. Conclusions Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching, and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity and SMC differentiation-gene specificity.
Collapse
Affiliation(s)
- Joshua M Spin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | |
Collapse
|
32
|
Li Y, Matsumori H, Nakayama Y, Osaki M, Kojima H, Kurimasa A, Ito H, Mori S, Katoh M, Oshimura M, Inoue T. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells 2010; 16:34-45. [PMID: 21059157 DOI: 10.1111/j.1365-2443.2010.01460.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously reported that sirtuin 2 (SIRT2), a mammalian member of the NAD+-dependent protein deacetylases, participates in mitotic regulation, specifically, in efficient mitotic cell death caused by the spindle checkpoint. Here, we describe a novel function of SIRT2 that is different from mitotic regulation. SIRT2 down-regulation using siRNA caused apoptosis in cancer cell lines such as HeLa cells, but not in normal cells. The apoptosis was caused by p53 accumulation, which is mediated by p38 MAPK activation-dependent degradation of p300 and the subsequent MDM2 degradation. Sirtuin inhibitors are emerging as antitumor drugs, and this function has been ascribed to the inhibition of SIRT1, the most well-characterized sirtuin that deacetylases p53 to promote cell survival and also binds to other proteins in response to genotoxic stress. This study suggests that SIRT2 can be a novel molecular target for cancer therapy and provides a molecular basis for the efficacy of SIRT2 for future cancer therapy.
Collapse
Affiliation(s)
- Yanze Li
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 2010; 53:105-13. [PMID: 20728697 DOI: 10.1016/j.pcad.2010.06.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthracycline antibiotics have saved the lives of many cancer victims in the 50 plus years since their discovery. A major limitation of their use is the dose-limiting cardiotoxicity. Efforts focusing on understanding the biochemical basis for anthracycline cardiac effects have provided several strategies currently in clinical use: limit dose exposure, encapsulate anthracyclines in liposomes to reduce myocardial uptake, administer concurrently with the iron chelator dexrazoxane to reduce free iron-catalyzed reactive oxygen species formation; and modify anthracycline structure in an effort to reduce myocardial toxicity. Despite these efforts, anthracycline-induced heart failure continues to occur with consequences for both morbidity and mortality. Our inability to predict and prevent anthracycline cardiotoxicity is, in part, due to the fact that the molecular and cellular mechanisms remain controversial and incompletely understood. Studies examining the effects of anthracyclines in cardiac myocytes in vitro and small animals in vivo have demonstrated several forms of cardiac injury, and it remains unclear how these translate to the clinical setting. Given the clinical evidence that myocyte death occurs after anthracycline exposure in the form of elevations in serum troponin, myocyte cell death seems to be a probable mechanism for anthracycline-induced cardiac injury. Other mechanisms of myocyte injury include the development of cellular "sarcopenia" characterized by disruption of normal sarcomere structure. Anthracyclines suppress expression of several cardiac transcription factors, and this may play a role in the development of myocyte death as well as sarcopenia. Degradation of the giant myofilament protein titin may represent an important proximal step that leads to accelerated myofilament degradation. An interesting interaction has been noted clinically between anthracyclines and newer cancer therapies that target the erbB2 receptor tyrosine kinase. There is now evidence that erbB2 signaling in response to the ligand neuregulin regulates anthracycline uptake into cells via the multidrug-resistance protein. Therefore, up-regulation of cardiac neuregulin signaling may be one strategy to limit myocardial anthracycline injury. Moreover, assessing an individual's risk for anthracycline injury may be improved by having some measure of endogenous activity of this and other myocardial protective signals.
Collapse
|
34
|
Zhao Z, Wang W, Geng J, Wang L, Su G, Zhang Y, Ge Z, Kang W. Protein kinase C epsilon-dependent extracellular signal-regulated kinase 5 phosphorylation and nuclear translocation involved in cardiomyocyte hypertrophy with angiotensin II stimulation. J Cell Biochem 2010; 109:653-62. [PMID: 20052676 DOI: 10.1002/jcb.22441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiotensin II (Ang II) plays a critical role in hypertrophy of cardiomyocytes; however, the molecular mechanism, especially the signaling cascades, in cardiomyocytes remains unclear. In the present study, we examined the mechanism of Ang II in hypertrophy of cardiomyocytes. Ang II rapidly stimulated phosphorylation of protein kinase C epsilon (PKCepsilon) in a time- and dose-dependent manner via Ang II receptor-1 (AT(1)). Furthermore, Ang II-induced extracellular signal-regulated kinase 5 (ERK5) phosphorylation and translocation was mediated through a signal pathway that involves AT(1) and PKCepsilon, which resulted in transcriptional activation of myocyte enhancer factor-2C (MEF2C) and hypertrophy. Consequently, inhibiting PKCepsilon or ERK5 by small interfering RNA (siRNA) significantly attenuated Ang II-induced MEF2C activation and hypertrophy of rat cardiomyocytes. These data provide evidence that PKCepsilon-dependent ERK5 phosphorylation and nucleocytoplasmic traffic mediates Ang II-induced MEF2C activation and cardiomyocyte hypertrophy. PKCepsilon and ERK5 may be potential targets in the treatment of pathological vascular hypertrophy associated with the enhanced renin-angiotensin system.
Collapse
Affiliation(s)
- Zhuo Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Shandong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Morimoto T, Sunagawa Y, Fujita M, Hasegawa K. Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ J 2010; 74:1059-66. [PMID: 20467147 DOI: 10.1253/circj.cj-09-1012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertensive heart disease and post-myocardial-infarction heart failure (HF) are leading causes of cardiovascular mortality in industrialized countries. To date, pharmacological agents that block cell surface receptors for neurohormonal factors have been used, but despite such conventional therapy, HF is increasing in incidence worldwide. During the development and deterioration process of HF, cardiomyocytes undergo maladaptive hypertrophy, which markedly influences their gene expression. Regulation of histone acetylation by histone acetyltransferase (eg, p300) and histone deacetylase plays an important role in this process. Increasing evidence suggests that the excessive acetylation of cardiomyocyte nuclei is a hallmark of maladaptive cardiomyocyte hypertrophy. Curcumin inhibits p300-mediated nuclear acetylation, suggesting its usefulness in HF treatment. Clinical application of this natural compound, which is inexpensive and safe, should be established in the near future.
Collapse
Affiliation(s)
- Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | |
Collapse
|
36
|
Abstract
Doxorubicin (Dox) is a very potent anticancer agent, but its use is limited by its dose-dependent, irreversible cardiotoxicity. Despite intensive research efforts, the mechanism of Dox cardiotoxicity remains poorly understood, so very limited means are available for its prevention or effective management. Recent studies have revealed that a therapeutic dose of Dox can activate proteolysis in cardiomyocytes that is mediated by the ubiquitin-proteasome system (UPS), and that the UPS-mediated degradation of a number of pivotal cardiac transcription factors and/or survival factors is enhanced by Dox treatment. These findings suggest that Dox-induced UPS activation may represent a new mechanism underlying Dox cardiotoxicity. Notably, recent experimental studies suggest that proteasome activation promotes cardiac remodeling during hypertension. This review surveys the current literature on the impact of Dox on the UPS and the potential mechanisms by which UPS activation may compromise the heart during Dox therapy.
Collapse
|
37
|
Intracellular distribution of p300 and its differential recruitment to aggresomes in breast cancer. Exp Mol Pathol 2010; 88:256-64. [PMID: 20097195 DOI: 10.1016/j.yexmp.2010.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/21/2022]
Abstract
It has been recently suggested that p300 cytoplasmic redistribution and degradation are important for controlling the availability and activity of the protein as a transcriptional coactivator. As a step towards determining the functional relevance of p300 intracellular redistribution in mammary cancer, we aimed at studying p300 localization in two different animal models of mammary carcinoma as well as in human primary breast carcinoma samples. Analysis of p300 protein levels showed stronger expression in tumor epithelia than in normal mammary gland. Cytoplasmic localization of p300 was observed in malignant cells. Furthermore, cytoplasmic p300 was found in tumor epithelia whereas nuclear localization was observed in normal mammary glands in both animal models and in non-malignant adjacent areas of human breast cancer specimens. Interestingly, proteasomal inhibition induced p300 redistribution to perinuclear inclusion bodies in tumor but not in normal mammary gland-derived cells. These inclusions were confirmed to be aggresomes by doing immunofluorescence for ubiquitin, vimentin and 20S proteasomal subunit. Taken together, these findings show that both the localization of p300 and the recruitment to aggresomes differ between mammary tumors and normal mammary glands, and suggest that the formation of these inclusions could be a potential target for therapeutic intervention.
Collapse
|
38
|
Sunagawa Y, Morimoto T, Takaya T, Kaichi S, Wada H, Kawamura T, Fujita M, Shimatsu A, Kita T, Hasegawa K. Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes. J Biol Chem 2010; 285:9556-9568. [PMID: 20081228 DOI: 10.1074/jbc.m109.070458] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A zinc finger protein GATA4 is one of the hypertrophy-responsive transcription factors and forms a complex with an intrinsic histone acetyltransferase, p300. Disruption of this complex results in the inhibition of cardiomyocyte hypertrophy and heart failure in vivo. By tandem affinity purification and mass spectrometric analyses, we identified cyclin-dependent kinase-9 (Cdk9) as a novel GATA4-binding partner. Cdk9 also formed a complex with p300 as well as GATA4 and cyclin T1. We showed that p300 was required for the interaction of GATA4 with Cdk9 and for the kinase activity of Cdk9. Conversely, Cdk9 kinase activity was required for the p300-induced transcriptional activities, DNA binding, and acetylation of GATA4. Furthermore, the kinase activity of Cdk9 was required for the phosphorylation of p300 as well as for cardiomyocyte hypertrophy. These findings demonstrate that Cdk9 forms a functional complex with the p300/GATA4 and is required for p300/GATA4- transcriptional pathway during cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Tatsuya Morimoto
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555.
| | - Tomohide Takaya
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555; Department of Cardiovascular Medicine, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Kaichi
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555; Department of Pediatrics, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Wada
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Teruhisa Kawamura
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Masatoshi Fujita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Shimatsu
- Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| | - Toru Kita
- Department of Cardiovascular Medicine, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Hasegawa
- Division of Translational Research, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555
| |
Collapse
|
39
|
Hironaka A, Morisugi T, Kawakami T, Miyagi I, Tanaka Y. 15-Deoxy-Delta(12,14)-prostaglandin J(2) impairs the functions of histone acetyltransferases through their insolubilization in cells. Biochem Biophys Res Commun 2009; 390:290-4. [PMID: 19799872 DOI: 10.1016/j.bbrc.2009.09.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
The cyclopentenonic prostaglandin 15-deoxy-Delta(12,14)-PG J(2) (15d-PGJ(2)) is a metabolite derived from PGD(2). Although 15d-PGJ(2) has been demonstrated to be a potent ligand for peroxisome proliferator activated receptor gamma (PPARgamma), the functions are not fully understood. In order to examine the effect of 15d-PGJ(2) on histone acetyltransferases (HATs), several lines of cell including mouse embryonic fibroblast (MEF) cells were exposed to 15d-PGJ(2). Three types of HAT, p300, CREB-binding protein (CBP), and p300/CBP-associated factor (PCAF), selectively disappeared from the soluble fraction in time- and dose-dependent manners. Inversely, HATs in the insoluble fraction increased, suggesting their conformational changes. The decrease in the soluble form of HATs resulted in the attenuation of NF-kappaB-, p53-, and heat shock factor-dependent reporter gene expressions, implying that the insoluble HATs are inactive. The resultant insoluble PCAF and p300 seemed to be digested by proteasome, because proteasome inhibitors caused the accumulation of insoluble HATs. Taken together, these results indicate that 15d-PGJ(2) attenuates some gene expressions that require HATs. This inhibitory action of 15d-PGJ(2) on the function of HATs was independent of PPARgamma, because PPARgamma agonists could not mimick 15d-PGJ(2) and PPARgamma antagonists did not inhibit 15d-PGJ(2).
Collapse
Affiliation(s)
- Asako Hironaka
- Department of Biochemistry, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | | | | | | | | |
Collapse
|
40
|
Pikkarainen S, Kennedy RA, Marshall AK, Tham EL, Lay K, Kriz TA, Handa BS, Clerk A, Sugden PH. Regulation of expression of the rat orthologue of mouse double minute 2 (MDM2) by H(2)O(2)-induced oxidative stress in neonatal rat cardiac myocytes. J Biol Chem 2009; 284:27195-210. [PMID: 19638633 DOI: 10.1074/jbc.m109.037887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.
Collapse
Affiliation(s)
- Sampsa Pikkarainen
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Little GH, Saw A, Bai Y, Dow J, Marjoram P, Simkhovich B, Leeka J, Kedes L, Kloner RA, Poizat C. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem 2009; 284:24857-68. [PMID: 19602725 DOI: 10.1074/jbc.m109.003186] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in cardiac contractility and heart disease. However, the specific role of alternatively spliced variants of CaMKII in cardiac disease and apoptosis remains poorly explored. Here we report that the deltaB subunit of CaMKII (CaMKIIdeltaB), which is the predominant nuclear isoform of calcium/calmodulin-dependent protein kinases in heart muscle, acts as an anti-apoptotic factor and is a novel target of the antineoplastic and cardiomyopathic drug doxorubicin (Dox (adriamycin)). Hearts of rats that develop cardiomyopathy following chronic treatment with Dox also show down-regulation of CaMKIIdeltaB mRNA, which correlates with decreased cardiac function in vivo, reduced expression of sarcomeric proteins, and increased tissue damage associated with Dox cardiotoxicity. Overexpression of CaMKIIdeltaB in primary cardiac cells inhibits Dox-mediated apoptosis and prevents the loss of the anti-apoptotic protein Bcl-2. Specific silencing of CaMKIIdeltaB by small interfering RNA prevents the formation of organized sarcomeres and decreases the expression of Bcl-2, which all mimic the effect of Dox. CaMKIIdeltaB is required for GATA-4-mediated co-activation and binding to the Bcl-2 promoter. These results reveal that CaMKIIdeltaB plays an essential role in cardiomyocyte survival and provide a mechanism for the protective role of CaMKIIdeltaB. These results suggest that selective targeting of CaMKII in the nuclear compartment might represent a strategy to regulate cardiac apoptosis and to reduce Dox-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Gillian H Little
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kimbrel EA, Kung AL. The F-box protein beta-TrCp1/Fbw1a interacts with p300 to enhance beta-catenin transcriptional activity. J Biol Chem 2009; 284:13033-44. [PMID: 19297328 DOI: 10.1074/jbc.m901248200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hyperactivated beta-catenin is a commonly found molecular abnormality in colon cancer, and its nuclear accumulation is thought to promote the expression of genes associated with cellular proliferation and transformation. The p300 transcriptional co-activator binds to beta-catenin and facilitates transcription by recruiting chromatin remodeling complexes and general transcriptional apparatus. We have found that beta-TrCp1/Fbw1a, a member of the Skp1/Cullin/Rbx1/F-box E3 ubiquitin ligase complex, binds directly to p300 and co-localizes with it to beta-catenin target gene promoters. Our data show that Fbw1a, which normally targets beta-catenin for degradation, works together with p300 to enhance the transcriptional activity of beta-catenin, whereas other F-box/WD40 proteins do not. Fbw1a also cooperates with p300 to co-activate transcription by SMAD3, another Fbw1a ubiquitylation target, but not p53 or HIF-1alpha, which are substrates for other ubiquitin ligase complexes. These results suggest that, although Fbw1a is part of a negative feedback loop for controlling beta-catenin levels in normal cells, its overexpression and binding to p300 may contribute to hyperactivated beta-catenin transcriptional activity in colon cancer cells.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Bourguignon LYW, Xia W, Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 2009; 284:2657-2671. [PMID: 19047049 PMCID: PMC2631959 DOI: 10.1074/jbc.m806708200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/10/2008] [Indexed: 12/18/2022] Open
Abstract
In this study we have investigated hyaluronan (HA)-mediated CD44 (an HA receptor) interactions with p300 (a histone acetyltransferase) and SIRT1 (a histone deacetylase) in human breast tumor cells (MCF-7 cells). Specifically, our results indicate that HA binding to CD44 up-regulates p300 expression and its acetyltransferase activity that, in turn, promotes acetylation of beta-catenin and NFkappaB-p65 leading to activation of beta-catenin-associated T-cell factor/lymphocyte enhancer factor transcriptional co-activation and NFkappaB-specific transcriptional up-regulation, respectively. These changes then cause the expression of the MDR1 (P-glycoprotein/P-gp) gene and the anti-apoptotic gene Bcl-x(L) resulting in chemoresistance in MCF-7 cells. Our data also show that down-regulation of p300, beta-catenin, or NFkappaB-p65 in MCF-7 cells (by transfecting cells with p300-, beta-catenin-, or NFkappaB-p65-specific small interfering RNA) inhibits the HA/CD44-mediated beta-catenin/NFkappaB-p65 acetylation and abrogates the aforementioned transcriptional activities. Subsequently, there is a significant decrease in both MDR1 and Bcl-x(L) gene expression and an enhancement in caspase-3 activity and chemosensitivity in the breast tumor cells. Further analyses indicate that activation of SIRT1 (deacetylase) by resveratrol (a natural antioxidant) induces SIRT1-p300 association and acetyltransferase inactivation, leading to deacetylation of HA/CD44-induced beta-catenin and NFkappaB-p65, inhibition of beta-catenin-T-cell factor/lymphocyte enhancer factor and NFkappaB-specific transcriptional activation, and the impairment of MDR1 and Bcl-x(L) gene expression. All these multiple effects lead to an activation of caspase-3 and a reduction of chemoresistance. Together, these findings suggest that the interactions between HA/CD44-stimulated p300 (acetyltransferase) and resveratrol-activated SIRT1 (deacetylase) play pivotal roles in regulating the balance between cell survival versus apoptosis, and multidrug resistance versus sensitivity in breast tumor cells.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121.
| | - Weiliang Xia
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121
| | - Gabriel Wong
- Department of Medicine, Endocrine Unit (111N2), University of California at San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121
| |
Collapse
|
44
|
Bhaumik SR, Malik S. Diverse regulatory mechanisms of eukaryotic transcriptional activation by the proteasome complex. Crit Rev Biochem Mol Biol 2009; 43:419-33. [PMID: 19058045 DOI: 10.1080/10409230802605914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life of any protein within a cell begins with transcriptional activation, and ends with proteolytic degradation. Intriguingly, the 26S proteasome complex, a non-lysosomal protein degradation machine comprising the 20S proteolytic core and 19S regulatory particles, has been implicated in intimate regulation of eukaryotic transcriptional activation through diverse mechanisms in a proteolysis-dependent as well as independent manner. Here, we discuss the intricate mechanisms of such proteasomal regulation of eukaryotic gene activation via multiple pathways.
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | | |
Collapse
|
45
|
Ito T, Muraoka S, Takahashi K, Fujio Y, Schaffer SW, Azuma J. Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:65-74. [PMID: 19239137 DOI: 10.1007/978-0-387-75681-3_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Though the administration of taurine is clinically efficacious against heart failure, the mechanism underlying its cardioprotection remains to be established. To provide information on the mechanism, we examined the effects of taurine on doxorubicin (DOX)-induced cardiotoxicity, with an emphasis on ROS generation and cardiac gene inhibition. Oral administration of taurine (3% w/v in tap water) dramatically reduced the mortality rate in both the acute or sub-acute toxic models of DOX toxicity. It was shown that taurine prevented DOX-induced oxidative stress as determined from cardiac glutathione content. Interestingly, Northern blot analysis revealed that DOX altered cardiac gene expression, including that of alpha-myosin heavy chain, ventricular myosin light chain-2 isoform and brain natriuretic peptide, an effect partially ameliorated by taurine treatment. In conclusion, taurine suppresses ROS generation and regulates gene expression in the DOX treated heart.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Ito T, Fujio Y, Schaffer SW, Azuma J. Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:523-32. [PMID: 19239184 DOI: 10.1007/978-0-387-75681-3_54] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Taurine is found in high concentrations in heart where it exerts several actions that could potentially benefit the diseased heart. The taurine transporter (TauT) is crucial for the maintenance of high taurine levels in the heart. Although cardiac taurine content is altered in various pathological conditions, little is known about the regulatory mechanisms governing TauT expression in cardiac myocytes. In the present study, we found that treatment with the antineoplastic drug doxorubicin (DOX), which is also known as a cardiotoxic agent, decreases the expression of the TauT gene in cultured cardiomyocytes isolated from the neonatal rat heart. Based on data obtained using a luciferase assay, DOX significantly reduced transcriptional activity driven by the TauT promoter, while deletion or mutation of a tonicity-response element (TonE) in this promoter eliminated the change of promoter activity. The protein level of the TonE-binding protein (TonEBP) was reduced by DOX treatment. In addition, the reduction in TonEBP protein content was suppressed by proteasome inhibitors. In conclusion, the DOX-enhanced degradation of TonEBP resulting in reduced TauT expression in the cardiomyocyte.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | |
Collapse
|
47
|
Zhu W, Soonpaa MH, Chen H, Shen W, Payne RM, Liechty EA, Caldwell RL, Shou W, Field LJ. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation 2008; 119:99-106. [PMID: 19103993 DOI: 10.1161/circulationaha.108.799700] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Doxorubicin is used to treat childhood and adult cancer. Doxorubicin treatment is associated with both acute and chronic cardiotoxicity. The cardiotoxic effects of doxorubicin are cumulative, which limits its chemotherapeutic dose. Free radical generation and p53-dependent apoptosis are thought to contribute to doxorubicin-induced cardiotoxicity. METHODS AND RESULTS Adult transgenic (MHC-CB7) mice expressing cardiomyocyte-restricted dominant-interfering p53 and their nontransgenic littermates were treated with doxorubicin (20 mg/kg cumulative dose). Nontransgenic mice exhibited reduced left ventricular systolic function (predoxorubicin fractional shortening [FS] 61+/-2%, postdoxorubicin FS 45+/-2%, mean+/-SEM, P<0.008), reduced cardiac mass, and high levels of cardiomyocyte apoptosis 7 days after the initiation of doxorubicin treatment. In contrast, doxorubicin-treated MHC-CB7 mice exhibited normal left ventricular systolic function (predoxorubicin FS 63+/-2%, postdoxorubicin FS 60+/-2%, P>0.008), normal cardiac mass, and low levels of cardiomyocyte apoptosis. Western blot analyses indicated that mTOR (mammalian target of rapamycin) signaling was inhibited in doxorubicin-treated nontransgenic mice but not in doxorubicin-treated MHC-CB7 mice. Accordingly, transgenic mice with cardiomyocyte-restricted, constitutively active mTOR expression (MHC-mTORca) were studied. Left ventricular systolic function (predoxorubicin FS 64+/-2%, postdoxorubicin FS 60+/-3%, P>0.008) and cardiac mass were normal in doxorubicin-treated MHC-mTORca mice, despite levels of cardiomyocyte apoptosis similar to those seen in doxorubicin-treated nontransgenic mice. CONCLUSIONS These data suggest that doxorubicin treatment induces acute cardiac dysfunction and reduces cardiac mass via p53-dependent inhibition of mTOR signaling and that loss of myocardial mass, and not cardiomyocyte apoptosis, is the major contributor to acute doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Wuqiang Zhu
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202-5225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features. PLoS One 2008; 3:e3968. [PMID: 19092997 PMCID: PMC2597774 DOI: 10.1371/journal.pone.0003968] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/16/2008] [Indexed: 12/13/2022] Open
Abstract
The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3′ untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)400 repeat tract was positioned 3′ of the termination codon and 5′ of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology.
Collapse
|
49
|
Liu J, Zheng H, Tang M, Ryu YC, Wang X. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol 2008; 295:H2541-50. [PMID: 18978187 DOI: 10.1152/ajpheart.01052.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin proteasome system (UPS) degrades abnormal proteins and most unneeded normal proteins, thereby playing a critical role in protein homeostasis in the cell. Proteasome inhibition is effective in treating certain forms of cancer, while UPS dysfunction is increasingly implicated in the pathogenesis of many severe and yet common diseases. It has been previously shown that doxorubicin (Dox) enhances the degradation of a UPS surrogate substrate in mouse hearts. To address the underlying mechanism, in the present study, we report that 1) Dox not only enhances the degradation of an exogenous UPS reporter (GFPu) but also antagonizes the proteasome inhibitor-induced accumulation of endogenous substrates (e.g., beta-catenin and c-Jun) of the UPS in cultured NIH 3T3 cells and cardiomyocytes; 2) Dox facilitates the in vitro degradation of GFPu and c-Jun by the reconstituted UPS via the enhancement of proteasomal function; 3) Dox at a therapeutically relevant dose directly stimulates the peptidase activities of purified 20S proteasomes; and 4) Dox increases, whereas proteasome inhibition decreases, E3 ligase COOH-terminus of heat shock protein cognate 70 in 3T3 cells via a posttranscriptional mechanism. These new findings suggest that Dox activates the UPS by acting directly on both the ubiquitination apparatus and proteasome.
Collapse
Affiliation(s)
- Jinbao Liu
- Department of Pathophysiology, Guangzhou Medical College, 195 W. Dongfeng Rd., Guangzhou, Guangdong, China.
| | | | | | | | | |
Collapse
|
50
|
PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol Cell Biol 2008; 28:7126-38. [PMID: 18809579 DOI: 10.1128/mcb.00897-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PML, a nuclear protein, interacts with several transcription factors and their coactivators, such as HIPK2 and p300, resulting in the activation of transcription. Although PML is thought to achieve transcription activation by stabilizing the transcription factor complex, little is known about the underlying molecular mechanism. To clarify the role of PML in transcription regulation, we purified the PML complex and identified Fbxo3 (Fbx3), Skp1, and Cullin1 as novel components of this complex. Fbx3 formed SCF(Fbx3) ubiquitin ligase and promoted the degradation of HIPK2 and p300 by the ubiquitin-proteasome pathway. PML inhibited this degradation through a mechanism that unexpectedly did not involve inhibition of the ubiquitination of HIPK2. PML, Fbx3, and HIPK2 synergistically activated p53-induced transcription. Our findings suggest that PML stabilizes the transcription factor complex by protecting HIPK2 and p300 from SCF(Fbx3)-induced degradation until transcription is completed. In contrast, the leukemia-associated fusion PML-RARalpha induced the degradation of HIPK2. We discuss the roles of PML and PML-retinoic acid receptor alpha, as well as those of HIPK2 and p300 ubiquitination, in transcriptional regulation and leukemogenesis.
Collapse
|