1
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
2
|
Molinaro P, Sanguigno L, Casamassa A, Valsecchi V, Sirabella R, Pignataro G, Annunziato L, Formisano L. Emerging Role of DREAM in Healthy Brain and Neurological Diseases. Int J Mol Sci 2023; 24:ijms24119177. [PMID: 37298129 DOI: 10.3390/ijms24119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
4
|
Nosova O, Bazov I, Karpyak V, Hallberg M, Bakalkin G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021; 26:molecules26113458. [PMID: 34200173 PMCID: PMC8201134 DOI: 10.3390/molecules26113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.
Collapse
Affiliation(s)
- Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| |
Collapse
|
5
|
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L. Nuclear localization of NCX: Role in Ca 2+ handling and pathophysiological implications. Cell Calcium 2019; 86:102143. [PMID: 31865040 DOI: 10.1016/j.ceca.2019.102143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | |
Collapse
|
6
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L, Verbeek DS, Mulder J, Rajkowska G, Sheedy D, Kril J, Sun X, Syvänen AC, Yakovleva T, Bakalkin G. Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain. Cereb Cortex 2019; 28:3129-3142. [PMID: 28968778 DOI: 10.1093/cercor/bhx181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mumtaz Malik Taqi
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, NORMENT, University of Oslo, Oslo, Norway
| | - Lada Stålhandske
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna Sheedy
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Jillian Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Xueguang Sun
- Zymo Research Corporation, 17062 Murphy Avenue, Irvine, CA, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Batista FA, Marcello MA, Martins MB, Peres KC, Cardoso UO, Silva ACDN, Bufalo NE, Soares FA, Silva MJD, Assumpção LV, Ward LS. Diagnostic utility of DREAM gene mRNA levels in thyroid tumours. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:205-211. [PMID: 29641740 PMCID: PMC10118984 DOI: 10.20945/2359-3997000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/08/2017] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The transcriptional repressor DREAM is involved in thyroid-specific gene expression, thyroid enlargement and nodular development, but its clinical utility is still uncertain. In this study we aimed to investigate whether DREAM mRNA levels differ in different thyroid tumors and how this possible difference would allow the use of DREAM gene expression as molecular marker for diagnostic and/or prognosis purpose. MATERIALS AND METHODS We quantified DREAM gene mRNA levels and investigated its mutational status, relating its expression and genetic changes to diagnostic and prognostic features of 200 thyroid tumors, being 101 malignant [99 papillary thyroid carcinomas (PTC) and 2 anaplastic thyroid carcinomas] and 99 benign thyroid lesions [49 goiter and 50 follicular adenomas (FA)]. RESULTS Levels of mRNA of DREAM gene were higher in benign (0.7909 ± 0.6274 AU) than in malignant (0.3373 ± 0.6274 AU) thyroid lesions (p < 0.0001). DREAM gene expression was able to identify malignancy with 66.7% sensitivity, 85.4% specificity, 84.2% positive predictive value (PPV), 68.7% negative predictive value (NPV), and 75.3% accuracy. DREAM mRNA levels were also useful distinguishing the follicular lesions FA and FVPTC with 70.2% sensitivity, 73.5% specificity, 78.5% PPV, 64.1% NPV, and 71.6% accuracy. However, DREAM gene expression was neither associated with clinical features of tumor aggressiveness, nor with recurrence or survival. Six different genetic changes in non-coding regions of DREAM gene were also found, not related to DREAM gene expression or tumor features. CONCLUSION We suggest that DREAM gene expression may help diagnose thyroid nodules, identifying malignancy and characterizing follicular-patterned thyroid lesions; however, it is not useful as a prognostic marker.
Collapse
Affiliation(s)
- Fernando A Batista
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Marjory A Marcello
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Mariana B Martins
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Karina C Peres
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Ulieme O Cardoso
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Aline C D N Silva
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Natassia E Bufalo
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Fernando A Soares
- Departamento de Patologia, Hospital A.C. Camargo - Fundação Antonio Prudente, São Paulo, SP, Brasil
| | - Márcio J da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Lígia V Assumpção
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| | - Laura S Ward
- Laboratório de Genética Molecular do Câncer (Gemoca), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil
| |
Collapse
|
8
|
Zhang J, Li J, Craig TA, Kumar R, Gross ML. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM). Biochemistry 2017. [PMID: 28627884 DOI: 10.1021/acs.biochem.7b00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca2+-binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca2+ but detaches from DRE under Ca2+ stimulation, allowing gene expression. The Ca2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca2+. Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca2+-binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca2+ signal to CREB-mediated gene transcription.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jing Li
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Benedet T, Gonzalez P, Oliveros JC, Dopazo JM, Ghimire K, Palczewska M, Mellstrom B, Naranjo JR. Transcriptional repressor DREAM regulates trigeminal noxious perception. J Neurochem 2017; 141:544-552. [DOI: 10.1111/jnc.13584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Tomaso Benedet
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
| | - Paz Gonzalez
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | | | - Jose M. Dopazo
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | - Kedar Ghimire
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
| | | | - Britt Mellstrom
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | - Jose R. Naranjo
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| |
Collapse
|
10
|
Downstream Regulatory Element Antagonist Modulator (DREAM), a target for anti-thrombotic agents. Pharmacol Res 2017; 117:283-287. [PMID: 28065857 DOI: 10.1016/j.phrs.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Circulating platelets participate in the process of numerous diseases including thrombosis, inflammation, and cancer. Thus, it is of great importance to understand the underlying mechanisms mediating platelet activation under disease conditions. Emerging evidence indicates that despite the lack of a nucleus, platelets possess molecules that are involved in gene transcription in nucleated cells. This review will summarize downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, and highlight recent findings suggesting its novel non-transcriptional role in hemostasis and thrombosis.
Collapse
|
11
|
Fontán-Lozano A, Capilla-Gonzalez V, Aguilera Y, Mellado N, Carrión AM, Soria B, Hmadcha A. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency: The role of DREAM in the maintenance of hESCs. Stem Cell Res 2016; 16:568-78. [PMID: 26999760 DOI: 10.1016/j.scr.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embryonic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a Ca(2+)-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.
Collapse
Affiliation(s)
- A Fontán-Lozano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain
| | - V Capilla-Gonzalez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain
| | - Y Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain
| | - N Mellado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain
| | - A M Carrión
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla 41013, Spain
| | - B Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain; CIBER de Diabetes y Enfermedades Metabólica asociada (CIBERDEM), Madrid 28029, Spain
| | - A Hmadcha
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla 41092, Spain; CIBER de Diabetes y Enfermedades Metabólica asociada (CIBERDEM), Madrid 28029, Spain.
| |
Collapse
|
12
|
Shinzato A, Lerario AM, Lin CJ, Danilovic DS, Marui S, Trarbach EB. Evaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter. Med Sci Monit Basic Res 2015; 21:179-82. [PMID: 26319784 PMCID: PMC4564072 DOI: 10.12659/msmbr.895096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). Material/Methods DNA and RNA samples were obtained from hyperplastic thyroid glands of 60 patients (54 females) with benign MNG. DREAM mutations were evaluated by PCR and direct automatic sequencing, whereas relative quantification of mRNA was performed by real-time PCR. Over- and under-expression were defined as a 2-fold increase and decrease in comparison to normal thyroid tissue, respectively. RQ M (relative quantification mean); SD (standard deviation). Results DREAM expression was detected in all nodules evaluated. DREAM mRNA was overexpressed in 31.7% of MNG (RQ M=6.26; SD=5.08), whereas 53.3% and 15% had either normal (RQ M=1.16; SD=0.46) or underexpression (RQ M=0.30; SD=0.10), respectively. Regarding DREAM mutations analysis, only previously described intronic polymorphisms were observed. Conclusions We report DREAM gene expression in the hyperplastic thyroid gland of MNG patients. However, DREAM expression did not vary significantly, and was somewhat underexpressed in most patients, suggesting that DREAM upregulation does not significantly affect nodular development in human goiter.
Collapse
Affiliation(s)
- Amanda Shinzato
- Laboratory of Cellular and Molecular Endocrinology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| | - Antonio M Lerario
- Laboratory of Cellular and Molecular Endocrinology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| | - Chin J Lin
- Laboratory of Cardiovascular Pathology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| | - Debora S Danilovic
- Laboratory of Cellular and Molecular Endocrinology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| | - Suemi Marui
- Laboratory of Cellular and Molecular Endocrinology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| | - Ericka B Trarbach
- Laboratory of Cellular and Molecular Endocrinology, Hospital of the School of Medicine of São Paulo University (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
13
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
14
|
Pham K, Dhulipala G, Gonzalez WG, Gerstman BS, Regmi C, Chapagain PP, Miksovska J. Ca2+ and Mg2+ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator. Protein Sci 2015; 24:741-51. [PMID: 25627705 DOI: 10.1002/pro.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/25/2015] [Indexed: 11/09/2022]
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca(2+) concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca(2+) /Mg(2+) association to DREAM. Our data indicate a minor impact of Ca(2+) association on the overall structure of the N- and C-terminal domains, although Ca(2+) binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca(2+) bound forms of the protein. Time-resolved fluorescence data indicate that Ca(2+) binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca(2+) association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca(2+) and Mg(2+) suggesting that, under physiological conditions, Ca(2+) free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions.
Collapse
Affiliation(s)
- Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199
| | | | | | | | | | | | | |
Collapse
|
15
|
Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R. Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 2015; 77:95-105. [PMID: 24857398 DOI: 10.1016/j.biopsych.2014.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAM(-/-)) were used to define the involvement of DREAM in dyskinesias. METHODS Dyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot. RESULTS In daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAM(-/-) mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy. CONCLUSIONS The protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.
Collapse
Affiliation(s)
- Irene Ruiz-DeDiego
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain
| | - Britt Mellstrom
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Vallejo
- CIBERNED, Madrid, Spain; CIBERDEM, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jose R Naranjo
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain.
| |
Collapse
|
16
|
Tiruppathi C, Soni D, Wang DM, Xue J, Singh V, Thippegowda PB, Cheppudira BP, Mishra RK, Debroy A, Qian Z, Bachmaier K, Zhao YY, Christman JW, Vogel SM, Ma A, Malik AB. The transcription factor DREAM represses the deubiquitinase A20 and mediates inflammation. Nat Immunol 2014; 15:239-47. [PMID: 24487321 PMCID: PMC4005385 DOI: 10.1038/ni.2823] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/02/2014] [Indexed: 12/14/2022]
Abstract
Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/−) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inflammatory stimuli. These studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy in diseases such as acute lung injury associated with unconstrained NF-κB activity.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Dheeraj Soni
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Dong-Mei Wang
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Jiaping Xue
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Vandana Singh
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Prabhakar B Thippegowda
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Bopaiah P Cheppudira
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Rakesh K Mishra
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Auditi Debroy
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Zhijian Qian
- Department of Hematology/Oncology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Kurt Bachmaier
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - You-Yang Zhao
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - John W Christman
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Stephen M Vogel
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| | - Averil Ma
- Department of Medicine, School of Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Asrar B Malik
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
17
|
Wide distribution of CREM immunoreactivity in adult and fetal human brain, with an increased expression in dentate gyrus neurons of Alzheimer's as compared to normal aging brains. Amino Acids 2013; 45:1373-83. [PMID: 24100545 DOI: 10.1007/s00726-013-1601-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human cyclic AMP response modulator proteins (CREMs) are encoded by the CREM gene, which generates 30 or more different CREM protein isoforms. They are members of the leucine zipper protein superfamily of nuclear transcription factors. CREM proteins are known to be implicated in a plethora of important cellular processes within the CNS. Amazingly, little is known about their cellular and regional distribution in the brain, however. Therefore, we studied by means of immunohistochemistry and Western blotting the expression patterns of CREM in developing and adult human brain, as well as in brains of Alzheimer's disease patients. CREM immunoreactivity was found to be widely but unevenly distributed in the adult human brain. Its localization was confined to neurons. In immature human brains, CREM multiple neuroblasts and radial glia cells expressed CREM. In Alzheimer's brain, we found an increased cellular expression of CREM in dentate gyrus neurons as compared to controls. We discuss our results with regard to the putative roles of CREM in brain development and in cognition.
Collapse
|
18
|
Long I, Suppian R, Ismail Z. The Effects of Pre-emptive Administration of Ketamine and norBNI on Pain Behavior, c-Fos, and Prodynorphin Protein Expression in the Rat Spinal Cord after Formalin-induced Pain Is Modulated by the DREAM Protein. Korean J Pain 2013; 26:255-64. [PMID: 23861999 PMCID: PMC3710939 DOI: 10.3344/kjp.2013.26.3.255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/01/2023] Open
Abstract
Background We investigated the effects of pre-emptive administration of ketamine and norBNI on pain behavior and the expression of DREAM, c-Fos, and prodynorphin proteins on the ipsilateral side of the rat spinal cord at 2 and 4 hours after formalin injection. Methods Eighty-four male Sprague Dawley rats were divided into 4 major groups consisting of control rats (C) (n = 12), rats given only formalin injections (F) (n = 24), and rats treated with pre-emptive administration of either ketamine (K+F) (n = 24) or norBNI (N+F) (n = 24). The non-control groups were further divided into subgroups consisting of rats that were sacrificed at 2 and 4 hours (n = 12 for each group) after formalin injection. Pain behavior was recorded for 1 hour. After 2 and 4 hours, the rats were sacrificed and the spinal cords (L4-L5 sections) were removed for immunohistochemistry and Western blot analysis. Results The pain behavior response was reduced in the K+F group compared to the other groups during the second phase of the formalin pain response. We detected an increase in the nuclear DREAM protein level in the K+F group at 2 and 4 hours and a transient decrease in the N+F group at 2 hours; however, it increased at 4 hours after injection. Fos-like immunoreactivity (FLI) and Prodynorphin-like immunoreactivity (PLI) neurons decreased in the K+F group but increased in the N+F group at 2 hours after injection. While FLI decreased, PLI increased in all groups at 4 hours after injection. Conclusions We suggest that NMDA and kappa opioid receptors can modulate DREAM protein expression, which can affect pain behavior and protein transcriptional processes at 2 hours and bring about either harmful or protective effects at 4 hours after formalin injection.
Collapse
Affiliation(s)
- Idris Long
- BRAINetwork Centre for Neurocognitive Science, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | |
Collapse
|
19
|
Protein-Protein Interactions: Gene Acronym Redundancies and Current Limitations Precluding Automated Data Integration. Proteomes 2013; 1:3-24. [PMID: 28250396 PMCID: PMC5314489 DOI: 10.3390/proteomes1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022] Open
Abstract
Understanding protein interaction networks and their dynamic changes is a major challenge in modern biology. Currently, several experimental and in silico approaches allow the screening of protein interactors in a large-scale manner. Therefore, the bulk of information on protein interactions deposited in databases and peer-reviewed published literature is constantly growing. Multiple databases interfaced from user-friendly web tools recently emerged to facilitate the task of protein interaction data retrieval and data integration. Nevertheless, as we evidence in this report, despite the current efforts towards data integration, the quality of the information on protein interactions retrieved by in silico approaches is frequently incomplete and may even list false interactions. Here we point to some obstacles precluding confident data integration, with special emphasis on protein interactions, which include gene acronym redundancies and protein synonyms. Three human proteins (choline kinase, PPIase and uromodulin) and three different web-based data search engines focused on protein interaction data retrieval (PSICQUIC, DASMI and BIPS) were used to explain the potential occurrence of undesired errors that should be considered by researchers in the field. We demonstrate that, despite the recent initiatives towards data standardization, manual curation of protein interaction networks based on literature searches are still required to remove potential false positives. A three-step workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed literature searches, and (iii) data curation and integration, is proposed as the best strategy to gather updated information on protein interactions. Finally, this strategy was applied to compile bona fide information on human DREAM protein interactome, which constitutes liable training datasets that can be used to improve computational predictions.
Collapse
|
20
|
DREAM regulates insulin promoter activity through newly identified DRE element. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractDownstream regulatory element antagonist modulator (DREAM) protein is a 31 kDa Ca2+-regulated transcriptional repressor. It functions as a silencer of the gene transcription. In low intracellular free Ca2+ concentration DREAM tightly binds to the downstream regulatory element (DRE) of gene promoter and impedes the transcription. In higher Ca2+ concentrations DREAM binds Ca2+ and disconnects from DRE of the gene promoter enabling transcription. We report that DREAM is expressed in different human tissues including the pancreas, where it is located in the islets of Langerhans. Location of DREAM in RIN-F5 cells in cultures is restricted to the nucleus and membranes and changes after increased Ca2+-levels. The proteins dissociate from dimmers to monomers and translocate out of the nucleus. The expression of DREAM in β-cells in the islets of Langerhans regulates the promoter activity of the insulin gene by directly interacting with the sequence located between +52 bp and +81 bp downstream of the transcriptional start site of the promoter. Our results provide evidence for the existence of DRE sequence in the insulin gene promoter. It is suggested that DREAM is a repressor of insulin gene transcription, whose effect is mediated by direct binding to DRE sequence.
Collapse
|
21
|
Chiappini F, Ramadoss P, Vella KR, Cunha LL, Ye FD, Stuart RC, Nillni EA, Hollenberg AN. Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 2013; 365:84-94. [PMID: 23000398 PMCID: PMC3572472 DOI: 10.1016/j.mce.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023]
Abstract
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T₄ and T₃ levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T₃ in vivo likely occurs independently of the CREB/CREM family.
Collapse
Affiliation(s)
- Franck Chiappini
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Lucas L. Cunha
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Felix D. Ye
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Ronald C. Stuart
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Eduardo A. Nillni
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| |
Collapse
|
22
|
Ramachandran PL, Craig TA, Atanasova EA, Cui G, Owen BA, Bergen HR, Mer G, Kumar R. The potassium channel interacting protein 3 (DREAM/KChIP3) heterodimerizes with and regulates calmodulin function. J Biol Chem 2012; 287:39439-48. [PMID: 23019329 DOI: 10.1074/jbc.m112.398495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Downstream regulatory element antagonistic modulator (DREAM/KChIP3), a neuronal EF-hand protein, modulates pain, potassium channel activity, and binds presenilin 1. Using affinity capture of neuronal proteins by immobilized DREAM/KChIP3 in the presence and absence of calcium (Ca(2+)) followed by mass spectroscopic identification of interacting proteins, we demonstrate that in the presence of Ca(2+), DREAM/KChIP3 interacts with the EF-hand protein, calmodulin (CaM). The interaction of DREAM/KChIP3 with CaM does not occur in the absence of Ca(2+). In the absence of Ca(2+), DREAM/KChIP3 binds the EF-hand protein, calcineurin subunit-B. Ca(2+)-bound DREAM/KChIP3 binds CaM with a dissociation constant of ∼3 μM as assessed by changes in DREAM/KChIP3 intrinsic protein fluorescence in the presence of CaM. Two-dimensional (1)H,(15)N heteronuclear single quantum coherence spectra reveal changes in chemical shifts and line broadening upon the addition of CaM to (15)N DREAM/KChIP3. The amino-terminal portion of DREAM/KChIP3 is required for its binding to CaM because a construct of DREAM/KChIP3 lacking the first 94 amino-terminal residues fails to bind CaM as assessed by fluorescence spectroscopy. The addition of Ca(2+)-bound DREAM/KChIP3 increases the activation of calcineurin (CN) by calcium CaM. A DREAM/KChIP3 mutant incapable of binding Ca(2+) also stimulates calmodulin-dependent CN activity. The shortened form of DREAM/KChIP3 lacking the NH(2)-terminal amino acids fails to activate CN in the presence of calcium CaM. Our data demonstrate the interaction of DREAM/KChIP3 with the important EF-hand protein, CaM, and show that the interaction alters CN activity.
Collapse
|
23
|
Pruunsild P, Timmusk T. Subcellular localization and transcription regulatory potency of KCNIP/Calsenilin/DREAM/KChIP proteins in cultured primary cortical neurons do not provide support for their role in CRE-dependent gene expression. J Neurochem 2012; 123:29-43. [PMID: 22612322 DOI: 10.1111/j.1471-4159.2012.07796.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KCNIP3/KChIP3 (voltage-dependent K+ channel interacting protein 3), alias Calsenilin and downstream regulatory element antagonist modulator (DREAM), is a multifunctional protein that modulates A-type potassium channels, affects processing of amyloid precursor protein and regulates transcription. KCNIP3 has been described to negatively influence the activity of CREB (cAMP/Ca(2+)-response element binding protein), an essential factor in neuronal activity-dependent gene expression regulation. However, reports on intracellular localization of KCNIP3 in neurons are diverse and necessitate additional analyses of distribution of KCNIPs in cells to clarify the potential of KCNIP3 to fulfill its functions in different cell compartments. Here, we examined localization of the entire family of highly similar KCNIP proteins in neuronal cells and show that over-expressed isoforms of KCNIP1/KChIP1, KCNIP2/KChIP2, KCNIP3/KChIP3, and KCNIP4/KChIP4 had varied, yet partially overlapping subcellular localization. In addition, although some of the over-expressed KCNIP isoforms localized to the nucleus, endogenous KCNIPs were not detected in nuclei of rat primary cortical neurons. Moreover, we analyzed the role of KCNIP proteins in cAMP/Ca(2+)-response element (CRE)-dependent transcription by luciferase reporter assay and electrophoretic mobility shift assay and report that our results do not support the role for KCNIPs, including DREAM/Calsenilin/KChIP3, in modulation of CREB-mediated transcription in neurons.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Gene Technology, Tallinn University of Technology, Estonia.
| | | |
Collapse
|
24
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
25
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
26
|
Fontán-Lozano Á, Suárez-Pereira I, González-Forero D, Carrión ÁM. The A-current modulates learning via NMDA receptors containing the NR2B subunit. PLoS One 2011; 6:e24915. [PMID: 21966384 PMCID: PMC3180285 DOI: 10.1371/journal.pone.0024915] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/19/2011] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K+ current (IA) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in IA affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an IA inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the IA, we demonstrate that impairment of IA decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased IA requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the IA and the activity of NR2B-containing NMDA receptors in the regulation of learning.
Collapse
Affiliation(s)
- Ángela Fontán-Lozano
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla, Spain
- * E-mail: (AF-L); (AMC)
| | - Irene Suárez-Pereira
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla, Spain
| | | | - Ángel Manuel Carrión
- División de Neurociencias, Universidad Pablo de Olavide de Sevilla, Sevilla, Spain
- * E-mail: (AF-L); (AMC)
| |
Collapse
|
27
|
Rivas M, Villar D, González P, Dopazo XM, Mellstrom B, Naranjo JR. Building the DREAM interactome. SCIENCE CHINA-LIFE SCIENCES 2011; 54:786-92. [DOI: 10.1007/s11427-011-4196-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/07/2011] [Indexed: 12/28/2022]
|
28
|
Ronkainen JJ, Hänninen SL, Korhonen T, Koivumäki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 2011; 589:2669-86. [PMID: 21486818 DOI: 10.1113/jphysiol.2010.201400] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.
Collapse
Affiliation(s)
- Jarkko J Ronkainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Long I, Suppian R, Ismail Z. Increases in mRNA and DREAM Protein Expression in the Rat Spinal Cord After Formalin Induced Pain. Neurochem Res 2010; 36:533-9. [DOI: 10.1007/s11064-010-0375-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
|
30
|
Abstract
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization.
Collapse
|
31
|
Expression and high glucose-mediated regulation of K+ channel interacting protein 3 (KChIP3) and KV4 channels in retinal Müller glial cells. Biochem Biophys Res Commun 2010; 404:678-83. [PMID: 21147063 DOI: 10.1016/j.bbrc.2010.12.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 11/23/2022]
Abstract
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy.
Collapse
|
32
|
Savignac M, Mellström B, Bébin AG, Oliveros JC, Delpy L, Pinaud E, Naranjo JR. Increased B cell proliferation and reduced Ig production in DREAM transgenic mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:7527-36. [PMID: 21059893 DOI: 10.4049/jimmunol.1000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DREAM/KChIP-3 is a calcium-dependent transcriptional repressor highly expressed in immune cells. Transgenic mice expressing a dominant active DREAM mutant show reduced serum Ig levels. In vitro assays show that reduced Ig secretion is an intrinsic defect of transgenic B cells that occurs without impairment in plasma cell differentiation, class switch recombination, or Ig transcription. Surprisingly, transgenic B cells show an accelerated entry in cell division. Transcriptomic analysis of transgenic B cells revealed that hyperproliferative B cell response could be correlated with a reduced expression of Klf9, a cell-cycle regulator. Pulse-chase experiments demonstrated that the defect in Ig production is associated with reduced translation rather than with increased protein degradation. Importantly, transgenic B cells showed reduced expression of the Eif4g3 gene, which encodes a protein related to protein translation. Our results disclose, to our knowledge, a novel function of DREAM in proliferation and Ig synthesis in B lymphocytes.
Collapse
Affiliation(s)
- Magali Savignac
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Ling F, Fang W, Chen Y, Li J, Liu X, Wang L, Zhang H, Chen S, Mei Y, Du H, Wang C. Identification of novel transcripts from the porcine MYL1 gene and initial characterization of its promoters. Mol Cell Biochem 2010; 343:239-47. [PMID: 20563743 DOI: 10.1007/s11010-010-0519-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
Abstract
The fast skeletal alkali myosin light polypeptide 1 (MYL1) gene is one of three mammalian alkali MLC genes and encodes two isoforms, 1f and 3f, which play a vital role in embryonic, fetal, and adult skeletal muscle development. We isolated the MYL1 gene from a pig BAC library with the goal of characterizing its promoter and identifying its transcripts. Genes and isoforms were identified by reverse transcriptase-PCR, northern blot and RACE (Rapid Amplification of cDNA Ends). Potential MYL1 gene promoters were characterized using a luciferase reporter assay and electrophoretic mobility shift assays (EMSA). MLC1f, MLC3f, and three additional isoforms of porcine MYL1, MLC5f-A, -B, and -C were identified. Up to now, the three novel isoforms had not been reported in human or mouse. Northern blot analysis indicated that MLC1f, MLC3f, and MLC5fs were expressed only in longissimus dorsi muscles. Two transcription initiation and termination sites were identified by RACE. Promoter analysis and EMSA demonstrated the presence of a MEF3 (skeletal muscle-specific transcriptional enhancer) binding site (+384 to +481), which might be essential for porcine MYL1 transcription. Our results suggested that five transcript variants were generated using alternative promoters, two transcription start sites, and polyA sites, as well as variable splicing of the pig MYL1 exon 5. The identification of alternative promoters and splice variants, the expression of the splice variants in different muscle tissues, and the definition of regulatory elements provide important molecular genetic knowledge concerning the MYL1 gene.
Collapse
Affiliation(s)
- Fei Ling
- College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, Pita G, Milne R, Maravall J, Ramos I, Andía V, Rodríguez-Poyo P, Jara-Albarrán A, Meoro A, del Peso C, Arribas L, Iglesias P, Caballero J, Serrano J, Picó A, Pomares F, Giménez G, López-Mondéjar P, Castello R, Merante-Boschin I, Pelizzo MR, Mauricio D, Opocher G, Rodríguez-Antona C, González-Neira A, Matías-Guiu X, Santisteban P, Robledo M. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009; 5:e1000637. [PMID: 19730683 PMCID: PMC2727793 DOI: 10.1371/journal.pgen.1000637] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/07/2009] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. Although follicular cell-derived thyroid cancer has an important genetic component, efforts in identifying major susceptibility genes have not been successful. Probably this is due to the complex nature of this disease that involves both genetic and environmental factors, as well as the interaction between them, which could be ultimately modulating the individual susceptibility. In this study, focused on genes carefully selected by their biological relation with the disease, and using more than 1,000 cases and 1,000 representative controls from two independent Caucasian populations, we demonstrate that FOXE1 is associated with Papillary Thyroid Cancer susceptibility. Functional assays prove that rs1867277 behaves as a genetic causal variant that regulates FOXE1 expression through a complex transcription factor network. This approach constitutes a successful approximation to define thyroid cancer risk genes related to individual susceptibility, and identifies FOXE1 as a key factor for its development.
Collapse
Affiliation(s)
- Iñigo Landa
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Ruiz-Llorente
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Susanna Leskelä
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Roger Milne
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Maravall
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | | | - Víctor Andía
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Amparo Meoro
- Hospital Universitario Reina Sofía, Murcia, Spain
| | | | | | | | | | | | - Antonio Picó
- Hospital General Universitario de Alicante, Alicante, Spain
| | | | | | | | | | - Isabella Merante-Boschin
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Maria-Rosa Pelizzo
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Didac Mauricio
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | - Giuseppe Opocher
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
- Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Anna González-Neira
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- * E-mail: (PS); (MR)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
- * E-mail: (PS); (MR)
| |
Collapse
|
35
|
Rivas M, Mellström B, Torres B, Cali G, Ferrara AM, Terracciano D, Zannini M, Morreale de Escobar G, Naranjo JR. The DREAM protein is associated with thyroid enlargement and nodular development. Mol Endocrinol 2009; 23:862-70. [PMID: 19299442 DOI: 10.1210/me.2008-0466] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in the pathophysiology of a wide range of diseases and constitute an attractive therapeutic target. In the thyroid gland, TSH receptor (TSHR), a member of the GPCR family, is a major regulator of thyroid differentiation and function. Alterations in TSHR activity are often involved in the development of pathologies such as thyroid cancer and thyroid enlargement (goiter). Here we show that DREAM (downstream regulatory element antagonist modulator) modulates TSHR activity through a direct protein-protein interaction that promotes coupling between the receptor and Galphas. In transgenic mice, DREAM overexpression provokes a marked enlargement of the thyroid gland. Increased levels of DREAM protein were observed in human multinodular goiters, suggesting a novel etiopathogenic mechanism in nodular development in humans. Taken together, these findings identify a mechanism for the control of TSHR activity and provide a new approach for the study and treatment of thyroid pathologies associated with impaired TSHR function.
Collapse
Affiliation(s)
- Marcos Rivas
- Departamento Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vallejo M. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 2009; 39:90-100. [PMID: 19238593 DOI: 10.1007/s12035-009-8055-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 12/23/2022]
Abstract
Astrocytes constitute a very abundant cell type in the mammalian central nervous system and play critical roles in brain function. During development, astrocytes are generated from neural progenitor cells only after these cells have generated neurons. This so called gliogenic switch is tightly regulated by intrinsic factors that inhibit the generation of astrocytes during the neurogenic period. Once neural progenitors acquire gliogenic competence, they differentiate into astrocytes in response to specific extracellular signals. Some of these signals are delivered by neurotrophic cytokines via activation of the gp130-JAK-signal transducer and activator of transcription system, whereas others depend on the activity of pituitary adenylate cyclase-activating polypeptide (PACAP) on specific PAC1 receptors that stimulate the production of cAMP. This results in the activation of the small GTPases Rap1 and Ras, and in the cAMP-dependent entry of extracellular calcium into the cell. Calcium, in turn, stimulates the transcription factor downstream regulatory element antagonist modulator (DREAM), which is bound to specific sites of the promoter of the glial fibrillary acidic protein gene, stimulating its expression during astrocyte differentiation. Lack of DREAM in vivo results in alterations in the number of neurons and astrocytes generated during development. Thus, the PACAP-cAMP-Ca(2+)-DREAM signaling cascade constitutes an important pathway to activate glial-specific gene expression during astrocyte differentiation.
Collapse
Affiliation(s)
- Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
37
|
Braunewell KH, Klein-Szanto AJ, Szanto AJK. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Cell Tissue Res 2009; 335:301-16. [PMID: 18989702 PMCID: PMC2742949 DOI: 10.1007/s00441-008-0716-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
The visinin-like protein (VSNL) subfamily, including VILIP-1 (the founder protein), VILIP-2, VILIP-3, hippocalcin, and neurocalcin delta, constitute a highly homologous subfamily of neuronal calcium sensor (NCS) proteins. Comparative studies have shown that VSNLs are expressed predominantly in the brain with restricted expression patterns in various subsets of neurons but are also found in peripheral organs. In addition, the proteins display differences in their calcium affinities, in their membrane-binding kinetics, and in the intracellular targets to which they associate after calcium binding. Even though the proteins use a similar calcium-myristoyl switch mechanism to translocate to cellular membranes, they show calcium-dependent localization to various subcellular compartments when expressed in the same neuron. These distinct calcium-myristoyl switch properties might be explained by specificity for defined phospholipids and membrane-bound targets; this enables VSNLs to modulate various cellular signal transduction pathways, including cyclic nucleotide and MAPK signaling. An emerging theme is the direct or indirect effect of VSNLs on gene expression and their interaction with components of membrane trafficking complexes, with a possible role in membrane trafficking of different receptors and ion channels, such as glutamate receptors of the kainate and AMPA subtype, nicotinic acetylcholine receptors, and Ca(2+)-channels. One hypothesis is that the highly homologous VSNLs have evolved to fulfil specialized functions in membrane trafficking and thereby affect neuronal signaling and differentiation in defined subsets of neurons. VSNLs are involved in differentiation processes showing a tumor-invasion-suppressor function in peripheral organs. Finally, VSNLs play neuroprotective and neurotoxic roles and have been implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- Karl-Heinz Braunewell
- Molecular and Cellular Neuroscience Laboratory, Department Biochemistry and Molecular Biology, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA.
| | | | | |
Collapse
|
38
|
Lack of DREAM protein enhances learning and memory and slows brain aging. Curr Biol 2008; 19:54-60. [PMID: 19110430 DOI: 10.1016/j.cub.2008.11.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 01/01/2023]
Abstract
Memory deficits in aging affect millions of people and are often disturbing to those concerned. Dissection of the molecular control of learning and memory is paramount to understand and possibly enhance cognitive functions. Old-age memory loss also has been recently linked to altered Ca(2+) homeostasis. We have previously identified DREAM (downstream regulatory element antagonistic modulator), a member of the neuronal Ca(2+) sensor superfamily of EF-hand proteins, with specific roles in different cell compartments. In the nucleus, DREAM is a Ca(2+)-dependent transcriptional repressor, binding to specific DNA signatures, or interacting with nucleoproteins regulating their transcriptional properties. Also, we and others have shown that dream mutant (dream(-/-)) mice exhibit marked analgesia. Here we report that dream(-/-) mice exhibit markedly enhanced learning and synaptic plasticity related to improved cognition. Mechanistically, DREAM functions as a negative regulator of the key memory factor CREB in a Ca(2+)-dependent manner, and loss of DREAM facilitates CREB-dependent transcription during learning. Intriguingly, 18-month-old dream(-/-) mice display learning and memory capacities similar to young mice. Moreover, loss of DREAM protects from brain degeneration in aging. These data identify the Ca(2+)-regulated "pain gene" DREAM as a novel key regulator of memory and brain aging.
Collapse
|
39
|
Abstract
The nervous system contains a multitude of cell types which are specified during development by cascades of transcription factors acting combinatorially. Some of these transcription factors are only active during development, whereas others continue to function in the mature nervous system to maintain appropriate gene-expression patterns in differentiated cells. Underpinning the function of the nervous system is its plasticity in response to external stimuli, and many transcription factors are involved in regulating gene expression in response to neuronal activity, allowing us to learn, remember and make complex decisions. Here we review some of the recent findings that have uncovered the molecular mechanisms that underpin the control of gene regulatory networks within the nervous system. We highlight some recent insights into the gene-regulatory circuits in the development and differentiation of cells within the nervous system and discuss some of the mechanisms by which synaptic transmission influences transcription-factor activity in the mature nervous system. Mutations in genes that are important in epigenetic regulation (by influencing DNA methylation and post-translational histone modifications) have long been associated with neuronal disorders in humans such as Rett syndrome, Huntington's disease and some forms of mental retardation, and recent work has focused on unravelling their mechanisms of action. Finally, the discovery of microRNAs has produced a paradigm shift in gene expression, and we provide some examples and discuss the contribution of microRNAs to maintaining dynamic gene regulatory networks in the brain.
Collapse
|
40
|
DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis. J Neurosci 2008; 28:6703-13. [PMID: 18579744 DOI: 10.1523/jneurosci.0215-08.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.
Collapse
|
41
|
Reisch N, Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H. DREAM is reduced in synovial fibroblasts of patients with chronic arthritic pain: is it a suitable target for peripheral pain management? Arthritis Res Ther 2008; 10:R60. [PMID: 18507845 PMCID: PMC2483451 DOI: 10.1186/ar2431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/23/2008] [Accepted: 05/28/2008] [Indexed: 12/30/2022] Open
Abstract
Introduction The endogenous pain-relieving system depends in part on the regulation of nociceptive signals through binding of opioids to the corresponding opioid receptor. Interfering with the trans-repression effect of downstream regulatory element antagonist modulator (DREAM) on the transcription of the opioid dynorphin-encoding prodynorphin (pdyn) gene might enhance pain relief in the periphery. Methods Expression levels were measured in osteoarthritis (OA) synovial fibroblast-like cells (SFLCs) (n = 8) and in peripheral blood mononuclear cells (PBMCs) from OA patients (n = 53) and healthy controls (n = 26) by real-time polymerase chain reaction. Lysed OA SFLCs were analyzed by immunoprecipitation. Translation of DREAM mRNA was inhibited by small interfering RNAs (siRNAs). Expressions of DREAM, pdyn, and c-fos mRNAs were measured at 24, 48, and 72 hours after transfection. Results The expression of DREAM mRNA was shown in both healthy and OA SFLCs as well as PBMCs. Inhibiting transcription using siRNAs led to a marked reduction in DREAM expression after 24, 48, and 72 hours. However, no significant changes in c-fos and pdyn expression occurred. In addition, DREAM mRNA expression was significantly reduced in OA patients with chronic pain (pain intensity as measured by a visual analog scale scale of greater than 40), but no pdyn expression was detectable. Conclusion To our knowledge, this is the first report showing the expression of DREAM in SFLCs and PBMCs on the mRNA level. However, DREAM protein was not detectable. Since repression of pdyn transcription persists after inhibiting DREAM translation, DREAM appears to play no functional role in the kappa opioid receptor system in OA SFLCs. Therefore, our data suggest that DREAM appears not to qualify as a target in peripheral pain management.
Collapse
Affiliation(s)
- Natasa Reisch
- Center of Experimental Rheumatology, Department of Rheumatology and Institute of Physical Medicine, University Hospital, CH-8091 Zurich, Gloriastrasse 25, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models. Physiol Rev 2008; 88:421-49. [DOI: 10.1152/physrev.00041.2005] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcium is the most universal signal used by living organisms to convey information to many different cellular processes. In this review we present well-known and recently identified proteins that sense and decode the calcium signal and are key elements in the nucleus to regulate the activity of various transcriptional networks. When possible, the review also presents in vivo models in which the genes encoding these calcium sensors-transducers have been modified, to emphasize the critical role of these Ca2+-operated mechanisms in many physiological functions.
Collapse
|
43
|
Chavira-Suárez E, Ramírez M, Lamas M. d-Serine/N-methyl-d-aspartate receptor signaling decreases DNA-binding activity of the transcriptional repressor DREAM in Müller glia from the retina. Neurosci Lett 2008; 432:121-6. [DOI: 10.1016/j.neulet.2007.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/03/2007] [Accepted: 12/07/2007] [Indexed: 11/26/2022]
|
44
|
Yu L, Sun C, Mendoza R, Wang J, Matayoshi ED, Hebert E, Pereda-Lopez A, Hajduk PJ, Olejniczak ET. Solution structure and calcium-binding properties of EF-hands 3 and 4 of calsenilin. Protein Sci 2008; 16:2502-9. [PMID: 17962406 DOI: 10.1110/ps.072928007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calsenilin is a member of the recoverin branch of the EF-hand superfamily that is reported to interact with presenilins, regulate prodynorphin gene expression, modulate voltage-gated Kv4 potassium channel function, and bind to neurotoxins. Calsenilin is a Ca+2-binding protein and plays an important role in calcium signaling. Despite its importance in numerous neurological functions, the structure of this protein has not been reported. In the absence of Ca+2, the protein has limited spectral resolution that increases upon the addition of Ca+2. Here, we describe the three-dimensional solution structure of EF-hands 3 and 4 of calsenilin in the Ca+2-bound form. The Ca+2-bound structure consists of five alpha-helices and one two-stranded antiparallel beta-sheet. The long loop that connects EF hands 3 and 4 is highly disordered in solution. In addition to its structural effects, Ca+2 binding also increases the protein's propensity to dimerize. These changes in structure and oligomerization state induced upon Ca+2 binding may play important roles in molecular recognition during calcium signaling.
Collapse
Affiliation(s)
- Liping Yu
- Pharmaceutical Discovery Division, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Savignac M, Mellström B, Naranjo JR. Calcium-dependent transcription of cytokine genes in T lymphocytes. Pflugers Arch 2007; 454:523-33. [PMID: 17334777 DOI: 10.1007/s00424-007-0238-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/14/2007] [Indexed: 12/12/2022]
Abstract
The increase in intracellular calcium ion concentration is a general signaling mechanism used in many biological systems. In T lymphocytes, calcium is essential for activation, differentiation, and effector functions. In this study, we will summarize recent developments of how intracellular calcium concentrations are modified in T cells to affect the activity of three major calcium-dependent transcriptional effectors, i.e., NFAT, MEF2, and DREAM, involved in cytokine gene expression.
Collapse
Affiliation(s)
- Magali Savignac
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | |
Collapse
|
46
|
Ruiz-Gomez A, Mellström B, Tornero D, Morato E, Savignac M, Holguín H, Aurrekoetxea K, González P, González-García C, Ceña V, Mayor F, Naranjo JR. G Protein-coupled Receptor Kinase 2-mediated Phosphorylation of Downstream Regulatory Element Antagonist Modulator Regulates Membrane Trafficking of Kv4.2 Potassium Channel. J Biol Chem 2007; 282:1205-15. [PMID: 17102134 DOI: 10.1074/jbc.m607166200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Downstream regulatory element antagonist modulator (DREAM)/potassium channel interacting protein (KChIP3) is a multifunctional protein of the neuronal calcium sensor subfamily of Ca2+-binding proteins with specific roles in different cell compartments. In the nucleus, DREAM acts as a Ca2+-dependent transcriptional repressor, and outside the nucleus DREAM interacts with Kv4 potassium channels, regulating their trafficking to the cell membrane and their gating properties. In this study we characterized the interaction of DREAM with GRK6 and GRK2, members of the G protein-coupled receptor kinase family of proteins, and their phosphorylation of DREAM. Ser-95 was identified as the site phosphorylated by GRK2. This phosphorylation did not modify the repressor activity of DREAM. Mutation of Ser-95 to aspartic acid, however, blocked DREAM-mediated membrane expression of the Kv4.2 potassium channel without affecting channel tetramerization. Treatment with the calcineurin inhibitors FK506 and cyclosporin A also blocked DREAM-mediated Kv4.2 channel trafficking and calcineurin de-phosphorylated GRK2-phosphorylated DREAM in vitro. Our results indicate that these two Ca2+-dependent posttranslational events regulate the activity of DREAM on Kv4.2 channel function.
Collapse
Affiliation(s)
- Ana Ruiz-Gomez
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matsuda M, Yamamoto TA, Hirata M. Ca2+-dependent regulation of calcitonin gene expression by the transcriptional repressor DREAM. Endocrinology 2006; 147:4608-17. [PMID: 16840549 DOI: 10.1210/en.2006-0254] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcitonin (CT), whose secretion from thyroid glands is regulated by increases in the concentration of extracellular Ca(2+), is a well-known hormone that regulates calcium homeostasis. However, the molecular mechanisms underlying the gene expression dependent on Ca(2+) have not been clarified. The downstream regulatory element (DRE) antagonist modulator (DREAM) was recently identified as a Ca(2+)-dependent transcriptional repressor. In the present study, we investigated the possible involvement of DREAM in the regulation of CT gene expression and secretion. A luciferase assay using TT cells, a thyroid carcinoma cell line, showed that a particular region in the CT gene promoter repressed the promoter activity under basal conditions but induced the activity when the Ca(2+) concentration was increased. We found two DRE sequences in a region located upstream from the transcription start site. Gel retardation assay confirmed that DREAM bound to the CT-DRE and also indicated that DREAM bound to the DRE in a Ca(2+)-dependent manner. We generated stable transfectants of TT cells with wild-type or mutant DREAM, which lacked the responsiveness to Ca(2+) changes. In contrast to the wild type, overexpression of the mutant DREAM inhibited the increase in CT secretion induced by a calcium ionophore. The addition of forskolin to increase cAMP activated the CT promoter, probably by the interaction of DREAM with cAMP-responsive element binding proteins, independent on the activation by Ca(2+). Together, these results suggest that DREAM plays an important role in human CT gene expression in a Ca(2+)- and cAMP-dependent manner.
Collapse
Affiliation(s)
- Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
48
|
Zaidi NF, Kuplast KG, Washicosky KJ, Kajiwara Y, Buxbaum JD, Wasco W. Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). J Neurochem 2006; 98:1290-301. [PMID: 16787403 DOI: 10.1111/j.1471-4159.2006.03972.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calsenilin/potassium channel-interacting protein (KChIP)3/ downstream regulatory element sequence antagonist modulator (DREAM) is a neuronal calcium-binding protein that has been shown to have multiple functions in the cell, including the regulation of presenilin processing, repression of transcription and modulation of A-type potassium channels. To gain a better understanding of the precise role of calsenilin in specific cellular compartments, an interactor hunt for proteins that bind to the N-terminal domain of calsenilin was carried out. Using a yeast two-hybrid system and co-immunoprecipitation studies, we have identified the transcriptional co-repressor C-terminal binding protein (CtBP)2 as an interactor for calsenilin and have shown that the two proteins can interact in vivo. In co-immunoprecipitation studies, calsenilin also interacted with CtBP1, a CtBP2 homolog. Our data also showed a calsenilin-dependent increase in c-fos protein levels in CtBP knockout fibroblasts, suggesting that CtBP may modulate the transcriptional repression of c-fos by calsenilin. Furthermore, the finding that histone deacetylase protein and activity were associated with the calsenilin-CtBP immunocomplex suggests a mechanism by which calsenilin-CtBP may act to repress transcription. Finally, we demonstrated that calsenilin and CtBP are present in synaptic vesicles and can interact in vivo.
Collapse
Affiliation(s)
- Nikhat F Zaidi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nystedt JM, Brandt A, Vilim FS, Ziff EB, Panula P. Identification of transcriptional regulators of neuropeptide FF gene expression. Peptides 2006; 27:1020-35. [PMID: 16515822 DOI: 10.1016/j.peptides.2005.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/13/2005] [Indexed: 11/25/2022]
Abstract
Neuropeptide FF (NPFF) is an RF-amide peptide with pleiotropic functions in the mammalian central nervous system, including pain modulation, opiate interactions, cardiovascular regulation and neuroendocrine effects. To gain insights into the transcriptional mechanisms that regulate NPFF gene expression, we cloned and sequenced 9.8 and 1.5 kb of the mouse and rat NPFF 5'-flanking region, respectively. Regions with high sequence homology between mouse, rat and human were expected to have high probability to interact with regulatory proteins and were studied further. Electromobility shift assays revealed one region that may interact with the homeobox proteins Oct-1, PDX1, Pit-1 and MEIS and two consensus DRE sites that bind a nuclear protein, which was identified as the downstream regulatory element antagonistic modulator DREAM by supershift assays. The distribution of NPFF gene expression was examined in the mouse using in situ hybridization and RT-PCR. NPFF expression was also evident during mouse embryogenesis. A fixed transcription initiation site for the mouse NPFF gene was found. A novel splice variant with a retained intron of the NPFF gene was characterized. Chimeric luciferase reporter gene constructs for the mouse NPFF gene revealed a minimal promoter region and a region with transcriptional suppressor features. An NGF responsive area was found using mouse NPFF reporter gene constructs. We postulate that Oct-1, PDX1, Pit-1, MEIS and DREAM are likely transcriptional regulators of NPFF gene expression.
Collapse
Affiliation(s)
- Johanna M Nystedt
- Department of Biology, Abo Akademi University, Biocity 2. floor, Tykistökatu 6 A, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
50
|
Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellström B, Carafoli E, Naranjo JR. Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 2006; 25:10822-30. [PMID: 16306395 PMCID: PMC6725879 DOI: 10.1523/jneurosci.3912-05.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na+/Ca2+ exchangers NCX1, NCX2, and NCX3 are vital for the control of cellular Ca2+ homeostasis. Here, we show that a doublet of downstream regulatory element sites in the promoter of the NCX3 gene mediates transcriptional repression of NCX3 by the Ca2+-modulated transcriptional repressor downstream regulatory element antagonist modulator (DREAM). Overexpression of a DREAM EF-hand mutant insensitive to Ca2+ (EFmDREAM) in hippocampus and cerebellum of transgenic mice significantly reduced NCX3 mRNA and protein levels without modifying NCX1 and NCX2 expression. Cerebellar granules from EFmDREAM transgenic mice showed increased levels of cytosolic Ca2+ and were more vulnerable to increased Ca2+ influx after partial opening of voltage-gated plasma membrane Ca2+ channels induced by increasing K+ in the culture medium but survived better in the conditions of reduced Ca2+ influx prevailing in low extracellular K+. Overexpression of NCX3 in EFmDREAM transgenic granules using a lentiviral vector restored the normal survival response to high K+ observed in wild-type granules. Thus, the downregulation of the regulator of Ca2+ homeostasis NCX3 by Ca2+-regulated DREAM is a striking example of the autoregulatory property of the Ca2+ signal in neurons.
Collapse
Affiliation(s)
- Rosa Gomez-Villafuertes
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|