1
|
Hu M, Li J, Deng J, Liu C, Liu Y, Li H, Feng W, Xu X. AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome. Mol Ther 2024; 32:4095-4107. [PMID: 39169623 PMCID: PMC11573578 DOI: 10.1016/j.ymthe.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of StambpSox1-cKO mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.
Collapse
Affiliation(s)
- Meixin Hu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingxin Deng
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Chunxue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yingying Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Child Health Care, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
2
|
Zhang J, Zhang Y, Liu Y, Zhou T, Pan G, He J, Shu X. STAMBP is Required for Long-Term Maintenance of Neural Progenitor Cells Derived from hESCs. Stem Cell Rev Rep 2024; 20:1932-1943. [PMID: 38951308 DOI: 10.1007/s12015-024-10751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.
Collapse
Affiliation(s)
- Jitian Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yanqi Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yancai Liu
- Divison of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tiancheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guangjin Pan
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| | - Xiaodong Shu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Hu M, Li H, Huang Z, Li D, Xu Y, Xu Q, Chen B, Wang Y, Deng J, Zhu M, Feng W, Xu X. Novel compound heterozygous mutation in STAMBP causes a neurodevelopmental disorder by disrupting cortical proliferation. Front Neurosci 2022; 16:963813. [PMID: 36033615 PMCID: PMC9399766 DOI: 10.3389/fnins.2022.963813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the STAMBP gene, which encodes a deubiquitinating isopeptidase called STAM-binding protein, are related to global developmental delay, microcephaly, and capillary malformation. Owing to the limited number of reported cases, the functional and phenotypic characteristics of STAMBP variants require further elucidation. Materials and methods Whole exome sequencing was performed on a patient presenting with a neurodevelopmental disorder. Novel compound heterozygous mutations in STAMBP [c.843_844del (p.C282Wfs*11) and c.920G > A (p.G307E)] were identified and validated using Sanger sequencing. A 3D human cortical organoid model was used to investigate the function of STAMBP and the pathogenicity of the novel mutation (c.920G > A, p.G307E). Results The patient was presented with global developmental delay, autism spectrum disorder, microcephaly, epilepsy, and dysmorphic facial features but without apparent capillary malformation on the skin and organs. Cortical organoids with STAMBP knockout (KO) showed significantly lower proliferation of neural stem cells (NSCs), leading to smaller organoids that are characteristic of microcephaly. Furthermore, STAMBP disruption did not affect apoptosis in early cortical organoids. After re-expressing wild-type STAMBP, STAMBPG307E, and STAMBPT313I (a known pathogenic mutation) within STAMBP KO organoids, only STAMBPWT rescued the impaired proliferation of STAMBP deficient organoids, but not STAMBPG307E and STAMBPT313I. Conclusion Our findings demonstrate that the clinical phenotype of STAMBP mutations is highly variable, and patients with different STAMBP mutations show differences in the severity of symptoms. The STAMBP missense mutation identified here is a novel pathogenic mutation that impairs the proliferation of NSCs in human brain development.
Collapse
Affiliation(s)
- Meixin Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Huiping Li,
| | - Zhuxi Huang
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ying Xu
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bo Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jingxin Deng
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ming Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijun Feng
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Weijun Feng,
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Xiu Xu,
| |
Collapse
|
4
|
Zhao Q, Li Y, Du X, Chen X, Jiao Q, Jiang H. Effects of deubiquitylases on the biological behaviors of neural stem cells. Dev Neurobiol 2021; 81:847-858. [PMID: 34241974 DOI: 10.1002/dneu.22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
New neurons are generated throughout life in distinct regions of the mammalian brain due to the proliferation and differentiation of neural stem cells (NSCs). Ubiquitin, a post-translational modification of cellular proteins, is an important factor in regulating neurogenesis. Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. Recent studies have provided growing evidence that deubiquitylases (DUBs) which reverse ubiquitylation process play critical roles in NSCs maintenance, differentiation and maturation. This review mainly focused on the relationship of DUBs and NSCs, and further summarized recent advances in our understanding of DUBs on regulating NSCs biological behaviors.
Collapse
Affiliation(s)
- Qiqi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yixin Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, Zhao Y, Ma C, Li D. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia 2021; 23:607-623. [PMID: 34102455 PMCID: PMC8190130 DOI: 10.1016/j.neo.2021.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Tumor metastasis is a leading cause of death in lung adenocarcinoma (LUAD) patients, but the molecular events that regulate metastasis have not been completely elucidated. STAMBP is a deubiquitinating enzyme of the Jab1/MPN metalloenzyme family that regulates the stability of substrates in cells by specifically removing ubiquitin molecules. We found that STAMBP expression was increased in the cytoplasm of tumor cells from LUAD patients. The STAMBP level was closely associated with tumor size, lymph node invasion and neoplasm disease stage. A high STAMBP level predicted poor overall survival and disease-free survival in LUAD patients. STAMBP overexpression promoted cell migration and invasion, whereas STAMBP knockdown attenuated these processes in LUAD cells after epidermal growth factor treatment. Mechanistically, increased STAMBP expression promoted the stabilization of Epidermal growth factor receptor (EGFR), whereas STAMBP knockdown induced the degradation of EGFR. STAMBP may deubiquitinate EGFR by localizing in early endosomes and increase EGFR membrane localization in LUAD cells. The overexpression of STAMBP triggered the activation of MAPK signaling after epidermal growth factor treatment. In contrast, this activation was attenuated in STAMBP knockdown cells. Small molecule inhibitors of EGFR and MAPK signaling pathway may block STAMBP-induced cell mobility and invasion as well as ERK activation in cells. Importantly, STAMBP knockdown suppressed LUAD tumor growth and metastasis by regulating the EGFR-mediated ERK activation in a xenograft mouse model. Our findings identified STAMBP as a novel potential target for LUAD therapy.
Collapse
Affiliation(s)
- Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Jieru Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xinchun Xu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China.
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Lead Contact.
| |
Collapse
|
6
|
Hassan ME, El-Sayed AEKB, Abdel-Wahhab MA. Screening of the bioactive compounds in Amphora coffeaeformis extract and evaluating its protective effects against deltamethrin toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15185-15195. [PMID: 33226557 DOI: 10.1007/s11356-020-11745-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroids are synthetic chemicals similar to the pyrethrins, but more toxic to insects and mammals and persistent in the environment than pyrethrins. This study aimed to identify the bioactive compounds of Amphora coffeaeformis extract (ACE) and to determine their potential protective activity against deltamtherin (DEL) insecticide in rats. Six groups of male albino rats were treated for 4 weeks included the control group, ACE-treated group (772 mg/kg b.w.), DEL-exposed group (13.5 mg/kg b.w.), DEL plus ACE-treated group, and the groups treated with ACE for 14 days before or after DEL. At the end of treatment, blood and tissue samples were collected for biochemical assays. The GC-MS identified 18 compounds; most of them are fatty acid methyl ester, and the HPLC identified 8 polyphenols and significant amounts of vitamins A, C, B1, B2, B9, and E. The in vivo results revealed that DEL induced significant alterations in hematological and serum biochemical parameters, oxidative stress markers, proinflammatory cytokines, and NF-κB. ACE protects against DEL toxicity, and the protection was more pronounced in the groups treated with ACE plus DEL or ACE after DEL suggesting that ACE could be used for the prevention or the treatment of DEL toxicity. It could be concluded that ACE is a promising candidate for the production of bioactive compounds and should be considered in the pharmaceutical and food application.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Abo El-Khair B El-Sayed
- Fertilization Technology Department, Biological and Agricultural Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Gangoda L, Phan TK, Anand S, Hulett MD, Mathivanan S. Deubiquitinase enzyme STAMBP plays a broad role in both Toll-like and Nod-like receptor mediated inflammation. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220960844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The innate immune system in mammals include pattern recognition receptors (PRRs), which initiate immune responses to microbial infection via several mechanisms. These PRRs include cell surface Toll-like receptors (TLRs) and cytosolic Nod-like receptors (NLRs) that recognizes extracellular and intracellular danger signals respectively. NLRs are poised to respond specifically to pathogens that access the host cell cytosol. The molecular mechanisms by which NLRs are activated to form inflammasomes and exert downstream inflammatory responses remain poorly understood. Additionally, very little is known about the regulation of cytosolic pathogen sensory NLR family members, except for NLRP3. Recently a deubiquitinase known as STAMBP has been implicated as a regulator of NLRP7 inflammasome assembly. We have investigated the role of STAMBP in regulation of other inflammasome components and its broader role in inflammation using genetic removal of STAMBP protein from cells using CRISPR/Cas9 gene editing and challenging these gene edited cells with an inflammatory stimuli. Our study demonstrated that STAMBP has a critical role in inflammation both in the context of NLR pathway, through NLRP stabilization and TLR pathway, through JNK signaling and downstream cytokine production. The findings indicate that STAMBP has a wider role in inflammation than previously thought to be the case.
Collapse
Affiliation(s)
- Lahiru Gangoda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sushma Anand
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
10
|
Iwakami Y, Yokoyama S, Watanabe K, Hayakawa Y. STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem Biophys Res Commun 2018; 507:484-488. [DOI: 10.1016/j.bbrc.2018.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
11
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
12
|
A novel homozygous missense mutation in the SH3-binding motif of STAMBP causing microcephaly-capillary malformation syndrome. J Hum Genet 2018; 63:957-963. [DOI: 10.1038/s10038-018-0482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023]
|
13
|
Iwasaki YW, Ishino K, Siomi H. Deep sequencing and high-throughput analysis of PIWI-associated small RNAs. Methods 2017; 126:66-75. [PMID: 28552266 DOI: 10.1016/j.ymeth.2017.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 02/07/2023] Open
Abstract
Small RNAs are now known to be major regulatory factors of gene expression. Emerging methods based on deep-sequencing have enabled the analysis of small RNA expression in a high-throughput manner, leading to the identification of large numbers of small RNAs in various species. Moreover, profiling small RNA data together with transcriptome data enables transcriptional and post-transcriptional regulation mediated by small RNAs to be hypothesized. Here, we isolated PIWIL1 (MIWI)-associated small RNAs from mouse testes, and performed small RNA-seq analysis. In addition, directional RNA-seq was performed using Piwil1 mutant mouse testes. Using these data, we describe protocols for analyzing small RNA-seq reads to obtain profiles of small RNAs associated with PIWI proteins. We also present bioinformatic protocols for analyzing RNA-seq reads that aim to annotate expression of piRNA clusters and identify genes regulated by piRNAs.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kyoko Ishino
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
14
|
Bränn E, Papadopoulos F, Fransson E, White R, Edvinsson Å, Hellgren C, Kamali-Moghaddam M, Boström A, Schiöth HB, Sundström-Poromaa I, Skalkidou A. Inflammatory markers in late pregnancy in association with postpartum depression-A nested case-control study. Psychoneuroendocrinology 2017; 79:146-159. [PMID: 28285186 DOI: 10.1016/j.psyneuen.2017.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023]
Abstract
Recent studies indicate that the immune system adaptation during pregnancy could play a significant role in the pathophysiology of perinatal depression. The aim of this study was to investigate if inflammation markers in a late pregnancy plasma sample can predict the presence of depressive symptoms at eight weeks postpartum. Blood samples from 291 pregnant women (median and IQR for days to delivery, 13 and 7-23days respectively) comprising 63 individuals with postpartum depressive symptoms, as assessed by the Edinburgh postnatal depression scale (EPDS≥12) and/or the Mini International Neuropsychiatric Interview (M.I.N.I.) and 228 controls were analyzed with an inflammation protein panel using multiplex proximity extension assay technology, comprising of 92 inflammation-associated markers. A summary inflammation variable was also calculated. Logistic regression, LASSO and Elastic net analyses were implemented. Forty markers were lower in late pregnancy among women with depressive symptoms postpartum. The difference remained statistically significant for STAM-BP (or otherwise AMSH), AXIN-1, ADA, ST1A1 and IL-10, after Bonferroni correction. The summary inflammation variable was ranked as the second best variable, following personal history of depression, in predicting depressive symptoms postpartum. The protein-level findings for STAM-BP and ST1A1 were validated in relation to methylation status of loci in the respective genes in a different population, using openly available data. This explorative approach revealed differences in late pregnancy levels of inflammation markers between women presenting with depressive symptoms postpartum and controls, previously not described in the literature. Despite the fact that the results do not support the use of a single inflammation marker in late pregnancy for assessing risk of postpartum depression, the use of STAM-BP or the novel notion of a summary inflammation variable developed in this work might be used in combination with other biological markers in the future.
Collapse
Affiliation(s)
- Emma Bränn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Emma Fransson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Åsa Edvinsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Charlotte Hellgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Adrian Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Sweden
| | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015; 4:596-621. [PMID: 26445063 PMCID: PMC4695848 DOI: 10.3390/cells4040596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Hemut E Meyer
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
16
|
Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci U S A 2015; 112:E5543-51. [PMID: 26324913 DOI: 10.1073/pnas.1510516112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.
Collapse
|
17
|
Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, Gajović S. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci 2015; 67:104-15. [DOI: 10.1016/j.mcn.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
|
18
|
Faqeih EA, Bastaki L, Rosti RO, Spencer EG, Zada AP, Saleh MAM, Um K, Gleeson JG. Novel STAMBP mutation and additional findings in an Arabic family. Am J Med Genet A 2015; 167A:805-9. [PMID: 25692795 DOI: 10.1002/ajmg.a.36782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023]
Abstract
Microcephaly-capillary malformation syndrome (MIC-CAP syndrome) is a newly recognized autosomal recessive congenital neurocutaneous central nervous system disorder characterized by severe microcephaly, early-onset seizures, profound psychomotor disability, and multiple cutaneous capillary lesions. In addition, affected patients have variable dysmorphic facial features and hypoplastic distal phalanges. It is distinctively caused by mutations in a newly characterized gene, STAMBP, encoding the deubiquitinating (DUB) isopeptidase that has a key role in cell surface receptor-mediated endocytosis and sorting. Herein, we describe an Arab family of two siblings with classic features of MIC-CAP syndrome that harbor a novel predicted splice mutation in STAMBP, which additionally display previously unreported findings of congenital hypothyroidism and alopecia areata.
Collapse
Affiliation(s)
- Eissa A Faqeih
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Watanabe T, Cheng EC, Zhong M, Lin H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res 2014; 25:368-80. [PMID: 25480952 PMCID: PMC4352877 DOI: 10.1101/gr.180802.114] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The eukaryotic genome has vast intergenic regions containing transposons, pseudogenes, and other repetitive sequences. They produce numerous long noncoding RNAs (lncRNAs) and Piwi-interacting RNAs (piRNAs), yet the functions of the vast intergenic regions remain largely unknown. Mammalian piRNAs are abundantly expressed from the spermatocyte to round spermatid stage, coinciding with the widespread expression of lncRNAs in these cells. Here, we show that piRNAs derived from transposons and pseudogenes mediate the degradation of a large number of mRNAs and lncRNAs in mouse late spermatocytes. In particular, they have a large impact on the lncRNA transcriptome, as a quarter of lncRNAs expressed in late spermatocytes are up-regulated in mice deficient in the piRNA pathway. Furthermore, our genomic and in vivo functional analyses reveal that retrotransposon sequences in the 3′ UTR of mRNAs are targeted by piRNAs for degradation. Similarly, the degradation of spermatogenic cell-specific lncRNAs by piRNAs is mediated by retrotransposon sequences. Moreover, we show that pseudogenes regulate mRNA stability via the piRNA pathway. The degradation of mRNAs and lncRNAs by piRNAs requires PIWIL1 (also known as MIWI) and, at least in part, depends on its slicer activity. Together, these findings reveal the presence of a highly complex and global RNA regulatory network mediated by piRNAs with retrotransposons and pseudogenes as regulatory sequences.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Ee-chun Cheng
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
20
|
Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 2014; 7:72. [PMID: 25191222 PMCID: PMC4137239 DOI: 10.3389/fnmol.2014.00072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.
Collapse
Affiliation(s)
- Gorica Ristic
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
21
|
Katsiarimpa A, Muñoz A, Kalinowska K, Uemura T, Rojo E, Isono E. The ESCRT-III-Interacting Deubiquitinating Enzyme AMSH3 is Essential for Degradation of Ubiquitinated Membrane Proteins in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:727-36. [DOI: 10.1093/pcp/pcu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Hückelhoven R, Isono E. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. THE PLANT CELL 2013; 25:2236-52. [PMID: 23800962 PMCID: PMC3723623 DOI: 10.1105/tpc.113.113399] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana associated molecule with the SH3 domain of STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with endosomal complex required for transport-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit vacuolar protein sorting2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.
Collapse
Affiliation(s)
- Anthi Katsiarimpa
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Kamila Kalinowska
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Franziska Anzenberger
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Corina Weis
- Department of Phytopathology, Technische Universität München, 85354 Freising, Germany
| | - Maya Ostertag
- Department of Phytopathology, Technische Universität München, 85354 Freising, Germany
| | - Chie Tsutsumi
- Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Frédéric Brunner
- Department of Plant Biochemistry, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
| | - Ralph Hückelhoven
- Department of Phytopathology, Technische Universität München, 85354 Freising, Germany
| | - Erika Isono
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
- Address correspondence to
| |
Collapse
|
24
|
McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, Lee LJ, Clericuzio CL, Graham JM, Morris-Rosendahl DJ, Polster T, Acsadi G, Townshend S, Williams S, Halbert A, Isidor B, Smyser CD, Paciorkowski AR, Willing M, Woulfe J, Das S, Beaulieu CL, Marcadier J, Geraghty MT, Frey BJ, Majewski J, Bulman DE, Dobyns WB, O’Driscoll M, Boycott KM. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet 2013; 45:556-62. [PMID: 23542699 PMCID: PMC4000253 DOI: 10.1038/ng.2602] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/07/2013] [Indexed: 12/16/2022]
Abstract
Microcephaly-capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor-mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome.
Collapse
Affiliation(s)
- Laura M. McDonell
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ghayda M. Mirzaa
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Diana Alcantara
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | | | - Melissa T. Carter
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leo J. Lee
- Department of Electrical and Computer Engineering, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | - John M. Graham
- Medical Genetics Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Tilman Polster
- Bethel Epilepsy Center, Krankenhaus Mara, Bielefeld, Germany
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT, USA
| | - Sharron Townshend
- Genetics Service of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
| | - Simon Williams
- Department of Neurology, Princess Margaret Hospital, Perth, WA, Australia
- Department of Pediatric Rehabilitation, Princess Margaret Hospital, Perth, WA, Australia
| | - Anne Halbert
- Department of Pediatric Dermatology, Princess Margaret Hospital for Children, Subiaco, WA, Australia
| | | | | | - Alex R. Paciorkowski
- Department of Neurology, University of Washington and Seattle Children’s Research Institute, Seattle, WA, USA
| | - Marcia Willing
- Department of Pediatrics, Washington University, St Louis, MO, USA
| | - John Woulfe
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chandree L. Beaulieu
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Janet Marcadier
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michael T. Geraghty
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Brendan J. Frey
- Department of Electrical and Computer Engineering, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dennis E. Bulman
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - William B. Dobyns
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA, USA
| | - Mark O’Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
26
|
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135:1348-69. [PMID: 22427329 PMCID: PMC3338922 DOI: 10.1093/brain/aws019] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94913-0628, USA.
| | | | | | | | | |
Collapse
|
27
|
Kapuralin K, Van Ginneken C, Curlin M, Timmermans JP, Gajovic S. Neurons and a Subset of Interstitial Cells of Cajal in the Enteric Nervous System Highly Express Stam2 Gene. Anat Rec (Hoboken) 2011; 295:113-20. [DOI: 10.1002/ar.21522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/15/2011] [Indexed: 11/08/2022]
|
28
|
Todi SV, Paulson HL. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 2011; 34:370-82. [PMID: 21704388 DOI: 10.1016/j.tins.2011.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/03/2023]
Abstract
Many pathways important to the nervous system are regulated by the post-translational conjugation of ubiquitin to target proteins. The reversal of ubiquitination, or deubiquitination, is equally critical to neuronal function. By countering protein ubiquitination, deubiquitinating enzymes (DUBs) help control neuronal fate determination, axonal pathfinding and synaptic communication and plasticity. The significance of DUBs to the nervous system is underscored by links to various neurological diseases. Owing to cell type or substrate specificity, certain DUBs might also represent therapeutic targets for neurodegeneration. Here, we review recent findings that have shaped our current understanding of emerging functions for DUBs in the nervous system.
Collapse
Affiliation(s)
- Sokol V Todi
- Wayne State University School of Medicine, Department of Pharmacology and Department of Neurology, 540 E Canfield, Scott Hall Room 6105, Detroit, Michigan 48201, USA
| | | |
Collapse
|
29
|
Suzuki S, Tamai K, Watanabe M, Kyuuma M, Ono M, Sugamura K, Tanaka N. AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochem Biophys Res Commun 2011; 408:582-8. [DOI: 10.1016/j.bbrc.2011.04.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
30
|
Isono E, Katsiarimpa A, Müller IK, Anzenberger F, Stierhof YD, Geldner N, Chory J, Schwechheimer C. The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. THE PLANT CELL 2010; 22:1826-37. [PMID: 20543027 PMCID: PMC2910964 DOI: 10.1105/tpc.110.075952] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 05/18/2023]
Abstract
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.
Collapse
Affiliation(s)
- Erika Isono
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
| | - Anthi Katsiarimpa
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
| | - Isabel Karin Müller
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
| | - Franziska Anzenberger
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - York-Dieter Stierhof
- Microscopy Unit, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
| | - Niko Geldner
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute, La Jolla, California 92037
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute, La Jolla, California 92037
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, 72076 Tuebingen, Germany
- Address correspondence to
| |
Collapse
|
31
|
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery plays a critical role in receptor down-regulation, retroviral budding, and other normal and pathological processes. The ESCRT components are conserved in all five major subgroups of eukaryotes. This review summarizes the growing number of links identified between ESCRT-mediated protein sorting in the MVB (multivesicular body) pathway and various human diseases.
Collapse
|
32
|
Kim BY, Olzmann JA, Barsh GS, Chin LS, Li L. Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking. Mol Biol Cell 2007; 18:1129-42. [PMID: 17229889 PMCID: PMC1838976 DOI: 10.1091/mbc.e06-09-0787] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A null mutation in the gene encoding the putative E3 ubiquitin-protein ligase Mahogunin causes spongiform neurodegeneration, a recessively transmitted prion-like disease in mice. However, no substrates of Mahogunin have been identified, and the cellular role of Mahogunin is unknown. Here, we report the identification of TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, as a specific Mahogunin substrate. We find that Mahogunin interacts with the ubiquitin E2 variant (UEV) domain of TSG101 via its PSAP motif and that it catalyzes monoubiquitylation of TSG101 both in vivo and in vitro. Depletion of Mahogunin by small interfering RNAs in mammalian cells disrupts endosome-to-lysosome trafficking of epidermal growth factor receptor, resulting in prolonged activation of a downstream signaling cascade. Our findings support a role for Mahogunin in a proteasome-independent ubiquitylation pathway and suggest a link between dysregulation of endosomal trafficking and spongiform neurodegeneration.
Collapse
Affiliation(s)
- Bong Yoon Kim
- *Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322; and
| | - James A. Olzmann
- *Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Gregory S. Barsh
- Department of Genetics and Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Lih-Shen Chin
- *Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Lian Li
- *Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
33
|
Endocytosis: the DUB version. Trends Cell Biol 2006; 16:551-9. [PMID: 16996268 DOI: 10.1016/j.tcb.2006.09.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/22/2006] [Accepted: 09/07/2006] [Indexed: 01/10/2023]
Abstract
Dynamic modification of endosomal cargo proteins, such as the epidermal growth factor receptor, by ubiquitin can regulate their sorting into the lumen of multivesicular bodies through interactions with a complex protein network incorporating the endosomal sorting complexes required for transport (ESCRTs). Two deubiquitinating enzymes, AMSH and UBPY, interact with ESCRT protein components but exert opposite effects upon the rate of epidermal growth factor receptor downregulation. This might reflect their distinct specificities for different types of polyubiquitin chain linkage. We propose that AMSH might rescue ubiquitinated cargo from lysosomal degradation through disassembly of K63-linked polyubiquitin chains. UBPY function is essential for effective downregulation but is likely to be multifaceted, encompassing activity against both K63-linked and K48-linked polyubiquitin chains and including regulation of the stability of ESCRT-associated proteins such as STAM, by reversing their ubiquitination.
Collapse
|
34
|
Abstract
RING-finger proteins play crucial roles in ubiquitination events involved in diverse cellular processes including signal transduction, differentiation and apoptosis. Most of the RING-finger proteins have E3-ubiquitin ligase activity. RNF11 is a small RING-finger protein and harbors a RING-H2 domain and a PY motif that could facilitate protein:protein interaction(s) involved in oncogenesis. To isolate RNF11 protein partners and determine its role in normal and cancer cells, we performed yeast two-hybrid screening. Among 18 in-frame positive clones, three were found to be ZBRK1, Eps15 and AMSH (associated molecule with the SH3 domain of STAM). ZBRK1 is a KRAB domain containing Zinc-finger protein and is known to repress target gene transcription in a BRCA1-dependent manner. Eps15 is monoubiquitinated and is part of an essential complex involved in the endocytosis of plasma membrane receptors via the clathrin-mediated internalization pathway. Recent studies have shown that AMSH protein is involved in BMP/TGF-beta signaling pathway by binding to Smad6 and Smad7. The association of RNF11 with these binding partners suggests that it would be involved in biological processes such as gene transcription, BMP/TGF-beta signaling and ubiquitination-associated events. Previously, we have shown that RNF11 interacts with the HECT-type E3 ligases AIP4 and Smurf2. Here, we show that RNF11 binds to AMSH in mammalian cells and that this interaction is independent of the RNF11 RING-finger domain and the PY motif. Our results also demonstrate that AMSH is ubiquitinated by Smurf2 E3 ligase in the presence of RNF11 and that a consequent reduction in its steady-state level requires both RNF11 and Smurf2. RNF11 therefore recruits AMSH to Smurf2 for ubiquitination, leading to its degradation by the 26S proteasome. The potential functions of RNF11-mediated degradation of AMSH in breast cancer are discussed.
Collapse
Affiliation(s)
- Haoxia Li
- Molecular and Cellular Biology Research
| | | |
Collapse
|
35
|
Kikuchi K, Ishii N, Asao H, Sugamura K. Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif. Biochem Biophys Res Commun 2003; 306:637-43. [PMID: 12810066 DOI: 10.1016/s0006-291x(03)01009-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have isolated a cDNA clone encoding a new AMSH (associated molecule with the SH3 domain of STAM) family protein, termed AMSH-like protein (AMSH-LP). AMSH-LP has similar characteristics to AMSH; both AMSH-LP and AMSH are expressed ubiquitously in various human tissues, contain a putative nuclear localization signal (NLS), an Mpr/Pad1/N-terminal (MPN) domain, and a Jab1/MPN domain metalloenzyme (JAMM) motif in their structures, and are excluded from the nucleus when lacking either the NLS or MPN domain. Moreover, we observed an enhancement of interleukin 2 (IL-2)-mediated c-myc induction in AMSH-LP-transfected cells similar to that seen in AMSH-transfected cells, suggesting a functional similarity between AMSH-LP and AMSH. However, the present study demonstrated that AMSH-LP, unlike AMSH, fails to bind to the SH3 domains of STAM1 (signal transducing adaptor molecule 1) and Grb2. These results suggest that AMSH-LP and AMSH may have different functions.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Department of Immunology and Microbiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, 980-8575, Sendai, Japan
| | | | | | | |
Collapse
|
36
|
Yamasaki S, Nishida K, Sakuma M, Berry D, McGlade CJ, Hirano T, Saito T. Gads/Grb2-mediated association with LAT is critical for the inhibitory function of Gab2 in T cells. Mol Cell Biol 2003; 23:2515-29. [PMID: 12640133 PMCID: PMC150736 DOI: 10.1128/mcb.23.7.2515-2529.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A docking protein, Gab2, is recruited to the vicinity of the TCR complex and inhibits downstream signaling by interaction with negative regulators. However, the molecular mechanisms of this recruitment remain unclear. We have found that Gab2 associates with LAT upon TCR stimulation and that LAT is essential for Gab2 phosphorylation. By analysis of several Gab2 mutants, the c-Met binding domain (MBD) of Gab2 was found to be both necessary and sufficient for stimulation-induced LAT binding. Within the MBD domain, a novel Grb2 SH3 binding motif, PXXXR, is critical for constitutive association with Gads/Grb2. Through this association, Gab2 is recruited to the lipid raft after TCR ligation and exerts inhibitory function. The in vivo significance of this association is illustrated by the fact that T-cell responses are impaired in transgenic mice expressing wild-type Gab2 but not in mice expressing mutant Gab2 lacking the motif. Furthermore, T cells from Gab2-deficient mice showed enhanced proliferative responses upon TCR stimulation. These results indicate that Gads/Grb2-mediated LAT association is critical for the inhibitory function of Gab2, implying that Gab2 induced in stimulated T cells may exert an efficient negative feedback loop by recruiting inhibitory molecules to the lipid raft and competing with SLP-76 through Gads binding.
Collapse
Affiliation(s)
- Sho Yamasaki
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|