1
|
Yun Q, Ma SF, Zhang WN, Gu M, Wang J. FoxG1 as a Potential Therapeutic Target for Alzheimer's Disease: Modulating NLRP3 Inflammasome via AMPK/mTOR Autophagy Pathway. Cell Mol Neurobiol 2024; 44:35. [PMID: 38630150 PMCID: PMC11023968 DOI: 10.1007/s10571-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
An increasing body of research suggests that promoting microglial autophagy hinders the neuroinflammation initiated though the NLRP3 inflammasome activation in Alzheimer's disease (AD). The function of FoxG1, a crucial transcription factor involved in cell survival by regulating mitochondrial function, remains unknown during the AD process and neuroinflammation occurs. In the present study, we firstly found that Aβ peptides induced AD-like neuroinflammation upregulation and downregulated the level of autophagy. Following low-dose Aβ25-35 stimulation, FoxG1 expression and autophagy exhibited a gradual increase. Nevertheless, with high-concentration Aβ25-35 treatment, progressive decrease in FoxG1 expression and autophagy levels as the concentration of Aβ25-35 escalated. In addition, FoxG1 has a positive effect on cell viability and autophagy in the nervous system. In parallel with the Aβ25-35 stimulation, we employed siRNA to decrease the expression of FoxG1 in N2A cells. A substantial reduction in autophagy level (Beclin1, LC3II, SQSTM1/P62) and a notable growth in inflammatory response (NLRP3, TNF-α, and IL-6) were observed. In addition, we found FoxG1 overexpression owned the effect on the activation of AMPK/mTOR autophagy pathway and siRNA-FoxG1 successfully abolished this effect. Lastly, FoxG1 suppressed the NLRP3 inflammasome and enhanced the cognitive function in AD-like mouse model induced by Aβ25-35. Confirmed by cellular and animal experiments, FoxG1 suppressed NLRP3-mediated neuroinflammation, which was strongly linked to autophagy regulated by AMPK/mTOR. Taken together, FoxG1 may be a critical node in the pathologic progression of AD and has the potential to serve as therapeutic target.
Collapse
Affiliation(s)
- Qi Yun
- Changzhou Children's Hospital Affiliated to Nantong University, 958 Zhongwu Avenue, Changzhou, 213000, Jiangsu Province, China
| | - Si-Fei Ma
- Changzhou Blood Center, 118 Canal Road, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Ning Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 213000, Jiangsu Province, China
| | - Meng Gu
- Changzhou Children's Hospital Affiliated to Nantong University, 958 Zhongwu Avenue, Changzhou, 213000, Jiangsu Province, China.
| | - Jia Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 213000, Jiangsu Province, China.
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
3
|
Singh N, Siebzehnrubl FA, Martinez-Garay I. Transcriptional control of embryonic and adult neural progenitor activity. Front Neurosci 2023; 17:1217596. [PMID: 37588515 PMCID: PMC10426504 DOI: 10.3389/fnins.2023.1217596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Neural precursors generate neurons in the embryonic brain and in restricted niches of the adult brain in a process called neurogenesis. The precise control of cell proliferation and differentiation in time and space required for neurogenesis depends on sophisticated orchestration of gene transcription in neural precursor cells. Much progress has been made in understanding the transcriptional regulation of neurogenesis, which relies on dose- and context-dependent expression of specific transcription factors that regulate the maintenance and proliferation of neural progenitors, followed by their differentiation into lineage-specified cells. Here, we review some of the most widely studied neurogenic transcription factors in the embryonic cortex and neurogenic niches in the adult brain. We compare functions of these transcription factors in embryonic and adult neurogenesis, highlighting biochemical, developmental, and cell biological properties. Our goal is to present an overview of transcriptional regulation underlying neurogenesis in the developing cerebral cortex and in the adult brain.
Collapse
Affiliation(s)
- Niharika Singh
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Florian A. Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, United Kingdom
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Hettige NC, Fleming P, Semenak A, Zhang X, Peng H, Hagel MD, Théroux JF, Zhang Y, Ni A, Jefri M, Antonyan L, Alsuwaidi S, Schuppert A, Stumpf PS, Ernst C. FOXG1 targets BMP repressors and cell cycle inhibitors in human neural progenitor cells. Hum Mol Genet 2023; 32:2511-2522. [PMID: 37216650 PMCID: PMC10360395 DOI: 10.1093/hmg/ddad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing. We also performed deep RNA sequencing of NPCs from two females with loss-of-function mutations in FOXG1 and their healthy biological mothers. Integrative analyses of RNA and ChIP sequencing data showed that cell cycle regulation and Bone Morphogenic Protein (BMP) repression gene ontology categories were over-represented as FOXG1 targets. Using engineered brain cell lines, we show that FOXG1 specifically activates SMAD7 and represses CDKN1B. Activation of SMAD7 which inhibits BMP signaling may be one way that FOXG1 patterns the forebrain, while repression of cell cycle regulators such as CDKN1B may be one way that FOXG1 expands the NPC pool to ensure proper brain size. Our data reveal novel mechanisms on how FOXG1 may control forebrain patterning and cell proliferation in human brain development.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Peter Fleming
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amelia Semenak
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Marc-Daniel Hagel
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | | | - Ying Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
5
|
Robertson FL, O'Duibhir E, Gangoso E, Bressan RB, Bulstrode H, Marqués-Torrejón MÁ, Ferguson KM, Blin C, Grant V, Alfazema N, Morrison GM, Pollard SM. Elevated FOXG1 in glioblastoma stem cells cooperates with Wnt/β-catenin to induce exit from quiescence. Cell Rep 2023; 42:112561. [PMID: 37243590 DOI: 10.1016/j.celrep.2023.112561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/β-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional β-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.
Collapse
Affiliation(s)
- Faye L Robertson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Eoghan O'Duibhir
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ester Gangoso
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Maria-Ángeles Marqués-Torrejón
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
6
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
7
|
Kharrat M, Triki CC, Alila-Fersi O, Jallouli O, Khemakham B, Mallouli S, Maalej M, Ammar M, Frikha F, Kamoun F, Fakhfakh F. Combined in Silico Prediction Methods, Molecular Dynamic Simulation, and Molecular Docking of FOXG1 Missense Mutations: Effect on FoxG1 Structure and Its Interactions with DNA and Bmi-1 Protein. J Mol Neurosci 2022; 72:1695-1705. [PMID: 35654936 DOI: 10.1007/s12031-022-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
FoxG1 encoded by FOXG1 gene is a transcriptional factor interacting with the DNA of targeted genes as well as with several proteins to regulate the forebrain development. Mutations in the FOXG1 gene have been shown to cause a wide spectrum of brain disorders, including the congenital variant of Rett syndrome. In this study, the direct sequencing of FOXG1 gene revealed a novel c.645C > A (F215L) variant in the patient P1 and a de novo known one c.755G > A (G252D) in the patient P2. To investigate the putative impact of FOXG1 missense variants, a computational pipeline by the application of in silico prediction methods, molecular dynamic simulation, and molecular docking approaches was used. Bioinformatics analysis and molecular dynamics simulation have demonstrated that F215L and G252D variants found in the DNA binding domain are highly deleterious mutations that may cause the protein structure destabilization. On the other hand, molecular docking revealed that F215L mutant is likely to have a great impact on destabilizing the protein structure and the disruption of the Bmi-1 binding site quite significantly. Regarding G252D mutation, it seems to abolish the ability of FoxG1 to bind DNA target, affecting the transcriptional regulation of targeted genes. Our study highlights the usefulness of combined computational approaches, molecular dynamic simulation, and molecular docking for a better understanding of the dysfunctional effects of FOXG1 missense mutations and their role in the etiopathogenesis as well as in the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| | - Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Bassem Khemakham
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Salma Mallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| |
Collapse
|
8
|
Liu J, Yang M, Su M, Liu B, Zhou K, Sun C, Ba R, Yu B, Zhang B, Zhang Z, Fan W, Wang K, Zhong M, Han J, Zhao C. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons. SCIENCE ADVANCES 2022; 8:eabh3568. [PMID: 35613274 PMCID: PMC9132448 DOI: 10.1126/sciadv.abh3568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The mammalian neocortex is a highly organized six-layered structure with four major cortical neuron subtypes: corticothalamic projection neurons (CThPNs), subcerebral projection neurons (SCPNs), deep callosal projection neurons (CPNs), and superficial CPNs. Here, careful examination of multiple conditional knockout model mouse lines showed that the transcription factor FOXG1 functions as a master regulator of postmitotic cortical neuron specification and found that mice lacking functional FOXG1 exhibited projection deficits. Before embryonic day 14.5 (E14.5), FOXG1 enforces deep CPN identity in postmitotic neurons by activating Satb2 but repressing Bcl11b and Tbr1. After E14.5, FOXG1 exerts specification functions in distinct layers via differential regulation of Bcl11b and Tbr1, including specification of superficial versus deep CPNs and enforcement of CThPN identity. FOXG1 controls CThPN versus SCPN fate by fine-tuning Fezf2 levels through diverse interactions with multiple SOX family proteins. Thus, our study supports a developmental model to explain the postmitotic specification of four cortical projection neuron subtypes and sheds light on neuropathogenesis.
Collapse
Affiliation(s)
- Junhua Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mengjie Yang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mingzhao Su
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Congli Sun
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Zhe Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Wenxin Fan
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Kun Wang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Min Zhong
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| |
Collapse
|
9
|
Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C. FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Reports 2022; 17:475-488. [PMID: 35148845 PMCID: PMC9040178 DOI: 10.1016/j.stemcr.2022.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
Abstract
Heterozygous loss-of-function mutations in Forkhead box G1 (FOXG1), a uniquely brain-expressed gene, cause microcephaly, seizures, and severe intellectual disability, whereas increased FOXG1 expression is frequently observed in glioblastoma. To investigate the role of FOXG1 in forebrain cell proliferation, we modeled FOXG1 syndrome using cells from three clinically diagnosed cases with two sex-matched healthy parents and one unrelated sex-matched control. Cells with heterozygous FOXG1 loss showed significant reduction in cell proliferation, increased ratio of cells in G0/G1 stage of the cell cycle, and increased frequency of primary cilia. Engineered loss of FOXG1 recapitulated this effect, while isogenic repair of a patient mutation reverted output markers to wild type. An engineered inducible FOXG1 cell line derived from a FOXG1 syndrome case demonstrated that FOXG1 dose-dependently affects all cell proliferation outputs measured. These findings provide strong support for the critical importance of FOXG1 levels in controlling human brain cell growth in health and disease.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Volodymyr Yerko
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Gilles Maussion
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Shaima Alsuwaidi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Jeyashree Krishnan
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Vincent McCarty
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Andreas Schuppert
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Gustavo Turecki
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
10
|
Shan SSW, Wang PF, Cheung JKW, Yu F, Zheng H, Luo S, Yip SP, To CH, LAM C. Transcriptional profiling of the chick retina identifies down-regulation of VIP and UTS2B genes during early lens-induced myopia. Mol Omics 2022; 18:449-459. [DOI: 10.1039/d1mo00407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene expression of the chick retina was examined during the early development of lens-induced myopia (LIM) using whole transcriptome sequencing. Monocular treatment of the right eyes with −10 diopter (D)...
Collapse
|
11
|
Yu J, Schilling L, Eller T, Canalis E. Hairy and enhancer of split 1 is a primary effector of NOTCH2 signaling and induces osteoclast differentiation and function. J Biol Chem 2021; 297:101376. [PMID: 34742737 PMCID: PMC8633688 DOI: 10.1016/j.jbc.2021.101376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Notch2tm1.1Ecan mice, which harbor a mutation replicating that found in Hajdu–Cheney syndrome, exhibit marked osteopenia because of increased osteoclast number and bone resorption. Hairy and enhancer of split 1 (HES1) is a Notch target gene and a transcriptional modulator that determines osteoclast cell fate decisions. Transcript levels of Hes1 increase in Notch2tm1.1Ecan bone marrow–derived macrophages (BMMs) as they mature into osteoclasts, suggesting a role in osteoclastogenesis. To determine whether HES1 is responsible for the phenotype of Notch2tm1.1Ecan mice and the skeletal manifestations of Hajdu–Cheney syndrome, Hes1 was inactivated in Ctsk-expressing cells from Notch2tm1.1Ecan mice. Ctsk encodes the protease cathepsin K, which is expressed preferentially by osteoclasts. We found that the osteopenia of Notch2tm1.1Ecan mice was ameliorated, and the enhanced osteoclastogenesis was reversed in the context of the Hes1 inactivation. Microcomputed tomography revealed that the downregulation of Hes1 in Ctsk-expressing cells led to increased bone volume/total volume in female mice. In addition, cultures of BMMs from CtskCre/WT;Hes1Δ/Δ mice displayed a decrease in osteoclast number and size and decreased bone-resorbing capacity. Moreover, activation of HES1 in Ctsk-expressing cells led to osteopenia and enhanced osteoclast number, size, and bone resorptive capacity in BMM cultures. Osteoclast phenotypes and RNA-Seq of cells in which HES1 was activated revealed that HES1 modulates cell–cell fusion and bone-resorbing capacity by supporting sealing zone formation. In conclusion, we demonstrate that HES1 is mechanistically relevant to the skeletal manifestation of Notch2tm1.1Ecan mice and is a novel determinant of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
12
|
Technological Improvements in the Genetic Diagnosis of Rett Syndrome Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221910375. [PMID: 34638716 PMCID: PMC8508637 DOI: 10.3390/ijms221910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several “omics”, and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.
Collapse
|
13
|
Theis A, Singer RA, Garofalo D, Paul A, Narayana A, Sussel L. Groucho co-repressor proteins regulate β cell development and proliferation by repressing Foxa1 in the developing mouse pancreas. Development 2021; 148:dev.192401. [PMID: 33658226 DOI: 10.1242/dev.192401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for β cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4 Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential β cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced β cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.
Collapse
Affiliation(s)
- Alexandra Theis
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth A Singer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Diana Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Alexander Paul
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Graduate program in Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Anila Narayana
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori Sussel
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA .,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Falcone C, Santo M, Liuzzi G, Cannizzaro N, Grudina C, Valencic E, Peruzzotti-Jametti L, Pluchino S, Mallamaci A. Foxg1 Antagonizes Neocortical Stem Cell Progression to Astrogenesis. Cereb Cortex 2020; 29:4903-4918. [PMID: 30821834 DOI: 10.1093/cercor/bhz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.
Collapse
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Noemi Cannizzaro
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Clara Grudina
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Erica Valencic
- Department of Diagnostics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| |
Collapse
|
15
|
Moparthi L, Koch S. A uniform expression library for the exploration of FOX transcription factor biology. Differentiation 2020; 115:30-36. [PMID: 32858261 DOI: 10.1016/j.diff.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
Forkhead box (FOX) family transcription factors play essential roles in development, tissue homeostasis, and disease. Although the biology of several FOX proteins has been studied in depth, it is unclear to what extent these findings apply to even closely related family members, which frequently exert overlapping but non-redundant functions. To help address this question, we have generated a uniform, ready-to-use expression library of all 44 human FOX transcription factors with a convenient peptide tag for parallel screening assays. In addition, we have generated multiple universal forkhead box reporter plasmids, which can be used to monitor the transcriptional activity of most FOX proteins with high fidelity. As a proof-of-principle, we use our plasmid library to identify the DNA repair protein XRCC6/Ku70 as a selective FOX interaction partner and regulator of FOX transcriptional activity. We believe that these tools, which we make available via the Addgene plasmid repository, will considerably expedite the investigation of FOX protein biology.
Collapse
Affiliation(s)
- Lavanya Moparthi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
| | - Stefan Koch
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
| |
Collapse
|
16
|
Richard SA, Jia-Hao Z. Elucidating the pathogenic and biomarker potentials of FOXG1 in glioblastoma. Oncol Rev 2020; 14:444. [PMID: 32395201 PMCID: PMC7204822 DOI: 10.4081/oncol.2020.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is an extremely pugnacious brain cancer originating from neural stem (NS) cell-like cells. Forkhead box G1 (FOXG1; previously recognized as BF-1, qin, Chicken Brain Factor 1, or XBF-1 and renamed FOXG1 for mouse and human, and FoxG1 for other chordates) is an evolutionary preserved transcription factor driven from the forkhead box group of proteins FOXG1 modulates the speed of neurogenesis by maintaining progenitor cells in a proliferative mode as well as obstructing their differentiation into neurons during the initial periods of cortical formation. FOXG1 has been implicated in the formation of central nervous system (CNS) tumors and precisely GBs. Pathophysiologically, joint actions of FOXG1 and phosphatidylinositol- 3-kinases (PI3K) intermediate in intrinsic resistance of human GB cells to transforming growth factor-beta (TGF-β) stimulation of cyclin-dependent kinase inhibitor 1(p21Cip1) as well as growth inhibition. FOXG1 and NOTCH signaling pathways may functionally interrelate at different stages to facilitate gliomagenesis. Furthermore, FoxG1 actively contributed to the formation of transcription suppression complexes with corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLEs). Also, FOXG1 was stimulated by Gro/TLE1 and abridged by Grg6. FOXG1 silencing in brain tumor-initiating cells (BTICs) also resulted in diminished secretion of markers characteristic undifferentiated natural neural stem/progenitor cells (NSPC) states, such as Oligodendrocyte transcription factor (OLIG2), (sex determining region Y)-box 2. (SOX2) and B lymphoma Mo-MLV insertion region 1 homolog (BMI1). This review therefore focuses on the pathogenic and biomarker potentials of FOXG1 in GB.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China.,Department of Medicine, Princefield University, Ho-Volta Region, Ghana, West Africa
| | - Zhou Jia-Hao
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| |
Collapse
|
17
|
Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 2020; 77:1401-1419. [PMID: 31485717 PMCID: PMC7113235 DOI: 10.1007/s00018-019-03291-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Guodong Hong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Liyan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Chunjie Zhao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China.
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
18
|
Hou PS, hAilín DÓ, Vogel T, Hanashima C. Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders. Front Cell Neurosci 2020; 14:35. [PMID: 32158381 PMCID: PMC7052011 DOI: 10.3389/fncel.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Darren Ó hAilín
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carina Hanashima
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, Tokyo, Japan
| |
Collapse
|
19
|
Forkhead box (FOX) G1 promotes hepatocellular carcinoma epithelial-Mesenchymal transition by activating Wnt signal through forming T-cell factor-4/Beta-catenin/FOXG1 complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:475. [PMID: 31771611 PMCID: PMC6880489 DOI: 10.1186/s13046-019-1433-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Background Forkhead box G1 (FOXG1) is a member of the Fox transcription factor family involved in regulation of many cancers. However, the role of FOXG1 in hepatocellular carcinogenesisis largely unclear. The present study aimed at examining the biological function and underlying mechanism of FOXG1 on hepatocellular carcinoma (HCC) tumor metastasis as well as its clinical significance. Methods Levels of FOXG1 were determined by immunohistochemical and real-time PCR analysis in HCC cell lines and human HCC samples. The effect of FOXG1 on cancer cell invasion and metastasis was investigated in vitro and in vivo in either FOXG1-silenced or overexpressing human HCC cell lines. Immunoprecipitation and chromatin immunoprecipitation assays were performed to investigate the interaction of FOXG1, β-catenin, TCF4 and the effect on Wnt target-gene promoters. Results In human HCC, the level of FOXG1 progressively increased from surrounding non tumorous livers to HCC, reaching the highest levels in metastatic HCC. Furthermore, expression levels of FOXG1 directly correlated with cancer cell epithelial-mesenchymal transition (EMT) phenotype. In FOXG1-overexpressing cells, FOXG1 promotes the stabilization and nuclear accumulation of β-catenin by directly binding to β-catenin and it associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) on Wnt responsive enhancers (WREs) in chromatin. Conclusions The results show that FOXG1 plays a key role in mediating cancer cell metastasis through the Wnt/β-catenin pathway in HCC cells and predicts HCC prognosis after surgery. Targeting FOXG1 may provide a new approach for therapeutic treatment in the future.
Collapse
|
20
|
Abstract
Brain development is a highly regulated process that involves the precise spatio-temporal activation of cell signaling cues. Transcription factors play an integral role in this process by relaying information from external signaling cues to the genome. The transcription factor Forkhead box G1 (FOXG1) is expressed in the developing nervous system with a critical role in forebrain development. Altered dosage of FOXG1 due to deletions, duplications, or functional gain- or loss-of-function mutations, leads to a complex array of cellular effects with important consequences for human disease including neurodevelopmental disorders. Here, we review studies in multiple species and cell models where FOXG1 dose is altered. We argue against a linear, symmetrical relationship between FOXG1 dosage states, although FOXG1 levels at the right time and place need to be carefully regulated. Neurodevelopmental disease states caused by mutations in FOXG1 may therefore be regulated through different mechanisms.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
TLE1, a key player in neurogenesis, a new candidate gene for autosomal recessive postnatal microcephaly. Eur J Med Genet 2018; 61:729-732. [DOI: 10.1016/j.ejmg.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
|
22
|
Cargnin F, Kwon JS, Katzman S, Chen B, Lee JW, Lee SK. FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections. Neuron 2018; 100:1083-1096.e5. [PMID: 30392794 DOI: 10.1016/j.neuron.2018.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
Abstract
The hallmarks of FOXG1 syndrome, which results from mutations in a single FOXG1 allele, include cortical atrophy and corpus callosum agenesis. However, the etiology for these structural deficits and the role of FOXG1 in cortical projection neurons remain unclear. Here we demonstrate that Foxg1 in pyramidal neurons plays essential roles in establishing cortical layers and the identity and axon trajectory of callosal projection neurons. The neuron-specific actions of Foxg1 are achieved by forming a transcription complex with Rp58. The Foxg1-Rp58 complex directly binds and represses Robo1, Slit3, and Reelin genes, the key regulators of callosal axon guidance and neuronal migration. We also found that inactivation of one Foxg1 allele specifically in cortical neurons was sufficient to cause cerebral cortical hypoplasia and corpus callosum agenesis. Together, this study reveals a novel gene regulatory pathway that specifies neuronal characteristics during cerebral cortex development and sheds light on the etiology of FOXG1 syndrome. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Francesca Cargnin
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ji-Sun Kwon
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jae W Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Soo-Kyung Lee
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
23
|
He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R. The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 2018; 144:43-57. [PMID: 30336149 DOI: 10.1016/j.neuropharm.2018.10.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated. In this study, we took advantage of transgenic mice that have a specific knockout of Foxg1 in HCs, thus allowing us to explore the role of FOXG1 in postnatal HC development and survival. In the Foxg1 conditional knockout (CKO) HCs, an extra row of HCs appeared in the apical turn of the cochlea and some parts of the middle turn at postnatal day (P)1 and P7; however, these HCs gradually underwent apoptosis, and the HC number was significantly decreased by P21. Auditory brainstem response tests showed that the Foxg1 CKO mice had lost their hearing by P30. The RNA-Seq results and the qPCR verification both showed that the Wnt, Notch, IGF, EGF, and Hippo signaling pathways were down-regulated in the HCs of Foxg1 CKO mice. The significant down-regulation of the Notch signaling pathway might be the reason for the increased numbers of HCs in the cochleae of Foxg1 CKO mice at P1 and P7, while the down-regulation of the Wnt, IGF, and EGF signaling pathways might lead to subsequent HC apoptosis. Together, these results indicate that knockout of Foxg1 induces an extra row of HCs via Notch signaling inhibition and induces subsequent apoptosis of these HCs by inhibiting the Wnt, IGF, and EGF signaling pathways. This study thus provides new evidence for the function and mechanism of FOXG1 in HC development and survival in mice.
Collapse
Affiliation(s)
- Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaojun Fang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiao Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lusen Shi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China; Center of Depression, Beijing Institute for Brain Disorders, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
24
|
Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, Drakos E, Kostouros A, Stratidaki I, Grigoriou M, Kretsovali A. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci Rep 2018; 8:13790. [PMID: 30214018 PMCID: PMC6137157 DOI: 10.1038/s41598-018-31696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.
Collapse
Affiliation(s)
- Konstantina Chanoumidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Paraskevi Athanasouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | - Henrik Ahlenius
- Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Antonis Klonizakis
- Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | | | - Elias Drakos
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Antonis Kostouros
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Irene Stratidaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Maria Grigoriou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.
| |
Collapse
|
25
|
Dali R, Verginelli F, Pramatarova A, Sladek R, Stifani S. Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells. Mol Oncol 2018; 12:775-787. [PMID: 29316219 PMCID: PMC5983107 DOI: 10.1002/1878-0261.12168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain cancer of glial cell origin, with a median patient survival of less than 20 months. Transcription factors FOXG1 and TLE1 promote GBM propagation by supporting maintenance of brain tumour-initiating cells (BTICs) with stem-like properties. Here, we characterize FOXG1 and TLE1 target genes in GBM patient-derived BTICs using ChIP-Seq and RNA-Seq approaches. These studies identify 150 direct FOXG1 targets, several of which are also TLE1 targets, involved in cell proliferation, differentiation, survival, chemotaxis and angiogenesis. Negative regulators of NOTCH signalling, including CHAC1, are among the transcriptional repression targets of FOXG1:TLE1 complexes, suggesting a crosstalk between FOXG1:TLE1 and NOTCH-mediated pathways in GBM. These results provide previously unavailable insight into the transcriptional programs underlying the tumour-promoting functions of FOXG1:TLE1 in GBM.
Collapse
Affiliation(s)
- Rola Dali
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
- McGill Center for BioinformaticsMcGill UniversityMontrealCanada
| | - Federica Verginelli
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
- Present address:
Laboratory of Cancer Stem Cell ResearchCandiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Albena Pramatarova
- Departments of Human Genetics and MedicineMcGill UniversityMontrealCanada
| | - Robert Sladek
- Departments of Human Genetics and MedicineMcGill UniversityMontrealCanada
| | - Stefano Stifani
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
26
|
Chen J, Wu X, Xing Z, Ma C, Xiong W, Zhu X, He X. FOXG1 Expression Is Elevated in Glioma and Inhibits Glioma Cell Apoptosis. J Cancer 2018; 9:778-783. [PMID: 29581755 PMCID: PMC5868141 DOI: 10.7150/jca.22282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/24/2017] [Indexed: 01/04/2023] Open
Abstract
FOXG1, a member of forkhead family transcriptional factor, is involved in telencephalon development. Recent studies showed FOXG1 was important for a variety of cellular events in cancer cells. In respect to glioma, FOXG1 has been shown to regulate cell proliferation and cell cycles. However, its impacts on other cellular events were not well studied. Here, we found FOXG1 had high expression in clinical glioma tissues, and its expression positively correlated with glioma malignancy. Moreover, we found FOXG1 played roles in glioma cell apoptosis. The expressions of caspase family members were significantly altered in response to change of FOXG1 expression, indicating a direct regulation of FOXG1 on caspase family members. These data strongly suggest FOXG1 is negative regulator of glioma cell apoptosis.
Collapse
Affiliation(s)
- Jingying Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xinmin Wu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Zhenkai Xing
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Chi Ma
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Wencheng Xiong
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, USA
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| |
Collapse
|
27
|
Doenz G, Dorn S, Aghaallaei N, Bajoghli B, Riegel E, Aigner M, Bock H, Werner B, Lindhorst T, Czerny T. The function of tcf3 in medaka embryos: efficient knockdown with pePNAs. BMC Biotechnol 2018; 18:1. [PMID: 29316906 PMCID: PMC5759164 DOI: 10.1186/s12896-017-0411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background The application of antisense molecules, such as morpholino oligonucleotides, is an efficient method of gene inactivation in vivo. We recently introduced phosphonic ester modified peptide nucleic acids (PNA) for in vivo loss-of-function experiments in medaka embryos. Here we tested novel modifications of the PNA backbone to knockdown the medaka tcf3 gene. Results A single tcf3 gene exists in the medaka genome and its inactivation strongly affected eye development of the embryos, leading to size reduction and anophthalmia in severe cases. The function of Tcf3 strongly depends on co-repressor interactions. We found interactions with Groucho/Tle proteins to be most important for eye development. Using a dominant negative approach for combined inactivation of all groucho/tle genes also resulted in eye phenotypes, as did interference with three individual tle genes. Conclusions Our results show that side chain modified PNAs come close to the knockdown efficiency of morpholino oligonucleotides in vivo. A single medaka tcf3 gene combines the function of the two zebrafish paralogs hdl and tcf3b. In combination with Groucho/Tle corepressor proteins Tcf3 acts in anterior development and is critical for eye formation. Electronic supplementary material The online version of this article (10.1186/s12896-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Doenz
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Sebastian Dorn
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Narges Aghaallaei
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076, Tübingen, Germany
| | - Elisabeth Riegel
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | | | - Holger Bock
- CAST Gründungszentrum GmbH, Wilhelm-Greil-Straße 15, A-6020, Innsbruck, Austria
| | - Birgit Werner
- UGISense AG, c/o Nordwind Capital GmbH, Residenzstrasse 18, 80333, München, Germany
| | - Thomas Lindhorst
- UGISense AG, c/o Nordwind Capital GmbH, Residenzstrasse 18, 80333, München, Germany
| | - Thomas Czerny
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria.
| |
Collapse
|
28
|
Murine pluripotent stem cells with a homozygous knockout of Foxg1 show reduced differentiation towards cortical progenitors in vitro. Stem Cell Res 2017; 25:50-60. [PMID: 29080444 DOI: 10.1016/j.scr.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023] Open
Abstract
Foxg1 is a transcription factor critical for the development of the mammalian telencephalon. Foxg1 controls the proliferation of dorsal telencephalon progenitors and the specification of the ventral telencephalon. Homozygous knockout of Foxg1 in mice leads to severe microcephaly, attributed to premature differentiation of telencephalic progenitors, mainly of cortical progenitors. Here, we analyzed the influence of a Foxg1 knockout on differentiation of murine pluripotent stem cells (mPSCs) in an in vitro model of neuronal development. Murine PSCs were prone to neuronal differentiation in embryoid body like culture with minimal medium conditions, based on the intrinsic default of PSCs to develop into cortical progenitors. Differences between Foxg1 wildtype (Foxg1WT) and knockout (Foxg1KO) mPSCs were analyzed. Several mPSC lines with homozygous mutations in Foxg1 were produced using the CRISPR/Cas9 system leading to loss of functional domains. Analysis of mRNA expression using quantitative Real-Time (q) PCR revealed that Foxg1KO mPSCs expressed significantly less mRNA of Foxg1, Emx1, and VGlut1 compared to Foxg1WT controls, indicating reduced differentiation towards dorsal telencephalic progenitors. However, the size of the derived EB-like structures did not differ between Foxg1WT and Foxg1KO mPSCs. These results show that loss of dorsal telencephalic progenitors can be detected using a simple and rapid differentiation protocol. This study is a first hint that this differentiation method can be used to analyze even extreme phenotypes that are lethal in vivo.
Collapse
|
29
|
A gene network regulated by FGF signalling during ear development. Sci Rep 2017; 7:6162. [PMID: 28733657 DOI: 10.1038/s41598-017-05472-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
During development cell commitment is regulated by inductive signals that are tightly controlled in time and space. In response, cells activate specific programmes, but the transcriptional circuits that maintain cell identity in a changing signalling environment are often poorly understood. Specification of inner ear progenitors is initiated by FGF signalling. Here, we establish the genetic hierarchy downstream of FGF by systematic analysis of many ear factors combined with a network inference approach. We show that FGF rapidly activates a small circuit of transcription factors forming positive feedback loops to stabilise otic progenitor identity. Our predictive network suggests that subsequently, transcriptional repressors ensure the transition of progenitors to mature otic cells, while simultaneously repressing alternative fates. Thus, we reveal the regulatory logic that initiates ear formation and highlight the hierarchical organisation of the otic gene network.
Collapse
|
30
|
Choi H, Song J, Park G, Kim J. Modeling of Autism Using Organoid Technology. Mol Neurobiol 2016; 54:7789-7795. [DOI: 10.1007/s12035-016-0274-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
|
31
|
HES1 in immunity and cancer. Cytokine Growth Factor Rev 2016; 30:113-7. [PMID: 27066918 DOI: 10.1016/j.cytogfr.2016.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/06/2023]
Abstract
Hairy and enhancer of split homolog-1 (HES1) is a part of an extensive family of basic helix-loop-helix (bHLH) proteins and plays a crucial role in the control and regulation of cell cycle, proliferation, cell differentiation, survival and apoptosis in neuronal, endocrine, T-lymphocyte progenitors as well as various cancers. HES1 is a transcription factor which is regulated by the NOTCH, Hedgehog and Wnt signalling pathways. Aberrant expression of these pathways is a common feature of cancerous cells. There appears to be a fine and complicated crosstalk at the molecular level between the various signalling pathways and HES1, which contributes to its effects on the immune response and cancers such as leukaemia. Several mechanisms have been proposed, including an enhanced invasiveness and metastasis by inducing epithelial mesenchymal transition (EMT), in addition to its strict requirement for tumour cell survival. In this review, we summarize the current biology and molecular mechanisms as well as its use as a clinical target in cancer therapeutics.
Collapse
|
32
|
Abstract
Hes1 is one mammalian counterpart of the Hairy and Enhancer of split proteins that play a critical role in many physiological processes including cellular differentiation, cell cycle arrest, apoptosis and self-renewal ability. Recent studies have shown that Hes1 functions in the maintenance of cancer stem cells (CSCs), metastasis and antagonizing drug-induced apoptosis. Pathways that are involved in the up-regulation of Hes1 level canonically or non-canonically, such as the Hedgehog, Wnt and hypoxia pathways are frequently aberrant in cancer cells. Here, we summarize the recent data supporting the idea that Hes1 may have an important function in the maintenance of cancer stem cells self-renewal, cancer metastasis, and epithelial-mesenchymal transition (EMT) process induction, as well as chemotherapy resistance, and conclude with the possible mechanisms by which Hes1 functions have their effect, as well as their crosstalk with other carcinogenic signaling pathways.
Collapse
Key Words
- ABC, ATP-binding cassette
- CSCs, cancer stem cells
- CSL, CBF1/ Suppressor of Hairless / Lag1
- EMT, epithelial–mesenchymal transition
- GSI, γ-secretase inhibitor
- HDACs, histone deacetylases
- Hes1
- MAML, Mastermind-like protein family
- MASH-1, Mammalian achaete-scute homolog-1
- NICD, Notch intracellular domain
- Notch signaling pathway
- Runx2, Runt-related protein 2
- TLE, transducin-like Enhancer of split
- bHLH, basic helix-loop-helix
- cancer stem cell
- chemotherapy resistance
- dnMAM, dominant-negative mastermind
- metastasis
- non-canonical Notch
Collapse
|
33
|
Lennartsson A, Arner E, Fagiolini M, Saxena A, Andersson R, Takahashi H, Noro Y, Sng J, Sandelin A, Hensch TK, Carninci P. Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors. Epigenetics Chromatin 2015; 8:55. [PMID: 26673794 PMCID: PMC4678690 DOI: 10.1186/s13072-015-0043-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1. RESULTS We found that VPA reliably reactivates the critical period plasticity and induces a dramatic change of chromatin organization in V1 yielding significantly greater accessibility distant from promoters, including at enhancer regions. VPA also induces nucleosome eviction specifically from retrotransposon (in particular SINE) elements. The transiently accessible SINE elements overlap with transcription factor-binding sites of the Fox family. Mapping of transcription start site activity using CAGE revealed transcription of epigenetic and neural plasticity-regulating genes following VPA treatment, which may help to re-program the genomic landscape and reactivate plasticity in the adult cortex. CONCLUSIONS Treatment with HDAC inhibitors increases accessibility to enhancers and repetitive elements underlying brain-specific gene expression and reactivation of visual cortical plasticity.
Collapse
Affiliation(s)
- Andreas Lennartsson
- />Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden
- />Genome Science Lab, RIKEN, Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Erik Arner
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Michela Fagiolini
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Alka Saxena
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Robin Andersson
- />Department of Biology and BRIC, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Hazuki Takahashi
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yukihiko Noro
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Judy Sng
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- />Department of Pharmacology, National University of Singapore, 10 Medical Drive 05-34, Singapore, Singapore
| | - Albin Sandelin
- />Department of Biology and BRIC, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Takao K. Hensch
- />Lab for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
- />F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- />Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Piero Carninci
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
34
|
Adesina AM, Veo BL, Courteau G, Mehta V, Wu X, Pang K, Liu Z, Li XN, Peters L. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol 2015; 46:1859-71. [PMID: 26433703 DOI: 10.1016/j.humpath.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022]
Abstract
FOXG1 is a transcription factor that interacts with multiple signaling pathways and modulates neuronal differentiation in the telencephalon. Dysregulation of FOXG1 expression has been previously reported in medulloblastoma. In this study, we demonstrate a regional specific expression of FOXG1 and its colocalization with Nestin expression in the premigratory mitotically active (outer) layer of the external granular layer of the cerebellum. An inverse expression of the granular precursor cell markers, Math1 and Musashi1, in the inner nonmitotic migratory layer of the external granular layer and in the internal granular layer was observed. Furthermore, modulation of FOXG1 in the medulloblastoma cell line, DAOY, was associated with the induction of neuronal differentiation markers and significant changes in multiple signaling pathways regulating cell proliferation, differentiation, survival, and apoptosis. Additionally, we observed enhanced survival in intracerebellar mice xenografts injected with DAOY cells bearing shFOXG1 constructs versus shLuciferase construct. Overall, these findings suggest that down-modulation of FOXG1 is a prerequisite for the onset of neuronal differentiation during cerebellar development and that a decrease of FOXG1 in medulloblastoma cells offers a survival advantage in mice. We propose that the disruption of signaling pathways that promote mature neuronal differentiation by overexpressed FOXG1 is a contributing event in the neoplastic transformation of cerebellar stem cells.
Collapse
Affiliation(s)
- Adekunle M Adesina
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; Department of Pediatrics-Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030.
| | - Bethany L Veo
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Girard Courteau
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Vidya Mehta
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Xuli Wu
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Kaifang Pang
- Department of Pediatrics-Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Zhandong Liu
- Department of Pediatrics-Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Nan Li
- Department of Pediatrics-Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Lori Peters
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
35
|
Agarwal M, Kumar P, Mathew SJ. The Groucho/Transducin-like enhancer of split protein family in animal development. IUBMB Life 2015; 67:472-81. [PMID: 26172616 DOI: 10.1002/iub.1395] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles.
Collapse
Affiliation(s)
- Megha Agarwal
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Pankaj Kumar
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
36
|
Vitezic M, Bertin N, Andersson R, Lipovich L, Kawaji H, Lassmann T, Sandelin A, Heutink P, Goldowitz D, Ha T, Zhang P, Patrizi A, Fagiolini M, Forrest ARR, Carninci P, Saxena A. CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics 2014; 15:1177. [PMID: 25539566 PMCID: PMC4522966 DOI: 10.1186/1471-2164-15-1177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mutations in three functionally diverse genes cause Rett Syndrome. Although the functions of Forkhead box G1 (FOXG1), Methyl CpG binding protein 2 (MECP2) and Cyclin-dependent kinase-like 5 (CDKL5) have been studied individually, not much is known about their relation to each other with respect to expression levels and regulatory regions. Here we analyzed data from hundreds of mouse and human samples included in the FANTOM5 project, to identify transcript initiation sites, expression levels, expression correlations and regulatory regions of the three genes. Results Our investigations reveal the predominantly used transcription start sites (TSSs) for each gene including novel transcription start sites for FOXG1. We show that FOXG1 expression is poorly correlated with the expression of MECP2 and CDKL5. We identify promoter shapes for each TSS, the predicted location of enhancers for each gene and the common transcription factors likely to regulate the three genes. Our data imply Polycomb Repressive Complex 2 (PRC2) mediated silencing of Foxg1 in cerebellum. Conclusions Our analyses provide a comprehensive picture of the regulatory regions of the three genes involved in Rett Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1177) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morana Vitezic
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden. .,The Bioinformatics Center, Department of Biology and Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolas Bertin
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Robin Andersson
- The Bioinformatics Center, Department of Biology and Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA. .,Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Hideya Kawaji
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan. .,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Wako, Japan.
| | - Timo Lassmann
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan. .,Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Albin Sandelin
- The Bioinformatics Center, Department of Biology and Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Heutink
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan. .,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. .,Eberhard Karls University, Tübingen, Germany.
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Dept of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Thomas Ha
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Dept of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Peter Zhang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Dept of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Annarita Patrizi
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michela Fagiolini
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alistair R R Forrest
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan.
| | - Piero Carninci
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Japan.
| | - Alka Saxena
- Omics Science Center, RIKEN Yokohama Institute, Omics Science Center (OSC), 1-17-22 Suehiro cho, Tsurumi ku, Yokohama, Japan. .,Biomedical Research Centre at Guy's and St Thomas' Trust, Genomics Core Facility, Guy's Hospital, London, UK.
| | | |
Collapse
|
37
|
Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nat Commun 2014; 4:2956. [PMID: 24356439 PMCID: PMC3984242 DOI: 10.1038/ncomms3956] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/18/2013] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain cancer, with a median survival of less than two years. GBM displays a cellular complexity that includes brain tumour-initiating cells (BTICs), which are considered as potential key targets for GBM therapies. Here we show that the transcription factors FOXG1 and Groucho/TLE are expressed in poorly differentiated astroglial cells in human GBM specimens and in primary cultures of GBM-derived BTICs, where they form a complex. FOXG1 knockdown in BTICs causes downregulation of neural stem/progenitor and proliferation markers, increased replicative senescence, upregulation of astroglial differentiation genes, and decreased BTIC-initiated tumour growth upon intracranial transplantation into host mice. These effects are phenocopied by Groucho/TLE knockdown or dominant-inhibition of the FOXG1:Groucho/TLE complex. These results provide evidence that transcriptional programs regulated by FOXG1 and Groucho/TLE are important for BTIC-initiated brain tumour growth, implicating FOXG1 and Groucho/TLE in GBM tumorigenesis.
Collapse
|
38
|
Li JV, Chien CD, Garee JP, Xu J, Wellstein A, Riegel AT. Transcriptional repression of AIB1 by FoxG1 leads to apoptosis in breast cancer cells. Mol Endocrinol 2013; 27:1113-27. [PMID: 23660594 DOI: 10.1210/me.2012-1353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator that is overexpressed in various types of human cancers. However, the molecular mechanisms controlling AIB1 expression in the majority of cancers remain unclear. In this study, we identified a novel interacting protein of AIB1, forkhead-box protein G1 (FoxG1), which is an evolutionarily conserved forkhead-box transcriptional corepressor. We show that FoxG1 expression is low in breast cancer cell lines and that low levels of FoxG1 are correlated with a worse prognosis in breast cancer. We also demonstrate that transient overexpression of FoxG1 can suppress endogenous levels of AIB1 mRNA and protein in MCF-7 breast cancer cells. Exogenously expressed FoxG1 in MCF-7 cells also leads to apoptosis that can be rescued in part by AIB1 overexpression. Using chromatin immunoprecipitation, we determined that FoxG1 is recruited to a region of the AIB1 gene promoter previously characterized to be responsible for AIB1-induced, positive autoregulation of transcription through the recruitment of an activating, multiprotein complex, involving AIB1, E2F transcription factor 1, and specificity protein 1. Increased FoxG1 expression significantly reduces the recruitment of AIB1, E2F transcription factor 1 and E1A-binding protein p300 to this region of the endogenous AIB1 gene promoter. Our data imply that FoxG1 can function as a pro-apoptotic factor in part through suppression of AIB1 coactivator transcription complex formation, thereby reducing the expression of the AIB1 oncogene.
Collapse
Affiliation(s)
- Jordan V Li
- Department of Pharmacology, Lombardi Cancer Center, Georgetown University, Research Building E307, 3970 Reservoir Road Northwest, Washington, DC 20007-2197, USA
| | | | | | | | | | | |
Collapse
|
39
|
Fotaki V, Smith R, Pratt T, Price DJ. Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse. Dev Biol 2013; 380:299-313. [PMID: 23624311 PMCID: PMC3722486 DOI: 10.1016/j.ydbio.2013.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
The ciliary margin (CM) develops in the peripheral retina and gives rise to the iris and the ciliary body. The Wnt/β-catenin signalling pathway has been implicated in ciliary margin development. Here, we tested the hypothesis that in the developing mouse retina Foxg1 is responsible for suppressing the Wnt/β-catenin pathway and restricting CM development. We showed that there is excess CM tissue in Foxg1−/− null embryos and this expansion is more pronounced in the nasal retina where Foxg1 normally shows its highest expression levels. Results on expression of a reporter allele for Wnt/β-catenin signalling and of Lef1, a target of Wnt/β-catenin signalling, displayed significant upregulation of this pathway in Foxg1−/− nulls at embryonic days 12.5 and 14.5. Interestingly, this upregulation was observed specifically in the nasal retina, where normally very few Wnt-responsive cells are observed. These results indicate a suppressive role of Foxg1 on this signalling pathway. Our results reveal a new role of Foxg1 in limiting CM development in the nasal peripheral retina and add a new molecular player in the developmental network involved in CM specification. Foxg1 is expressed in a nasal-high to temporal-low gradient in developing retina. Ciliary margin expansion is observed nasally in the Foxg1−/− mutant retina. Wnt/β-catenin signalling is upregulated in the Foxg1−/− peripheral retina nasally. A new role of Foxg1 in controlling ciliary margin development is proposed.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | |
Collapse
|
40
|
Kumamoto T, Toma KI, Gunadi, McKenna WL, Kasukawa T, Katzman S, Chen B, Hanashima C. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 2013; 3:931-45. [PMID: 23523356 DOI: 10.1016/j.celrep.2013.02.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron 2012; 74:1045-58. [PMID: 22726835 DOI: 10.1016/j.neuron.2012.04.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 01/20/2023]
Abstract
Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.
Collapse
Affiliation(s)
- Goichi Miyoshi
- NYU Neuroscience Institute, Department of Physiology and Neuroscience, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
42
|
Danesin C, Houart C. A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 2012; 22:323-30. [DOI: 10.1016/j.gde.2012.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
43
|
Abstract
Foxg1, formerly BF-1, is expressed continuously in the postnatal and adult hippocampal dentate gyrus (DG). This transcription factor (TF) is thought to be involved in Rett syndrome, which is characterized by reduced hippocampus size, indicating its important role in hippocampal development. Due to the perinatal death of Foxg1(-/-) mice, the function of Foxg1 in postnatal DG neurogenesis remains to be explored. Here, we describe the generation of a Foxg1(fl/fl) mouse line. Foxg1 was conditionally ablated from the DG during prenatal and postnatal development by crossing this line with a Frizzled9-CreER(TM) line and inducing recombination with tamoxifen. In this study, we first show that disruption of Foxg1 results in the loss of the subgranular zone and a severely disrupted secondary radial glial scaffold, leading to the impaired migration of granule cells. Moreover, detailed analysis reveals that Foxg1 may be necessary for the maintenance of the DG progenitor pool and that the lack of Foxg1 promotes both gliogenesis and neurogenesis. We additionally show that Foxg1 may be required for the survival and maturation of postmitotic neurons and that Foxg1 may be involved in Reelin signaling in regulating postnatal DG development. Last, prenatal deletion of Foxg1 suggests that it is rarely involved in the migration of primordial granule cells. In summary, we report that Foxg1 is critical for DG formation, especially during early postnatal stage.
Collapse
|
44
|
Dastidar SG, Narayanan S, Stifani S, D'Mello SR. Transducin-like enhancer of Split-1 (TLE1) combines with Forkhead box protein G1 (FoxG1) to promote neuronal survival. J Biol Chem 2012; 287:14749-59. [PMID: 22354967 DOI: 10.1074/jbc.m111.328336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transducin-like enhancer of split-1 (TLE1) plays a critical role in the regulation of neurogenesis by inhibiting the differentiation of neural progenitor cells into neurons. Although TLE1 is also expressed highly in the postnatal brain and through adulthood, its role in postmitotic neurons is not clear. Using cultures of cerebellar granule neurons, we show that expression of TLE1 is reduced in neurons primed to die. Reestablishment of elevated TLE1 levels by ectopic expression protects neurons from death, whereas suppression of TLE1 expression in otherwise healthy neurons induces cell death. These results show that TLE1 is necessary for the maintenance of neuronal survival. Experiments using pharmacological inhibitors as well as expression of point mutants indicate that phosphorylation of TLE1 by casein kinase-2 (CK2) at Ser-239 and Ser-253 is necessary for its survival-promoting activity. TLE1-mediated survival is also inhibited by pharmacological inhibition of PI3K-Akt signaling but not by inhibitors of Raf-MEK-ERK signaling or other molecules, including histone deacetylases, calcium calmodulin kinase, or CK1. The survival-promoting activity of TLE1 depends critically on interaction with FoxG1, another protein involved in the regulation of neurogenesis and shown previously to promote survival of postmitotic neurons. Likewise, the ability of FoxG1 to promote neuronal survival depends on TLE1. Taken together, our study demonstrates that TLE1 cooperates with FoxG1 to promote neuronal survival in a CK2- and PI3K-Akt-dependent manner.
Collapse
|
45
|
Takahashi S, Matsumoto N, Okayama A, Suzuki N, Araki A, Okajima K, Tanaka H, Miyamoto A. FOXG1 mutations in Japanese patients with the congenital variant of Rett syndrome. Clin Genet 2011; 82:569-73. [PMID: 22129046 DOI: 10.1111/j.1399-0004.2011.01819.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by microcephaly, psychomotor regression, seizures and stereotypical hand movements. Recently, deletions and inactivating mutations in FOXG1, encoding a brain-specific transcription factor that is critical for forebrain development, have been found to be associated with the congenital variant of RTT. Here we report the clinical features and molecular characteristics of two cases of the congenital variant of RTT. We conducted mutation screenings of FOXG1 in a cohort of 15 Japanese patients with a clinical diagnosis of atypical RTT but without MECP2 and CDKL5 mutations. Two unrelated female patients had heterozygous mutations (c.256dupC, p.Gln86ProfsX35 and c.689G>A, pArg230His). Both showed neurological symptoms from the neonatal period, including hypotonia, irritability and severe microcephaly. Further, their psychomotor development was severely impaired, as indicated by their inability to sit unaided or acquire speech sounds, and they had a hyperkinetic movement disorder, because both displayed hand stereotypies and jerky movements of the upper limbs. Brain magnetic resonance imaging scans revealed delayed myelination with hypoplasia of the corpus callosum and frontal lobe. These cases confirm the involvement of FOXG1 in the molecular etiology of the congenital variant of RTT and show the characteristic features of FOXG1-related disorder.
Collapse
Affiliation(s)
- S Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
De Filippis R, Pancrazi L, Bjørgo K, Rosseto A, Kleefstra T, Grillo E, Panighini A, Cardarelli F, Meloni I, Ariani F, Mencarelli MA, Hayek J, Renieri A, Costa M, Mari F. Expanding the phenotype associated with FOXG1 mutations and in vivo FoxG1 chromatin-binding dynamics. Clin Genet 2011; 82:395-403. [PMID: 22091895 DOI: 10.1111/j.1399-0004.2011.01810.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the Forkhead box G1 (FOXG1) gene, a brain specific transcriptional factor, are responsible for the congenital variant of Rett syndrome. Until now FOXG1 point mutations have been reported in 12 Rett patients. Recently seven additional patients have been reported with a quite homogeneous severe phenotype designated as the FOXG1 syndrome. Here we describe two unrelated patients with a de novo FOXG1 point mutation, p.Gln46X and p.Tyr400X, respectively, having a milder phenotype and sharing a distinctive facial appearance. Although FoxG1 action depends critically on its binding to chromatin, very little is known about the dynamics of this process. Using fluorescence recovery after photobleaching, we showed that most of the GFP-FoxG1 fusion protein associates reversibly to chromatin whereas the remaining fraction is bound irreversibly. Furthermore, we showed that the two pathologic derivatives of FoxG1 described in this paper present a dramatic alteration in chromatin affinity and irreversibly bound fraction in comparison with Ser323fsX325 mutant (associated with a severe phenotype) and wild type Foxg1 protein. Our observations suggest that alterations in the kinetics of FoxG1 binding to chromatin might contribute to the pathological effects of FOXG1 mutations.
Collapse
Affiliation(s)
- R De Filippis
- Medical Genetics, Department of Biotechnology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Florian C, Bahi-Buisson N, Bienvenu T. FOXG1-Related Disorders: From Clinical Description to Molecular Genetics. Mol Syndromol 2011; 2:153-163. [PMID: 22670136 DOI: 10.1159/000327329] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disease that affects approximately 1 in 10,000 live female births and is often caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2). Mutations in loci other than MECP2 have also been found in individuals that have been labeled as atypical RTT. Among them, a mutation in the gene forkhead box G1 (FOXG1) has been involved in the molecular aetiology of the congenital variant of RTT. The FOXG1 gene encodes a winged-helix transcriptional repressor essential for the development of the ventral telencephalon in embryonic forebrain. Later, FOXG1 continues to be expressed in neurogenetic zones of the postnatal brain. Although RTT affects quasi-exclusively girls, FOXG1 mutations have also been identified in male patients. As far as we know, about 12 point mutations and 13 cases with FOXG1 molecular abnormalities (including translocation, duplication and large deletion on the chromosome 14q12) have been described in the literature. Affected individuals with FOXG1 mutations have shown dysmorphic features and Rett-like clinical course, including normal perinatal period, postnatal microcephaly, seizures and severe mental retardation. Interestingly, the existing animal models of FOXG1 deficiency showed similar phenotype, suggesting that animal models may be a fascinating model to understand this human disease. Here, we describe the impacts of FOXG1 mutations and their associated phenotypes in human and mouse models.
Collapse
Affiliation(s)
- C Florian
- Inserm, U1016, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | |
Collapse
|
48
|
Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E, Kluger G, Martin P, Rauch A, Roumer A, Saitta S, Walsh LE, Wieczorek D, Uyanik G, Kutsche K, Dobyns WB. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 2011; 48:396-406. [PMID: 21441262 DOI: 10.1136/jmg.2010.087528] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phenotype of FOXG1 mutation positive patients. METHOD The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. RESULTS One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. CONCLUSIONS These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the FOXG1 syndrome.
Collapse
Affiliation(s)
- Fanny Kortüm
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Campus Forschung, Martinistraße 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The transcription factor FoxG1 regulates neurogenesis in the embryonic telencephalon as well as a number of other neurodevelopmental processes. While FoxG1 continues to be expressed in neurons postnatally and through adulthood, its role in fully differentiated neurons is not known. The current study demonstrates that FoxG1 promotes the survival of postmitotic neurons. In cerebellar granule neurons primed to undergo apoptosis, FoxG1 expression is reduced. Ectopic expression of FoxG1 blocks neuronal death, whereas suppression of its expression induces death in otherwise healthy neurons. The first 36 residues of FoxG1 are necessary for its survival-promoting effect, while the C-terminal half of the protein is dispensable. Mutation of Asp219, a residue necessary for DNA binding, abrogates survival promotion by FoxG1. Survival promotion is also eliminated by mutation of Thr271, a residue phosphorylated by Akt. Pharmacological inhibition of Akt blocks the survival effects of wild-type FoxG1 but not forms in which Thr271 is replaced with phosphomimetic residues. Treatment of neurons with IGF-1, a neurotrophic factor that promotes neuronal survival by activating Akt, prevents the apoptosis-associated downregulation of FoxG1 expression. Moreover, the overexpression of dominant-negative forms of FoxG1 blocks the ability of IGF-1 to maintain neuronal survival suggesting that FoxG1 is a downstream mediator of IGF-1/Akt signaling. Our study identifies a new and important function for FoxG1 in differentiated neurons.
Collapse
|
50
|
Wang S, Du J, Tang H, Ding X, Zha M, Xu Z. Expression, purification, crystallization, and preliminary X-ray diffraction analysis of the human TLE1 Q domain. Acta Biochim Biophys Sin (Shanghai) 2011; 43:149-53. [PMID: 21183761 DOI: 10.1093/abbs/gmq116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human transducin-like enhancer of split 1 (TLE1) plays crucial roles in a number of developmental processes and is involved in pathogenesis of malignancy tumors. The N-terminal glutamine-rich domain (Q domain) of TLE1 mediates its tetramerization and interactions with different DNA-binding transcription factors to regulate Notch and Wnt signaling pathways. To better understand the molecular mechanism of TLE1's functions in these pathways, we cloned, purified, and crystallized the TLE1 Q domain (TLE1-Q). The crystals belong to space group C222(1), with the complete diffraction data of the native and Se-Met TLE1-Q collected to 3.5 and 4.1 Å resolutions, respectively. The phasing-solving and model building are in progress.
Collapse
Affiliation(s)
- Su Wang
- Department of Thoracic and Cardiovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|