1
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
2
|
Zheng Y, Ye S, Huang S, Cheng Y, Zhang Y, Leng Y, He M, Wu E, Chen J, Kong L, Zhang H. Lefamulin Overcomes Acquired Drug Resistance via Regulating Mitochondrial Homeostasis by Targeting ILF3 in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401789. [PMID: 38874478 PMCID: PMC11321631 DOI: 10.1002/advs.202401789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Acquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)-approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line-derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer-binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine-99 site of ILF3 protein and interferes with acetyltransferase general control non-depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine-100 site, which disrupts the ILF3-mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.
Collapse
Affiliation(s)
- Ying Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Shengtao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Shiyu Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yang Cheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yingrong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Mengmeng He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Enyi Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Junxin Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
3
|
Moghimi S, Viktorova EG, Gabaglio S, Zimina A, Budnik B, Wynn BG, Sztul E, Belov GA. A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication. PLoS Pathog 2022; 18:e1010906. [PMID: 36306280 PMCID: PMC9645661 DOI: 10.1371/journal.ppat.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.
Collapse
Affiliation(s)
- Seyedehmahsa Moghimi
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Samuel Gabaglio
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anna Zimina
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL), FAS Division of Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bridge G. Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - George A. Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
4
|
NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress through suppression of p53 signaling pathway. Sci Rep 2022; 12:8837. [PMID: 35614067 PMCID: PMC9132887 DOI: 10.1038/s41598-022-12600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
The Nuclear Factor 90 (NF90)-NF45 complex has been known to regulate the progression of transcription, mRNA stability, translational inhibition, RNA export and microRNA biogenesis. However, the physiological functions of the NF90-NF45 complex remain unclear. We newly discovered that the NF90-NF45 complex was expressed in primary β cells and established cell lines. Therefore, in this study, we focused on the function of the endogenous NF90-NF45 complex in the β cells. To investigate this issue, we generated β-cell-specific NF90-NF45 deficient mice. These mice exhibited hyperglycaemia and lower plasma insulin levels under a high fat diet together with decreased islet mass. To uncover this mechanism, we performed a whole-genome expression microarray of the total RNA prepared from β cell lines treated with siRNAs targeting both NF90 and NF45. In this result, we found an activation of p53 signaling in the NF90-NF45-knockdown cells. This activation was supported by elevation of luciferase activity derived from a reporter plasmid harboring p53 binding sites in the NF90-NF45-knockdown cells. Furthermore, the knockdown of NF90-NF45 resulted in a significant retardation of the β cell line growth rates. Importantly, a dominant negative form of p53 rescues the growth retardation in BTC6 cells depleted of NF90-NF45, suggesting that NF90-NF45 would be positively involved in β cell proliferation through suppression of p53 signal pathway. Taken together, NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress via repression of p53 signaling.
Collapse
|
5
|
Lodde V, Floris M, Munk R, Martindale JL, Piredda D, Napodano CMP, Cucca F, Uzzau S, Abdelmohsen K, Gorospe M, Noh JH, Idda ML. Systematic identification of NF90 target RNAs by iCLIP analysis. Sci Rep 2022; 12:364. [PMID: 35013429 PMCID: PMC8748789 DOI: 10.1038/s41598-021-04101-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Davide Piredda
- Intensive Care Unit, Emergency Department, AOU Sassari, Sassari, Italy
| | | | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Microbiology and Virology Unit, Diagnostic Department, AOU Sassari, Sassari, Italy
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy.
| |
Collapse
|
6
|
Xie F, Cui QK, Wang ZY, Liu B, Qiao W, Li N, Cheng J, Hou YM, Dong XY, Wang Y, Zhang MX. ILF3 is responsible for hyperlipidemia-induced arteriosclerotic calcification by mediating BMP2 and STAT1 transcription. J Mol Cell Cardiol 2021; 161:39-52. [PMID: 34343541 DOI: 10.1016/j.yjmcc.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Calcification is common in atherosclerotic plaque and can induce vulnerability, which further leads to myocardial infarction, plaque rupture and stroke. The mechanisms of atherosclerotic calcification are poorly characterized. Interleukin enhancer binding factor 3 (ILF3) has been identified as a novel factor affecting dyslipidemia and stroke subtypes. However, the precise role of ILF3 in atherosclerotic calcification remains unclear. In this study, we used smooth muscle-conditional ILF3 knockout (ILF3SM-KO) and transgenic mice (ILF3SM-Tg) and macrophage-conditional ILF3 knockout (ILF3M-KO) and transgenic (ILF3M-Tg) mice respectively. Here we showed that ILF3 expression is increased in calcified human aortic vascular smooth muscle cells (HAVSMCs) and calcified atherosclerotic plaque in humans and mice. We then found that hyperlipidemia increases ILF3 expression and exacerbates calcification of VSMCs and macrophages by regulating bone morphogenetic protein 2 (BMP2) and signal transducer and activator of transcription 1 (STAT1) transcription. We further explored the molecular mechanisms of ILF3 in atherosclerotic calcification and revealed that ILF3 acts on the promoter regions of BMP2 and STAT1 and mediates BMP2 upregulation and STAT1 downregulation, which promotes atherosclerotic calcification. Our results demonstrate the effect of ILF3 in atherosclerotic calcification. Inhibition of ILF3 may be a useful therapy for preventing and even reversing atherosclerotic calcification.
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Ke Cui
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Ying Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Surka C, Jin L, Mbong N, Lu CC, Jang IS, Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, Fontanillo C, Tran E, Contreras A, Ng SWK, Matyskiela M, Wang K, Chamberlain P, Cathers B, Carmichael J, Hansen J, Wang JCY, Minden MD, Fan J, Pierce DW, Pourdehnad M, Rolfe M, Lopez-Girona A, Dick JE, Lu G. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021; 137:661-677. [PMID: 33197925 PMCID: PMC8215192 DOI: 10.1182/blood.2020008676] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).
Collapse
Affiliation(s)
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | - Stanley W K Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Kai Wang
- Bristol-Myers Squibb, San Diego, CA
| | | | | | | | | | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Jinhong Fan
- Bristol-Myers Squibb, San Francisco, CA; and
| | | | | | | | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gang Lu
- Bristol-Myers Squibb, San Diego, CA
| |
Collapse
|
8
|
Benoist L, Corre E, Bernay B, Henry J, Zatylny-Gaudin C. -Omic Analysis of the Sepia officinalis White Body: New Insights into Multifunctionality and Haematopoiesis Regulation. J Proteome Res 2020; 19:3072-3087. [PMID: 32643382 DOI: 10.1021/acs.jproteome.0c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cephalopods, like other protostomes, lack an adaptive immune system and only rely on an innate immune system. The main immune cells are haemocytes (Hcts), which are able to respond to pathogens and external attacks. First reports based on morphological observations revealed that the white body (WB) located in the optic sinuses of cuttlefish was the origin of Hcts. Combining transcriptomic and proteomic analyses, we identified several factors known to be involved in haematopoiesis in vertebrate species in cuttlefish WB. Among these factors, members of the JAK-STAT signaling pathway were identified, some of them for the first time in a molluscan transcriptome and proteome. Immune factors, such as members of the Toll/NF-κB signaling pathway, pattern recognition proteins and receptors, and members of the oxidative stress responses, were also identified, and support an immune role of the WB. Both transcriptome and proteome analyses revealed that the WB harbors an intense metabolism concurrent with the haematopoietic function. Finally, a comparative analysis of the WB and Hct proteomes revealed many proteins in common, confirming previous morphological studies on the origin of Hcts in cuttlefish. This molecular work demonstrates that the WB is multifunctional and provides bases for haematopoiesis regulation in cuttlefish.
Collapse
Affiliation(s)
- Louis Benoist
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Erwan Corre
- Plateforme ABiMS, Station Biologique de Roscoff (CNRS-Sorbonne Université), 29688 Roscoff, France
| | - Benoit Bernay
- Plateforme PROTEOGEN, SF 4206 ICORE, Normandie université, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Joel Henry
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Céline Zatylny-Gaudin
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| |
Collapse
|
9
|
Zhang Y, Sun J, Qi Y, Wang Y, Ding Y, Wang K, Zhou Q, Wang J, Ma F, Zhang J, Guo B. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY) 2020; 12:6191-6205. [PMID: 32248186 PMCID: PMC7185097 DOI: 10.18632/aging.103016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
LncRNAs have been proven closely correlated to tumor progression. A recent study identified LncRNA TPT1-AS1 (TPT1-AS1) as one of the liver-metastasis associated LncRNAs in colorectal cancer (CRC). In this study, we report that TPT1-AS1 is upregulated in CRC tissues, which is associated with poor prognosis. Functional assays unravel a pro-angiogenesis and metastasis role of TPT1-AS1. Mechanistically, Flexmap 3D assays reveal that TPT1-AS1 upregulates the VEGFA secretion in CRC cells. RNA immunoprecipitation and mRNA stability assays further show that TPT1-AS1 interacts with nuclear factor 90 (NF90) and subsequently promotes the association between NF90 and VEGFA mRNA, which leads to the upregulation of VEGFA mRNA stability. Therefore, we elucidate a new regulatory mechanism of TPT1-AS1 in CRC angiogenesis and targeting the TPT1-AS1/NF90/VEGFA axis may provide a useful strategy for diagnosis and treatment for colorectal cancer patients.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiangyun Sun
- Department of Acupuncture, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Qi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimin Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Wang
- Department of Central Sterile Supply, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Vrakas CN, Herman AB, Ray M, Kelemen SE, Scalia R, Autieri MV. RNA stability protein ILF3 mediates cytokine-induced angiogenesis. FASEB J 2019; 33:3304-3316. [PMID: 30383449 PMCID: PMC6404561 DOI: 10.1096/fj.201801315r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
Abstract
Interleukin enhancer-binding factor 3 (ILF3), an RNA-binding protein, is best known for its role in innate immunity by participation in cellular antiviral responses. A role for ILF3 in angiogenesis is unreported. ILF3 expression in CD31+ capillaries of hypoxic cardiac tissue was detected by immunohistochemistry. Proangiogenic stimuli induce ILF3 mRNA and protein expression in cultured human coronary artery endothelial cells (hCAECs). Angiogenic indices, including proliferation, migration, and tube formation, are all significantly reduced in hCAECs when ILF3 is knocked down using small interfering RNA (siRNA), but are significantly increased when ILF3 is overexpressed using adenovirus. Protein and mRNA abundance of several angiogenic factors including CXCL1, VEGF, and IL-8 are decreased when ILF3 is knocked down by siRNA. These factors are increased when ILF3 is overexpressed by adenovirus. ILF3 is phosphorylated and translocates from the nucleus to the cytoplasm in response to angiogenic stimuli. Proangiogenic transcripts containing adenine and uridine-rich elements were bound to ILF3 through RNA immunoprecipitation. ILF3 stabilizes proangiogenic transcripts including VEGF, CXCL1, and IL-8 in hCAECs. Together these data suggest that in endothelial cells, the RNA stability protein, ILF3, plays a novel and central role in angiogenesis. Our working hypothesis is that ILF3 promotes angiogenesis through cytokine-inducible mRNA stabilization of proangiogenic transcripts.-Vrakas, C. N., Herman, A. B., Ray, M., Kelemen, S. E., Scalia, R., Autieri, M. V. RNA stability protein ILF3 mediates cytokine-induced angiogenesis.
Collapse
Affiliation(s)
- Christine N. Vrakas
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Allison B. Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sheri E. Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rosario Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Wu TH, Shi L, Adrian J, Shi M, Nair RV, Snyder MP, Kao PN. NF90/ILF3 is a transcription factor that promotes proliferation over differentiation by hierarchical regulation in K562 erythroleukemia cells. PLoS One 2018; 13:e0193126. [PMID: 29590119 PMCID: PMC5873942 DOI: 10.1371/journal.pone.0193126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
NF90 and splice variant NF110 are DNA- and RNA-binding proteins encoded by the Interleukin enhancer-binding factor 3 (ILF3) gene that have been established to regulate RNA splicing, stabilization and export. The roles of NF90 and NF110 in regulating transcription as chromatin-interacting proteins have not been comprehensively characterized. Here, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) identified 9,081 genomic sites specifically occupied by NF90/NF110 in K562 cells. One third of NF90/NF110 peaks occurred at promoters of annotated genes. NF90/NF110 occupancy colocalized with chromatin marks associated with active promoters and strong enhancers. Comparison with 150 ENCODE ChIP-seq experiments revealed that NF90/NF110 clustered with transcription factors exhibiting preference for promoters over enhancers (POLR2A, MYC, YY1). Differential gene expression analysis following shRNA knockdown of NF90/NF110 in K562 cells revealed that NF90/NF110 activates transcription factors that drive growth and proliferation (EGR1, MYC), while attenuating differentiation along the erythroid lineage (KLF1). NF90/NF110 associates with chromatin to hierarchically regulate transcription factors that promote proliferation and suppress differentiation.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (PNK.); (THW)
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jessika Adrian
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Minyi Shi
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramesh V. Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (PNK.); (THW)
| |
Collapse
|
13
|
Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis 2018; 9:276. [PMID: 29449553 PMCID: PMC5833414 DOI: 10.1038/s41419-018-0334-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A), a fundamental component of angiogenesis, provides nutrients and oxygen to solid tumors, and enhances tumor cell survival, invasion, and migration. Nuclear factor 90 (NF90), a double-stranded RNA-binding protein, is strongly expressed in several human cancers, promotes tumor growth by reducing apoptosis, and increasing cell cycle process. The mechanisms by which cervical cancer cells inducing VEGF-A expression and angiogenesis upon NF90 upregulation remain to be fully established. We demonstrated that NF90 is upregulated in human cervical cancer specimens and the expression of NF90 is paralleled with that of VEGF-A under hypoxia. The expressions of hypoxia inducible factor-1α (HIF-1α) and VEGF-A are downregulated upon NF90 knockdown, which can be rescued by ectopic expression of NF90. Suppression of NF90 decreases the tube formation and cell migration of HUVECs. Moreover, the PI3K/Akt signaling pathway participates in the regulation. Knockdown of NF90 also reduces the tumor growth and angiogenesis of cervical cancer cell line in the mouse xenograft model. Taken together, suppression of NF90 in cervical cancer cell lines can decrease VEGF-A expression, inhibit angiogenesis, and reduce tumorigenic capacity in vivo.
Collapse
|
14
|
Schmidt T, Friedrich S, Golbik RP, Behrens SE. NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 2017; 45:12441-12454. [PMID: 29040738 PMCID: PMC5716087 DOI: 10.1093/nar/gkx931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| |
Collapse
|
15
|
Li CW, Chu YH, Chen BS. Construction and Clarification of Dynamic Gene Regulatory Network of Cancer Cell Cycle via Microarray Data. Cancer Inform 2017. [DOI: 10.1177/117693510600200008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Cell cycle is an important clue to unravel the mechanism of cancer cells. Recently, expression profiles of cDNA microarray data of Cancer cell cycle are available for the information of dynamic interactions among Cancer cell cycle related genes. Therefore, it is more appealing to construct a dynamic model for gene regulatory network of Cancer cell cycle to gain more insight into the infrastructure of gene regulatory mechanism of cancer cell via microarray data. Results Based on the gene regulatory dynamic model and microarray data, we construct the whole dynamic gene regulatory network of Cancer cell cycle. In this study, we trace back upstream regulatory genes of a target gene to infer the regulatory pathways of the gene network by maximum likelihood estimation method. Finally, based on the dynamic regulatory network, we analyze the regulatory abilities and sensitivities of regulatory genes to clarify their roles in the mechanism of Cancer cell cycle. Conclusions Our study presents a systematically iterative approach to discern and characterize the transcriptional regulatory network in Hela cell cycle from the raw expression profiles. The transcription regulatory network in Hela cell cycle can also be confirmed by some experimental reviews. Based on our study and some literature reviews, we can predict and clarify the E2F target genes in G1/S phase, which are crucial for regulating cell cycle progression and tumorigenesis. From the results of the network construction and literature confirmation, we infer that MCM4, MCM5, CDC6, CDC25A, UNG and E2F2 are E2F target genes in Hela cell cycle.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Lab. of Systems biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yung-Hsiang Chu
- Lab. of Systems biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Bor-Sen Chen
- Lab. of Systems biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| |
Collapse
|
16
|
Expression and Clinical Significance of ILF2 in Gastric Cancer. DISEASE MARKERS 2017; 2017:4387081. [PMID: 28831206 PMCID: PMC5555027 DOI: 10.1155/2017/4387081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.
Collapse
|
17
|
Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1524-1535. [PMID: 28596374 DOI: 10.1161/atvbaha.117.309521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.
Collapse
Affiliation(s)
- Pamela Lockyer
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Hua Mao
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Qiying Fan
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Luge Li
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Li-Yuan Yu-Lee
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - N Tony Eissa
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Cam Patterson
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Liang Xie
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Xinchun Pi
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.).
| |
Collapse
|
18
|
Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med 2017; 39:900-906. [PMID: 28259961 PMCID: PMC5360436 DOI: 10.3892/ijmm.2017.2894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2) has been found to be markedly upregulated in pancreatic carcinoma and is involved in the pathogenesis of pancreatic carcinoma. Thus, ILF2 may be a potential target for therapy. Yet, the regulatory mechanisms of ILF2 in pancreatic carcinoma remain largely elusive. In the present study, we demonstrated that ILF2 functioned as an oncogene and regulated epithelial-mesenchymal transition (EMT)-associated genes in pancreatic carcinoma PANC-1 cells. MicroRNA-7 (miR-7) suppressed ILF2 mRNA expression and the protein level in PANC-1 cells. Contrary to ILF2, miRNA-7 functioned as a tumor-suppressor gene and negatively regulated EMT-associated genes in the PANC-1 cells. Curcumin, a polyphenol natural product isolated from the rhizome of the plant Curcuma longa, has emerged as a promising anticancer therapeutic agent. We found that treatment with curcumin increased miR-7 expression and suppressed ILF2 protein in the PANC-1 cells. Thus, we identified ILF2 as a new downstream target gene of curcumin. The results revealed that ILF2 is regulated by miR-7 and suggest that downregulation of miR-7 may be an important factor for the ILF2 overexpression in pancreatic carcinoma.
Collapse
Affiliation(s)
| | | | - Min Min
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yan Liu
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| |
Collapse
|
19
|
Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases. Genes (Basel) 2016; 7:genes7120129. [PMID: 27999332 PMCID: PMC5192505 DOI: 10.3390/genes7120129] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1′s actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases.
Collapse
|
20
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
21
|
Zhou Q, Zhu Y, Wei X, Zhou J, Chang L, Sui H, Han Y, Piao D, Sha R, Bai Y. MiR-590-5p inhibits colorectal cancer angiogenesis and metastasis by regulating nuclear factor 90/vascular endothelial growth factor A axis. Cell Death Dis 2016; 7:e2413. [PMID: 27735951 PMCID: PMC5133975 DOI: 10.1038/cddis.2016.306] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
Altered expression of microRNA-590-5p (miR-590-5p) is involved in tumorigenesis, however, its role in colorectal cancer (CRC) remains to be determined. In this study, we focused on examining the effects of different expression levels of miR-590-5p in cancer cells and normal cells. Results showed that there are lower expression levels of miR-590-5p in human CRC cells and tissues than in normal control cells and tissues. Similarly, in our xenograft mouse model, knockdown of miR-590-5p promoted the progression of CRC. However, an overexpression of miR-590-5p in the mice inhibited angiogenesis, tumor growth, and lung metastasis. Nuclear factor 90 (NF90), a positive regulator of vascular endothelial growth factor (VEGF) mRNA stability and protein synthesis, was shown to be a direct target of miR-590-5p. The overexpression of NF90 restored VEGFA expression and rescued the loss of tumor angiogenesis caused by miR-590-5p. Conversely, the NF90-shRNA attenuated the increased tumor progression caused by the miR-590-5p inhibitor. Clinically, the levels of miR-590-5p were inversely correlated with those of NF90 and VEGFA in CRC tissues. Furthermore, knockdown of NF90 lead to a reduction of pri-miR-590 and an increase of mature miR-590-5p, suggesting a negative feedback loop between miR-590-5p and NF90. Collectively, these data establish miR-590-5p as an anti-onco-miR that inhibits CRC angiogenesis and metastasis through a new mechanism involving NF90/VEGFA signaling axis, highlighting the potential of miR-590-5p as a target for human CRC therapy.
Collapse
Affiliation(s)
- Qingxin Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Wei
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianhua Zhou
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Chang
- Department of Neurosurgery, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruihua Sha
- Department of Digestive Disease, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, Morisawa K, Tsuda M, Taniguchi T, Sakamoto S. Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma. J Biol Chem 2016; 291:21074-21084. [PMID: 27519414 DOI: 10.1074/jbc.m116.748210] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-7 (miR-7)has been characterized as an anti-oncogenic microRNA (miRNA) in several cancers, including hepatocellular carcinoma (HCC). However, the mechanism for the regulation of miR-7 production in tumors remains unclear. Here, we identified nuclear factor 90 (NF90) and NF45 complex (NF90-NF45) as negative regulators of miR-7 processing in HCC. Expression of NF90 and NF45 was significantly elevated in primary HCC tissues compared with adjacent non-tumor tissues. To examine which miRNAs are controlled by NF90-NF45, we performed an miRNA microarray and quantitative RT-PCR analyses of HCC cell lines. Depletion of NF90 resulted in elevated levels of mature miR-7, whereas the expression of primary miR-7-1 (pri-miR-7-1) was decreased in cells following knockdown of NF90. Conversely, the levels of mature miR-7 were reduced in cells overexpressing NF90 and NF45, although pri-miR-7-1 was accumulated in the same cells. Furthermore, NF90-NF45 was found to bind pri-miR-7-1 in vitro These results suggest that NF90-NF45 inhibits the pri-miR-7-1 processing step through the binding of NF90-NF45 to pri-miR-7-1. We also found that levels of the EGF receptor, an oncogenic factor that is a direct target of miR-7, and phosphorylation of AKT were significantly decreased in HCC cell lines depleted of NF90 or NF45. Of note, knockdown of NF90 or NF45 caused a reduction in the proliferation rate of HCC cells. Taken together, NF90-NF45 stimulates an elevation of EGF receptor levels via the suppression of miR-7 biogenesis, resulting in the promotion of cell proliferation in HCC.
Collapse
Affiliation(s)
- Takuma Higuchi
- From the Laboratory of Molecular Biology, Science Research Center
| | - Hiroshi Todaka
- From the Laboratory of Molecular Biology, Science Research Center
| | | | - Masafumi Ono
- Departments of Gastroenterology and Hepatology and
| | - Nobuyuki Tamaki
- the Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Etsuro Hatano
- the Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | - Takeshi Miwa
- From the Laboratory of Molecular Biology, Science Research Center
| | - Sylvia Lai
- From the Laboratory of Molecular Biology, Science Research Center
| | - Keiko Morisawa
- From the Laboratory of Molecular Biology, Science Research Center
| | - Masayuki Tsuda
- Division of Laboratory Animal Science, Science Research Center,Kochi Medical School, Kochi 783-8505 and
| | | | - Shuji Sakamoto
- From the Laboratory of Molecular Biology, Science Research Center,
| |
Collapse
|
23
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
24
|
Li Y, Belshan M. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression. Viruses 2016; 8:v8020047. [PMID: 26891316 PMCID: PMC4776202 DOI: 10.3390/v8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023] Open
Abstract
A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA.
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
25
|
Wan C, Gong C, Ji L, Liu X, Wang Y, Wang L, Shao M, Yang L, Fan S, Xiao Y, Wang X, Li M, Zhou G, Zhang Y. NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 2015; 410:25-35. [PMID: 26276310 DOI: 10.1007/s11010-015-2535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayun Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Liang Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mengting Shao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Linlin Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaoqing Fan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yin Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaotong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Manhua Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yixin Zhang
- Department of General Surgery, Nantong University Cancer Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
26
|
Nakadai T, Fukuda A, Shimada M, Nishimura K, Hisatake K. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators. J Biol Chem 2015; 290:26832-45. [PMID: 26381409 DOI: 10.1074/jbc.m115.688317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Aya Fukuda
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Shimada
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Ken Nishimura
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
27
|
The NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology. Mol Cell Biol 2015; 35:3491-503. [PMID: 26240280 DOI: 10.1128/mcb.00306-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.
Collapse
|
28
|
Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers. Mol Cell Biol 2015; 35:2295-308. [PMID: 25918244 DOI: 10.1128/mcb.01297-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/18/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the progression and suppression of various diseases through translational inhibition of target mRNAs. Therefore, the alteration of miRNA biogenesis induces several diseases. The nuclear factor 90 (NF90)-NF45 complex is known as a negative regulator in miRNA biogenesis. Here, we showed that NF90-NF45 double-transgenic (dbTg) mice develop skeletal muscle atrophy and centronuclear muscle fibers in adulthood. Subsequently, we found that the levels of myogenic miRNAs, including miRNA 133a (miR-133a), which promote muscle maturation, were significantly decreased in the skeletal muscle of NF90-NF45 dbTg mice compared with those in wild-type mice. However, levels of primary transcripts of the miRNAs (pri-miRNAs) were clearly elevated in NF90-NF45 dbTg mice. This result indicated that the NF90-NF45 complex suppressed miRNA production through inhibition of pri-miRNA processing. This finding was supported by the fact that processing of pri-miRNA 133a-1 (pri-miR-133a-1) was inhibited via binding of NF90-NF45 to the pri-miRNA. Finally, the level of dynamin 2, a causative gene of centronuclear myopathy and concomitantly a target of miR-133a, was elevated in the skeletal muscle of NF90-NF45 dbTg mice. Taken together, we conclude that the NF90-NF45 complex induces centronuclear myopathy through increased dynamin 2 expression by an NF90-NF45-induced reduction of miR-133a expression in vivo.
Collapse
|
29
|
Ni S, Zhu J, Zhang J, Zhang S, Li M, Ni R, Liu J, Qiu H, Chen W, Wang H, Guo W. Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumour Biol 2015; 36:747-756. [PMID: 25286760 DOI: 10.1007/s13277-014-2683-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
NF45 (also known as ILF2), as one subunit of NF-AT (nuclear factor of activated T cells), repairs DNA breaks, inhibits viral replication, and also functions as a negative regulator in the microRNA processing pathway in combination with NF90. Recently, it was found that implicated in the mitotic control of HeLa cells and deletion of endogenous NF45 decreases growth of HeLa cells. While the role of NF45 in cancer biology remains under debate. In this study, we analyzed the expression and clinical significance of NF45 in esophageal squamous cell carcinoma ESCC. The expression of NF45 was evaluated by Western blot in 8 paired fresh ESCC tissues and immunohistochemistry on 105 paraffin-embedded slices. NF45 was highly expressed in ESCC and significantly associated with ESCC cells tumor stage and Ki-67. Besides, high NF45 expression was an independent prognostic factor for ESCC patients' poor survival. To determine whether NF45 could regulate the proliferation of ESCC cells, we increased endogenous NF45 and analyzed the proliferation of TE1 ESCC cells using Western blot, CCK8, flow cytometry assays and colony formation analyses, which together indicated that overexpression of NF45 favors cell cycle progress of TE1 ESCC cells. While knockdown of NF45 resulted in cell cycle arrest at G0/G1-phase and thus abolished the cell growth. These findings suggested that NF45 might play an important role in promoting the tumorigenesis of ESCC, and thus be a promising therapeutic target to prevent ESCC progression.
Collapse
Affiliation(s)
- Sujie Ni
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, No. 270 Dong An Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 2015; 108:20-4. [DOI: 10.1016/j.biochi.2014.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023]
|
31
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Abstract
UNLABELLED The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Abstract
UNLABELLED The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
35
|
Tominaga-Yamanaka K, Abdelmohsen K, Martindale JL, Yang X, Taub DD, Gorospe M. NF90 coordinately represses the senescence-associated secretory phenotype. Aging (Albany NY) 2013; 4:695-708. [PMID: 23117626 PMCID: PMC3517940 DOI: 10.18632/aging.100497] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A hallmark trait of cellular senescence is the acquisition of a senescence-associated secretory phenotype (SASP). SASP factors include cytokines and their receptors (IL-6, IL-8, osteoprotegerin, GM-CSF), chemokines and their ligands (MCP-1, HCC4), and oncogenes (Gro1 and Gro2), many of them encoded by mRNAs whose stability and translation are tightly regulated. Using two models of human fibroblast senescence (WI-38 and IDH4 cells), we report the identification of RNA-binding protein NF90 as a post-transcriptional repressor of several SASP factors. In ‘young’, proliferating fibroblasts, NF90 was highly abundant, associated with numerous SASP mRNAs, and inhibited their expression. By contrast, senescent cells expressed low levels of NF90, thus allowing SASP factor expression to increase. NF90 elicited these effects mainly by repressing the translation of target SASP mRNAs, since silencing NF90 did not increase the steady-state levels of SASP mRNAs but elevated key SASP factors including MCP-1, GROa, IL-6, and IL-8. Our findings indicate that NF90 contributes to maintaining low levels of SASP factors in non-senescent cells, while NF90 reduction in senescent cells allows SASP factor expression to rise.
Collapse
Affiliation(s)
- Kumiko Tominaga-Yamanaka
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chaumet A, Castella S, Gasmi L, Fradin A, Clodic G, Bolbach G, Poulhe R, Denoulet P, Larcher JC. Proteomic analysis of interleukin enhancer binding factor 3 (Ilf3) and nuclear factor 90 (NF90) interactome. Biochimie 2013; 95:1146-57. [PMID: 23321469 DOI: 10.1016/j.biochi.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
Abstract
Interleukin enhancer binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by alternative splicing from the ILF3 gene that provides each protein with a long and identical N-terminal domain of 701 amino acids and a specific C-terminal domain of 210 and 15 amino acids, respectively. They exhibit a high polymorphism due to their posttranscriptional and posttranslational modifications. Ilf3 and NF90 functions remain unclear although they have been described as RNA binding proteins but have been implicated in a large scale of cellular phenomena depending on the nature of their interacting partners, the composition of their protein complexes and their subcellular localization. In order to better understand the functions of Ilf3 and NF90, we have investigated their protein partners by an affinity chromatography approach. In this report, we have identified six partners of Ilf3 and NF90 that interact with their double-stranded RNA binding motifs: hnRNP A/B, hnRNP A2/B1, hnRNP A3, hnRNP D, hnRNP Q and PSF. These hnRNP are known to be implicated in mRNA stabilization, transport and/or translation regulation whereas PSF is a splicing factor. Furthermore, Ilf3, NF90 and most of their identified partners have been shown to be present in large complexes. Altogether, these data suggest an implication of Ilf3 and NF90 in mRNA metabolism. This work allows to establish a link between Ilf3 and NF90 functions, as RNA binding proteins, and their interacting partners implicated in these functions.
Collapse
Affiliation(s)
- Alexandre Chaumet
- Laboratoire de Biologie du Développement, UMR 7622 CNRS, UPMC Univ Paris 06, 9 quai Saint Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shamanna RA, Hoque M, Pe'ery T, Mathews MB. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 2012. [PMID: 23208500 PMCID: PMC4032571 DOI: 10.1038/onc.2012.533] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterodimeric nuclear factor 90/nuclear factor 45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPV). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells, but not in other cancerous or normal cell lines. In HeLa cells, p21 mRNA increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the up-regulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated PARP cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.
Collapse
Affiliation(s)
- R A Shamanna
- 1] Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, NJ, USA [2] Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ, USA
| | | | | | | |
Collapse
|
38
|
Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 2012; 33:307-18. [PMID: 23129811 DOI: 10.1128/mcb.00546-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vast majority of cellular mRNAs initiate their translations through a well-defined mechanism of ribosome recruitment that occurs at the 5'-terminal 7-methylguanosine cap with the help of several canonical protein factors. A subset of cellular and viral mRNAs contain regulatory motifs in their 5' untranslated regions (UTRs), termed internal ribosome entry sites (IRES), that sidestep this canonical mode of initiation. On cellular mRNAs, this mechanism requires IRES trans-acting protein factors (ITAFs) that facilitate ribosome recruitment downstream of the cap. While several ITAFs and their target mRNAs have been empirically identified, the in silico prediction of targets has proved difficult. Here, we report that a high AU content (>60%) of the IRES-containing 5' UTRs serves as an excellent predictor of dependence on NF45, a recently identified ITAF. Moreover, we provide evidence that cells deficient in NF45 ITAF activity exhibit reduced IRES-mediated translation of X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein 1 (cIAP1) mRNAs that, in turn, leads to dysregulated expression of their respective targets, survivin and cyclin E. This specific defect in IRES translation explains in part the cytokinesis impairment and senescence-like phenotype observed in HeLa cells expressing NF45 RNA interference (RNAi). This study uncovers a novel role for NF45 in regulating ploidy and highlights the importance of IRES-mediated translation in cellular homeostasis.
Collapse
|
39
|
Higuchi T, Sakamoto S, Kakinuma Y, Kai S, Yagyu KI, Todaka H, Chi E, Okada S, Ujihara T, Morisawa K, Ono M, Sugiyama Y, Ishida W, Fukushima A, Tsuda M, Agata Y, Taniguchi T. High expression of nuclear factor 90 (NF90) leads to mitochondrial degradation in skeletal and cardiac muscles. PLoS One 2012; 7:e43340. [PMID: 22912857 PMCID: PMC3422296 DOI: 10.1371/journal.pone.0043340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/19/2012] [Indexed: 01/04/2023] Open
Abstract
While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg) mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and NRF-1 for regulating nuclear-encoded genes relevant to mitochondrial function.
Collapse
Affiliation(s)
- Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
- * E-mail:
| | - Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Kochi, Japan
| | - Shoko Kai
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Ken-ichi Yagyu
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Hiroshi Todaka
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Eunsup Chi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Shoshiro Okada
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takako Ujihara
- The Facility for Radio-isotope Research, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Keiko Morisawa
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Yasunori Sugiyama
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Waka Ishida
- Department of Ophthalmology, Kochi Medical School, Kochi, Japan
| | | | - Masayuki Tsuda
- The Division of Laboratory Animal Science, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Yasutoshi Agata
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taketoshi Taniguchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| |
Collapse
|
40
|
Nakamura N, Yamauchi T, Hiramoto M, Yuri M, Naito M, Takeuchi M, Yamanaka K, Kita A, Nakahara T, Kinoyama I, Matsuhisa A, Kaneko N, Koutoku H, Sasamata M, Yokota H, Kawabata S, Furuichi K. Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin. Mol Cell Proteomics 2012; 11:M111.013243. [PMID: 22442257 PMCID: PMC3394938 DOI: 10.1074/mcp.m111.013243] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Survivin is responsible for cancer progression and drug resistance in many types of cancer. YM155 selectively suppresses the expression of survivin and induces apoptosis in cancer cells in vitro and in vivo. However, the mechanism underlying these effects of YM155 is unknown. Here, we show that a transcription factor, interleukin enhancer-binding factor 3 (ILF3)/NF110, is a direct binding target of YM155. The enhanced survivin promoter activity by overexpression of ILF3/NF110 was attenuated by YM155 in a concentration-dependent manner, suggesting that ILF3/NF110 is the physiological target through which YM155 mediates survivin suppression. The results also show that the unique C-terminal region of ILF3/NF110 is important for promoting survivin expression and for high affinity binding to YM155.
Collapse
Affiliation(s)
- Naoto Nakamura
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Interleukin enhancer-binding factor 3 functions as a liver receptor homologue-1 co-activator in synergy with the nuclear receptor co-activators PRMT1 and PGC-1α. Biochem J 2011; 437:531-40. [PMID: 21554248 DOI: 10.1042/bj20101793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LRH-1 (liver receptor homologue-1), a transcription factor and member of the nuclear receptor superfamily, regulates the expression of its target genes, which are involved in bile acid and cholesterol homoeostasis. However, the molecular mechanisms of transcriptional control by LRH-1 are not completely understood. Previously, we identified Ku80 and Ku70 as LRH-1-binding proteins and reported that they function as co-repressors. In the present study, we identified an additional LRH-1-binding protein, ILF3 (interleukin enhancer-binding factor 3). ILF3 formed a complex with LRH-1 and the other two nuclear receptor co-activators PRMT1 (protein arginine methyltransferase 1) and PGC-1α (peroxisome proliferator-activated receptor γ co-activator-1α). We demonstrated that ILF3, PRMT1 and PGC-1α were recruited to the promoter region of the LRH-1-regulated SHP (small heterodimer partner) gene, encoding one of the nuclear receptors. ILF3 enhanced SHP gene expression in co-operation with PRMT1 and PGC-1α through the C-terminal region of ILF3. In addition, we found that the small interfering RNA-mediated down-regulation of ILF3 expression led to a reduction in the occupancy of PGC-1α at the SHP promoter and SHP expression. Taken together, our results suggest that ILF3 functions as a novel LRH-1 co-activator by acting synergistically with PRMT1 and PGC-1α, thereby promoting LRH-1-dependent gene expression.
Collapse
|
42
|
Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB. HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410:917-32. [PMID: 21763496 DOI: 10.1016/j.jmb.2011.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) exploits cellular proteins during its replicative cycle and latent infection. The positive transcription elongation factor b (P-TEFb) is a key cellular transcription factor critical for these viral processes and is a drug target. During viral replication, P-TEFb is recruited via interactions of its cyclin T1 subunit with the HIV Tat (transactivator of transcription) protein and TAR (transactivation response) element. Through RNA silencing and over-expression experiments, we discovered that nuclear factor 90 (NF90), a cellular RNA binding protein, regulates P-TEFb expression. NF90 depletion reduced cyclin T1 protein levels by inhibiting translation initiation. Regulation was mediated by the 3' untranslated region of cyclin T1 mRNA independently of microRNAs. Cyclin T1 induction is involved in the escape of HIV-1 from latency. We show that the activation of viral replication by phorbol ester in latently infected monocytic cells requires the posttranscriptional induction of NF90 and cyclin T1, implicating NF90 in protein kinase C signaling pathways. This investigation reveals a novel mechanism of cyclin T1 regulation and establishes NF90 as a regulator of HIV-1 replication during both productive infection and induction from latency.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
43
|
Viranaicken W, Gasmi L, Chaumet A, Durieux C, Georget V, Denoulet P, Larcher JC. L-Ilf3 and L-NF90 traffic to the nucleolus granular component: alternatively-spliced exon 3 encodes a nucleolar localization motif. PLoS One 2011; 6:e22296. [PMID: 21811582 PMCID: PMC3139624 DOI: 10.1371/journal.pone.0022296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins.
Collapse
Affiliation(s)
- Wildriss Viranaicken
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Laila Gasmi
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Alexandre Chaumet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Christiane Durieux
- Institut Jacques Monod, UMR7592 CNRS - Université Denis Diderot, Paris, France
| | - Virginie Georget
- UPMC Université Paris 06, IFR 83, Institut de Biologie Intégrative, Paris, France
| | - Philippe Denoulet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Jean-Christophe Larcher
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Yang J, Wang L, Huang M, Wang L, Gai Y, Qiu L, Zhang H, Song L. An interleukin-2 enhancer binding factor 2 homolog involved in immune response from Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1303-1309. [PMID: 21439385 DOI: 10.1016/j.fsi.2011.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/12/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates IL-2 gene at level of transcription, splicing and translation in vertebrates and plays significant roles in immune system. In this study, an ILF2 homolog was identified from Chinese mitten crab Eriocheir sinensis (designated as EsILF) by expressed sequence tag (EST) analysis. The full-length cDNA of EsILF was of 2159bp, containing a 5' untranslated region (UTR) of 90bp, a 3' UTR of 866bp with a poly (A) tail, and an open reading frame (ORF) of 1203bp encoding a polypeptide of 400 amino acids with the predicted molecular weight of 44.3kDa, which shared 59.6-64.5% identities with vertebrate ILF2. There were a conserved N-terminal RGG-rich single-stranded RNA-binding domain and a DZF zinc-finger nucleic acid binding domain in the primary structure, strongly suggesting that EsILF was a homolog of vertebrate ILF2. The mRNA of EsILF was constitutively expressed in all tested tissues of untreated crabs, including hepatopancreas, gill, gonad, muscle, heart and hemocytes, with highest expression in muscle and relative lower levels in hemocytes and gonad. The mRNA expression of EsILF in hemocytes was regulated differently after the crabs were stimulated by bacteria Listonella anguillarum and fungi Pichia pastoris GS115. The expression level was significantly (P<0.05) down-regulated to 0.35- and 0.29-fold compared with blank group at 6h and 12h after the stimulation of L. anguillarum, while P. pastoris significantly (P<0.05) up-regulated the expression level to 3.2-fold compared with the blank group at 6h post treatment. The results indicated that EsILF was involved in the immune response of crab toward both L. anguillarum and P. pastoris.
Collapse
Affiliation(s)
- Jialong Yang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith NL, Miskimins WK. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44:147-55. [PMID: 21401756 DOI: 10.1111/j.1365-2184.2011.00742.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. MATERIALS AND METHODS Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. RESULTS Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. CONCLUSIONS Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site.
Collapse
Affiliation(s)
- N L Smith
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
46
|
Heat shock enhances CMV-IE promoter-driven metabotropic glutamate receptor expression and toxicity in transfected cells. Neuropharmacology 2011; 60:1292-300. [PMID: 21241715 DOI: 10.1016/j.neuropharm.2011.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/18/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
In CHO-K1 cells, heat shock strongly activated reporter-gene expression driven by the cytomegalovirus immediate-early (CMV-IE) promoter from adenoviral and plasmid vectors. Heat shock treatment (2h at 42.5 °C) significantly enhanced the promoter DNA-binding activity in nuclear extracts. In CHO cells expressing mGluR1a and mGluR5a receptors under the control of the CMV promoter, heat shock increased receptor protein expression, mRNA levels and receptor function estimated by measurement of PI hydrolysis, intracellular Ca²+ and cAMP. Hyperthermia increased average amplitudes of Ca²+ responses, the number of responding cells, and revealed the toxic properties of mGluR1a receptor. Heat shock also effectively increased the expression of EGFP. Hence, heat shock effects on mGluR expression and function in CHO cells may be attributed to the activation of the CMV promoter. Moreover, this effect was not limited to CHO cells as heat shock also increased EGFP expression in PC-12 and HEK293 cells. Heat shock treatment may be a useful tool to study the function of proteins expressed in heterologous systems under control of the CMV promoter. It may be especially valuable for increasing protein expression in transient transfections, for enhancing receptor expression in drug screening applications and to control the expression of proteins endowed with toxic properties. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
47
|
dos Santos Pinheiro R, de França TRT, de Carvalho Ferreira D, Beder Ribeiro CM, Leão JC, Castro GF. Human papillomavirus in the oral cavity of children. J Oral Pathol Med 2010; 40:121-6. [DOI: 10.1111/j.1600-0714.2010.00954.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Neplioueva V, Dobrikova EY, Mukherjee N, Keene JD, Gromeier M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS One 2010; 5:e11710. [PMID: 20668518 PMCID: PMC2909144 DOI: 10.1371/journal.pone.0011710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra- or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype.
Collapse
Affiliation(s)
- Valentina Neplioueva
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
49
|
Kiesler P, Haynes PA, Shi L, Kao PN, Wysocki VH, Vercelli D. NF45 and NF90 regulate HS4-dependent interleukin-13 transcription in T cells. J Biol Chem 2010; 285:8256-67. [PMID: 20051514 PMCID: PMC2832977 DOI: 10.1074/jbc.m109.041004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 12/10/2009] [Indexed: 01/13/2023] Open
Abstract
Expression of the cytokine interleukin-13 (IL13) is critical for Th2 immune responses and Th2-mediated allergic diseases. Activation of human IL13 expression involves chromatin remodeling and formation of multiple DNase I-hypersensitive sites throughout the locus. Among these, HS4 is detected in the distal IL13 promoter in both naive and polarized CD4(+) T cells. We show herein that HS4 acts as a position-independent, orientation-dependent positive regulator of IL13 proximal promoter activity in transiently transfected, activated human CD4(+) Jurkat T cells and primary murine Th2 cells. The 3'-half of HS4 (HS4-3') was responsible for IL13 up-regulation and bound nuclear factor (NF) 90 and NF45, as demonstrated by DNA affinity chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, and gel shift analysis. Notably, the CTGTT NF45/NF90-binding motif within HS4-3' was critical for HS4-dependent up-regulation of IL13 expression. Moreover, transfection of HS4-IL13 reporter vectors into primary, in vitro differentiated Th2 cells from wild-type, NF45(+/-), or NF90(+/-) mice showed that HS4 activity was exquisitely dependent on the levels of endogenous NF45 (and to a lesser degree NF90), because HS4-dependent IL13 expression was virtually abrogated in NF45(+/-) cells and reduced in NF90(+/-) cells. Collectively, our results identify NF45 and NF90 as novel regulators of HS4-dependent human IL13 transcription in response to T cell activation.
Collapse
Affiliation(s)
- Patricia Kiesler
- From the Functional Genomics Laboratory, Arizona Respiratory Center
| | | | - Lingfang Shi
- the Department of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California 94305
| | - Peter N. Kao
- the Department of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California 94305
| | | | - Donata Vercelli
- From the Functional Genomics Laboratory, Arizona Respiratory Center
- Cell Biology
- Arizona Center for the Biology of Complex Diseases, and
- The Bio5 Institute, University of Arizona, Tucson, Arizona 85719 and
| |
Collapse
|
50
|
Hoque M, Mathews MB, Pe'ery T. Progranulin (granulin/epithelin precursor) and its constituent granulin repeats repress transcription from cellular promoters. J Cell Physiol 2010; 223:224-33. [PMID: 20054825 DOI: 10.1002/jcp.22031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progranulin (also known as granulin/epithelin precursor, GEP) is composed of seven granulin/epithelin repeats (granulins) and functions both as a full-length protein and as individual granulins. It is a secretory protein but a substantial amount of GEP is found inside cells, some in complexes with positive transcription elongation factor b (P-TEFb). GEP and certain granulins interact with the cyclin T1 subunit of P-TEFb, and with its HIV-1 Tat co-factor, leading to repression of transcription from the HIV promoter. We show that GEP lacking the signal peptide (GEPspm) remains inside cells and, like wild-type GEP, interacts with cyclin T1 and Tat. GEPspm represses transcription from the HIV-1 promoter at the RNA level. Granulins that bind cyclin T1 are phosphorylated by P-TEFb in vivo and in vitro on serine residues. GEPspm and those granulins that interact with cyclin T1 also inhibit transcription from cellular cad and c-myc promoters, which are highly dependent on P-TEFb, but not from the PCNA promoter. In addition, GEPspm and granulins repress transcriptional activation by VP16 or c-Myc, proteins that bind and recruit P-TEFb to responsive promoters. These data suggest that intracellular GEP is a promoter-specific transcriptional repressor that modulates the function of cellular and viral transcription factors.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|