1
|
Librais GMN, Jiang Y, Razzaq I, Brandl CJ, Shapiro RS, Lajoie P. Evolutionary diversity of the control of the azole response by Tra1 across yeast species. G3 (BETHESDA, MD.) 2024; 14:jkad250. [PMID: 37889998 PMCID: PMC10849324 DOI: 10.1093/g3journal/jkad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.
Collapse
Affiliation(s)
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
2
|
Fierling N, Billard P, Bauda P, Blaudez D. Global deletome profile of Saccharomyces cerevisiae exposed to lithium. Metallomics 2024; 16:mfad073. [PMID: 38142127 DOI: 10.1093/mtomcs/mfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically resistant to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.
Collapse
|
3
|
Berg MD, Genereaux J, Karagiannis J, Brandl CJ. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (BETHESDA, MD.) 2018; 8:1943-1957. [PMID: 29626083 PMCID: PMC5982823 DOI: 10.1534/g3.118.200288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
Abstract
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1[Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1[Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1[Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Jim Karagiannis
- Department of Biology, Western University, London, Ontario, Canada N6A5B7
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| |
Collapse
|
4
|
Gómez-Rodríguez EY, Uresti-Rivera EE, Patrón-Soberano OA, Islas-Osuna MA, Flores-Martínez A, Riego-Ruiz L, Rosales-Saavedra MT, Casas-Flores S. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS One 2018; 13:e0193872. [PMID: 29708970 PMCID: PMC5927414 DOI: 10.1371/journal.pone.0193872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism- and secondary metabolism-related genes in Δtgf-1 was differentially regulated in the presence or absence of R. solani. These results indicate that histone acetylation may play important roles in the biocontrol mechanisms of T. atroviride.
Collapse
Affiliation(s)
| | | | | | - María Auxiliadora Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | - Alberto Flores-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, San Luis Potosí, Mexico
| | | | - Sergio Casas-Flores
- División de Biología Molecular, IPICYT, San Luis Potosí, San Luis Potosí, Mexico
- * E-mail:
| |
Collapse
|
5
|
Li X, Yang Y, Zhan C, Zhang Z, Liu X, Liu H, Bai Z. Transcriptional analysis of impacts of glycerol transporter 1 on methanol and glycerol metabolism in Pichia pastoris. FEMS Yeast Res 2017; 18:4582313. [DOI: 10.1093/femsyr/fox081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/29/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Xiang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hebin Liu
- Department of Biological Science, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou 215123, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
6
|
Moraga F, Aquea F. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:865. [PMID: 26528322 PMCID: PMC4604261 DOI: 10.3389/fpls.2015.00865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 05/07/2023]
Abstract
Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
Collapse
Affiliation(s)
- Felipe Moraga
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: Felipe Aquea
| |
Collapse
|
7
|
Albertin W, Panfili A, Miot-Sertier C, Goulielmakis A, Delcamp A, Salin F, Lonvaud-Funel A, Curtin C, Masneuf-Pomarede I. Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiol 2014; 42:188-95. [DOI: 10.1016/j.fm.2014.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
8
|
Distinct roles of the Gcn5 histone acetyltransferase revealed during transient stress-induced reprogramming of the genome. BMC Genomics 2013; 14:479. [PMID: 23865462 PMCID: PMC3723427 DOI: 10.1186/1471-2164-14-479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gcn5 belongs to a family of histone acetyltransferases (HATs) that regulate protein function by acetylation. Gcn5 plays several different roles in gene transcription throughout the genome but their characterisation by classical mutation approaches is hampered by the high degree of apparent functional redundancy between HAT proteins. RESULTS Here we utilise the reduced redundancy associated with the transiently high levels of genomic reprogramming during stress adaptation as a complementary approach to understand the functions of redundant protein families like HATs. We show genome-wide evidence for two functionally distinct roles of Gcn5. First, Gcn5 transiently re-localises to the ORFs of long genes during stress adaptation. Taken together with earlier mechanistic studies, our data suggests that Gcn5 plays a genome- wide role in specifically increasing the transcriptional elongation of long genes, thus increasing the production efficiency of complete long transcripts. Second, we suggest that Gcn5 transiently interacts with histones close to the transcription start site of the many genes that it activates during stress adaptation by acetylation of histone H3K18, leading to histone depletion, probably as a result of nucleosome loss as has been described previously. CONCLUSIONS We show that stress adaptation can be used to elucidate the functions of otherwise redundant proteins, like Gcn5, in gene transcription. Further, we show that normalization of chromatin-associated protein levels in ChIP experiments in relation to the histone levels may provide a useful complement to standard approaches. In the present study analysis of data in this way provides an alternative explanation for previously indicated repressive role of Gcn5 in gene transcription.
Collapse
|
9
|
García-Oliver E, Pascual-García P, García-Molinero V, Lenstra TL, Holstege FCP, Rodríguez-Navarro S. A novel role for Sem1 and TREX-2 in transcription involves their impact on recruitment and H2B deubiquitylation activity of SAGA. Nucleic Acids Res 2013; 41:5655-68. [PMID: 23599000 PMCID: PMC3675487 DOI: 10.1093/nar/gkt272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription and mRNA export are linked processes. However, the molecular mechanisms of this coordination are not clear. Sus1 (hENY2) participates in this coordination as part of two protein complexes: SAGA, a transcriptional co-activator; TREX-2, which functions in mRNA biogenesis and export. Here, we investigate the coordinated action of SAGA and TREX-2 required for gene expression. We demonstrate that TREX-2 subunit Sem1 also participates in transcription activation. Like Sus1, Sem1 is required for the induction of ARG1 and GAL1, these being SAGA-regulated genes. Chromatin immunoprecipitations show that proper recruitment of certain SAGA subunits to the GAL1 promoter depends on Sem1. Notably, both in vivo and in vitro analyses reveal that Sem1 influences SAGA-dependent histone H2B deubiquitylation. Most of these phenotypes are also found to depend on another TREX-2 subunit, Thp1. These results unveil a new role for Sem1 in the activation of the SAGA-dependent gene GAL1 and influencing H2B deubiquitylation. Our work provides insights into a novel functional relationship between Sem1 and the SAGA complex.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe, Gene Expression and RNA Metabolism Laboratory, Eduardo Primo Yúfera, 3, Valencia E-46012, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
11
|
Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivation. J Virol 2012; 86:8198-209. [PMID: 22623781 DOI: 10.1128/jvi.00289-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The largest isoform of adenovirus early region 1A (E1A) contains a unique region termed conserved region 3 (CR3). This region activates viral gene expression by recruiting cellular transcription machinery to the early viral promoters. Recent studies have suggested that there is an optimal level of E1A-dependent transactivation required by human adenovirus (hAd) during infection and that this may be achieved via functional cross talk between the N termini of E1A and CR3. The N terminus of E1A binds GCN5, a cellular lysine acetyltransferase (KAT). We have identified a second independent interaction of E1A with GCN5 that is mediated by CR3, which requires residues 178 to 188 in hAd5 E1A. GCN5 was recruited to the viral genome during infection in an E1A-dependent manner, and this required both GCN5 interaction sites on E1A. Ectopic expression of GCN5 repressed transactivation by both E1A CR3 and full-length E1A. In contrast, RNA interference (RNAi) depletion of GCN5 or treatment with the KAT inhibitor cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH2) resulted in increased E1A CR3 transactivation. Moreover, activation of the adenovirus E4 promoter by E1A was increased during infection of homozygous GCN5 KAT-defective (hat/hat) mouse embryonic fibroblasts (MEFs) compared to wild-type control MEFs. Enhanced histone H3 K9/K14 acetylation at the viral E4 promoter required the newly identified binding site for GCN5 within CR3 and correlated with repression and reduced occupancy by phosphorylated RNA polymerase II. Treatment with CPTH2 during infection also reduced virus yield. These data identify GCN5 as a new negative regulator of transactivation by E1A and suggest that its KAT activity is required for optimal virus replication.
Collapse
|
12
|
Promoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1. Proc Natl Acad Sci U S A 2011; 108:19599-604. [PMID: 22106264 DOI: 10.1073/pnas.1111501108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The promoter activity of yeast genes can depend on lysine 56 (K56) acetylation of histone H3. This modification of H3 is performed by lysine acetylase Rtt109 acting in concert with histone chaperone Asf1. We have examined the contributions of Rtt109, Asf1, and H3 K56 acetylation to nutrient regulation of a well-studied metabolic gene, ARG1. As expected, Rtt109, Asf1, and H3 K56 acetylation are required for maximal transcription of ARG1 under inducing conditions. However, Rtt109 and Asf1 also inhibit ARG1 under repressing conditions. This inhibition requires Asf1 binding to H3-H4 and Rtt109 KAT activity, but not tail acetylation of H3-H4 or K56 acetylation of H3. These observations suggest the existence of a unique mechanism of transcriptional regulation by Rtt109. Indeed, chromatin immunoprecipitation and genetic interaction studies support a model in which promoter-targeted Rtt109 represses ARG1 by silencing a pathway of transcriptional activation that depends on ASF1. Collectively, our results show that ARG1 transcription intensity at its induced and repressed set points is controlled by different mechanisms of functional interplay between Rtt109 and Asf1.
Collapse
|
13
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
14
|
Sansó M, Vargas-Pérez I, García P, Ayté J, Hidalgo E. Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol Microbiol 2011; 82:542-54. [DOI: 10.1111/j.1365-2958.2011.07851.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:97-108. [PMID: 20800707 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
16
|
Xue-Franzén Y, Johnsson A, Brodin D, Henriksson J, Bürglin TR, Wright APH. Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles. BMC Genomics 2010; 11:200. [PMID: 20338033 PMCID: PMC2861062 DOI: 10.1186/1471-2164-11-200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 03/25/2010] [Indexed: 12/30/2022] Open
Abstract
Background Gcn5 is a transcriptional coactivator with histone acetyltransferase activity that is conserved with regard to structure as well as its histone substrates throughout the eukaryotes. Gene regulatory networks within cells are thought to be evolutionarily diverged. The use of evolutionarily divergent yeast species, such as S. cerevisiae and S. pombe, which can be studied under similar environmental conditions, provides an opportunity to examine the interface between conserved regulatory components and their cellular applications in different organisms. Results We show that Gcn5 is important for a common set of stress responses in evolutionarily diverged yeast species and that the activity of the conserved histone acetyltransferase domain is required. We define a group of KCl stress response genes in S. cerevisiae that are specifically dependent on Gcn5. Gcn5 is localised to many Gcn5-dependent genes including Gcn5 repressed targets such as FLO8. Gcn5 regulates divergent sets of KCl responsive genes in S. cerevisiae and S. pombe. Genome-wide localization studies showed a tendency for redistribution of Gcn5 during KCl stress adaptation in S. cerevisiae from short genes to the transcribed regions of long genes. An analogous redistribution was not observed in S. pombe. Conclusions Gcn5 is required for the regulation of divergent sets of KCl stress-response genes in S. cerevisiae and S. pombe even though it is required a common group of stress responses, including the response to KCl. Genes that are physically associated with Gcn5 require its activity for their repression or activation during stress adaptation, providing support for a role of Gcn5 as a corepressor as well as a coactivator. The tendency of Gcn5 to re-localise to the transcribed regions of long genes during KCl stress adaptation suggests that Gcn5 plays a specific role in the expression of long genes under adaptive conditions, perhaps by regulating transcriptional elongation as has been seen for Gcn5 in S. pombe. Interestingly an analogous redistribution of Gcn5 is not seen in S. pombe. The study thus provides important new insights in relation to why coregulators like Gcn5 are required for the correct expression of some genes but not others.
Collapse
|
17
|
Dietvorst J, Brandt A. Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation. Curr Genet 2009; 56:75-85. [PMID: 20012864 DOI: 10.1007/s00294-009-0281-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/18/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
The performance of yeast is often limited by the constantly changing environmental conditions present during high-gravity fermentation. Poor yeast performance contributes to incomplete and slow utilization of the main fermentable sugars which can lead to flavour problems in beer production. The expression of the FLO and MAL genes, which are important for the performance of yeast during industrial fermentations, is affected by complex proteins associated with Set1 (COMPASS) resulting in the induction of flocculation and improved maltose fermentation capacity during the early stages of high-gravity fermentation. In this study, we investigated a possible role for other histone modifying proteins. To this end, we tested a number of histone deacetylases (HDACs) and histone acetyltransferases and we report that flocculation is induced in absence of the histone deacetylase Hda1 or the histone acetyltransferase Gcn5 during high-gravity fermentation. The absence of Gcn5 protein also improved utilization of high concentrations of maltose. Deletion of SIR2 encoding the HDA of the silent informator regulator complex, did not affect flocculation under high-gravity fermentation conditions. Despite the obvious roles for Hda1 and Gcn5 in flocculation, this work indicates that COMPASS mediated silencing is the most important amongst the histone modifying components to control the expression of the FLO genes during high-gravity fermentation.
Collapse
Affiliation(s)
- Judith Dietvorst
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500, Copenhagen Valby, Denmark.
| | | |
Collapse
|
18
|
Abstract
The cellular role of the Ada2 coactivator is currently understood in the context of the SAGA histone acetyltransferase (HAT) complex, where Ada2 increases the HAT activity of Gcn5 and interacts with transcriptional activators. Here we report a new function for Ada2 in promoting transcriptional silencing at telomeres and ribosomal DNA. This silencing function is the first characterized role for Ada2 distinct from its involvement with Gcn5. Ada2 binds telomeric chromatin and the silencing protein Sir2 in vivo. Loss of ADA2 causes the spreading of Sir2 and Sir3 into subtelomeric regions and decreased histone H4 K16 acetylation. This previously uncharacterized boundary activity of Ada2 is functionally similar to, but mechanistically distinct from, that of the MYST family HAT Sas2. Mounting evidence in the literature indicates that boundary activities create chromosomal domains important for regulating gene expression in response to environmental changes. Consistent with this, we show that upon nutritional changes, Ada2 occupancy increases at a subtelomeric region proximal to a SAGA-inducible gene and causes derepression of a silenced telomeric reporter gene. Thus, Ada2, likely in the context of SAGA, is positioned at chromosomal termini to participate in both transcriptional repression and activation in response to nutrient signaling.
Collapse
|
19
|
Helmlinger D, Marguerat S, Villén J, Gygi SP, Bähler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev 2009; 22:3184-95. [PMID: 19056896 DOI: 10.1101/gad.1719908] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAGA complex is a conserved multifunctional coactivator known to play broad roles in eukaryotic transcription. To gain new insights into its functions, we performed biochemical and genetic analyses of SAGA in the fission yeast, Schizosaccharomyces pombe. Purification of the S. pombe SAGA complex showed that its subunit composition is identical to that of Saccharomyces cerevisiae. Analysis of S. pombe SAGA mutants revealed that SAGA has two opposing roles regulating sexual differentiation. First, in nutrient-rich conditions, the SAGA histone acetyltransferase Gcn5 represses ste11(+), which encodes the master regulator of the mating pathway. In contrast, the SAGA subunit Spt8 is required for the induction of ste11(+) upon nutrient starvation. Chromatin immunoprecipitation experiments suggest that these regulatory effects are direct, as SAGA is physically associated with the ste11(+) promoter independent of nutrient levels. Genetic tests suggest that nutrient levels do cause a switch in SAGA function, as spt8Delta suppresses gcn5Delta with respect to ste11(+) derepression in rich medium, whereas the opposite relationship, gcn5Delta suppression of spt8Delta, occurs during starvation. Thus, SAGA plays distinct roles in the control of the switch from proliferation to differentiation in S. pombe through the dynamic and opposing activities of Gcn5 and Spt8.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
A conserved central region of yeast Ada2 regulates the histone acetyltransferase activity of Gcn5 and interacts with phospholipids. J Mol Biol 2008; 384:743-55. [PMID: 18950642 DOI: 10.1016/j.jmb.2008.09.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/23/2008] [Accepted: 09/26/2008] [Indexed: 11/22/2022]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex of Saccharomyces cerevisiae contains more than 20 components that acetylate and deubiquitylate nucleosomal histones. Its acetyltransferase, Gcn5, preferentially acetylates histones H3 and H2B and is regulated through interactions with Ada2 and Ngg1/Ada3. Sequence alignments of Ada2 homologs indicate a conserved approximately 120-amino-acid-residue central region. To examine the function of this region, we constructed ada2 alleles with mutations of clustered conserved residues. One of these alleles, ada2-RLR (R211S, L212A, and R215A), resulted in an approximately threefold reduction in transcriptional activation of the PHO5 gene and growth changes that parallel deletion of ada2. Microarray analyses further revealed that ada2-RLR alters expression of a subset of those genes affected by deletion of ada2. Indicative of Ada2-RLR affecting Gcn5 function, Ada2-RLR resulted in a decrease in Gcn5-mediated histone acetylation in vitro to a level approximately 40% that with wild-type Ada2. In addition, in vivo acetylation of K16 of histone H2B was almost totally eliminated at Ada2-regulated promoters in the ada2-RLR strain, while acetylation of K9 and K18 of histone H3 was reduced to approximately 40% of wild-type levels. We also show that the central region of Ada2 interacts with phospholipids. Since phosphatidylserine binding paralleled Ada2 function, we suggest that lipid binding may play a role in the function or regulation of the SAGA complex.
Collapse
|
21
|
Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. EUKARYOTIC CELL 2008; 7:656-63. [PMID: 18296621 DOI: 10.1128/ec.00184-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Aspergillus nidulans, proline can be used as a carbon and nitrogen source, and its metabolism requires the integration of three signals, including proline induction and nitrogen and carbon metabolite derepression. We have previously shown that the bidirectional promoter in the prnD-prnB intergenic region undergoes drastic chromatin rearrangements such that proline induction leads to the loss of positioned nucleosomes, whereas simultaneous carbon and nitrogen metabolite repression results in the partial repositioning of these nucleosomes. In the proline cluster, the inhibition of deacetylases by trichostatin A leads to partial derepression and is associated with a lack of nucleosome positioning. Here, we investigate the effect of histone acetylation in the proline cluster using strains deleted of essential components of putative A. nidulans histone acetyltransferase complexes, namely, gcnE and adaB, the orthologues of the Saccharomyces cerevisiae GCN5 and ADA2 genes, respectively. Surprisingly, GcnE and AdaB are not required for transcriptional activation and chromatin remodeling but are required for the repression of prnB and prnD and for the repositioning of nucleosomes in the divergent promoter region. Chromatin immunoprecipitation directed against histone H3 lysines K9 and K14 revealed that GcnE and AdaB participate in increasing the acetylation level of at least one nucleosome in the prnD-prnB intergenic region during activation, but these activities do not determine nucleosome positioning. Our results are consistent with a function of GcnE and AdaB in gene repression of the proline cluster, probably an indirect effect related to the function of CreA, the DNA-binding protein mediating carbon catabolite repression in A. nidulans.
Collapse
|
22
|
Abstract
Interaction networks, consisting of agents linked by their interactions, are ubiquitous across many disciplines of modern science. Many methods of analysis of interaction networks have been proposed, mainly concentrating on node degree distribution or aiming to discover clusters of agents that are very strongly connected between themselves. These methods are principally based on graph-theory or machine learning. We present a mathematically simple formalism for modelling context-specific information propagation in interaction networks based on random walks. The context is provided by selection of sources and destinations of information and by use of potential functions that direct the flow towards the destinations. We also use the concept of dissipation to model the aging of information as it diffuses from its source. Using examples from yeast protein-protein interaction networks and some of the histone acetyltransferases involved in control of transcription, we demonstrate the utility of the concepts and the mathematical constructs introduced in this paper.
Collapse
Affiliation(s)
- Aleksandar Stojmirović
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
23
|
Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 2007; 26:5329-40. [PMID: 17694076 PMCID: PMC2746020 DOI: 10.1038/sj.onc.1210603] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Throughout the last decade, great advances have been made in our understanding of how DNA-templated cellular processes occur in the native chromatin environment. Proteins that regulate transcription, replication, DNA repair, mitosis and other processes must be targeted to specific regions of the genome and granted access to DNA, which is normally tightly packaged in the higher-order chromatin structure of eukaryotic nuclei. Massive multiprotein complexes have been discovered, which facilitate access to DNA and recruitment of downstream effectors through three distinct mechanisms: chemical modification of histone amino-acid residues, ATP-dependent chromatin remodeling and histone exchange. The yeast Spt-Ada-Gcn5-Acetyl transferase (SAGA) transcriptional co-activator complex regulates numerous cellular processes through coordination of multiple histone post-translational modifications. SAGA is known to generate and interact with a number of histone modifications, including acetylation, methylation, ubiquitylation and phosphorylation. Although best characterized for its role in regulating transcriptional activation, SAGA is also required for optimal transcription elongation, mRNA export and perhaps nucleotide excision repair. Here, we discuss findings from recent years that have elucidated the function of this 1.8-MDa complex in multiple cellular processes, and how misregulation of the homologous complexes in humans may ultimately play a role in development of disease.
Collapse
Affiliation(s)
- S P Baker
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
24
|
Hoke SMT, Liang G, Mutiu AI, Genereaux J, Brandl CJ. C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex. BMC BIOCHEMISTRY 2007; 8:16. [PMID: 17686179 PMCID: PMC1976419 DOI: 10.1186/1471-2091-8-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/08/2007] [Indexed: 12/03/2022]
Abstract
Background Spt7 is an integral component of the multi-subunit SAGA complex that is required for the expression of ~10% of yeast genes. Two forms of Spt7 have been identified, the second of which is truncated at its C-terminus and found in the SAGA-like (SLIK) complex. Results We have found that C-terminal processing of Spt7 to its SLIK form (Spt7SLIK) and to a distinct third form (Spt7Form3) occurs in the absence of the SAGA complex components Gcn5, Spt8, Ada1 and Spt20, the latter two of which are required for the integrity of the complex. In addition, N-terminally truncated derivatives of Spt7, including a derivative lacking the histone fold, are processed, indicating that the C-terminus of Spt7 is sufficient for processing and that processing does not require functional Spt7. Using galactose inducible Spt7 expression, we show that the three forms of Spt7 appear and disappear at approximately the same rate with full-length Spt7 not being chased into Spt7SLIK or Spt7Form3. Interestingly, reduced levels of Spt7SLIK and Spt7Form3 were observed in a strain lacking the SAGA component Ubp8, suggesting a regulatory role for Ubp8 in the truncation of Spt7. Conclusion We conclude that truncation of Spt7 occurs early in the biosynthesis of distinct Spt7 containing complexes rather than being a dynamic process linked to the action of the SAGA complex in transcriptional regulation.
Collapse
Affiliation(s)
- Stephen MT Hoke
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Gaoyang Liang
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7295, USA
| | - A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| |
Collapse
|
25
|
Mutiu AI, Hoke SMT, Genereaux J, Hannam C, MacKenzie K, Jobin-Robitaille O, Guzzo J, Côté J, Andrews B, Haniford DB, Brandl CJ. Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. Genetics 2007; 177:151-66. [PMID: 17660562 PMCID: PMC2013730 DOI: 10.1534/genetics.107.074476] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tra1 is an essential component of the Saccharomyces cerevisiae SAGA and NuA4 complexes. Using targeted mutagenesis, we identified residues within its C-terminal phosphatidylinositol-3-kinase (PI3K) domain that are required for function. The phenotypes of tra1-P3408A, S3463A, and SRR3413-3415AAA included temperature sensitivity and reduced growth in media containing 6% ethanol or calcofluor white or depleted of phosphate. These alleles resulted in a twofold or greater change in expression of approximately 7% of yeast genes in rich media and reduced activation of PHO5 and ADH2 promoters. Tra1-SRR3413 associated with components of both the NuA4 and SAGA complexes and with the Gal4 transcriptional activation domain similar to wild-type protein. Tra1-SRR3413 was recruited to the PHO5 promoter in vivo but gave rise to decreased relative amounts of acetylated histone H3 and histone H4 at SAGA and NuA4 regulated promoters. Distinct from other components of these complexes, tra1-SRR3413 resulted in generation-dependent telomere shortening and synthetic slow growth in combination with deletions of a number of genes with roles in membrane-related processes. While the tra1 alleles have some phenotypic similarities with deletions of SAGA and NuA4 components, their distinct nature may arise from the simultaneous alteration of SAGA and NuA4 functions.
Collapse
Affiliation(s)
- A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gao MJ, Hegedus DD, Sharpe AG, Robinson SJ, Lydiate DJ, Hannoufa A. Isolation and characterization of a GCN5-interacting protein from Arabidopsis thaliana. PLANTA 2007; 225:1367-79. [PMID: 17151888 DOI: 10.1007/s00425-006-0446-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/31/2006] [Indexed: 05/12/2023]
Abstract
An Arabidopsis protein, AtEML, was isolated based on its interaction with the histone acetyltransferase AtGCN5 in a yeast two-hybrid screen. RNA blot and RT-PCR analysis showed that AtEML is expressed in flowers, leaves, stems and siliques. The promoter region of AtEML has several cis-acting elements associated with response to biotic and abiotic stress conditions, and the accumulation of the AtEML transcript was found to be regulated by cold and salt treatments. In vitro and in vivo protein-protein interaction assays indicated that AtEML interacts with AtGCN5 through the N-terminal region. Furthermore, AtEML was shown to activate expression of the lacZ reporter gene in yeast through recruitment of AtGCN5. Such recruitment was accompanied by an increase in histone H3 acetylation at the promoter driving lacZ expression, as determined by chromatin immunoprecipitation. A higher level of AtEML gene expression was detected in the Arabidopsis gcn5 knockout mutant as compared to wild type Arabidopsis, indicating that AtEML expression is regulated by AtGCN5. These results suggest that AtEML may be a transcription factor that co-ordinates the expression of target stress regulated genes through involvement in recruiting AtGCN5 to their promoters.
Collapse
Affiliation(s)
- Ming-Jun Gao
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Mutiu AI, Hoke SMT, Genereaux J, Liang G, Brandl CJ. The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain. Mol Genet Genomics 2007; 277:491-506. [PMID: 17447102 DOI: 10.1007/s00438-007-0212-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
In Saccharomyces cerevisiae histone H2B is ubiquitylated at lysine 123 in a process requiring the E2-ubiquitin conjugase, Rad6. We have analyzed gene expression in a strain containing a variant of histone H2B with lysine 123 converted to arginine to address the mechanisms by which ubiquitylation and deubiquitylation of histone H2B affect gene expression. The SAGA complex component, Ubp8, is one of two proteases that remove the ubiquitin moiety at lysine 123. We show that changes in gene expression observed upon deletion of ubp8 are suppressed by htb1 ( K123R ), which provides genetic evidence that Ubp8 alters gene expression through deubiquitylation of histone H2B. Microarray analyses of the htb1 ( K123R ) strain show that loss of histone ubiquitylation results in a twofold or greater change in expression of approximately 1.5% of the protein coding genes with approximately 75% of these increasing. For genes in which ubiquitylation represses expression, ubiquitylation principally acts through its effects on histone methylation. In contrast, decreased expression of the CWP1 gene was not paralleled by deletions of methyltransferase components and is thus likely independent of methylation. Finally, by comparing gene expression changes in the htb1 ( K123R ) strain with those in a strain deleted for rad6, we conclude that lysine 123 affects transcription primarily because of it being a site of ubiquitylation.
Collapse
Affiliation(s)
- A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
The Myc family proteins are potent oncogenes that can activate and repress a very large number of cellular target genes. The amino terminus of Myc contains a transactivation domain that can recruit a number of nuclear cofactors with diverse activities. Functional studies link transactivation to the ability of Myc to promote normal cell proliferation and for oncogenic transformation. The biochemical mechanism of Myc-mediated transactivation has revealed a wide range of effects on chromatin and basal transcription. This review summarizes recent advances in understanding the function of Myc as a transcriptional activator and the role of this activity in Myc biological activities.
Collapse
Affiliation(s)
- Victoria H Cowling
- Department of Pharmacology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
29
|
Sermwittayawong D, Tan S. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment. EMBO J 2006; 25:3791-800. [PMID: 16888622 PMCID: PMC1553190 DOI: 10.1038/sj.emboj.7601265] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/05/2006] [Indexed: 11/09/2022] Open
Abstract
In yeast, the multisubunit SAGA (Spt-Ada-Gcn5-acetyltransferase) complex acts as a coactivator to recruit the TATA-binding protein (TBP) to the TATA box, a critical step in eukaryotic gene regulation. However, it is unclear which SAGA subunits are responsible for SAGA's direct interactions with TBP and precisely how SAGA recruits TBP to the promoter. We have used chemical crosslinking to identify Spt8 and Ada1 as potential SAGA subunits that interact with TBP, and we find that both Spt8 and SAGA bind directly to TBP monomer in competition with TBP dimer. We further find that Spt8 and SAGA compete with DNA to bind TBP rather than forming a triple complex. Our results suggest a handoff model for SAGA recruitment of TBP: instead of binding together with TBP at the TATA box, activator-recruited SAGA transfers TBP to the TATA box. This simple model can explain SAGA's observed ability to both activate and repress transcription.
Collapse
Affiliation(s)
- Decha Sermwittayawong
- Center for Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Song Tan
- Center for Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Gene Regulation, Department of Biochemistry & Molecular Biology, 108 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802-1014, USA. Tel.: +1 814 865 3355; Fax: +1 814 863 7024; E-mail:
| |
Collapse
|
30
|
Qi D, Jin H, Lilja T, Mannervik M. Drosophila Reptin and other TIP60 complex components promote generation of silent chromatin. Genetics 2006; 174:241-51. [PMID: 16816423 PMCID: PMC1569795 DOI: 10.1534/genetics.106.059980] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histone acetyltransferase (HAT) complexes have been linked to activation of transcription. Reptin is a subunit of different chromatin-remodeling complexes, including the TIP60 HAT complex. In Drosophila, Reptin also copurifies with the Polycomb group (PcG) complex PRC1, which maintains genes in a transcriptionally silent state. We demonstrate genetic interactions between reptin mutant flies and PcG mutants, resulting in misexpression of the homeotic gene Scr. Genetic interactions are not restricted to PRC1 components, but are also observed with another PcG gene. In reptin homozygous mutant cells, a Polycomb response-element-linked reporter gene is derepressed, whereas endogenous homeotic gene expression is not. Furthermore, reptin mutants suppress position-effect variegation (PEV), a phenomenon resulting from spreading of heterochromatin. These features are shared with three other components of TIP60 complexes, namely Enhancer of Polycomb, Domino, and dMRG15. We conclude that Drosophila Reptin participates in epigenetic processes leading to a repressive chromatin state as part of the fly TIP60 HAT complex rather than through the PRC1 complex. This shows that the TIP60 complex can promote the generation of silent chromatin.
Collapse
Affiliation(s)
- Dai Qi
- Department of Developmental Biology, Wenner-Gren Institute, Arrhenius Laboratories E3, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM, Kwon CS, Collum RP, Wagner D. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression ofCAULIFLOWER. Development 2006; 133:1673-82. [PMID: 16554366 DOI: 10.1242/dev.02331] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The timing of the switch from vegetative to reproductive development is crucial for species survival. The plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this switch in Arabidopsis, in part via the direct activation of two other meristem identity genes, APETALA1 (AP1) and CAULIFLOWER(CAL). We recently identified five new direct LFY targets as candidates for the missing meristem identity regulators that act downstream of LFY. Here, we demonstrate that one of these, the class I homeodomain leucine-zipper transcription factor LMI1, is a meristem identity regulator. LMI1 acts together with LFY to activate CAL expression. The interaction between LFY, LMI1 and CAL resembles a feed-forward loop transcriptional network motif. LMI1 has additional LFY-independent roles in the formation of simple serrated leaves and in the suppression of bract formation. The temporal and spatial expression of LMI1 supports a role in meristem identity and leaf/bract morphogenesis.
Collapse
Affiliation(s)
- Louis A Saddic
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Osley MA, Fleming AB, Kao CF. Histone Ubiquitylation and the Regulation of Transcription. Results Probl Cell Differ 2006; 41:47-75. [PMID: 16909890 DOI: 10.1007/400_006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The small (76 amino acids) and highly conserved ubiquitin protein plays key roles in the physiology of eukaryotic cells. Protein ubiquitylation has emerged as one of the most important intracellular signaling mechanisms, and in 2004 the Nobel Prize was awarded to Aaron Ciechanower, Avram Hersko, and Irwin Rose for their pioneering studies of the enzymology of ubiquitin attachment. One of the most common features of protein ubiquitylation is the attachment of polyubiquitin chains (four or more ubiquitin moieties attached to each other), which is a widely used mechanism to target proteins for degradation via the 26S proteosome. However, it is noteworthy that the first ubiquitylated protein to be identified was histone H2A, to which a single ubiquitin moiety is most commonly attached. Following this discovery, other histones (H2B, H3, H1, H2A.Z, macroH2A), as well as many nonhistone proteins, have been found to be monoubiquitylated. The role of monoubiquitylation is still elusive because a single ubiquitin moiety is not sufficient to target proteins for turnover, and has been hypothesized to control the assembly or disassembly of multiprotein complexes by providing a protein-binding site. Indeed, a number of ubiquitin-binding domains have now been identified in both polyubiquitylated and monoubiquitylated proteins. Despite the early discovery of ubiquitylated histones, it has only been in the last five or so years that we have begun to understand how histone ubiquitylation is regulated and what roles it plays in the cell. This review will discuss current research on the factors that regulate the attachment and removal of ubiquitin from histones, describe the relationship of histone ubiquitylation to histone methylation, and focus on the roles of ubiquitylated histones in gene expression.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | |
Collapse
|
33
|
Liu Y, Xu X, Singh-Rodriguez S, Zhao Y, Kuo MH. Histone H3 Ser10 phosphorylation-independent function of Snf1 and Reg1 proteins rescues a gcn5- mutant in HIS3 expression. Mol Cell Biol 2005; 25:10566-79. [PMID: 16287868 PMCID: PMC1291248 DOI: 10.1128/mcb.25.23.10566-10579.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcn5 protein is a prototypical histone acetyltransferase that controls transcription of multiple yeast genes. To identify molecular functions that act downstream of or in parallel with Gcn5 protein, we screened for suppressors that rescue the transcriptional defects of HIS3 caused by a catalytically inactive mutant Gcn5, the E173H mutant. One bypass of Gcn5 requirement gene (BGR) suppressor was mapped to the REG1 locus that encodes a semidominant mutant truncated after amino acid 740. Reg1(1-740) protein does not rescue the complete knockout of GCN5, nor does it suppress other gcn5- defects, including the inability to utilize nonglucose carbon sources. Reg1(1-740) enhances HIS3 transcription while HIS3 promoter remains hypoacetylated, indicating that a noncatalytic function of Gcn5 is targeted by this suppressor protein. Reg1 protein is a major regulator of Snf1 kinase that phosphorylates Ser10 of histone H3. However, whereas Snf1 protein is important for HIS3 expression, replacing Ser10 of H3 with alanine or glutamate neither attenuates nor augments the BGR phenotypes. Overproduction of Snf1 protein also preferentially rescues the E173H allele. Biochemically, both Snf1 and Reg1(1-740) proteins copurify with Gcn5 protein. Snf1 can phosphorylate recombinant Gcn5 in vitro. Together, these data suggest that Reg1 and Snf1 proteins function in an H3 phosphorylation-independent pathway that also involves a noncatalytic role played by Gcn5 protein.
Collapse
Affiliation(s)
- Yang Liu
- 401 BCH Building, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824.
| | | | | | | | | |
Collapse
|
34
|
Jho SH, Vouthounis C, Lee B, Stojadinovic O, Im MJ, Brem H, Merchant A, Chau K, Tomic-Canic M. The Book of Opposites: The Role of the Nuclear Receptor Co-regulators in the Suppression of Epidermal Genes by Retinoic Acid and Thyroid Hormone Receptors. J Invest Dermatol 2005; 124:1034-43. [PMID: 15854046 DOI: 10.1111/j.0022-202x.2005.23691.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcriptional regulation by nuclear receptors occurs through complex interactions that involve DNA response elements, co-activators/co-repressors, and histone modifying enzymes. Very little is known about how molecular interplay of these components may determine tissue specificity of hormone action. We have shown previously that retinoic acid (RA) and thyroid hormone (T3) repress transcription of a specific group of epidermal keratin genes through a novel mechanism that utilizes receptors homodimers. In this paper, we have analyzed the epidermal specificity of RA/T3 action by testing the role of co-repressors and co-activators in regulation of epidermal genes. Using transient co-transfections, northern blots, antisense oligonucleotides, and a histone deacetylase (HDAC) inhibitor, trichostatin A, we found that in the context of specific keratin RE (KRE), co-activators and histone acetylase become co-repressors of the RA/T3 receptors in the presence of their respective ligands. Conversely, co-repressors and HDAC become co-activators of unliganded T3Ralpha. The receptor-co-activator interaction is intact and occurs through the NR-box. Therefore, the role of co-activator is to associate with liganded receptors whereas the KRE-receptor interaction determines specific transcriptional signal, in this case repression. This novel molecular mechanism of transcriptional repression conveys how RA and T3 target specific groups of epidermal genes, thus exerting intrinsic tissue specificity.
Collapse
Affiliation(s)
- Sang H Jho
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dasgupta A, Juedes SA, Sprouse RO, Auble DT. Mot1-mediated control of transcription complex assembly and activity. EMBO J 2005; 24:1717-29. [PMID: 15861138 PMCID: PMC1142579 DOI: 10.1038/sj.emboj.7600646] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 03/14/2005] [Indexed: 11/09/2022] Open
Abstract
Mot1 is an essential Snf2/Swi2-related ATPase and TATA-binding protein (TBP)-associated factor (TAF). In vitro, Mot1 utilizes ATP hydrolysis to disrupt TBP-DNA complexes, but the relationship of this activity to Mot1's in vivo function is unclear. Chromatin immunoprecipitation was used to determine how Mot1 affects the assembly of preinitiation complexes (PICs) at Mot1-controlled promoters in vivo. We find that the Mot1-repressed HSP26 and INO1 promoters are both regulated by TBP recruitment; inactivation of Mot1 leads to increased PIC formation coincident with derepression of transcription. For the Mot1-activated genes BNA1 and URA1, inactivation of Mot1 also leads, remarkably, to increased TBP binding to the promoters, despite the fact that transcription of these genes is obliterated in mot1 cells. In contrast, levels of Taf1, TFIIB, and RNA polymerase II are reduced at Mot1-activated promoters in mot1 cells. These results suggest that Mot1-mediated displacement of TBP underlies its mechanism of repression and activation at these genes. We suggest that at activated promoters, Mot1 disassembles transcriptionally inactive TBP, thereby facilitating the formation of a TBP complex that supports functional PIC assembly.
Collapse
Affiliation(s)
- Arindam Dasgupta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sarah A Juedes
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, 1300 Jefferson Park Avenue, Room 6213, Charlottesville, VA 22908-0733, USA. Tel.: +1 434 243 2629; Fax: +1 434 924 5069; E-mail:
| |
Collapse
|
36
|
Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 2005; 25:1173-82. [PMID: 15657442 PMCID: PMC544014 DOI: 10.1128/mcb.25.3.1173-1182.2005] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Covalent modifications of the histone tails and the cross talk between these modifications are hallmark features of gene regulation. The SAGA histone acetyltransferase complex is one of the most well-characterized complexes involved in these covalent modifications. The recent finding that the removal of the ubiquitin group from H2B is performed by a component of SAGA, Ubp8, is intriguing as it assigns two posttranslation modification processes to one complex. In this work, we characterize the association of Ubp8 with SAGA and the effect that acetylation and deubiquitylation have on one another in vitro and in vivo. We found not only that Ubp8 is a part of the SAGA complex, but also that its deubiquitylation activity requires Ubp8's association with SAGA. Furthermore, we found that the Ubp8 association with SAGA requires Sgf11 and that this requirement is reciprocal. We also found that the acetylation and deubiquitylation activities of SAGA are independent of one another. However, we found that preacetylating histone H2B inhibited subsequent deubiquitylation. Additionally, we found that increasing the ubiquitylation state of H2B inhibited the expression of the ARG1 gene, whose repression was previously shown to require the RAD6 ubiquitin ligase. Taken together, these data indicate that the expression of some genes, including ARG1, is regulated by a balance of histone H2B ubiquitylation in the cell.
Collapse
Affiliation(s)
- Kenneth K Lee
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
37
|
Stebbins JL, Triezenberg SJ. Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein. EUKARYOTIC CELL 2004; 3:339-47. [PMID: 15075264 PMCID: PMC387635 DOI: 10.1128/ec.3.2.339-347.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hap4 protein of the budding yeast Saccharomyces cerevisiae activates the transcription of genes that are required for growth on nonfermentable carbon sources. Previous reports suggested the presence of a transcriptional activation domain within the carboxyl-terminal half of Hap4 that can function in the absence of Gcn5, a transcriptional coactivator protein and histone acetyltransferase. The boundaries of this activation domain were further defined to a region encompassing amino acids 359 to 476. Within this region, several clusters of hydrophobic amino acids are critical for transcriptional activity. This activity does not require GCN5 or two other components of the SAGA coactivator complex, SPT3 and SPT8, but it does require SPT7 and SPT20. Contrary to previous reports, a Hap4 fragment comprising amino acids 1 to 330 can support the growth of yeast on lactate medium, and when tethered to lexA, can activate a reporter gene with upstream lexA binding sites, demonstrating the presence of a second transcriptional activation domain. In contrast to the C-terminal activation domain, the transcriptional activity of this N-terminal region depends on GCN5. We conclude that the yeast Hap4 protein has at least two transcriptional activation domains with strikingly different levels of dependence on specific transcriptional coactivator proteins.
Collapse
Affiliation(s)
- John L Stebbins
- Graduate Program in Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
38
|
Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, Link AJ. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol 2004; 24:7249-59. [PMID: 15282323 PMCID: PMC479721 DOI: 10.1128/mcb.24.16.7249-7259.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SAGA histone acetyltransferase and TFIID complexes play key roles in eukaryotic transcription. Using hierarchical cluster analysis of mass spectrometry data to identify proteins that copurify with components of the budding yeast TFIID transcription complex, we discovered that an uncharacterized protein corresponding to the YPL047W open reading frame significantly associated with shared components of the TFIID and SAGA complexes. Using mass spectrometry and biochemical assays, we show that YPL047W (SGF11, 11-kDa SAGA-associated factor) is an integral subunit of SAGA. However, SGF11 does not appear to play a role in SAGA-mediated histone acetylation. DNA microarray analysis showed that SGF11 mediates transcription of a subset of SAGA-dependent genes, as well as SAGA-independent genes. SAGA purified from a sgf11 Delta deletion strain has reduced amounts of Ubp8p, and a ubp8 Delta deletion strain shows changes in transcription similar to those seen with the sgf11 Delta deletion strain. Together, these data show that Sgf11p is a novel component of the yeast SAGA complex and that SGF11 regulates transcription of a subset of SAGA-regulated genes. Our data suggest that the role of SGF11 in transcription is independent of SAGA's histone acetyltransferase activity but may involve Ubp8p recruitment to or stabilization in SAGA.
Collapse
Affiliation(s)
- David W Powell
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Qiu H, Hu C, Yoon S, Natarajan K, Swanson MJ, Hinnebusch AG. An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol Cell Biol 2004; 24:4104-17. [PMID: 15121833 PMCID: PMC400468 DOI: 10.1128/mcb.24.10.4104-4117.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/05/2003] [Accepted: 02/23/2004] [Indexed: 11/20/2022] Open
Abstract
Wild-type transcriptional activation by Gcn4p is dependent on multiple coactivators, including SAGA, SWI/SNF, Srb mediator, CCR4-NOT, and RSC, which are all recruited by Gcn4p to its target promoters in vivo. It was not known whether these coactivators are required for assembly of the preinitiation complex (PIC) or for subsequent steps in the initiation or elongation phase of transcription. We find that mutations in subunits of these coactivators reduce the recruitment of TATA binding protein (TBP) and RNA polymerase II (Pol II) by Gcn4p at ARG1, ARG4, and SNZ1, implicating all five coactivators in PIC assembly at Gcn4p target genes. Recruitment of Pol II at SNZ1 and ARG1 was eliminated by mutations in TBP or by deletion of the TATA box, indicating that TBP binding is a prerequisite for Pol II recruitment by Gcn4p. However, several mutations in SAGA subunits and deletion of SRB10 had a greater impact on promoter occupancy of Pol II versus TBP, suggesting that SAGA and Srb mediator can promote Pol II binding independently of their stimulatory effects on TBP recruitment. Our results reveal an unexpected complexity in the cofactor requirements for the enhancement of PIC assembly by a single activator protein.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bhat RA, Borst JW, Riehl M, Thompson RD. Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity. PLANT MOLECULAR BIOLOGY 2004; 55:239-52. [PMID: 15604678 DOI: 10.1007/s11103-004-0553-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Maize Opaque-2 (ZmO2), a bZip class transcription factor has been shown to activate the transcription of a series of genes expressed in the maturation phase of endosperm development. Activation requires the presence of one or more enhancer binding sites, which confer the propensity for activation by ZmO2 on heterologous promoters and in heterologous plant cell types, such as tobacco mesophyll protoplasts. The region of ZmO2 required for conferring transcriptional activation has been localised to a stretch of acidic residues in the N-terminal portion of the ZmO2 sequence, which is conserved between O2-related bZip factor sequences. Previously we identified the maize homologues of yeast transcriptional co-activators GCN5 and ADA2 that are implicated in nucleosome modification and transcription. In the present study we have shown that transcriptional modulation by ZmO2 involves the intranuclear interaction of ZmO2 with ZmADA2 and ZmGCN5. Förster resonance energy transfer (FRET) based techniques have enabled us to estimate the intracellular site of these intermolecular interactions. As a functional readout of these intranuclear interactions, we used the ZmO2 responsive maize b-32 promoter to drive the beta-glucuronidase (GUS) in the presence and absence of ZmGCN5 and ZmADA2. Our results suggest that the likely recruitment of ZmADA2 and ZmGCN5 modulates the transactivation of b-32 promoter by ZmO2 and that there may be a competition between ZmGCN5 and ZmO2 for binding to the amino-terminal of ZmADA2. The results may be taken as a paradigm for other processes of transcriptional modulation in planta involving acidic activation domains.
Collapse
Affiliation(s)
- Riyaz A Bhat
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, Germany
| | | | | | | |
Collapse
|
41
|
Zwartjes CGM, Jayne S, van den Berg DLC, Timmers HTM. Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 2004; 279:10848-54. [PMID: 14707134 DOI: 10.1074/jbc.m311747200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual core subunits of the human Ccr4-Not complex to promoters in transient transfections of human cells. In this experimental setup we found that the CNOT2 and CNOT9(hRcd1/hCaf40) subunits act as repressors of reporter gene activity. Interestingly, recruitment of other Ccr4-Not subunits did not affect the reporter gene. The major repression function of CNOT2 is localized in a specialized protein motif, the Not-Box. This conserved motif is present in all CNOT2 orthologs and surprisingly also in CNOT3 orthologs. Repression by the Not-Box was sensitive to treatment with the histone deacetylase inhibitor trichostatin A. In addition, mutation of a canonical TATA-box enhanced repression. Our experiments show for the first time direct regulation of promoter activity by components of the Ccr4-Not complex.
Collapse
Affiliation(s)
- Carin G M Zwartjes
- Department of Physiological Chemistry, Stratenum STR 3.229, University Medical Center Utrecht, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands
| | | | | | | |
Collapse
|
42
|
Torok MS, Grant PA. Histone Acetyltransferase Proteins Contribute to Transcriptional Processes at Multiple Levels. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:181-99. [PMID: 14969728 DOI: 10.1016/s0065-3233(04)67007-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
43
|
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003; 316:1-21. [PMID: 14563547 DOI: 10.1016/s0378-1119(03)00747-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In all organisms, correct development, growth and function depends on the precise and integrated control of the expression of their genes. Often, gene regulation depends upon the cooperative binding of proteins to DNA and upon protein-protein interactions. Eukaryotes have widely exploited combinatorial strategies to create gene regulatory networks. MADS box proteins constitute the perfect example of cellular coordinators. These proteins belong to a large family of transcription factors present in most eukaryotic organisms and are involved in diverse and important biological functions. MADS box proteins are combinatorial transcription factors in that they often derive their regulatory specificity from other DNA binding or accessory factors. This review is aimed at analyzing how MADS box proteins combine with a variety of cofactors to achieve functional diversity.
Collapse
Affiliation(s)
- Francine Messenguy
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, Avenue Emile Gryzon 1, 1070 Brussels, Belgium.
| | | |
Collapse
|
44
|
Dziak R, Leishman D, Radovic M, Tye BK, Yankulov K. Evidence for a role of MCM (mini-chromosome maintenance)5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:27372-81. [PMID: 12750362 DOI: 10.1074/jbc.m301110200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM (mini-chromosome maintenance) genes have a well established role in the initiation of DNA replication and in the elongation of replication forks in Saccharomyces cerevisiae. In this study we demonstrate elevated expression of sub-telomeric and Ty retrotransposon-proximal genes in two mcm5 strains. This pattern of up-regulated genes resembles the genome-wide association of MCM proteins to chromatin that was reported earlier. We link the altered gene expression in mcm5 strains to a reversal of telomere position effect (TPE) and to remodeling of sub-telomeric and Ty chromatin. We also show a suppression of the Ts phenotype of a mcm5 strain by the high copy expression of the TRA1 component of the chromatin-remodeling SAGA/ADA (SPT-ADA-GCN5 acetylase/ADAptor). We propose that MCM proteins mediate the establishment of silent chromatin domains around telomeres and Ty retrotransposons.
Collapse
Affiliation(s)
- Renata Dziak
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
45
|
Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou DX. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 2003; 278:28246-51. [PMID: 12740375 DOI: 10.1074/jbc.m302787200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetyltransferases, which are able to acetylate histone and non-histone proteins, play important roles in gene regulation. Many histone acetyltransferases are related to yeast Gcn5, a component of two transcription regulatory complexes SAGA and ADA. In this work, by characterizing a mutation in the Arabidopsis GCN5 gene (AtGCN5) we studied the regulatory function of this gene in controlling floral meristem activity. We show that in addition to pleiotropic effects on plant development, this mutation also leads to the production of terminal flowers. The flowers show homeotic transformations of petals into stamens and sepals into filamentous structures and produce ectopic carpels. The phenotypes correlate to an expansion of the expression domains within floral meristems of the key regulatory genes WUSCHEL (WUS) and AGAMOUS (AG). These results suggest that AtGCN5 is required to regulate the floral meristem activity through the WUS/AG pathway. This study brings new elements on the elucidation of specific developmental pathways regulated by AtGCN5 and on the control mechanism of meristem regulatory gene expression.
Collapse
MESH Headings
- Acetyltransferases/metabolism
- Arabidopsis/enzymology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Histone Acetyltransferases
- Meristem/physiology
- Microscopy, Electron, Scanning
- Models, Genetic
- Mutation
- Phenotype
- Plant Physiological Phenomena
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Claire Bertrand
- Institut de Biotechnologie des Plantes, CNRS UMR 8618, Université Paris-sud XI, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
46
|
Abstract
Although histone acetylation has historically been linked to transcription activation, recent studies indicate that this modification and the enzymes that catalyze it have much broader and diverse functions. Histone acetyltransferase complexes are involved in such diverse processes as transcription activation, gene silencing, DNA repair and cell-cycle progression. The high conservation of the acetyltransferase complexes and their functions illustrates their central role in cell growth and development.
Collapse
Affiliation(s)
- Michael J Carrozza
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Penn State University, University Park, PA 16803, USA.
| | | | | | | |
Collapse
|
47
|
Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol Cell Biol 2003; 23:2800-20. [PMID: 12665580 PMCID: PMC152555 DOI: 10.1128/mcb.23.8.2800-2820.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/22/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.
Collapse
Affiliation(s)
- Mark J Swanson
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Vlachonasios KE, Thomashow MF, Triezenberg SJ. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. THE PLANT CELL 2003; 15:626-38. [PMID: 12615937 PMCID: PMC150018 DOI: 10.1105/tpc.007922] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We previously identified Arabidopsis genes homologous with the yeast ADA2 and GCN5 genes that encode components of the ADA and SAGA histone acetyltransferase complexes. In this report, we explore the biological roles of the Arabidopsis ADA2b and GCN5 genes. T-DNA insertion mutations in ADA2b and GCN5 were found to have pleiotropic effects on plant growth and development, including dwarf size, aberrant root development, and short petals and stamens in flowers. Approximately 5% of the 8200 genes assayed by DNA microarray analysis showed changes of expression in the mutants, three-fourths of which were upregulated and only half of which were altered similarly in the two mutant strains. In cold acclimation experiments, C-repeat binding factors (CBFs) were induced in the mutants as in wild-type plants, but subsequent transcription of cold-regulated (COR) genes was reduced in both mutants. Remarkably, nonacclimated ada2b-1 (but not gcn5-1) mutant plants were more freezing tolerant than nonacclimated wild-type plants, suggesting that ADA2b may directly or indirectly repress a freezing tolerance mechanism that does not require the expression of CBF or COR genes. We conclude that the Arabidopsis ADA2b and GCN5 proteins have both similar and distinct functions in plant growth, development, and gene expression and may be components of both a common coactivator complex and separate complexes with distinct biological activities.
Collapse
Affiliation(s)
- Konstantinos E Vlachonasios
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
49
|
Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4:192-201. [PMID: 12612638 DOI: 10.1038/nrm1049] [Citation(s) in RCA: 631] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene transcription and ubiquitin-mediated proteolysis are two processes that have seemingly nothing in common: transcription is the first step in the life of any protein and proteolysis the last. Despite the disparate nature of these processes, a growing body of evidence indicates that ubiquitin and the proteasome are intimately involved in gene control. Here, we discuss the deep mechanistic connections between transcription and the ubiquitin-proteasome system, and highlight how the intersection of these processes tightly controls expression of the genetic information.
Collapse
Affiliation(s)
- Masafumi Muratani
- Cold Spring Harbor Laboratory, 1 Bungtown Road, PO Box 100, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
50
|
Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V, Eilers M, Leon J, Larsson LG. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003; 22:351-60. [PMID: 12545156 DOI: 10.1038/sj.onc.1206145] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhibition of cellular differentiation is one of the well-known biological activities of c-Myc-family proteins. We show here that Myc represses differentiation-induced expression of the cyclin-dependent kinase (CDK) inhibitor p21CIP1 (CDKN1A, p21), known to play an important role in cell fate decisions during growth and differentiation, in hematopoietic cells. Our results demonstrate that the c-Myc-responsive region is situated in the p21 core promoter. c-Myc binds to this region in vitro and in vivo through interaction with the initiator-binding Zn-finger transcription factor Miz-1, which associates directly with the promoter. Association of Myc with the promoter in vivo correlates inversely with p21 expression. Using mutants of c-Myc with impaired binding to Miz-1, our results further show that repression of p21 promoter/reporters as well as the endogenous p21 gene by Myc depends on interaction with Miz-1. Expression of Miz-1 increases during hematopoietic differentiation and Miz-1 activates the p21 promoter under conditions of low Myc levels, indicating a positive role for free Miz-1 in this process. In conclusion, repression of differentiation-induced p21 expression through Miz-1 may be an important mechanism by which Myc blocks differentiation.
Collapse
Affiliation(s)
- Siqin Wu
- Upsala Genetic Center, Department of Plant Biology, Swedish University of Agricultural Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|