1
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Ouyang X, Wang X, Li P, Huang Q, Zhou L, Li J, Gao L, Sun Q, Chai F, Guo S, Zhou Z, Liu X, Dai L, Cheng W, Ren H. Bacterial effector restricts liquid-liquid phase separation of ZPR1 to antagonize host UPR ER. Cell Rep 2023; 42:112700. [PMID: 37379216 DOI: 10.1016/j.celrep.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
How pathogens manipulate host UPRER to mediate immune evasion is largely unknown. Here, we identify the host zinc finger protein ZPR1 as an interacting partner of the enteropathogenic E. coli (EPEC) effector NleE using proximity-enabled protein crosslinking. We show that ZPR1 assembles via liquid-liquid phase separation (LLPS) in vitro and regulates CHOP-mediated UPRER at the transcriptional level. Interestingly, in vitro studies show that the ZPR1 binding ability with K63-ubiquitin chains, which promotes LLPS of ZPR1, is disrupted by NleE. Further analyses indicate that EPEC restricts host UPRER pathways at the transcription level in a NleE-ZPR1 cascade-dependent manner. Together, our study reveals the mechanism by which EPEC interferes with CHOP-UPRER via regulating ZPR1 to help pathogens escape host defense.
Collapse
Affiliation(s)
- Xiaoxiao Ouyang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyun Wang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Huang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingxiang Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Gao
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Qi Sun
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangni Chai
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shupan Guo
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Liu
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lunzhi Dai
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Wei Cheng
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Haiyan Ren
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Sabbarini IM, Reif D, McQuown AJ, Nelliat AR, Prince J, Membreno BS, Wu CCC, Murray AW, Denic V. Zinc-finger protein Zpr1 is a bespoke chaperone essential for eEF1A biogenesis. Mol Cell 2023; 83:252-265.e13. [PMID: 36630955 PMCID: PMC10016025 DOI: 10.1016/j.molcel.2022.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.
Collapse
Affiliation(s)
- Ibrahim M Sabbarini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dvir Reif
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander J McQuown
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anjali R Nelliat
- Graduate Program in Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Prince
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Britnie Santiago Membreno
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Li Y, Lan Q, Gao Y, Xu C, Xu Z, Wang Y, Chang L, Wu J, Deng Z, He F, Finley D, Xu P. Ubiquitin Linkage Specificity of Deubiquitinases Determines Cyclophilin Nuclear Localization and Degradation. iScience 2020; 23:100984. [PMID: 32240951 PMCID: PMC7115106 DOI: 10.1016/j.isci.2020.100984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin chain specificity has been described for some deubiquitinases (DUBs) but lacks a comprehensive profiling in vivo. We used quantitative proteomics to compare the seven lysine-linked ubiquitin chains between wild-type yeast and its 20 DUB-deletion strains, which may reflect the linkage specificity of DUBs in vivo. Utilizing the specificity and ubiquitination heterogeneity, we developed a method termed DUB-mediated identification of linkage-specific ubiquitinated substrates (DILUS) to screen the ubiquitinated lysine residues on substrates modified with certain chains and regulated by specific DUB. Then we were able to identify 166 Ubp2-regulating substrates with 244 sites potentially modified with K63-linked chains. Among these substrates, we further demonstrated that cyclophilin A (Cpr1) modified with K63-linked chain on K151 site was regulated by Ubp2 and mediated the nuclear translocation of zinc finger protein Zpr1. The K48-linked chains at non-K151 sites of Cpr1 were mainly regulated by Ubp3 and served as canonical signals for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Qiuyan Lan
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Cong Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China; School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Guizhou University School of Medicine, Guiyang 550025, China; Second Clinical Medicine Collage, Guangzhou University Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
5
|
Harel T, Peshes-Yaloz N, Bacharach E, Gat-Viks I. Predicting Phenotypic Diversity from Molecular and Genetic Data. Genetics 2019; 213:297-311. [PMID: 31352366 PMCID: PMC6727812 DOI: 10.1534/genetics.119.302463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets.
Collapse
Affiliation(s)
- Tom Harel
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Naama Peshes-Yaloz
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Eran Bacharach
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Irit Gat-Viks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| |
Collapse
|
6
|
Tian HY, Hu Y, Zhang P, Xing WX, Xu C, Yu D, Yang Y, Luo K, Li M. Spodoptera litura cyclophilin A is required for Microplitis bicoloratus bracovirus-induced apoptosis during insect cellular immune response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21534. [PMID: 30623473 DOI: 10.1002/arch.21534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 05/27/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) is a polydnavirus found in the parasitic wasp M. bicoloratus. Although MbBV is a known inducer of apoptosis in host hemocytes, the mechanism by which this occurs remains elusive. In this study, we found that expression of cyclophilin A (CypA) was significantly upregulated in Spodoptera litura hemocytes at 6-day post-parasitization. Similar results were reported in High Five cells (Hi5 cells) infected by MbBV, suggesting that the upregulation of CypA is linked to MbBV infection in insect cells. cDNA encoding CypA was cloned from parasitized hemocytes of S. litura, and bioinformatic analyses showed that S. litura CypA belongs to the cyclophilin family of proteins. Overexpression of S. litura CypA in Hi5 cells revealed that the protein promotes MbBV-induced apoptosis in vitro. Conversely, suppression of the expression and activity of CypA protein significantly rescued the apoptotic phenotype observed in MbBV-infected Hi5 cells, suggesting that it plays a key role in this process. MbBV infection also promoted the cytoplasmic-nuclear translocation of CypA in Hi5 cells. Taken together, these results suggest that MbBV infection upregulates the expression of CypA, which is required for MbBV-mediated apoptosis. Our findings provide insight into the role that CypA plays in insect cellular immune response.
Collapse
Affiliation(s)
- Hang-Yu Tian
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Yan Hu
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Pan Zhang
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Wen-Xi Xing
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Cuixian Xu
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Dan Yu
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Yang Yang
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Kaijun Luo
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| | - Ming Li
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
7
|
Dongsheng Z, Zhiguang F, Junfeng J, Zifan L, Li W. Cyclophilin A Aggravates Collagen-Induced Arthritis via Promoting Classically Activated Macrophages. Inflammation 2018; 40:1761-1772. [PMID: 28756520 DOI: 10.1007/s10753-017-0619-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activated macrophages exhibiting diverse phenotypes and various functions contribute to the pathogenesis or amelioration of different diseases like cancer, inflammation, and infectious and autoimmune diseases. However, the mechanisms of macrophage polarization in inflamed joint and its effects on rheumatoid arthritis (RA) are still not clarified. This study is designed to explore the effects of cyclophilin A (CypA) on macrophage polarization and describe the underlying mechanisms. Collagen-induced arthritis (CIA) was employed to address the pro-arthritic effects of CypA. Flow cytometry was performed to investigate the populations of M1 and M2 macrophages in synovial tissues of the mice. Knockdown or overexpression of CypA macrophage cells was used to study the functions of CypA on macrophage polarization. Western blot was carried out to examine the potential signaling pathways. We found that CypA aggravated the severity of CIA in mice, as assessed by the increase of clinical score of inflammation, cartilage damage, and bone erosion. Moreover, the level of cytokines, such as IL-6, IL-1β, and IL-17, and the number of pro-inflammatory macrophages in synovial fluid were significantly elevated. In accordance with our observation, CypA dysregulation could actually influence the M1 macrophages polarization and pro-inflammatory cytokines production. Further mechanism study disclosed that CypA could regulate the transcriptional activity of NF-κB, the pivotal transcriptional factor regulating M1 polarization, dependent of its PPIase activity. Our findings provide evidence that PPIase CypA promoted macrophages polarization toward pro-inflammatory M1 phenotype via transcriptional activating NF-κB, thus leading to aggravated arthritis.
Collapse
Affiliation(s)
- Zhai Dongsheng
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Fu Zhiguang
- Institute of Stomatology, General Hospital of Chinese PLA, Beijing, 10085, People's Republic of China
| | - Jia Junfeng
- Department of Clinical Immunology, State Key Discipline of Cell Biology, First Affiliated Hospital, Fourth Military Medical University, No. 15 West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Lu Zifan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Wang Li
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Ahmed R, Kodgire S, Santhakumari B, Patil R, Kulkarni M, Zore G. Serum responsive proteome reveals correlation between oxidative phosphorylation and morphogenesis in Candida albicans ATCC10231. J Proteomics 2018; 185:25-38. [PMID: 29959084 DOI: 10.1016/j.jprot.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
To understand the impact of fetal bovine serum (FBS) on metabolism and cellular architecture in addition to morphogenesis, we have identified FBS responsive proteome of Candida albicans. FBS induced 34% hyphae and 60% pseudohyphae in C. albicans at 30 °C while 98% hyphae at 37 °C. LC-MS/MS analysis revealed that 285 proteins modulated significantly in response to FBS at 30 °C and 37 °C. Out of which 152 were upregulated and 62 were downregulated at 30 °C while 18 were up and 53 were downregulated at 37 °C. Functional annotation suggests that FBS may inhibit glycolysis and fermentative pathway and enhance oxidative phosphorylation (OxPhos), TCA cycle, amino acid and fatty acid metabolism indicating a use of alternative energy source by C. albicans. OxPhos inhibition assay using sodium azide corroborated the correlation between inhibition of glycolysis and enhanced OxPhos with pseudohyphae formation. C. albicans induced hyphae in response to FBS irrespective of down regulation of Ras1,Asr1/Asr2, indicates the possible involvement of MAPK and cAMP-PKA independent pathway. The Cell wall of cells grown in presence of FBS at 30 °C was rich in mannan, Beta 1,3-glucan and chitin while membranes were rich in ergosterol compared to those grown at 37 °C. SIGNIFICANCE OF THE STUDY This is the first study suggesting a correlation between OxPhos and morphogenesis especially pseudohyphae formation in C. albicans. Our data also indicate that fetal bovine serum (FBS) induced morphogenesis is multifactorial and may involve MAPK and cAMP-PKA independent pathway. In addition to morphogenesis, our study provides an insight in to the modulation of metabolism and cellular architecture of C. albicans in response to FBS.
Collapse
Affiliation(s)
- Radfan Ahmed
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Santosh Kodgire
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - B Santhakumari
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India.
| | - Mahesh Kulkarni
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
9
|
Xue C, Sowden MP, Berk BC. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases. Arterioscler Thromb Vasc Biol 2018; 38:986-993. [PMID: 29599134 DOI: 10.1161/atvbaha.117.310661] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/20/2018] [Indexed: 01/13/2023]
Abstract
CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Mark P Sowden
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- From the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY.
| |
Collapse
|
10
|
Yang L, Zhu Q, Gong J, Xie M, Jiao T. CyPA and Emmprin play a role in peri-implantitis. Clin Implant Dent Relat Res 2017; 20:102-109. [PMID: 29057571 DOI: 10.1111/cid.12549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Qing Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Jingjue Gong
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ming Xie
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| |
Collapse
|
11
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
12
|
Ivanchenko MG, Zhu J, Wang B, Medvecká E, Du Y, Azzarello E, Mancuso S, Megraw M, Filichkin S, Dubrovsky JG, Friml J, Geisler M. The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development 2015; 142:712-21. [PMID: 25617431 DOI: 10.1242/dev.113225] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclophilin A is a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation.
Collapse
Affiliation(s)
- Maria G Ivanchenko
- Oregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | - Jinsheng Zhu
- University of Fribourg, Department of Biology - Plant Biology, CH-1700 Fribourg, Switzerland
| | - Bangjun Wang
- University of Fribourg, Department of Biology - Plant Biology, CH-1700 Fribourg, Switzerland School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Eva Medvecká
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg A-3400, Austria
| | - Yunlong Du
- VIB Department of Plant Systems Biology and Department of Plant Biotechnology and Genetics, Ghent University, Gent 9052, Belgium Key Laboratory of Agro-biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China
| | - Elisa Azzarello
- LINV-DIPSAA-Università di Firenze, Viale delle idee 30, Sesto Fiorentino 50019, Italy
| | - Stefano Mancuso
- LINV-DIPSAA-Università di Firenze, Viale delle idee 30, Sesto Fiorentino 50019, Italy
| | - Molly Megraw
- Oregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | - Sergei Filichkin
- Oregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | - Joseph G Dubrovsky
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Biología Molecular de Plantas, Apartado Postal 510-3, 62210 Cuernavaca, Morelos, México
| | - Jiří Friml
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg A-3400, Austria VIB Department of Plant Systems Biology and Department of Plant Biotechnology and Genetics, Ghent University, Gent 9052, Belgium
| | - Markus Geisler
- University of Fribourg, Department of Biology - Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Nath PR, Isakov N. Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunol Lett 2015; 163:120-31. [DOI: 10.1016/j.imlet.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
14
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
15
|
Cyclophilin A: a key player for human disease. Cell Death Dis 2013; 4:e888. [PMID: 24176846 PMCID: PMC3920964 DOI: 10.1038/cddis.2013.410] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/23/2023]
Abstract
Cyclophilin A (CyPA) is a ubiquitously distributed protein belonging to the immunophilin family. CyPA has peptidyl prolyl cis-trans isomerase (PPIase) activity, which regulates protein folding and trafficking. Although CyPA was initially believed to function primarily as an intracellular protein, recent studies have revealed that it can be secreted by cells in response to inflammatory stimuli. Current research in animal models and humans has provided compelling evidences supporting the critical function of CyPA in several human diseases. This review discusses recently available data about CyPA in cardiovascular diseases, viral infections, neurodegeneration, cancer, rheumatoid arthritis, sepsis, asthma, periodontitis and aging. It is believed that further elucidations of the role of CyPA will provide a better understanding of the molecular mechanisms underlying these diseases and will help develop novel pharmacological therapies.
Collapse
|
16
|
Cyclophilins as modulators of viral replication. Viruses 2013; 5:1684-701. [PMID: 23852270 PMCID: PMC3738956 DOI: 10.3390/v5071684] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 01/11/2023] Open
Abstract
Cyclophilins are peptidyl‐prolyl cis/trans isomerases important in the proper folding of certain proteins. Mounting evidence supports varied roles of cyclophilins, either positive or negative, in the life cycles of diverse viruses, but the nature and mechanisms of these roles are yet to be defined. The potential for cyclophilins to serve as a drug target for antiviral therapy is evidenced by the success of non-immunosuppressive cyclophilin inhibitors (CPIs), including Alisporivir, in clinical trials targeting hepatitis C virus infection. In addition, as cyclophilins are implicated in the predisposition to, or severity of, various diseases, the ability to specifically and effectively modulate their function will prove increasingly useful for disease intervention. In this review, we will summarize the evidence of cyclophilins as key mediators of viral infection and prospective drug targets.
Collapse
|
17
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Kim IS, Kim YS, Kim H, Jin I, Yoon HS. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol Cells 2013; 35:210-8. [PMID: 23512334 PMCID: PMC3887908 DOI: 10.1007/s10059-013-2258-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023] Open
Abstract
Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
| | - Young-Saeng Kim
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun Kim
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ingnyol Jin
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ho-Sung Yoon
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
19
|
Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2012; 2:142-50. [PMID: 22482711 PMCID: PMC3322363 DOI: 10.1016/j.coviro.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/01/2012] [Accepted: 02/11/2012] [Indexed: 12/19/2022]
Abstract
TRIM5 is a restriction factor that blocks retrovirus infection soon after the virion core enters the cell cytoplasm. Restriction activity is targeted to the virion core via recognition of the capsid protein lattice that encases the viral genomic RNA. In common with all of the many TRIM family members, TRIM5 has RING, B-box, and coiled-coil domains. As an E3 ubiquitin ligase TRIM5 cooperates with the heterodimeric E2, UBC13/UEV1A, to activate the TAK1 (MAP3K7) kinase, NF-κB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines. TAK1, UBC13, and UEV1A all contribute to TRIM5-mediated retrovirus restriction activity. Interaction of the carboxy-terminal PRYSPRY or cyclophilin domains of TRIM5 with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. Structural and biochemical studies on TRIM5 have opened a much needed window on how the innate immune system detects the distinct molecular features of HIV-1 and other retroviruses.
Collapse
Affiliation(s)
- Markus G Grütter
- Department of Biochemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
20
|
Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 2011; 7:e1002439. [PMID: 22174692 PMCID: PMC3234246 DOI: 10.1371/journal.ppat.1002439] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/01/2011] [Indexed: 01/10/2023] Open
Abstract
Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment.
Collapse
Affiliation(s)
- Torsten Schaller
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Karen E. Ocwieja
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Jane Rasaiyaah
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Amanda J. Price
- Medical Research Council Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge, United Kingdom
| | - Troy L. Brady
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Shoshannah L. Roth
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Stéphane Hué
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Adam J. Fletcher
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mahdad Noursadeghi
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Richard G. Jenner
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge, United Kingdom
| | - Frederic D. Bushman
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Towers
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
21
|
Dilworth D, Gudavicius G, Leung A, Nelson CJ. The roles of peptidyl-proline isomerases in gene regulation. Biochem Cell Biol 2011; 90:55-69. [PMID: 21999350 DOI: 10.1139/o11-045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins and enzymes provides a dynamic and reversible means to control protein function and transmit biological signals. While covalent modifications such as phosphorylation and acetylation have drawn much attention, in the past decade the involvement of peptidyl-proline isomerases (PPIs) in signaling and post-translational modification of protein function has become increasingly apparent. Three distinct families of PPI enzymes (parvulins, cyclophilins, and FK506-binding proteins (FKBPs)) each have the capacity to catalyze cis-trans proline isomerization in substrate proteins, and this modification can regulate both structure and function. In eukaryotic cells, a subset of these enzymes is localized to the nucleus, where they regulate gene expression at multiple control points. Here we summarize this body of work that together establishes a clear role of these enzymes as evolutionarily conserved players in the control of both transcription of mRNAs and the assembly of chromatin.
Collapse
Affiliation(s)
- David Dilworth
- The Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | | | | | |
Collapse
|
22
|
Kumar KRR, Kirti PB. Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin. PLANT MOLECULAR BIOLOGY 2011; 75:497-513. [PMID: 21298396 DOI: 10.1007/s11103-011-9747-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/21/2011] [Indexed: 05/22/2023]
Abstract
The wild relatives of peanut are resistant to various economically important diseases including late leaf spot (LLS) caused by Phaeoisariopsis personata, compared with the susceptible cultivated peanut (Arachis hypogaea L.). The interaction of the late leaf spot pathogen, Phaeoisariopsis personata and the highly resistant, diploid peanut wild species, Arachis diogoi was analyzed at the molecular level by differential gene expression studies. Genes up-regulated with in 48 h of pathogen challenge were isolated as partial cDNAs. Some of the isolated genes, which are shown to be involved in the first line of defense in plants, were further characterized with respect to their transcriptional regulation in response to pathogen. Among the isolated clones, two were found to encode cyclophilin like proteins. One of the two isolated partial cDNAs encoding cyclophilin like proteins was extended using 5' RACE. The full length cDNA, designated as AdCyp, was 886 bp in length and encodes a polypeptide of 172 amino acids. Southern hybridization suggests that AdCyp is possibly coded by a single gene and at least one more identical gene is present in Arachis diogoi genome. AdCyp exhibits evolutionary conservation across the kingdoms. Phylogenetic analysis showed that AdCyp belongs to the subgroup I of Group I in cyclophilins. A translational fusion of GFP-AdCyp was found to localize to both cytosol and nucleus. AdCyp transcripts were found to accumulate in response to the treatments with pathogen as well as phytohormones. Constitutive heterologous expression of AdCyp resulted in enhanced resistance to Ralstonia solanacearum and reduced susceptibility towards Phytophthora parasitica var. nicotianae in transgenic tobacco and the resistance was associated with higher transcript levels of various defense related genes.
Collapse
|
23
|
Kim IS, Jin I, Yoon HS. Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione. Cell Stress Chaperones 2011; 16:1-14. [PMID: 20680535 PMCID: PMC3024093 DOI: 10.1007/s12192-010-0215-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/20/2023] Open
Abstract
Cyclophilins are conserved cis-trans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1 protein was decarbonylated during MD stress. Decarbonylation of Cpr1 protein in KNU5377Y strain seems to be caused by a rapid and efficient gene expression program via stress response factors Hsf1, Yap1, and Msn2. Hence, the decarbonylated Cpr1 protein may be critical in cellular redox homeostasis and may be a potential chaperone to menadione.
Collapse
Affiliation(s)
- Il-Sup Kim
- Department of Microbiology, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | | | | |
Collapse
|
24
|
Pemberton TJ, Kay JE. Identification and comparative analysis of the peptidyl-prolyl cis/trans isomerase repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe. Comp Funct Genomics 2010; 6:277-300. [PMID: 18629211 PMCID: PMC2447506 DOI: 10.1002/cfg.482] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/01/2005] [Accepted: 05/26/2005] [Indexed: 11/11/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three
member families that are found throughout nature and are present in all the major
compartments of the cell. Their numbers appear to be linked to the number of genes in
their respective genomes, although we have found the human repertoire to be smaller
than expected due to a reduced cyclophilin repertoire. We show here that whilst the
members of the cyclophilin family (which are predominantly found in the nucleus
and cytoplasm) and the parvulin family (which are predominantly nuclear) are
largely conserved between different repertoires, the FKBPs (which are predominantly
found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears
that the cyclophilins and parvulins have evolved to perform conserved functions,
while the FKBPs have evolved to fill ever-changing niches within the constantly
evolving organisms. Many orthologous subgroups within the different PPIase families
appear to have evolved from a distinct common ancestor, whereas others, such as the
mitochondrial cyclophilins, appear to have evolved independently of one another. We
have also identified a novel parvulin within Drosophila melanogaster that is unique to
the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast
repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases
solely with the budding yeast but it does share a majority with the higher eukaryotes
in this study, unlike the budding yeast. It therefore appears that, in comparison with
Schizosaccharomyces pombe, Saccharomyces cerevisiae is a poor representation of the
higher eukaryotes for the study of PPIases.
Collapse
Affiliation(s)
- Trevor J Pemberton
- The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton ,East Sussex BN1 9PX, United Kingdom.
| | | |
Collapse
|
25
|
Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med 2009; 7:48. [PMID: 19758442 PMCID: PMC2759957 DOI: 10.1186/1741-7015-7-48] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023] Open
Abstract
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
26
|
Bane FT, Bannon JH, Pennington SR, Campiani G, Campaini G, Williams DC, Zisterer DM, Mc Gee MM. The microtubule-targeting agents, PBOX-6 [pyrrolobenzoxazepine 7-[(dimethylcarbamoyl)oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine] and paclitaxel, induce nucleocytoplasmic redistribution of the peptidyl-prolyl isomerases, cyclophilin A and pin1, in malignant hematopoietic cells. J Pharmacol Exp Ther 2009; 329:38-47. [PMID: 19131583 DOI: 10.1124/jpet.108.148130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Microtubule assembly and disassembly is required for the maintenance of cell structure, mobility, and division. However, the cellular and biochemical implications of microtubule disruption are not fully understood. Using a proteomic approach, we found that the peptidyl-prolyl isomerase, cyclophilin A, was increased in plasma membrane extracts from chronic myeloid leukemia cells after microtubule disruption. In addition, we found that two peptidyl-prolyl isomerases, cyclophilin A and pin1, are overexpressed up to 10-fold in hematological malignancies compared with normal peripheral blood mononuclear cells. Although previous reports suggest that cyclophilin A is localized to the cytosol of mammalian cells, we found that cyclophilin A and pin1 are both localized to the nucleus and nuclear domains in hematopoietic cells. Microtubule disruption of hematopoietic cells caused a dramatic subcellular redistribution of cyclophilin A and pin1 from the nucleus to the cytosol and plasma membrane. We suggest that this accounts for the increased cyclophilin A at the plasma membrane of chronic myeloid leukemia cells after microtubule disruption. The subcellular redistribution of cyclophilin A and pin1 occurred in a c-Jun NH(2)-terminal kinase- and serine protease-dependent manner. Moreover, the altered subcellular localization of the peptidyl-prolyl isomerases occurred in a dose- and time-dependent manner after microtubule disruption and was found to correlate with G(2)/M arrest and precede induced cell death. These results suggest that the function of peptidyl-prolyl isomerases may be influenced by microtubule dynamics throughout the cell cycle, and their altered localization may be an important part of the mechanism by which microtubule-disrupting agents exert their cytostatic effects.
Collapse
Affiliation(s)
- Fiona T Bane
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C, Glaser P, Coppée JY, François JM, Latgé JP. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics 2008; 9:417. [PMID: 18796135 PMCID: PMC2556354 DOI: 10.1186/1471-2164-9-417] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 09/16/2008] [Indexed: 11/21/2022] Open
Abstract
Background Establishment of aspergillosis is depending upon the exit from dormancy and germination of the conidia of Aspergillus fumigatus in the lung. To gain an understanding of the molecular mechanisms underlying the early steps of conidial germination, we undertook a transcriptomic analysis using macroarrays constructed with PCR fragments from > 3,000 genes (around one third of the annotated A. fumigatus genome). Results Major results of this analysis are the following: (i) conidia stored pre-packaged mRNAs transcripts (27% of genes have transcripts in the resting conidia; (ii) incubation at 37°C in a nutritive medium induced up- and down-regulation of genes: 19% of the total number of genes deposited on the array were up-regulated whereas 22% of the genes with pre-packaged mRNA in the resting conidia were down-regulated; (iii) most modifications were seen during the first 30 min of germination whereas very little modification of gene expression occurred during the following hour; (iv) one-year old conidia and one-week old conidia behaved similarly at transcriptional level. Conclusion Transcriptomic data indicate that the exit from dormancy is associated with a shift from a fermentative metabolism to a respiratory metabolism as well as a trend toward immediate protein synthesis.
Collapse
Affiliation(s)
- Claude Lamarre
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, Nyanda AM, Zhang J, Fan GH. Cyclophilin A Is Required for CXCR4-mediated Nuclear Export of Heterogeneous Nuclear Ribonucleoprotein A2, Activation and Nuclear Translocation of ERK1/2, and Chemotactic Cell Migration. J Biol Chem 2008; 283:623-637. [DOI: 10.1074/jbc.m704934200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Mishra AK, Gangwani L, Davis RJ, Lambright DG. Structural insights into the interaction of the evolutionarily conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes. Proc Natl Acad Sci U S A 2007; 104:13930-5. [PMID: 17704259 PMCID: PMC1955815 DOI: 10.1073/pnas.0704915104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genomes encode a zinc finger protein (ZPR1) with tandem ZPR1 domains. In response to growth stimuli, ZPR1 assembles into complexes with eukaryotic translation elongation factor 1A (eEF1A) and the survival motor neurons protein. To gain insight into the structural mechanisms underlying the essential function of ZPR1 in diverse organisms, we determined the crystal structure of a ZPR1 domain tandem and characterized the interaction with eEF1A. The ZPR1 domain consists of an elongation initiation factor 2-like zinc finger and a double-stranded beta helix with a helical hairpin insertion. ZPR1 binds preferentially to GDP-bound eEF1A but does not directly influence the kinetics of nucleotide exchange or GTP hydrolysis. However, ZPR1 efficiently displaces the exchange factor eEF1Balpha from preformed nucleotide-free complexes, suggesting that it may function as a negative regulator of eEF1A activation. Structure-based mutational and complementation analyses reveal a conserved binding epitope for eEF1A that is required for normal cell growth, proliferation, and cell cycle progression. Structural differences between the ZPR1 domains contribute to the observed functional divergence and provide evidence for distinct modalities of interaction with eEF1A and survival motor neuron complexes.
Collapse
Affiliation(s)
- Ashwini K. Mishra
- *Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology and
| | - Laxman Gangwani
- *Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology and
| | - Roger J. Davis
- *Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology and
- Howard Hughes Medical Institute,University of Massachusetts Medical School, Worcester, MA 01655
| | - David G. Lambright
- *Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology and
- To whom correspondence may be addressed at:
Program in Molecular Medicine, Two Biotech, 373 Plantation Street, Worcester, MA 01605. E-mail:
| |
Collapse
|
30
|
Minard KI, Carroll CA, Weintraub ST, Mc-Alister-Henn L. Changes in disulfide bond content of proteins in a yeast strain lacking major sources of NADPH. Free Radic Biol Med 2007; 42:106-17. [PMID: 17157197 PMCID: PMC1761109 DOI: 10.1016/j.freeradbiomed.2006.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
A yeast mutant lacking the two major cytosolic sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1p) and NADP+-specific isocitrate dehydrogenase (Idp2p), has been demonstrated to lose viability when shifted to medium with acetate or oleate as the carbon source. This loss in viability was found to correlate with an accumulation of endogenous oxidative by-products of respiration and peroxisomal beta-oxidation. To assess effects on cellular protein of endogenous versus exogenous oxidative stress, a proteomics approach was used to compare disulfide bond-containing proteins in the idp2Deltazwf1Delta strain following shifts to acetate and oleate media with those in the parental strain following similar shifts to media containing hydrogen peroxide. Among prominent disulfide bond-containing proteins were several with known antioxidant functions. These and several other proteins were detected as multiple electrophoretic isoforms, with some isoforms containing disulfide bonds under all conditions and other isoforms exhibiting a redox-sensitive content of disulfide bonds, i.e., in the idp2Deltazwf1Delta strain and in the hydrogen peroxide-challenged parental strain. The disulfide bond content of some isoforms of these proteins was also elevated in the parental strain grown on glucose, possibly suggesting a redirection of NADPH reducing equivalents to support rapid growth. Further examination of protein carbonylation in the idp2Deltazwf1Delta strain shifted to oleate medium also led to identification of common and unique protein targets of endogenous oxidative stress.
Collapse
|
31
|
Soprano DR, Teets BW, Soprano KJ. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. VITAMINS AND HORMONES 2007; 75:69-95. [PMID: 17368312 DOI: 10.1016/s0083-6729(06)75003-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Retinoic acid (RA), the most potent natural form of vitamin A, plays an important role in many diverse biological processes such as embryogenesis and cellular differentiation. This chapter is a review of the mechanism of action of RA and the role of specific RA-regulated genes during the cellular differentiation of embryonal carcinoma (EC) and embryonic stem (ES) cells. RA acts by binding to its nuclear receptors and inducing transcription of specific target genes. The most studied mouse EC cell lines include F9 cells, which can be induced by RA to differentiate into primitive, parietal, and visceral endodermal cells; and P19 cells, which can differentiate to endodermal and neuronal cells upon RA treatment. ES cells can be induced to differentiate into a number of different cell types; many of which require RA treatment. Over the years, many RA-regulated genes have been discovered in EC and ES cells using a diverse set of techniques. Current research focuses on the elucidation how these genes affect differentiation in EC and ES cells using a variety of molecular biology approaches. However, the exact molecule events that lead from a pluripotent stem cell to a fully differentiated cell following RA treatment are yet to be determined.
Collapse
Affiliation(s)
- Dianne Robert Soprano
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
32
|
Lu YC, Song J, Cho HY, Fan G, Yokoyama KK, Chiu R. Cyclophilin A Protects Peg3 from Hypermethylation and Inactive Histone Modification. J Biol Chem 2006; 281:39081-7. [PMID: 17071620 DOI: 10.1074/jbc.m606687200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. Disruption of normal imprinting leads to abnormal embryogenesis, certain inherited diseases, and is associated with various cancers. In the context of screening for the gene(s) responsible for the alteration of phenotype in cyclophilin A knockdown (CypA-KD) P19 cells, we observed a silent paternally expressed gene, Peg3. Treatment of CypA-KD P19 cells with the DNA demethylating agent 5-aza-dC reversed the silencing of Peg3 biallelically. Genomic bisulfite sequencing and methylation-specific PCR revealed DNA hypermethylation in CypA-KD P19 cells, as the normally unmethylated paternal allele acquired methylation that resulted in biallelic methylation of Peg3. Chromatin immunoprecipitation assays indicated a loss of acetylation and a gain of lysine 9 trimethylation in histone 3, as well as enhanced DNA methyltransferase 1 and MBD2 binding on the cytosine-guanine dinucleotide (CpG) islands of Peg3. Our results indicate that DNA hypermethylation on the paternal allele and allele-specific acquisition of histone methylation leads to silencing of Peg3 in CypA-KD P19 cells. This study is the first demonstration of the epigenetic function of CypA in protecting the paternal allele of Peg3 from DNA methylation and inactive histone modifications.
Collapse
Affiliation(s)
- Ying-Chun Lu
- Dental Research Institute, UCLA School of Dentistry and Department of Human Genetics, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Gangwani L. Deficiency of the zinc finger protein ZPR1 causes defects in transcription and cell cycle progression. J Biol Chem 2006; 281:40330-40. [PMID: 17068332 DOI: 10.1074/jbc.m608165200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger protein ZPR1 is present in both the cytoplasm and nucleoplasm. Cell cycle analysis demonstrates that ZPR1 undergoes major changes in subcellular distribution during proliferation. ZPR1 is diffusely localized throughout the cell during the G(1) and G(2)/M phases of the cell cycle. In contrast, ZPR1 redistributes to the nucleus during S phase and ZPR1 exhibits prominent co-localization with the survival motor neurons protein and the histone gene-specific transcription factor NPAT in subnuclear foci, including Cajal bodies that associate with histone gene clusters. ZPR1 deficiency causes disruption of survival motor neurons and NPAT localization within the nucleus, blocks S phase progression, and arrests cells in both the G(1) and G(2) phases of the cell cycle. These changes in subnuclear architecture and cell cycle progression may be caused by transcriptional defects in ZPR1-deficient cells, including decreased histone gene expression.
Collapse
Affiliation(s)
- Laxman Gangwani
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
34
|
Kim IS, Yun HS, Park IS, Sohn HY, Iwahashi H, Jin IN. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J Biosci Bioeng 2006; 102:288-96. [PMID: 17116574 DOI: 10.1263/jbb.102.288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 06/30/2006] [Indexed: 11/17/2022]
Abstract
To investigate the tolerance factor of Saccharomyces cerevisiae KNU5377 against various types of environmental stress during fermentation, we identified the protein that is upregulated at high temperatures. The highly upregulated protein was high-score-matched as a cytoplasmic peptidyl-prolyl cis-trans isomerase, cyclophilin (Cpr1p), by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). We constructed a CPR1-deleted KNU5377 strain (KNU5377Y cpr1Delta) to determine the roles of the protein under fermentative or stress condition. The growth of the S. cerevisiae KNU5377Y cpr1Delta strain was completely inhibited under the following conditions: heat (40 degrees C), hydrogen peroxide (20-30 mM), menadione (0.3 mM), ethanol (16%), sulfuric acid (5 mm), and lactic acid (0.4-0.8%). However, the wild-type and cpr1Delta mutant of S. cerevisiae BY4741 as a positive control did not show differences in sensitivity to stress. It is interesting to note that the wild-type KNU5377Y and KNU5377Y cpr1Delta mutant showed high sensitivity against various stresses, particularly, acid stress such as in the presence of sulfuric and lactic acid. Although the alcohol fermentation rate of the KNU5377Y cpr1Delta mutant markedly decreased with an increase in temperature up to 40 degrees C, we observed no decrease in that of the wild-type strain under the same conditions. These results suggest that CPR1 contributes to the stress tolerance of KNU5377 against various types of environmental stress caused during fermentation, thus leading to the physiological role of maintaining an alcohol fermentation yield, even at high temperatures such as 40 degrees C.
Collapse
Affiliation(s)
- Il-Sup Kim
- Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Pemberton TJ. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC Genomics 2006; 7:244. [PMID: 16995943 PMCID: PMC1618848 DOI: 10.1186/1471-2164-7-244] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/22/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. RESULTS PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. CONCLUSION Given this data, we would hypothesize that: (i) the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii) evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii) whilst the cyclophilins and parvulins have evolved to perform conserved functions, the FKBPs have evolved to perform more variable roles. Also, the repertoire of Cryptococcus neoformans may represent a better model fungal system within which to study the functions of the PPIases as its genome size and genetic tractability are equal to those of Saccharomyces cerevisiae, whilst its repertoires exhibits greater orthology to that of humans. However, further experimental investigations are required to confirm this.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
36
|
Brosson D, Kuhn L, Delbac F, Garin J, P Vivarès C, Texier C. Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia): a reference map for proteins expressed in late sporogonial stages. Proteomics 2006; 6:3625-35. [PMID: 16691553 DOI: 10.1002/pmic.200500796] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is a unicellular obligate intracellular parasite considered as an emerging opportunistic human pathogen. The differentiation phase of its life cycle leads to the formation of stress-resistant spores. The E. cuniculi genome (2.9 Mbp) having been sequenced, we undertook a descriptive proteomic study of a spore-rich cell population isolated from culture supernatants. A combination of 2-DE and 2-DE-free techniques was applied to whole-cell protein extracts. Protein identification was performed using an automated MALDI-TOF-MS platform and a nanoLC-MS/MS instrument. A reference 2-DE map of about 350 major spots with multiple isoforms was obtained, and for the first time in microsporidia, a large set of unique proteins (177) including proteins with unknown function in a proportion of 25.6% was identified. The data are mainly discussed with reference to secretion and spore structural features, energy and carbohydrate metabolism, cell cycle control and parasite survival in the environment.
Collapse
Affiliation(s)
- Damien Brosson
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
37
|
Yurchenko V, Constant S, Bukrinsky M. Dealing with the family: CD147 interactions with cyclophilins. Immunology 2006; 117:301-9. [PMID: 16476049 PMCID: PMC1782239 DOI: 10.1111/j.1365-2567.2005.02316.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/31/2005] [Accepted: 11/15/2005] [Indexed: 01/05/2023] Open
Abstract
CD147 is a widely expressed plasma membrane protein that has been implicated in a variety of physiological and pathological activities. It is best known for its ability to function as extracellular matrix metalloproteinase inducer (hence the other name for this protein, EMMPRIN), but has also been shown to regulate lymphocyte responsiveness, monocarboxylate transporter expression and spermatogenesis. These functions reflect multiple interacting partners of CD147. Recently, interaction of CD147 with proteins of the cyclophilin family has been demonstrated and activity of CD147 as a signalling receptor to extracellular cyclophilins A and B has been shown. Given that extracellular cyclophilins are potent chemotactic agents for various immune cells, further studies of the role of cyclophilin-CD147 interaction in inflammation followed. They demonstrated that agents targeting CD147 or cyclophilin had a significant anti-inflammatory effect in animal models of acute or chronic lung diseases and rheumatoid arthritis. Here, we review the current knowledge about interactions between CD147 and cyclophilins.
Collapse
|
38
|
Pemberton TJ, Kay JE. The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:927-45. [PMID: 16134115 DOI: 10.1002/yea.1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe is comprised of nine members that are distributed over all three of its chromosomes and range from small single-domain to large multi-domain proteins. Each cyclophilin possesses only a single prolyl-isomerase domain, and these vary in their degree of consensus, including at positions that are likely to affect their drug-binding ability and catalytic activity. The additional identified motifs are involved in putative protein or RNA interactions, while a novel domain that is specific to SpCyp7 and its orthologues may have functions that include an interaction with hnRNPs. The Sz. pombe cyclophilins are found throughout the cell but appear to be absent from the mitochondria, which is unique among the characterized eukaryotic repertoires. SpCyp5, SpCyp6 and SpCyp8 have exhibited significant upregulation of their expression during the meiotic cycle and SpCyp5 has exhibited significant upregulation of its expression during heat stress. All nine have identified members in the repertoires of H. sapiens, D. melanogaster and A. thaliana. However, only three identified members in the cyclophilin repertoire of S. cerevisiae with SpCyp7 identifying a fourth protein that is not a member of the recognized repertoire due to its possession of a degenerate prolyl-isomerase domain. The cyclophilin repertoire of Sz. pombe therefore represents a better model group for the study of cyclophilin function in the higher eukaryotes.
Collapse
Affiliation(s)
- Trevor J Pemberton
- The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, East Sussex BN1 9PX, UK.
| | | |
Collapse
|
39
|
Berthoux L, Sebastian S, Sokolskaja E, Luban J. Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci U S A 2005; 102:14849-53. [PMID: 16203999 PMCID: PMC1239943 DOI: 10.1073/pnas.0505659102] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peptidyl-prolyl isomerase cyclophilin A (CypA) embraces an exposed, proline-rich loop on HIV-1 capsid (CA) and renders reverse transcription complexes resistant to an antiviral activity in human cells. A CypA fusion with TRIM5 that is unique to New World owl monkeys also targets HIV-1 CA, but this interaction potently inhibits infection. A similar block to HIV-1 infection in Old World monkeys is attributable to the alpha isoform of the TRIM5 orthologue in these species. To determine whether HIV-1 restriction by Old World monkey TRIM5alpha is modulated by the CA-CypA interaction, RNA interference was used to disrupt CypA in cells from African green monkeys and rhesus macaques. HIV-1 infectivity increased in response to CypA knock-down to the same extent that it increased in response to TRIM5 knock-down. CypA knock-down eliminated the HIV-1 stimulatory effect of cyclosporin A (CsA), a competitive inhibitor of the CypA-CA interaction, or of CA mutants that block binding to CypA but caused no change in titer of retroviruses that don't interact with CypA. Simultaneous knock-down of both CypA and TRIM5 caused minimal additional increase in titer, suggesting that CypA inhibits HIV-1 replication in these cells because it is required for CA recognition by TRIM5alpha. Finally, CsA increased HIV-1 titer in otherwise nonrestrictive feline cells but only after these cells were transduced with Old World monkey TRIM5alpha. Thus, CypA is required for HIV-1 restriction by Old World monkey orthologues of TRIM5alpha.
Collapse
Affiliation(s)
- Lionel Berthoux
- Departments of Microbiology and Medicine, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Cyclophilins (Enzyme Commission (EC) number 5.1.2.8) belong to a group of proteins that have peptidyl-prolyl cis-trans isomerase activity; such proteins are collectively known as immunophilins and also include the FK-506-binding proteins and the parvulins. Cyclophilins are found in all cells of all organisms studied, in both prokaryotes and eukaryotes; humans have a total of 16 cyclophilin proteins, Arabidopsis up to 29 and Saccharomyces 8. The first member of the cyclophilins to be identified in mammals, cyclophilin A, is the major cellular target for, and thus mediates the actions of, the immunosuppressive drug cyclosporin A. Cyclophilin A forms a ternary complex with cyclosporin A and the calcium-calmodulin-activated serine/threonine-specific protein phosphatase calcineurin; formation of this complex prevents calcineurin from regulating cytokine gene transcription. Recent studies have implicated a diverse array of additional cellular functions for cyclophilins, including roles as chaperones and in cell signaling.
Collapse
Affiliation(s)
- Ping Wang
- The Research Institute for Children, Children's Hospital, Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA 70118, USA.
| | | |
Collapse
|
41
|
Gangwani L, Flavell RA, Davis RJ. ZPR1 is essential for survival and is required for localization of the survival motor neurons (SMN) protein to Cajal bodies. Mol Cell Biol 2005; 25:2744-56. [PMID: 15767679 PMCID: PMC1061650 DOI: 10.1128/mcb.25.7.2744-2756.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation of the survival motor neurons 1 (SMN1) gene causes motor neuron apoptosis and represents the major cause of spinal muscular atrophy in humans. Biochemical studies have established that the SMN protein plays an important role in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and that the SMN complex can interact with the zinc finger protein ZPR1. Here we report that targeted ablation of the Zpr1 gene in mice disrupts the subcellular localization of both SMN and spliceosomal snRNPs. Specifically, SMN localization to Cajal bodies and gems was not observed in cells derived from Zpr1-/- embryos and the amount of cytoplasmic snRNP detected in Zpr1-/- embryos was reduced compared with that in wild-type embryos. We found that Zpr1-/- mice die during early embryonic development, with reduced proliferation and increased apoptosis. These effects of Zpr1 gene disruption were confirmed and extended in studies of cultured motor neuron-like cells using small interfering RNA-mediated Zpr1 gene suppression; ZPR1 deficiency caused growth cone retraction, axonal defects, and apoptosis. Together, these data indicate that ZPR1 contributes to the regulation of SMN complexes and that it is essential for cell survival.
Collapse
Affiliation(s)
- Laxman Gangwani
- Program in Molecular Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, 373 Plantation St., Worcester, MA 01605, USA
| | | | | |
Collapse
|
42
|
Lovell MA, Xiong S, Markesbery WR, Lynn BC. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res 2005; 30:113-22. [PMID: 15756939 DOI: 10.1007/s11064-004-9692-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence supports a role for altered mitochondrial function in the pathogenesis of neuron degeneration in Alzheimer's disease (AD). Although several studies have examined the effect of amyloid beta peptide (Abeta), on activities of individual proteins in primary neuron cultures, there have been no studies of the effects of Abeta on the mitochondrial proteome. Here, we quantitatively measured changes in mitochondrial proteins of primary rat cortical neuron cultures exposed to 25 microM Abeta(25-35) for 16 h using isotope coded affinity tag (ICAT) labeling and 2-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS) which allows simultaneous identification and quantification of cysteine-containing proteins. The analysis of enriched mitochondrial fractions identified 10 proteins including sodium/potassium-transporting ATPase, cofilin, dihydropyrimidinase, pyruvate kinase and voltage dependent anion channel 1 that were statistically significantly (P < 0.05) altered in Abeta-treated cultures. Elevations of proteins associated with energy production suggest that cells undergoing Abeta-mediated apoptosis increase synthesis of proteins essential for ATP production and efflux in an attempt to maintain metabolic function.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
43
|
Yurchenko V, Pushkarsky T, Li JH, Dai WW, Sherry B, Bukrinsky M. Regulation of CD147 Cell Surface Expression. J Biol Chem 2005; 280:17013-9. [PMID: 15671024 DOI: 10.1074/jbc.m412851200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD147, also known as extracellular matrix metalloproteinase inducer, is a regulator of matrix metalloproteinase production and serves as a signaling receptor for extracellular cyclophilins. Here we demonstrate that the cell surface expression of CD147 is regulated by cyclophilins via the transmembrane domain of CD147. Solution binding experiments demonstrated that the transmembrane domain was both necessary and sufficient for CD147 binding to cyclophilin A (CypA). Treatment with cyclosporin A significantly reduced surface expression of CD147 and of CD8-CD147 fusion protein carrying the extracellular domain of CD8 fused to the transmembrane and cytoplasmic domains of CD147, but did not affect expression of CD8. Peptide binding studies demonstrated specific interaction between CypA and the proline-containing peptide from the CD147 transmembrane domain. Mutation of this proline residue reduced binding of CD147-derived peptides to CypA and also diminished transport of CD147 to the plasma membrane without reducing the total level of CD147 expression. These results suggest involvement of a cyclophilin-related protein in CD147 cell surface expression and provide molecular details for regulation of CD147 trafficking by cyclophilins.
Collapse
Affiliation(s)
- Vyacheslav Yurchenko
- Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
44
|
Arévalo-Rodríguez M, Heitman J. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:17-29. [PMID: 15643056 PMCID: PMC544151 DOI: 10.1128/ec.4.1.17-29.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 10/15/2004] [Indexed: 01/28/2023]
Abstract
Cyclophilin A is conserved from yeast to humans and mediates the ability of cyclosporine to perturb signal transduction cascades via inhibition of calcineurin. Cyclophilin A also catalyzes cis-trans peptidyl-prolyl isomerization during protein folding or conformational changes; however, cyclophilin A is not essential in yeast or human cells, and the true biological functions of this highly conserved enzyme have remained enigmatic. In Saccharomyces cerevisiae, cyclophilin A becomes essential in cells compromised for the nuclear prolyl-isomerase Ess1, and cyclophilin A physically interacts with two nuclear histone deacetylase complexes, Sin3-Rpd3 and Set3C, which both control meiosis. Here we show that cyclophilin A is localized to the nucleus in yeast cells and governs the meiotic gene program to promote efficient sporulation. The prolyl-isomerase activity of cyclophilin A is required for this meiotic function. We document that cyclophilin A physically associates with the Set3C histone deacetylase and analyze in detail the structure of this protein-protein complex. Genetic studies support a model in which cyclophilin A controls meiosis via Set3C and an additional target. Our findings reveal a novel nuclear role for cyclophilin A in governing the transcriptional program required for the vegetative to meiotic developmental switch in budding yeast.
Collapse
Affiliation(s)
- Miguel Arévalo-Rodríguez
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
45
|
Chen ZJ, Vetter M, Chang GD, Liu S, Che D, Ding Y, Kim SS, Chang CH. Cyclophilin A functions as an endogenous inhibitor for membrane-bound guanylate cyclase-A. Hypertension 2004; 44:963-8. [PMID: 15466660 DOI: 10.1161/01.hyp.0000145859.94894.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclophilin A (CypA), a receptor for the immunosuppressive agent cyclosporin A, is a cis-trans-peptidyl-prolyl isomerase (PPIase). It accelerates the cis-trans isomerization of prolyl-peptide bonds. CypA binds and regulates the activity of a variety of proteins. Atrial natriuretic factor (ANF) and its receptor membrane-bound guanylate cyclase-A (GC-A) are involved in the regulation of blood pressure. We examined whether CypA affects the activation of GC-A by ANF. The results showed that CypA associated with GC-A. Interestingly, binding of ANF to GC-A released CypA. Transfection of CypA inhibited ANF-stimulated GC-A activity, indicating that CypA functions as an endogenous inhibitor for GC-A activation. CypA also inhibits the activity of guanylate cyclase-C (GC-c), the catalytic domain of GC-A, indicating that CypA interacts with the catalytic domain of GC-A. In contrast, transfection of CypA R55A, a CypA mutant expressing low PPIase activity, did not significantly attenuate the activity of GC-c and the activation of GC-A. Inhibition of PPIase activity of CypA with cyclosporin A also blocks the inhibitory effect of CypA on GC-c activity. These results demonstrate that PPIase activity is required for CypA to inhibit GC-c activity and GC-A activation by ANF. Furthermore, mutation of Pro 822, 902, or 958 in GC-c abolished its activity. Therefore, it is likely that CypA binds to GC-A and catalyzes the cis-trans isomerization of Pro 822, 902, or 958, which keeps GC-A in the inactive state, and that binding of ANF to GC-A alters the conformation of the catalytic domain that releases CypA from GC-A leading to enzyme activation.
Collapse
Affiliation(s)
- Zi-Jiang Chen
- Department of Medicine, Case Western Reserve University and University Hospital of Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gu S, Liu Z, Pan S, Jiang Z, Lu H, Amit O, Bradbury EM, Hu CAA, Chen X. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol Cell Proteomics 2004; 3:998-1008. [PMID: 15284338 DOI: 10.1074/mcp.m400033-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53-induced apoptosis plays a pivotal role in the suppression of tumorigenesis, and mutations in p53 have been found in more than 50% of human tumors. By comparing the proteome of a human colorectal cancer cell transfected with inducible p53 (DLD-1.p53) with that of the control DLD-1 cell line using amino acid-coded mass tagging (AACT)-assisted mass spectrometry, we have broadly identified proteins that are upregulated at the execution stage of the p53-mediated apoptosis. In cell culturing, the deuterium-labeled (heavy) amino acids were incorporated into the proteome of the induced DLD-1.p53 cells, whereas the DLD-1.vector cells were grown in the unlabeled medium. In high-throughput LC-ESI-MS/MS analyses, the AACT-containing peptides were paired with their unlabeled counterparts, and their relative spectral intensities, reflecting the differential protein expression, were quantified. In addition, our novel AACT-MS method utilized a number of different heavy amino acids as internal markers that significantly increased the peptide sequence coverage for both quantitation and identification purposes. As a result, we were able to identify differentially regulated protein isozymes that would be difficult to distinguish by ICAT-MS methods and to obtain a large dataset of the proteins with altered expression in the late stage of p53-induced apoptosis. The regulated proteins we identified are associated with several distinct functional categories: cell cycle arrest and p53 binding, protein chaperoning, plasma membrane dynamics, stress response, antioxidant enzymes, and anaerobic glycolysis. This result suggests that the p53-induced apoptosis involves the systematic activation of multiple pathways that are glycolysis-relevant, energy-dependent, oxidative stress-mediated, and possibly mediated through interorganelle crosstalks.
Collapse
Affiliation(s)
- Sheng Gu
- MS M888, B-2, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arévalo-Rodríguez M, Pan X, Boeke JD, Heitman J. FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. EUKARYOTIC CELL 2004; 3:1287-96. [PMID: 15470257 PMCID: PMC522611 DOI: 10.1128/ec.3.5.1287-1296.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/06/2004] [Indexed: 11/20/2022]
Abstract
FKBP12 is a conserved member of the prolyl-isomerase enzyme family and serves as the intracellular receptor for FK506 that mediates immunosuppression in mammals and antimicrobial actions in fungi. To investigate the cellular functions of FKBP12 in Saccharomyces cerevisiae, we employed a high-throughput assay to identify mutations that are synthetically lethal with a mutation in the FPR1 gene, which encodes FKBP12. This screen identified a mutation in the HOM6 gene, which encodes homoserine dehydrogenase, the enzyme catalyzing the last step in conversion of aspartic acid into homoserine, the common precursor in threonine and methionine synthesis. Lethality of fpr1 hom6 double mutants was suppressed by null mutations in HOM3 or HOM2, encoding aspartokinase and aspartate beta-semialdehyde dehydrogenase, respectively, supporting the hypothesis that fpr1 hom6 double mutants are inviable because of toxic accumulation of aspartate beta-semialdehyde, the substrate of homoserine dehydrogenase. Our findings also indicate that mutation or inhibition of FKBP12 dysregulates the homoserine synthetic pathway by perturbing aspartokinase feedback inhibition by threonine. Because this pathway is conserved in fungi but not in mammals, our findings suggest a facile route to synergistic antifungal drug development via concomitant inhibition of FKBP12 and Hom6.
Collapse
Affiliation(s)
- Miguel Arévalo-Rodríguez
- Department of Molecular Genetics and Microbiology, Box 3546, 322 CARL Building, Research Dr., Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
48
|
Colgan J, Asmal M, Neagu M, Yu B, Schneidkraut J, Lee Y, Sokolskaja E, Andreotti A, Luban J. Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity 2004; 21:189-201. [PMID: 15308100 DOI: 10.1016/j.immuni.2004.07.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 06/11/2004] [Accepted: 06/16/2004] [Indexed: 11/27/2022]
Abstract
Cyclophilin A (CypA/Ppia) is a peptidyl-prolyl isomerase (PPIase) that binds the immunosuppressive drug cyclosporine. The resulting complex blocks T cell function by inhibiting the calcium-dependent phosphatase calcineurin. To identify the native function of CypA, long suspected of regulating signal transduction, we generated mice lacking the Ppia gene. These animals develop allergic disease, with elevated IgE and tissue infiltration by mast cells and eosinophils, that is driven by CD4+ T helper type II (Th2) cytokines. Ppia(-/-) Th2 cells were hypersensitive to TCR stimulation, a phenotype consistent with increased activity of Itk, a Tec family tyrosine kinase crucial for Th2 responses. CypA bound Itk via the PPIase active site. Mutation of a conformationally heterogeneous proline in the SH2 domain of Itk disrupted interaction with CypA and specifically increased Th2 cytokine production from wild-type CD4+ T cells. Thus, CypA inhibits CD4+ T cell signal transduction in the absence of cyclosporine via a regulatory proline residue in Itk.
Collapse
Affiliation(s)
- John Colgan
- Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Song J, Lu YC, Yokoyama K, Rossi J, Chiu R. Cyclophilin A is required for retinoic acid-induced neuronal differentiation in p19 cells. J Biol Chem 2004; 279:24414-9. [PMID: 15047706 DOI: 10.1074/jbc.m311406200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable transfectants with expression of small interfering RNA for targeting cyclophilin A (CypA) in p19 cells lose their potential for retinoic acid (RA)-induced neuronal differentiation but not Me(2)SO-induced mesodermal differentiation. This difference suggests that CypA is specifically required for the RA-induced neuronal pathway. In addition to the loss of RA-induced RA receptor beta expression and retinoic acid response element (RARE)-binding activity, a dramatic reduction in RA-induced RARE-mediated luciferase activity in the CypA knockdown cell line suggests that CypA affects RARE-mediated regulation of gene expression. Silent mutation of target sequences confirms the specificity of RNA interference in p19 embryonal carcinoma cells. Collectively, our data reveal that a novel function of CypA is required in the processing of RA-induced neuronal differentiation in p19 embryonal carcinoma cells.
Collapse
Affiliation(s)
- Jun Song
- Dental Research Institute, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Candé C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 2004; 23:1514-21. [PMID: 14716299 DOI: 10.1038/sj.onc.1207279] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclophilin A (CypA) was determined to interact with apoptosis-inducing factor (AIF) by mass spectroscopy, coimmunoprecipitation, pull-down assays, and molecular modeling. During the initial, caspase-independent stage of chromatin condensation that accompanies apoptosis, AIF and CypA were found to coimmunolocalize in the nucleus. Recombinant AIF and CypA proteins synergized in vitro in the degradation of plasmid DNA, as well as in the capacity to induce DNA loss in purified nuclei. The apoptogenic cooperation between AIF and CypA did not rely on the CypA peptidyl-prolyl cis-trans isomerase activity. In Cyp-expressing cells, AIF overexpression augmented apoptotic chromatinolysis. The AIF-dependent large-scale DNA fragmentation was less pronounced in CypA knockout cells as compared to controls. AIF mutants lacking the CypA-binding domain were inefficient apoptosis sensitizers in transfection experiments. Moreover, AIF failed to sensitize CypA knockout cells to apoptosis induction, and this defect in the AIF response was reversed by reintroduction of the CypA gene into CypA-deficient cells. In summary, AIF and CypA collaborate in chromatinolysis.
Collapse
Affiliation(s)
- Céline Candé
- CNRS-UMR8125, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|