1
|
Gurgul A, Jasielczuk I, Szmatoła T, Semik-Gurgul E, Kucharski M, Mizera-Szpilka K, Ocłoń E. Elucidating the transcriptomic response of adult-derived mHypoA-2/12 mouse hypothalamic neuron cell line to cannabidiol (CBD) exposure. J Appl Genet 2025:10.1007/s13353-025-00970-8. [PMID: 40335839 DOI: 10.1007/s13353-025-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Cannabidiol (CBD) is a compound found in Cannabis sativa that is known for its neuroprotective, anti-inflammatory, analgesic, and anxiolytic properties. These properties make it a promising treatment for various neurological conditions. This study aimed to examine the effects of CBD on hypothalamic neurons at the transcriptome level using the adult-derived mHypoA-2/12 mouse cell line. The cells were exposed to four different CBD concentrations (ranging from 0.325 to 3 µM) for 6 and 24 h. Apart from the transcriptome analysis, apoptosis (caspase 3/7 activity) and viability (MTT) assays were performed. The obtained results showed that CBD enhanced cell viability, especially after 24 h of treatment and at lower or intermediate concentrations, and reduced apoptosis, with significant effects at the highest concentration. CBD caused moderate transcriptome profile changes (13 to 69 genes per treatment), with more genes affected at higher concentrations and shorter exposure times, indicating a stronger initial cellular response. Further analysis revealed that CBD affects several biological processes, including: intrinsic apoptosis suppression via p53 modulation, impacting genes like Bbc3, Mdm2, Cdkn1a, and Smad3. Additionally, CBD influenced genes involved in extracellular matrix organization, including metalloproteinases (Mmp-3, Mmp-13) and their inhibitors (Timp1), as well as collagen components (Col11a1) and mitochondrial respiratory chain complexes (mt-Nd5, mt-Nd4). Genes related to serotonin and dopamine biosynthesis, as well as Aldh2, were also impacted, linking CBD's effects in hypothalamic neurons to potential benefits in managing alcohol use disorders. These findings suggest the hypothalamus is a significant target for CBD, warranting further investigation.
Collapse
Affiliation(s)
- A Gurgul
- Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1 C, 30-248, Krakow, Poland.
| | - I Jasielczuk
- Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1 C, 30-248, Krakow, Poland
| | - T Szmatoła
- Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1 C, 30-248, Krakow, Poland
| | - E Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - M Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Mickiewicza 24/28, 30‑059, Krakow, Poland
| | - K Mizera-Szpilka
- Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1 C, 30-248, Krakow, Poland
| | - E Ocłoń
- Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1 C, 30-248, Krakow, Poland
| |
Collapse
|
2
|
Melo DDS, Costa Pereira L, Santos CS, Mendes BF, Konig IFM, Garcia BCC, Queiroz IP, Moreno LG, Cassilhas RC, Esteves EA, Vieira ER, Magalhães FDC, Capettini LDSA, Sousa RALD, Sampaio KH, Dias Peixoto MF. Intense Caloric Restriction from Birth Prevents Cardiovascular Aging in Rats. Rejuvenation Res 2023; 26:194-205. [PMID: 37694594 DOI: 10.1089/rej.2023.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We previously demonstrated that a 50% caloric restriction (CR) from birth improves several cardiometabolic risk factors in young rats. In this study, we investigated in middle-aged rats the consequences of a 50% CR from birth on cardiometabolic risk factors, heart function/morphology, ventricular arrhythmia, and fibrillation incidence, and cardiac intracellular proteins involved with redox status and cell survival. From birth to the age of 18 months, rats were divided into an Ad Libitum (AL18) group, which had free access to food, and a CR18 group, which had food limited to 50% of that consumed by the AL18. Resting metabolic rate, blood pressure, and heart rate were recorded, and oral glucose and intraperitoneal insulin tolerance tests were performed. Blood was collected for biochemical analyses, and visceral fat and liver were harvested and weighed. Hearts were harvested for cardiac function, histological, redox status, and western blot analyses. The 50% CR from birth potentially reduced several cardiometabolic risk factors in 18-month-old rats. Moreover, compared with AL18, the CR18 group showed a ∼50% increase in cardiac contractility and relaxation, nearly three to five times less incidence of ventricular arrhythmia and fibrillation, ∼18% lower cardiomyocyte diameter, and ∼60% lower cardiac fibrosis. CR18 hearts also improved biomarkers of antioxidant defense and cell survival. Collectively, these results reveal several metabolic and cardiac antiaging effects of a 50% CR from birth in middle-aged rats.
Collapse
Affiliation(s)
- Dirceu de Sousa Melo
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Liliane Costa Pereira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Carina Sousa Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Bruno Ferreira Mendes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Bruna Caroline Chaves Garcia
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ilkilene Pinheiro Queiroz
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Lauane Gomes Moreno
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Elizabethe Adriana Esteves
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Etel Rocha Vieira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Flávio de Castro Magalhães
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
3
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. Effect of HSPA8 gene on the proliferation, apoptosis and immune function of HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104666. [PMID: 36764422 DOI: 10.1016/j.dci.2023.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
HSPA8 (Heat shock 70 kDa protein 8) is a molecular chaperone involved in a variety of cellular processes. This gene may affect the proliferation, apoptosis and immune function of chicken macrophages, but the specific mechanism remains unclear. The purpose of this study was to explore the effect of the HSPA8 gene on the proliferation, apoptosis and immune function of chicken macrophages. In this study, a chicken HSPA8 overexpression plasmid, interference fragment and corresponding controls were transfected into HD11 cells, and then the expression of the HSPA8 gene, cell proliferation, cell cycle, apoptosis rate and immune function of each group were detected. The results showed that transfection of the HSPA8 overexpression plasmid significantly upregulated the level of HSPA8 expression in HD11 cells compared with the control; significantly promoted the proliferation of HD11 cells and the expression of PCNA, CCND1 and CCNB3; decreased the number of cells in the G1 phase and increased the number of cells in the S phase; decreased the rate of apoptosis and upregulated the expression of Bcl-2; and promoted the expression of the LPS-induced cytokines IL-1β, IL-6 and TNF-α. Transfection of the HSPA8 interference fragment significantly downregulated the level of HSPA8 expression in HD11 cells; significantly inhibited the proliferation of HD11 cells and the expression of PCNA, CCND1 and CDK1; increased the number of cells in the G1 phase and decreased the number of cells in the S phase; increased the rate of apoptosis, downregulated the expression of Bcl-2 and upregulated the expression levels of Fas and FasL; and inhibited the expression of the LPS-induced cytokines IL-1β and NF-κB. The results suggested that HSPA8 promotes the proliferation of and inhibits the apoptosis of HD11 cells and has a proinflammatory effect.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| |
Collapse
|
4
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
5
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. WITHDRAWN: Effect of HSPA8 on the proliferation, apoptosis and immune function of chicken macrophages. Int J Biochem Cell Biol 2022:106186. [PMID: 35217190 DOI: 10.1016/j.biocel.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
8
|
Liu T, Han Y, Liu Y, Zhao H. Genomewide identification and analysis of heat-shock proteins 70/110 to reveal their potential functions in Chinese soft-shelled turtle Pelodiscus sinensis. Ecol Evol 2019; 9:6968-6985. [PMID: 31467669 PMCID: PMC6712388 DOI: 10.1002/ece3.5264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/28/2023] Open
Abstract
Heat-shock proteins 70/110 (Hsp70/110) are vital molecular chaperones and stress proteins whose expression and production are generally induced by extreme temperatures or external stresses. The Hsp70/110 family is largely conserved in diverse animals. Although many reports have studied and elaborated on the characteristics of Hsp70/110 in various species, the systematic identification and analysis of Hsp70/110 are still poor in turtles. In this study, a genomewide search was performed, and 18 candidate PsHSP70/110 family genes were identified in Chinese soft-shelled turtle, Pelodiscus sinensis. These PsHSP70/110 proteins contained the conserved "heat shock protein 70" domain. Phylogenetic analysis of PsHSP70/110 and their homologs revealed evolutionary conservation of Hsp70/110 across different species. Tissue-specific expression analysis showed that these PsHSP70/110 genes were differentially expressed in different tissues of P. sinensis. Furthermore, to examine the putative biological functions of PsHSP70/110, the dynamic expression of PsHSP70/110 genes was analyzed in the testis of P. sinensis during seasonal spermatogenesis following germ cell apoptosis. Notably, genes such as PsHSPA1B-L, PsHSPA2, and PsHSPA8 were significantly upregulated in P. sinensis testes along with a seasonal decrease in apoptosis. Protein interaction prediction revealed that PsHSPA1B-L, PsHSPA2, and PsHSPA8 may interact with each other and participate in the MAPK signaling pathway. Moreover, immunohistochemical analysis showed that PsHSPA1B-L, PsHSPA2, and PsHSPA8 protein expression was associated with seasonal temperature variation. The expression profiling and interaction relationships of the PsHSPA1B-L, PsHSPA2, and PsHSPA8 proteins implied their potential roles in inhibiting the apoptosis of germ cells in P. sinensis. These results provide insights into PsHSP70/110 functions and will serve as a rich resource for further investigation of HSP70/110 family genes in P. sinensis and other turtles.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Yawen Han
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Ye Liu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Huiying Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| |
Collapse
|
9
|
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab 2019; 316:E305-E318. [PMID: 30532989 DOI: 10.1152/ajpendo.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heat shock protein 72 (HSP72) is a major inducible molecule in the heat shock response that enhances intracellular stress tolerance. Decreased expression of HSP72 is observed in type 2 diabetes, which may contribute to the development of insulin resistance and chronic inflammation. We used HSP72 knockout (HSP72-KO) mice to investigate the impact of HSP72 on glucose metabolism and endoplasmic reticulum (ER) stress, particularly in the liver. Under a high-fat diet (HFD) condition, HSP72-KO mice showed glucose intolerance, insulin resistance, impaired insulin secretion, and enhanced hepatic gluconeogenic activity. Furthermore, activity of the c-Jun NH2-terminal kinase (JNK) was increased and insulin signaling suppressed in the liver. Liver-specific expression of HSP72 by lentivirus (lenti) in HFD-fed HSP72-KO mice ameliorated insulin resistance and hepatic gluconeogenic activity. Furthermore, increased adipocyte size and hepatic steatosis induced by the HFD were suppressed in HSP72-KO lenti-HSP72 mice. Increased JNK activity and ER stress upon HFD were suppressed in the liver as well as the white adipose tissue of HSP72-KO lenti-HSP72 mice. Thus, HSP72 KO caused a deterioration in glucose metabolism, hepatic gluconeogenic activity, and β-cell function. Moreover, liver-specific recovery of HSP72 restored glucose homeostasis. Therefore, hepatic HSP72 may play a critical role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE "Cell Fate Regulation Research and Education Unit, " Kumamoto University , Kumamoto , Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|
10
|
Shevtsov M, Multhoff G. Therapeutic Implications of Heat Shock Proteins in Cancer. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-02254-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proc Natl Acad Sci U S A 2018; 115:11970-11975. [PMID: 30397123 DOI: 10.1073/pnas.1811105115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 70-kDa heat shock proteins (Hsp70s) are molecular chaperones that perform a wide range of critical cellular functions. They assist in the folding of newly synthesized proteins, facilitate assembly of specific protein complexes, shepherd proteins across membranes, and prevent protein misfolding and aggregation. Hsp70s perform these functions by a conserved mechanism that relies on allosteric cycles of nucleotide-modulated binding and release of client proteins. Current models for Hsp70 allostery have come from extensive study of the bacterial Hsp70, DnaK. Extending our understanding to eukaryotic Hsp70s is extremely important not only in providing a likely common mechanistic framework but also because of their central roles in cellular physiology. In this study, we examined the allosteric behaviors of the eukaryotic cytoplasmic Hsp70s, HspA1 and Hsc70, and found significant differences from that of DnaK. We found that HspA1 and Hsc70 favor a state in which the nucleotide-binding domain (NBD) and substrate-binding domain (SBD) are intimately docked significantly more as compared to DnaK. Past work established that the NBD-SBD interface and the helical lid-β-SBD interface govern the allosteric landscape of DnaK. Here, we identified sites on these interfaces that differ between eukaryotic cytoplasmic Hsp70s and DnaK. Our mutational analysis has revealed key evolutionary variations that account for the population shifts between the docked and undocked conformations. These results underline the tunability of Hsp70 functions by modulation of allosteric interfaces through evolutionary diversification and also suggest sites where the binding of small-molecule modulators could influence Hsp70 function.
Collapse
|
12
|
Haseeb K, Wang J, Xiao K, Yang KL, Sun PP, Wu XT, Luo Y, Song H, Liu HZ, Zhong JM, Peng KM. Effects of Boron Supplementation on Expression of Hsp70 in the Spleen of African Ostrich. Biol Trace Elem Res 2018; 182:317-327. [PMID: 28730576 DOI: 10.1007/s12011-017-1087-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 11/11/2022]
Abstract
Increased synthesis of heat shock protein 70 (Hsp70) occurs in prokaryotes and eukaryotes in response to physiological, environmental, and chemical exposures, thus allowing the cell survival from fatal conditions. Hsp70 cytoprotective properties may be clarified by its anti-apoptotic function. Boron has been reported to play an essential role in various organ developments and metabolisms. However, it is not known if boron is also able to modulate the Hsp70. In the present study, the actions of boron on ostrich spleen and expression level of Hsp70 were investigated. Thirty healthy ostrich chicks were randomly assigned to six groups: groups I, II, III, IV, V, and VI and fed the basal diet spiked with 0-, 40-, 80-, 160-, 320-, and 640-mg boric acid (BA)/L, respectively, in drinking water. The histomorphological examination in the spleen was done by hematoxylin and eosin (HE) staining. The expression level of Hsp70 was analyzed by immunohistochemistry (IHC) and western blotting, and mRNA expression of Hsp70 was investigated by quantitative real-time PCR (qPCR). In order to investigate apoptosis, TUNEL assay reaction in all treatment groups was analyzed. Our results showed that the histological structure of spleen up to 160 mg/L BA supplementation groups well developed. The Hsp70 expression level first induced at low-dose groups (up to group IV) and then inhibited dramatically in high-dose groups (V and VI) while comparing with the group I (0 mg BA). The TUNEL assay reaction revealed that the cell apoptosis amount was decreased in group IV, but in group V and especially in group VI, it was significantly increased (P < 0.01). Taken altogether, proper dietary boron treatment might stimulate ostrich chick spleen development by promoting the Hsp70 expression level and inhibiting apoptosis, while a high amount of boron supplementation would impair the ostrich spleen structure by inhibiting Hsp70 expression level and promoting cell apoptosis.
Collapse
Affiliation(s)
- Khaliq Haseeb
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jing Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke-Li Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Peng-Peng Sun
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xing-Tong Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - You Luo
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hua-Zhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ju-Ming Zhong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ke-Mei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Zhang T, Gillies MC, Madigan MC, Shen W, Du J, Grünert U, Zhou F, Yam M, Zhu L. Disruption of De Novo Serine Synthesis in Müller Cells Induced Mitochondrial Dysfunction and Aggravated Oxidative Damage. Mol Neurobiol 2018; 55:7025-7037. [PMID: 29383682 DOI: 10.1007/s12035-017-0840-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/12/2017] [Indexed: 02/05/2023]
Abstract
De novo serine synthesis plays important roles in normal mitochondrial function and cellular anti-oxidative capacity. It is reported to be mainly activated in glial cells of the central nervous system, but its role in retinal Müller glia remains unclear. In this study, we inhibited de novo serine synthesis using CBR-5884, a specific inhibitor of phosphoglycerate dehydrogenase (PHGDH, a rate limiting enzyme in de novo serine metabolism) in MIO-M1 cells (immortalized human Müller cells) and huPMCs (human primary Müller cells) under mild oxidative stress. Alamar blue and LDH (lactate dehydrogenase) assays showed significantly reduced metabolic activities and increased cellular damage of Müller cells, when exposed to CBR-5884 accompanied by mild oxidative stress; however, CBR-5884 alone had little effect. The increased cellular damage was partially reversed by supplementation with exogenous serine/glycine. HSP72 (an oxidative stress marker) and reactive oxygen species (ROS) levels were significantly increased; glutathione and NADPH/NADP+ levels were pronouncedly reduced under PHGDH inhibition accompanied by oxidative stress. JC-1 staining and Seahorse respiration experiments showed that inhibition of de novo serine synthesis in Müller cells can also increase mitochondrial stress and decrease mitochondrial ATP production. qPCR and Western blot demonstrated an increased expression of HSP60 (a key mitochondrial stress-related gene), and this was further validated in human retinal explants. Our study suggests that de novo serine synthesis is important for Müller cell survival, particularly when they are exposed to mild oxidative stress, possibly by maintaining mitochondrial function and generating glutathione and NADPH to counteract ROS.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Weiyong Shen
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Jianhai Du
- West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ulrike Grünert
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Yam
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
| |
Collapse
|
14
|
Abstract
Heat shock protein 70 (Hsp70) is the most ubiquitous stress-inducible chaperone. It accumulates in the cells in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Intracellular Hsp70 is viewed as a cytoprotective protein. Indeed, this protein can inhibit key effectors of the apoptotic and autophagy machineries. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and can even cause their complete involution. However, HSP70 is also found in the extra-cellular space where it may signal via membrane receptors or endosomes to alter gene transcription and cellular function. Overall, Hsp70 extracellular function is believed to be immnunogenic and the term chaperokine to define the extracellular chaperones such as Hsp70 has been advanced. In this chapter the knowledge to date, as well as some emerging paradigms about the intra- and extra-cellular functions of Hsp70, are presented. The strategies targeting Hsp70 that are being developed in cancer therapy will also be discussed.
Collapse
Affiliation(s)
- Christophe Boudesco
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Sebastien Cause
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Gaëtan Jego
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| | - Carmen Garrido
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
15
|
Liu T, Zhou HJ, Min W. ASK family in cardiovascular biology and medicine. Adv Biol Regul 2017; 66:54-62. [PMID: 29107568 PMCID: PMC5705453 DOI: 10.1016/j.jbior.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease is a major cause of death worldwide. Mitogen-activated protein kinase (MAPK) signal cascades signaling pathways play crucial roles in cardiovascular pathophysiology. Apoptosis signal-regulating kinase (ASK) family members ASK1, ASK2 and ASK3 are the key molecules in MAPK signal cascades and are activated by various stresses. ASK1 is the most extensively studied MAPKKK and is involved in regulation of the cellular functions such as cell survival, proliferation, inflammation and apoptosis. The current review focuses on the relationship between ASK1 and cardiovascular disease, while exploring the novel therapeutic strategies for cardiovascular disease involved in the ASK1 signal pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Extracellular HSP72 induces proinflammatory cytokines in human periodontal ligament fibroblast cells through the TLR4/NFκB pathway in vitro. Arch Oral Biol 2017; 83:181-186. [DOI: 10.1016/j.archoralbio.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
|
17
|
Grimmig T, Moll EM, Kloos K, Thumm R, Moench R, Callies S, Kreckel J, Vetterlein M, Pelz J, Polat B, Tripathi S, Rehder R, Ribas CM, Chandraker A, Germer CT, Waaga-Gasser AM, Gasser M. Upregulated Heat Shock Proteins After Hyperthermic Chemotherapy Point to Induced Cell Survival Mechanisms in Affected Tumor Cells From Peritoneal Carcinomatosis. CANCER GROWTH AND METASTASIS 2017; 10:1179064417730559. [PMID: 29403306 PMCID: PMC5791678 DOI: 10.1177/1179064417730559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
In patients with peritoneal carcinomatosis cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) represents a promising treatment strategy. Here, we studied the role of hyperthermic chemotherapy on heat shock protein (HSP) expression and induction of tumor cell death and survival. HSP27, HSP70, and HSP90 combined with effects on tumor cell proliferation and chemosensitivity were analyzed in human colon cancer. Hyperthermic chemotherapy resulted in significant HSP27/HSP70 and HSP90 gene/protein overexpression in analyzed HT-29/SW480/SW620 colon cancer cells and peritoneal metastases from patients displaying amplified expression of proliferation markers, proliferating cell nuclear antigen and antiapoptotic protein Bcl-xL. Moreover, functionally increased chemoresistance against 5-fluorouracil/mitomycin C and oxaliplatin after hyperthermic chemotherapy points to induced survival mechanisms in cancer cells. In conclusion, the results indicate that intracellular HSP-associated antiapoptotic and proliferative effects after hyperthermic chemotherapy negatively influence beneficial effects of hyperthermic chemotherapy-induced cell death. Therefore, blocking HSPs could be a promising strategy to further improve the rate of tumor cell death and outcome of patients undergoing HIPEC therapy.
Collapse
Affiliation(s)
- Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva-Maria Moll
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Kloos
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Rebecca Thumm
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Romana Moench
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Simone Callies
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University of Wuerzburg, Wuerzburg, Germany
| | - Malte Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Pelz
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Buelent Polat
- Department of Radiation Oncology, University of Wuerzburg, Wuerzburg, Germany
| | - Sudipta Tripathi
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Rehder
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Carmen M Ribas
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Anil Chandraker
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
18
|
Ferreira R, Nogueira-Ferreira R, Vitorino R, Santos LL, Moreira-Gonçalves D. The impact of exercise training on adipose tissue remodelling in cancer cachexia. Porto Biomed J 2017; 2:333-339. [PMID: 32258790 DOI: 10.1016/j.pbj.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Cachexia affects the majority of patients with advanced cancer and no effective treatment is currently available to address this paraneoplastic syndrome. It is characterized by a reduction in body weight due to the loss of white adipose tissue (WAT) and skeletal muscle. The loss of WAT seems to occur at an earlier time point than skeletal muscle proteolysis, with recent evidence suggesting that the browning of WAT may be a major contributor to this process. Several factors seem to modulate WAT browning including pro-inflammatory cytokines; however, the underlying molecular pathways are poorly characterized. Exercise training is currently recommended for the clinical management of low-grade inflammatory conditions as cancer cachexia. While it seems to counterbalance the impairment of skeletal muscle function and attenuate the loss of muscle mass, little is known regarding its effects in adipose tissue. The browning of WAT is one of the mechanisms through which exercise improves body composition in overweight/obese individuals. While this effect is obviously advantageous in this clinical setting, it remains to be clarified if exercise training could protect or exacerbate the cachexia-related catabolic phenotype occurring in adipose tissue of cancer patients. Herein, we overview the molecular players involved in adipose tissue remodelling in cancer cachexia and in exercise training and hypothesize on the mechanisms modulated by the synergetic effect of these conditions. A better understanding of how physical activity regulates body composition will certainly help in the development of successful multimodal therapeutic strategies for the clinical management of cancer cachexia.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, IPO-Porto, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, IPO-Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
20
|
Boyko AA, Azhikina TL, Streltsova MA, Sapozhnikov AM, Kovalenko EI. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes. Cell Stress Chaperones 2017; 22:67-76. [PMID: 27783273 PMCID: PMC5225062 DOI: 10.1007/s12192-016-0744-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Tatyana L Azhikina
- Laboratory of Human Genes Structure and Functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997.
| |
Collapse
|
21
|
Ge XH, Zhu GJ, Geng DQ, Zhang HZ, He JM, Guo AZ, Ma LL, Yu DH. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats. Physiol Behav 2016; 170:115-123. [PMID: 28017679 DOI: 10.1016/j.physbeh.2016.12.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Although Metformin, a first-line antidiabetic drug, can ameliorate ischemia/reperfusion (I/R) induced brain damage, but how metformin benefits injured hippocampus and the mechanisms are still largely unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of metformin against ischemic brain damage induced by cerebral I/R and to explore whether the Akt-mediated down-regulation of the phosphorylation of JNK3 signaling pathway contributed to the protection provided by metformin. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of metformin on anxiety-like behavioral and cognitive impairment after I/R. Cresyl Violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of Akt1, JNK3, c-Jun and the expression of cleaved caspase-3. Through ischemia/reperfusion (I/R) rat model, we found that metformin could attenuate the deficits of hippocampal related behaviors and inhibit cell apoptosis. The western blot data showed that metformin could promote the activation of Akt1 and reduce the phosphorylation of JNK3 and c-Jun as well as elevation of cleaved caspase-3 in I/R brains. PI3K inhibitor reversed all the protective effects, further indicating that metformin protect hippocampus from ischemic damage through PI3K/Akt1/JNK3/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Xu-Hua Ge
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Guo-Ji Zhu
- Department of pediatrics, Soochow University Affiliated Children's Hospital, Soochow University, Suzhou 215003, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Han-Zhi Zhang
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Juan-Mei He
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Ai-Zhen Guo
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Lin-Lin Ma
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - De-Hua Yu
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China.
| |
Collapse
|
22
|
Liu CM, Hsieh CL, Shen CN, Lin CC, Shigemura K, Sung SY. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression. Int J Urol 2016; 23:734-44. [PMID: 27397852 DOI: 10.1111/iju.13145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells.
Collapse
Affiliation(s)
- Che-Ming Liu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
24
|
Ahmed RR, Mahmoud A, Ahmed OM, Metwalli A, Ebaid H. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats. Biol Res 2015; 48:54. [PMID: 26428860 PMCID: PMC4591711 DOI: 10.1186/s40659-015-0044-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/17/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP) was able to regulate wound healing normally in streptozotocin (STZ)-diabetic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72) and keratin16 (Krt16) expression during wound healing in diabetic rats. METHODS WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.
Collapse
Affiliation(s)
- Rasha R Ahmed
- Cell Biology and Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Ayman Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Ali Metwalli
- Department of Food Science, College of Agriculture and Food Science, King Saud University, Riyadh, Saudi Arabia.
- Department of Dairy, Faculty of Agriculture, El-Minia University, El-Minia, Egypt.
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, KSA.
- Department of Zoology, Faculty of Science, El-Minia University, El-Minia, Egypt.
| |
Collapse
|
25
|
Murakami N, Kühnel A, Schmid TE, Ilicic K, Stangl S, Braun IS, Gehrmann M, Molls M, Itami J, Multhoff G. Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol 2015. [PMID: 26197988 PMCID: PMC4511458 DOI: 10.1186/s13014-015-0461-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. METHODS The isogenic human colon carcinoma sublines CX(+) with stable high and CX(-) with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. RESULTS CX(+)/CX(-) tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX(-) and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After irradiation γH2AX, Caspase 3/7 and Annexin V were up-regulated in the lung carcinoma sublines, but no significant differences were observed in H1339 ctrl/H1339 HSF-1 KD, and EPLC-272H ctrl/EPLC-272H HSF-1 KD that exhibit identical mHsp70 but different cytosolic Hsp70 levels. Clonogenic cell survival was significantly lower in CX(-) and 4 T1 Hsp70 KD cells with low mHsp70 expression, than in CX+ and 4 T1 ctrl cells, whereas no difference in clonogenic cell survival was observed in H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/ EPLC-272H HSF-1 KD sublines with identical mHsp70 but different cytosolic Hsp70 levels. CONCLUSION In summary, our results indicate that mHsp70 has an impact on radiation resistance.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Annett Kühnel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabella S Braun
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mathias Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Clinical Cooperation Group - Innate Immunity in Tumor Biology, Institute of Biomedical Imaging (IBMI), Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
26
|
Ko SK, Kim J, Na DC, Park S, Park SH, Hyun JY, Baek KH, Kim ND, Kim NK, Park YN, Song K, Shin I. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. ACTA ACUST UNITED AC 2015; 22:391-403. [PMID: 25772468 DOI: 10.1016/j.chembiol.2015.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 01/13/2023]
Abstract
The heat shock protein HSP70 plays antiapoptotic and oncogenic roles, and thus its inhibition has been recognized as a potential avenue for anticancer therapy. Here we describe the small molecule, apoptozole (Az), which inhibits the ATPase activity of HSP70 by binding to its ATPase domain and, as a result, induces an array of apoptotic phenotypes in cancer cells. Affinity chromatography provides evidence that Az binds HSP70 but not other types of heat shock proteins including HSP40, HSP60, and HSP90. We also demonstrate that Az induces cancer cell death via caspase-dependent apoptosis by disrupting the interaction of HSP70 with APAF-1. Animal studies indicate that Az treatment retards tumor growth in a xenograft mouse model without affecting mouse viability. These studies suggest that Az will aid the development of new cancer therapies and serve as a chemical probe to gain a better understanding of the diverse functions of HSP70.
Collapse
Affiliation(s)
- Sung-Kyun Ko
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jiyeon Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Deuk Chae Na
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Sookil Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 706-010, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kiwon Song
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
27
|
Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015; 89:867-82. [PMID: 25690731 DOI: 10.1007/s00204-015-1472-2] [Citation(s) in RCA: 783] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) in mammals include c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK). These enzymes are serine-threonine protein kinases that regulate various cellular activities including proliferation, differentiation, apoptosis or survival, inflammation, and innate immunity. The compromised MAPK signaling pathways contribute to the pathology of diverse human diseases including cancer and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The JNK and p38 MAPK signaling pathways are activated by various types of cellular stress such as oxidative, genotoxic, and osmotic stress as well as by proinflammatory cytokines such as tumor necrosis factor-α and interleukin 1β. The Ras-Raf-MEK-ERK signaling pathway plays a key role in cancer development through the stimulation of cell proliferation and metastasis. The p38 MAPK pathway contributes to neuroinflammation mediated by glial cells including microglia and astrocytes, and it has also been associated with anticancer drug resistance in colon and liver cancer. We here summarize recent research on the roles of MAPK signaling pathways in human diseases, with a focus on cancer and neurodegenerative conditions.
Collapse
|
28
|
Padmini E, Tharani J. Heat-shock protein 70 modulates apoptosis signal-regulating kinase 1 in stressed hepatocytes of Mugil cephalus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1573-1585. [PMID: 24875452 DOI: 10.1007/s10695-014-9949-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Oxidative stress causes damage at the cellular level and activates a number of signaling pathways. Heat-shock proteins (HSPs) play an important role in repair and protective mechanisms under cell response to stress conditions. HSP70 has been shown to act as an inhibitor of apoptosis. Apoptosis signal-regulating kinase-1 (ASK1) activity is regulated at multiple levels, one of which is through inhibition by cytosolic chaperons HSP70. The current study was aimed to investigate the alteration in signaling molecules that allow the fish to survive under stressed natural field conditions. The study also investigates the variation in biomolecular composition of hepatocytes by using Fourier transform infrared spectroscopy. The impact of stress on hepatocytes was assessed by measuring the level of lipid peroxides (LPO), catalase activity (CAT) and assessing the changes in hepatocytes of Mugil cephalus inhabiting Kovalam and Ennore estuaries. The expression of HSP70 and ASK1 were analyzed by immunoblot analysis and ELISA, respectively. The spectral analysis showed variations in biomolecular composition of hepatocytes at a wave number region of 4,000-400 cm(-1). There was significant decrease of CAT activity (p < 0.01) (25 %) with significant increase of LPO (p < 0.001) (35 %) and HSP70 (p < 0.001) and insignificant increase of ASK1 (p < 0.05) (16 %) in fish hepatocytes inhabiting Ennore estuary than Kovalam estuary. In conclusion, the present study suggests that the survival of fish in the Ennore estuary under stressed condition may be due to the upregulation of HSP70 that mediates the altered signal pathway which promotes cellular resistance against apoptosis.
Collapse
Affiliation(s)
- Ekambaram Padmini
- P.G. Department of Biochemistry, Bharathi Women's College, Affiliated to University of Madras, Chennai, 600108, Tamilnadu, India,
| | | |
Collapse
|
29
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
30
|
Reikvam H, Brenner AK, Nepstad I, Sulen A, Bruserud Ø. Heat shock protein 70 – the next chaperone to target in the treatment of human acute myelogenous leukemia? Expert Opin Ther Targets 2014; 18:929-44. [DOI: 10.1517/14728222.2014.924925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Kennedy D, Jäger R, Mosser DD, Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life 2014; 66:327-38. [PMID: 24861574 DOI: 10.1002/iub.1274] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/01/2014] [Indexed: 01/22/2023]
Abstract
Thermotolerance, the acquired resistance of cells to stress, is a well-established phenomenon. Studies of the key mediators of this response, the heat shock proteins (HSPs), have led to the discovery of the important roles played by these proteins in the regulation of apoptotic cell death. Apoptosis is critical for normal tissue homeostasis and is involved in diverse processes including development and immune clearance. Apoptosis is tightly regulated by both proapoptotic and antiapoptotic factors, and dysregulation of apoptosis plays a significant role in the pathophysiology of many diseases. In the recent years, HSPs have been identified as key determinants of cell survival, which can modulate apoptosis by directly interacting with components of the apoptotic machinery. Therefore, manipulation of the HSPs could represent a viable strategy for the treatment of diseases. Here, we review the current knowledge with regard to the mechanisms of HSP-mediated regulation of apoptosis.
Collapse
Affiliation(s)
- Donna Kennedy
- Department of Biochemistry, Apoptosis Research Centre, Biosciences Research Building, Corrib Village, NUI Galway, Dangan, Galway, Ireland
| | | | | | | |
Collapse
|
32
|
Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 2014; 15:344. [PMID: 24884676 PMCID: PMC4035072 DOI: 10.1186/1471-2164-15-344] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. RESULTS In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. CONCLUSIONS Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Wang X, Chen M, Zhou J, Zhang X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 2014; 45:18-30. [PMID: 24789222 DOI: 10.3892/ijo.2014.2399] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Among the heat shock proteins (HSP), HSP27, HSP70 and HSP90 are the most studied stress-inducible HSPs, and are induced in response to a wide variety of physiological and environmental insults, thus allowing cells to survive to lethal conditions based on their powerful cytoprotective functions. Different functions of HSPs have been described to explain their cytoprotective functions, including their most basic role as molecular chaperones, that is to regulate protein folding, transport, translocation and assembly, especially helping in the refolding of misfolded proteins, as well as their anti-apoptotic properties. In cancer cells, the expression and/or activity of the three HSPs is abnormally high, and is associated with increased tumorigenicity, metastatic potential of cancer cells and resistance to chemotherapy. Associating with key apoptotic factors, they are powerful anti-apoptotic proteins, having the capacity to block the cell death process at different levels. Altogether, the properties suggest that HSP27, HSP70 and HSP90 are appropriate targets for modulating cell death pathways. In this review, we summarize the role of HSP90, HSP70 and HSP27 in apoptosis and the emerging strategies that have been developed for cancer therapy based on the inhibition of the three HSPs.
Collapse
Affiliation(s)
- Xiaoxia Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Meijuan Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Jing Zhou
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Xu Zhang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| |
Collapse
|
34
|
Zhang Y, Liu Y, Zhu XH, Zhang XD, Jiang DS, Bian ZY, Zhang XF, Chen K, Wei X, Gao L, Zhu LH, Yang Q, Fan GC, Lau WB, Ma X, Li H. Dickkopf-3 attenuates pressure overload-induced cardiac remodelling. Cardiovasc Res 2014; 102:35-45. [PMID: 24413772 PMCID: PMC6279202 DOI: 10.1093/cvr/cvu004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/16/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023] Open
Abstract
AIMS Dickkopf-3 (DKK3), a secreted protein in the Dickkopf family, is expressed in various tissues, including the heart, and has been shown to play an important role in tissue development. However, the biological function of DKK3 in the heart remains largely unexplored. This study aimed to examine the role of DKK3 in pathological cardiac hypertrophy. METHODS AND RESULTS We performed gain-of-function and loss-of-function studies using DKK3 cardiac-specific transgenic (TG) mice and DKK3 knockout (KO) mice (C57BL/6J background). Cardiac hypertrophy was induced by aortic banding. Cardiac hypertrophy was evaluated by echocardiographic, haemodynamic, pathological, and molecular analyses. Our results demonstrated that the loss of DKK3 exaggerated pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction, whereas the overexpression of DKK3 protected the heart against pressure overload-induced cardiac remodelling. These beneficial effects were associated with the inhibition of the ASK1-JNK/p38 (apoptosis signal-regulating kinase 1-c-Jun N-terminal kinase/p38) signalling cascade. Parallel in vitro experiments confirmed these in vivo observations. Co-immunoprecipitation experiments suggested that physical interactions occurred between DKK3 and ASK1. Moreover, rescue experiments indicated that, in DKK3 TG mice, the activation of ASK1 using a cardiac-specific conditional ASK1 transgene reduced the functionality of DKK3 in response to pressure overload; furthermore, the inactivation of ASK1 by dominant-negative ASK1 rescued pressure overload-induced cardiac abnormalities in DKK3 KO mice. CONCLUSION Taken together, our findings indicate that DKK3 acts as a cardioprotective regulator of pathological cardiac hypertrophy and that this function largely occurs via the regulation of ASK1-JNK/p38 signalling.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| | - Xue-Hai Zhu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang Wei
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wayne B. Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
- Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan 430060, PRChina
| |
Collapse
|
35
|
Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 2014; 5:e1027. [PMID: 24481441 PMCID: PMC4040650 DOI: 10.1038/cddis.2013.550] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 01/07/2023]
Abstract
Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance.
Collapse
|
36
|
The complex function of hsp70 in metastatic cancer. Cancers (Basel) 2013; 6:42-66. [PMID: 24362507 PMCID: PMC3980608 DOI: 10.3390/cancers6010042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022] Open
Abstract
Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a "chaperokine", activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.
Collapse
|
37
|
Ryu DS, Yang H, Lee SE, Park CS, Jin YH, Park YS. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells. Toxicol Lett 2013; 223:116-23. [DOI: 10.1016/j.toxlet.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
38
|
Jiang P, Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. Int J Mol Sci 2013; 14:21551-60. [PMID: 24185907 PMCID: PMC3856021 DOI: 10.3390/ijms141121551] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.
Collapse
Affiliation(s)
- Pengfei Jiang
- Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mail:
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Deli Zhang
- Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mail:
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-29-8709-1117; Fax: +86-29-8709-1032
| |
Collapse
|
39
|
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013; 87:1157-1180. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Citation(s) in RCA: 1263] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | | | |
Collapse
|
40
|
Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 2013; 5:1869-912. [PMID: 23760057 PMCID: PMC3725482 DOI: 10.3390/nu5061869] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022] Open
Abstract
Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.
Collapse
|
41
|
Abstract
The HSP70 family of heat shock proteins consists of molecular chaperones of approximately 70kDa in size that serve critical roles in protein homeostasis. These adenosine triphosphatases unfold misfolded or denatured proteins and can keep these proteins in an unfolded, folding-competent state. They also protect nascently translating proteins, promote the cellular or organellar transport of proteins, reduce proteotoxic protein aggregates and serve general housekeeping roles in maintaining protein homeostasis. The HSP70 family is the most conserved in evolution, and all eukaryotes contain multiple members. Some members of this family serve specific organellar- or tissue-specific functions; however, in many cases, these members can function redundantly. Overall, the HSP70 family of proteins can be thought of as a potent buffering system for cellular stress, either from extrinsic (physiological, viral and environmental) or intrinsic (replicative or oncogenic) stimuli. As such, this family serves a critical survival function in the cell. Not surprisingly, cancer cells rely heavily on this buffering system for survival. The overwhelming majority of human tumors overexpress HSP70 family members, and expression of these proteins is typically a marker for poor prognosis. With the proof of principle that inhibitors of the HSP90 chaperone have emerged as important anticancer agents, intense focus has now been placed on the potential for HSP70 inhibitors to assume a role as a significant chemotherapeutic avenue. In this review, the history, regulation, mechanism of action and role in cancer of the HSP70 family are reviewed. Additionally, the promise of pharmacologically targeting this protein for cancer therapy is addressed.
Collapse
Affiliation(s)
- Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T, Hasday JD, Singh IS. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem 2013; 288:2756-66. [PMID: 23212905 PMCID: PMC3554941 DOI: 10.1074/jbc.m112.427336] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Indexed: 01/06/2023] Open
Abstract
Heat shock protein (Hsp) 70 expression can be stimulated by febrile range temperature (FRT). Hsp70 has been shown to be elevated in serum of patients with sepsis, and when released from cells, extracellular Hsp70 exerts endotoxin-like effects through Toll-like receptor 4 (TLR4) receptors. Circulating TLR agonists and fever both persist for the first several days of sepsis, and each can activate Hsp70 expression; however, the effect of combined exposure to FRT and TLR agonists on Hsp70 expression is unknown. We found that concurrent exposure to FRT (39.5 °C) and agonists for TLR4 (LPS), TLR2 (Pam3Cys), or TLR3 (poly(IC)) synergized to increase Hsp70 expression and extracellular release in RAW264.7 macrophages. The increase in Hsp70 expression was associated with activation of p38 and ERK MAP kinases, phosphorylation of histone H3, and increased recruitment of HSF1 to the Hsp70 promoter. Pretreatment with the p38 MAPK inhibitor SB283580 but not the ERK pathway inhibitor UO126 significantly reduced Hsp70 gene modification and Hsp70 expression in RAW cells co-exposed to LPS and FRT. In mice challenged with intratracheal LPS and then exposed to febrile range hyperthermia (core temperature, ∼39.5 °C), Hsp70 levels in lung tissue and in cell-free lung lavage were increased compared with mice exposed to either hyperthermia or LPS alone. We propose a model of how enhanced Hsp70 expression and extracellular release in patients concurrently exposed to fever and TLR agonists may contribute to the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Aditi Gupta
- From the Division of Pulmonary and Critical Care, Department of Medicine
| | - Zachary A. Cooper
- From the Division of Pulmonary and Critical Care, Department of Medicine
| | | | - Ratnakar Potla
- From the Division of Pulmonary and Critical Care, Department of Medicine
| | - Tapan Maity
- From the Division of Pulmonary and Critical Care, Department of Medicine
| | - Jeffrey D. Hasday
- From the Division of Pulmonary and Critical Care, Department of Medicine
- the Mucosal Biology Research Center, and
- the Cytokine Core Laboratory, University of Maryland School of Medicine and
- Research Services, Baltimore Veteran Affairs Medical Center, Baltimore, Maryland 21201
| | - Ishwar S. Singh
- From the Division of Pulmonary and Critical Care, Department of Medicine
- the Mucosal Biology Research Center, and
- Research Services, Baltimore Veteran Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
43
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
44
|
Goloudina AR, Demidov ON, Garrido C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 2012; 325:117-24. [PMID: 22750096 DOI: 10.1016/j.canlet.2012.06.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
HSP70 is a chaperone that accumulates in the cells after many different stresses promoting cell survival in response to the adverse conditions. In contrast to normal cells, most cancer cells abundantly express HSP70 at the basal level to resist to various insults at different stages of tumorigenesis and during anti-cancer treatment. This cancer cells addiction for HSP70 is the rational for its targeting in cancer therapy. Much effort has been dedicated in the last years for the active search of HSP70 inhibitors. Additionally, the recent clinical trials on highly promising inhibitors of another stress protein, HSP90, showed compensatory increase in HSP70 levels and raised the question of necessity to combine HSP90 inhibitors with simultaneous inhibition of HSP70. Here we analyzed the recent advancement in creation of novel HSP70 inhibitors and different strategies for their use in anti-cancer therapy.
Collapse
Affiliation(s)
- Anastasia R Goloudina
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, University of Burgundy, Dijon, France
| | | | | |
Collapse
|
45
|
Cattaneo M, Dominici R, Cardano M, Diaferia G, Rovida E, Biunno I. Molecular chaperones as therapeutic targets to counteract proteostasis defects. J Cell Physiol 2012; 227:1226-34. [PMID: 21618531 DOI: 10.1002/jcp.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.
Collapse
|
46
|
Sabens Liedhegner EA, Gao XH, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation. Antioxid Redox Signal 2012; 16:543-66. [PMID: 22066468 PMCID: PMC3270051 DOI: 10.1089/ars.2011.4119] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention. RECENT ADVANCES Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death. CRITICAL ISSUES Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases. FUTURE DIRECTIONS The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.
Collapse
|
47
|
Qi D, Liu H, Niu J, Fan X, Wen X, Du Y, Mou J, Pei D, Liu Z, Zong Z, Wei X, Song Y. Heat shock protein 72 inhibits c-Jun N-terminal kinase 3 signaling pathway via Akt1 during cerebral ischemia. J Neurol Sci 2012; 317:123-9. [PMID: 22386689 DOI: 10.1016/j.jns.2012.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 12/19/2022]
Abstract
Although recent researches show that Heat Shock Protein 72 (HSP72) plays an important role in neuronal survival, little knowledge is known about the precise mechanisms during cerebral ischemia/reperfusion (I/R). Our present study investigated the neuroprotective mechanisms of HSP72 against ischemic brain injury induced by cerebral I/R. Mild heat shock pretreatment was employed to induce the overexpression of HSP72 by immersing rats into the water bath at 42°C for 20 min before cerebral I/R. HSP72 antisense oligodeoxynucleotides (ODNs) were used to inhibit HSP72 expression by intracerebroventricular infusion once per day for 3 days before cerebral I/R animal model was induced by four-vessel occlusion for 15 min transient ischemia and then reperfused for various time in Sprague-Dawley rats. Immunoprecipitation and immunoblotting were used to detect the expression of the related proteins. HE-staining and TUNEL-staining were carried out to examine the neuronal death of hippocampal CA1 region. Results showed that mild heat shock could increase the phosphorylation of protein kinase B (Akt), inhibit the assembly of MLK3-MKK7-JNK3 signaling module, diminish the phosphorylation of JNK3 and c-Jun, and decrease the activation of caspase-3. Furthermore, mild heat shock could significantly protect neurons against cerebral I/R. Whereas, all of the aforementioned effects of mild heat shock were reversed by HSP72 antisense ODNs. In summary, our results imply that Akt1 activation is involved in the neuroprotection of HSP72 against ischemic brain injury via suppressing JNK3 signaling pathway and provide a new experimental foundation for stroke therapy.
Collapse
Affiliation(s)
- Dashi Qi
- Department of Neurobiology, Xuzhou Medical College, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vallés G, García-Cimbrelo E, Vilaboa N. Involvement of extracellular Hsp72 in wear particle-mediated osteolysis. Acta Biomater 2012; 8:1146-55. [PMID: 22198139 DOI: 10.1016/j.actbio.2011.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
Wear particle-mediated osteolysis is one of the major problems affecting long-term survival of orthopaedic prostheses, frequently progressing to failure of fixation and revision surgery. Upon challenging with wear particles, macrophages and various other types of cells release soluble factors that stimulate the resorptive activity of osteoclasts and impair the function and activity of osteoblasts. Extracellular Hsp72 has been reported to activate macrophages and up-regulate pro-inflammatory cytokine production, although its role in osteolysis has not been established yet. The purpose of our study was to evaluate the involvement of this protein in the inflammatory response to wear particles that leads to periprosthetic osteolysis. To this end, we used interfacial tissues and blood samples from patients undergoing revision surgery due to aseptic loosening of cementless acetabular cups. Confocal microscopy indicated that Hsp72 co-localises with CD14(+) cells of interfacial tissues. Levels of Hsp72 in the culture media from periprosthetic membranes cultured ex vivo decreased along culture time and Hsp72 levels in sera from patients were lower and under the assay detection limit compared with those from age-matched control subjects. This suggests that interfacial tissues are not actively producing the protein but likely recruit it from peripheral circulation. Incubation of human macrophages with titanium (Ti) particles decreased the release of Hsp72 into culture media. Treatment with recombinant human Hsp72 enhanced considerably IL-6 levels in culture media which were not modified after macrophage co-stimulation with Ti particles, while pre-incubation with Hsp72 increased the Ti particle-induced TNF-α and IL-1β production. Altogether, these data indicate that extracellular Hsp72 amplifies the inflammatory response to wear debris by interacting with resident macrophages in periprosthetic tissues.
Collapse
Affiliation(s)
- Gema Vallés
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | | | | |
Collapse
|
49
|
Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:107-33. [PMID: 22127890 DOI: 10.1007/978-1-4419-5638-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shock, regardless of etiology, is characterized by decreased tissue perfusion resulting in cell death, organ dysfunction, and poor survival. Current therapies largely focus on restoring tissue perfusion through resuscitation but have failed to address the specific cellular dysfunction caused by shock. Acetylation is rapidly emerging as a key mechanism that regulates the expression of numerous genes (epigenetic modulation through activation of nuclear histone proteins), as well as functions of multiple cytoplasmic proteins involved in key cellular functions such as cell survival, repair/healing, signaling, and proliferation. Cellular acetylation can be increased immediately through the administration of histone deacetylase inhibitors (HDACI). A series of studies have been performed using: (1) cultured cells; (2) single-organ ischemia-reperfusion injury models; (3) rodent models of lethal septic and hemorrhagic shock; (4) swine models of lethal hemorrhagic shock and multi-organ trauma; and (5) tissues from severely injured trauma patients, to fully characterize the changes in acetylation that occur following lethal insults and in response to treatment with HDACI. These data demonstrate that: (1) shock causes a decrease in acetylation of nuclear and cytoplasmic proteins; (2) hypoacetylation can be rapidly reversed through the administration of HDACI; (3) normalization of acetylation prevents cell death, decreases inflammation, attenuates activation of pro-apoptotic pathways, and augments pro-survival pathways; (4) the effect of HDACI significantly improves survival in lethal models of septic shock, hemorrhagic shock, and complex poly-trauma without need for conventional fluid resuscitation or blood transfusion; and (5) improvement in survival is not due to better resuscitation but due to an enhanced ability of cells to tolerate lethal insults.As different models of hemorrhagic or septic shock have specific strengths and limitations, this chapter will summarize our attempts to create "pro-survival and anti-inflammatory phenotype" in various models of hemorrhagic shock and septic shock.
Collapse
|
50
|
Abstract
Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is implicated in modulation of cellular processes including gene transcription. The role of PRMTs in the regulation of intracellular signaling pathways has remained obscure, however. We now show that PRMT1 methylates apoptosis signal-regulating kinase 1 (ASK1) at arginine residues 78 and 80 and thereby negatively regulates ASK1 signaling. PRMT1-mediated ASK1 methylation attenuated the H(2)O(2)-induced stimulation of ASK1, with this inhibitory effect of PRMT1 being abolished by replacement of arginines 78 and 80 of ASK1 with lysine. Furthermore, depletion of PRMT1 expression by RNA interference potentiated H(2)O(2)-induced stimulation of ASK1. PRMT1-mediated ASK1 methylation promoted the interaction between ASK1 and its negative regulator thioredoxin, whereas it abrogated the association of ASK1 with its positive regulator TRAF2. Moreover, PRMT1 depletion potentiated paclitaxel-induced ASK1 activation and apoptosis in human breast cancer cells. Together, our results indicate that arginine methylation of ASK1 by PRMT1 contributes to the regulation of stress-induced signaling that controls a variety of cellular events including apoptosis.
Collapse
|