1
|
Zhao B, Socha J, Toth A, Fernandes S, Warheit-Niemi H, Ruff B, Khurana Hershey GK, VanDussen KL, Swarr D, Zacharias WJ. The Homeobox Transcription Factor CUX1 Coordinates Postnatal Epithelial Developmental Timing but Is Dispensable for Lung Organogenesis and Regeneration. Am J Respir Cell Mol Biol 2025; 72:678-687. [PMID: 39589256 DOI: 10.1165/rcmb.2024-0147oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024] Open
Abstract
Lung epithelial progenitors use a complex network of known and predicted transcriptional regulators to influence early lung development. In this study, we evaluated the function of one predicted regulator, CUX1, that we identified from transcriptional regulatory analysis of the SOX9+ distal lung progenitor network. We generated a new Cux1-floxed mouse model and created an epithelium-specific knockout of CUX1 using Shh-Cre (Cux1ShhCre-LOF). Postnatal Cux1ShhCre-LOF animals recapitulated key skin phenotypic features found in prior constitutive CUX1 knockout animals, confirming the functionality of our new floxed model. Postnatal Cux1ShhCre-LOF mice displayed subtle alveolar simplification and a transient delay in alveologenesis and alveolar type 1 cell development without persistent lung phenotypes. Cux1ShhCre-LOF mice developed failure to thrive in their second and third weeks of life because of delayed ileal maturation, which similarly resolves by Postnatal Day 35. Finally, we challenged Cux1ShhCre-LOF with influenza-mediated lung injury to demonstrate that Cux1ShhCre-LOF mice undergo productive alveolar regeneration that is indistinguishable from that in wild-type animals. Together, these findings indicate that epithelium-specific loss of CUX1 leads to transient developmental delays in the skin, lung, and intestine without defects in definitive organogenesis. We conclude that CUX1 function is required for temporal optimization of developmental maturation in multiple organs with implications for susceptibility windows in developmental disease pathogenesis.
Collapse
Affiliation(s)
- Barbara Zhao
- Perinatal Institute
- Division of Pulmonary Biology
- Division of Developmental Biology
- Medical Scientist Training Program
- Molecular and Developmental Biology Graduate Program
| | - Jacob Socha
- Division of Gastroenterology, Hepatology, and Nutrition, and
- Molecular and Developmental Biology Graduate Program
| | - Andrea Toth
- Perinatal Institute
- Division of Pulmonary Biology
- Division of Developmental Biology
- Medical Scientist Training Program
- Molecular and Developmental Biology Graduate Program
| | | | | | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
- Department of Pediatrics
| | - Kelli L VanDussen
- Division of Developmental Biology
- Division of Gastroenterology, Hepatology, and Nutrition, and
- Department of Pediatrics
| | - Daniel Swarr
- Perinatal Institute
- Division of Pulmonary Biology
- Department of Pediatrics
| | - William J Zacharias
- Perinatal Institute
- Division of Pulmonary Biology
- Division of Developmental Biology
- Department of Pediatrics
- Division of Pulmonary and Critical Care Medicine, and
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
2
|
Tan L, Young SG, Sinclair AH, Hunter MF, Ayers KL. Consider CUX1 variants in children with a variation of sex development: a case report and review of the literature. BMC Med Genomics 2024; 17:195. [PMID: 39103808 PMCID: PMC11299396 DOI: 10.1186/s12920-024-01945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The Cut Homeobox 1 (CUX1) gene has been implicated in a number of developmental processes and has recently emerged as an important cause of developmental delay and impaired intellectual development. Individuals with variants in CUX1 have been described with a variety of co-morbidities including variations in sex development (VSD) although these features have not been closely documented. CASE PRESENTATION The proband is a 14-year-old male who presented with congenital complex hypospadias, neurodevelopmental differences, and subtle dysmorphism. A family history of neurodevelopmental differences and VSD was noted. Microarray testing and whole exome sequencing found the 46,XY proband had a large heterozygous in-frame deletion of exons 4-10 of the CUX1 gene. CONCLUSIONS Our review of the literature has revealed that variants in CUX1 are associated with a range of VSD and suggest this gene should be considered in cases where a VSD is noted at birth, especially if there is a familial history of VSD and/or neurodevelopmental differences. Further work is required to fully investigate the role and regulation of CUX1 in sex development.
Collapse
Affiliation(s)
- Lynn Tan
- Monash Genetics, Monash Health, Melbourne, VIC, Australia.
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| | - Shelley G Young
- The Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Lv X, He M, Zhou H, Wang S, Cao X, Yuan Z, Getachew T, Li Y, Sun W. SP1 and KROX20 Regulate the Proliferation of Dermal Papilla Cells and Target the CUX1 Gene. Animals (Basel) 2024; 14:429. [PMID: 38338072 PMCID: PMC10854491 DOI: 10.3390/ani14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Oppermann H, Marcos-Grañeda E, Weiss LA, Gurnett CA, Jelsig AM, Vineke SH, Isidor B, Mercier S, Magnussen K, Zacher P, Hashim M, Pagnamenta AT, Race S, Srivastava S, Frazier Z, Maiwald R, Pergande M, Milani D, Rinelli M, Levy J, Krey I, Fontana P, Lonardo F, Riley S, Kretzer J, Rankin J, Reis LM, Semina EV, Reuter MS, Scherer SW, Iascone M, Weis D, Fagerberg CR, Brasch-Andersen C, Hansen LK, Kuechler A, Noble N, Gardham A, Tenney J, Rathore G, Beck-Woedl S, Haack TB, Pavlidou DC, Atallah I, Vodopiutz J, Janecke AR, Hsieh TC, Lesmann H, Klinkhammer H, Krawitz PM, Lemke JR, Jamra RA, Nieto M, Tümer Z, Platzer K. CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology. Eur J Hum Genet 2023; 31:1251-1260. [PMID: 37644171 PMCID: PMC10620399 DOI: 10.1038/s41431-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.
Collapse
Affiliation(s)
- Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Elia Marcos-Grañeda
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Linnea A Weiss
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Christina A Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anne Marie Jelsig
- Dpt. of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Susanne H Vineke
- Dpt. of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
- L'institut du thorax, Inserm, Cnrs, Univ Nantes, Nantes, France
| | - Kari Magnussen
- Randall Children's Hospital at Legacy Emanuel, Portland, OR, USA
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Mona Hashim
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simone Race
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | | | - Zoë Frazier
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Robert Maiwald
- MVZ for Coagulation Diagnostics and Medical Genetics Cologne, ÜBAG Zotz/Klimas, Cologne, Germany
| | | | - Donatella Milani
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jonathan Levy
- Genetics Department, CHU Robert-Debré, AP-HP, Paris, France
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Paolo Fontana
- Medical Genetics Unit, A.O.R.N. San Pio, Benevento, Italy
| | | | - Stephanie Riley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jasmine Kretzer
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, Linz, Austria
| | | | | | | | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Nathan Noble
- Blank Children's Developmental Center, Unity Point Health, Des Moines, IA, USA
| | - Alice Gardham
- North West Thames Regional Genetic Service, North West London Hospitals, London, UK
| | - Jessica Tenney
- Division of Medical Genetics, University of California, San Francisco, CA, USA
| | - Geetanjali Rathore
- Dvision of Pediatric Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Despoina C Pavlidou
- Division of Genetic Medicine, Lausanne Universitary Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne Universitary Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Andreas R Janecke
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institut für Humangenetik, Universitätsklinikum Bonn, Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicin, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Mori M, Kubota Y, Durmaz A, Gurnari C, Goodings C, Adema V, Ponvilawan B, Bahaj WS, Kewan T, LaFramboise T, Meggendorfer M, Haferlach C, Barnard J, Wlodarski M, Visconte V, Haferlach T, Maciejewski JP. Genomics of deletion 7 and 7q in myeloid neoplasm: from pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia 2023; 37:2082-2093. [PMID: 37634012 PMCID: PMC10539177 DOI: 10.1038/s41375-023-02003-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Complete or partial deletions of chromosome 7 (-7/del7q) belong to the most frequent chromosomal abnormalities in myeloid neoplasm (MN) and are associated with a poor prognosis. The disease biology of -7/del7q and the genes responsible for the leukemogenic properties have not been completely elucidated. Chromosomal deletions may create clonal vulnerabilities due to haploinsufficient (HI) genes contained in the deleted regions. Therefore, HI genes are potential targets of synthetic lethal strategies. Through the most comprehensive multimodal analysis of more than 600 -7/del7q MN samples, we elucidated the disease biology and qualified a list of most consistently deleted and HI genes. Among them, 27 potentially synthetic lethal target genes were identified with the following properties: (i) unaffected genes by hemizygous/homozygous LOF mutations; (ii) prenatal lethality in knockout mice; and (iii) vulnerability of leukemia cells by CRISPR and shRNA knockout screens. In -7/del7q cells, we also identified 26 up or down-regulated genes mapping on other chromosomes as downstream pathways or compensation mechanisms. Our findings shed light on the pathogenesis of -7/del7q MNs, while 27 potential synthetic lethal target genes and 26 differential expressed genes allow for a therapeutic window of -7/del7q.
Collapse
Affiliation(s)
- Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Charnise Goodings
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Waled S Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
6
|
Zhou H, Huang S, Lv X, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Reverter A, Sun W. Effect of CUX1 on the Proliferation of Hu Sheep Dermal Papilla Cells and on the Wnt/β-Catenin Signaling Pathway. Genes (Basel) 2023; 14:423. [PMID: 36833350 PMCID: PMC9956264 DOI: 10.3390/genes14020423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
CUT-like homeobox 1 protein (CUX1), also called CUX, CUTL1, and CDP, is a member of the DNA-binding protein homology family. Studies have shown that CUX1 is a transcription factor that plays an important role in the growth and development of hair follicles. The aim of this study was to investigate the effect of CUX1 on the proliferation of Hu sheep dermal papilla cells (DPCs) to reveal the role of CUX1 in hair follicle growth and development. First, the coding sequence (CDS) of CUX1 was amplified by PCR, and then CUX1 was overexpressed and knocked down in DPCs. A Cell Counting Kit-8 (CCK8), 5-ethynyl-2-deoxyuridine (EdU), and cell cycle assays were used to detect the changes in the proliferation and cell cycle of DPCs. Finally, the effects of overexpression and knockdown of CUX1 in DPCs on the expression of WNT10, MMP7, C-JUN, and other key genes in the Wnt/β-catenin signaling pathway were detected by RT-qPCR. The results showed that the 2034-bp CDS of CUX1 was successfully amplified. Overexpression of CUX1 enhanced the proliferative state of DPCs, significantly increased the number of S-phase cells, and decreased the number of G0/G1-phase cells (p < 0.05). CUX1 knockdown had the opposite effects. It was found that the expression of MMP7, CCND1 (both p < 0.05), PPARD, and FOSL1 (both p < 0.01) increased significantly after overexpression of CUX1 in DPCs, while the expression of CTNNB1 (p < 0.05), C-JUN, PPARD, CCND1, and FOSL1 (all p < 0.01) decreased significantly. In conclusion, CUX1 promotes proliferation of DPCs and affects the expression of key genes of the Wnt/β-catenin signaling pathway. The present study provides a theoretical basis to elucidate the mechanism underlying hair follicle development and lambskin curl pattern formation in Hu sheep.
Collapse
Affiliation(s)
- Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Sainan Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou 450046, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
7
|
Vickridge E, Faraco CCF, Nepveu A. Base excision repair accessory factors in senescence avoidance and resistance to treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:703-720. [PMID: 36176767 PMCID: PMC9511810 DOI: 10.20517/cdr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Camila C. F. Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Medicine, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Oncology, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
8
|
CUX2 deficiency causes facilitation of excitatory synaptic transmission onto hippocampus and increased seizure susceptibility to kainate. Sci Rep 2022; 12:6505. [PMID: 35581205 PMCID: PMC9114133 DOI: 10.1038/s41598-022-10715-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/11/2022] [Indexed: 01/19/2023] Open
Abstract
CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). The CUX2 variants showed abnormal localization in human cell culture analysis. While wild-type CUX2 enhances dendritic arborization in fly neurons, the effect was compromised by some of the variants. Cux2- and Casp-specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.
Collapse
|
9
|
Astro V, Alowaysi M, Fiacco E, Saera-Vila A, Cardona-Londoño KJ, Aiese Cigliano R, Adamo A. Pseudoautosomal Region 1 Overdosage Affects the Global Transcriptome in iPSCs From Patients With Klinefelter Syndrome and High-Grade X Chromosome Aneuploidies. Front Cell Dev Biol 2022; 9:801597. [PMID: 35186953 PMCID: PMC8850648 DOI: 10.3389/fcell.2021.801597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by a 47,XXY karyotype. Less frequently, higher grade sex chromosome aneuploidies (HGAs) can also occur. Here, using a paradigmatic cohort of KS and HGA induced pluripotent stem cells (iPSCs) carrying 49,XXXXY, 48,XXXY, and 47,XXY karyotypes, we identified the genes within the pseudoautosomal region 1 (PAR1) as the most susceptible to dosage-dependent transcriptional dysregulation and therefore potentially responsible for the progressively worsening phenotype in higher grade X aneuploidies. By contrast, the biallelically expressed non-PAR escape genes displayed high interclonal and interpatient variability in iPSCs and differentiated derivatives, suggesting that these genes could be associated with variable KS traits. By interrogating KS and HGA iPSCs at the single-cell resolution we showed that PAR1 and non-PAR escape genes are not only resilient to the X-inactive specific transcript (XIST)-mediated inactivation but also that their transcriptional regulation is disjointed from the absolute XIST expression level. Finally, we explored the transcriptional effects of X chromosome overdosage on autosomes and identified the nuclear respiratory factor 1 (NRF1) as a key regulator of the zinc finger protein X-linked (ZFX). Our study provides the first evidence of an X-dosage-sensitive autosomal transcription factor regulating an X-linked gene in low- and high-grade X aneuploidies.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maryam Alowaysi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Kelly J. Cardona-Londoño
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Antonio Adamo,
| |
Collapse
|
10
|
miR-143 Targeting CUX1 to Regulate Proliferation of Dermal Papilla Cells in Hu Sheep. Genes (Basel) 2021; 12:genes12122017. [PMID: 34946965 PMCID: PMC8700861 DOI: 10.3390/genes12122017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Wool curvature is the determining factor for lambskin quality of Hu lambs. However, the molecular mechanism of wool curvature formation is not yet known. miRNA has been proved to play an important role in hair follicle development, and we have discovered a differentially expressed miRNA, miR-143, in hair follicles of different curl levels. In this study, we first examined the effects of miR-143 on the proliferation and cell cycle of dermal papilla cells using CCK8, EdU and flow cytometry and showed that miR-143 inhibited the proliferation of dermal papilla cells and slowed down the cell cycle. Bioinformatics analysis was performed to predict the target genes KRT71 and CUX1 of miR-143, and both two genes were expressed at significantly higher levels in small waves than in straight lambskin wool (p < 0.05) as detected by qPCR and Western blot (WB). Then, the target relationships between miR-143 and KRT71 and CUX1 were verified through the dual-luciferase assay in 293T cells. Finally, after overexpression and suppression of miR-143 in dermal papilla cells, the expression trend of CUX1 was contrary to that of miR-143. Meanwhile, KRT71 was not detected because KRT71 was not expressed in dermal papilla cells. Therefore, we speculated that miR-143 can target CUX1 to inhibit the proliferation of dermal papilla cells, while miR-143 can target KRT71 to regulate the growth and development of hair follicles, so as to affect the development of hair follicles and ultimately affect the formation of wool curvature.
Collapse
|
11
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
12
|
Ramdzan ZM, Vickridge E, Faraco CCF, Nepveu A. CUT Domain Proteins in DNA Repair and Cancer. Cancers (Basel) 2021; 13:cancers13122953. [PMID: 34204734 PMCID: PMC8231510 DOI: 10.3390/cancers13122953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Genetic integrity is ensured by complex groups of proteins involved in DNA repair. In particular, base damage is repaired by enzymes of the base excision repair pathway. Recent studies have revealed that some transcription factors can function as accessory factors that stimulate the enzymatic activities of these DNA repair enzymes. It is well known that defects in DNA repair mechanisms cause the accumulation of changes in DNA, called mutations, that increase the possibility that cells become tumorigenic. Paradoxically, once they have emerged certain cancer cells are acutely dependent on the heightened activities of base excision repair enzymes because their metabolism generates highly reactive molecules that cause multiple types of damage to bases. In this context, the function of accessory factors becomes essential to cancer cell survival. As a by-product of this adaptation, cancer cells become more resistant to therapies that cause DNA damage, such as chemotherapy and radiation. Abstract Recent studies revealed that CUT domains function as accessory factors that accelerate DNA repair by stimulating the enzymatic activities of the base excision repair enzymes OGG1, APE1, and DNA pol β. Strikingly, the role of CUT domain proteins in DNA repair is exploited by cancer cells to facilitate their survival. Cancer cells in which the RAS pathway is activated produce an excess of reactive oxygen species (ROS) which, if not counterbalanced by increased production of antioxidants, causes sustained oxidative DNA damage and, ultimately, cell senescence. These cancer cells can adapt by increasing their capacity to repair oxidative DNA damage in part through elevated expression of CUT domain proteins such as CUX1, CUX2, or SATB1. In particular, CUX1 overexpression was shown to cooperate with RAS in the formation of mammary and lung tumors in mice. Conversely, knockdown of CUX1, CUX2, or SATB1 was found to be synthetic lethal in cancer cells exhibiting high ROS levels as a consequence of activating mutations in KRAS, HRAS, BRAF, or EGFR. Importantly, as a byproduct of their adaptation, cancer cells that overexpress CUT domain proteins exhibit increased resistance to genotoxic treatments such as ionizing radiation, temozolomide, and cisplatin.
Collapse
Affiliation(s)
- Zubaidah M. Ramdzan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
| | - Elise Vickridge
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
| | - Camila C. F. Faraco
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada; (Z.M.R.); (E.V.); (C.C.F.F.)
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Correspondence: ; Tel.: +514-398-5839; Fax: +514-398-6769
| |
Collapse
|
13
|
Geisler SM, Benedetti A, Schöpf CL, Schwarzer C, Stefanova N, Schwartz A, Obermair GJ. Phenotypic Characterization and Brain Structure Analysis of Calcium Channel Subunit α 2δ-2 Mutant (Ducky) and α 2δ Double Knockout Mice. Front Synaptic Neurosci 2021; 13:634412. [PMID: 33679366 PMCID: PMC7933509 DOI: 10.3389/fnsyn.2021.634412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Auxiliary α2δ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (α2δ-1, α2δ-2, and α2δ-3) are abundantly expressed in the brain; however, of the available knockout models, only α2δ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal α2δ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct α2δ double knockout mouse models by crossbreeding single knockout (α2δ-1 and -3) or mutant (α2δ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct α2δ-1/-2, α2δ-1/-3, and α2δ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific α2δ isoforms (α2Δ-2 > α2δ-1 > α2δ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of α2δ-2/-3 cross-breedings. Juvenile α2δ-1/-2 and α2δ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and α2δ-1/-3 double knockout animals, α2δ-1/-2 and α2δ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that α2δ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
Collapse
Affiliation(s)
- Stefanie M. Geisler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ariane Benedetti
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens L. Schöpf
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Arnold Schwartz
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
14
|
Tao H, Lambert JP, Yung TM, Zhu M, Hahn NA, Li D, Lau K, Sturgeon K, Puviindran V, Zhang X, Gong W, Chen XX, Anderson G, Garry DJ, Henkelman RM, Sun Y, Iulianella A, Kawakami Y, Gingras AC, Hui CC, Hopyan S. IRX3/5 regulate mitotic chromatid segregation and limb bud shape. Development 2020; 147:dev.180042. [PMID: 32907847 DOI: 10.1242/dev.180042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/25/2020] [Indexed: 01/19/2023]
Abstract
Pattern formation is influenced by transcriptional regulation as well as by morphogenetic mechanisms that shape organ primordia, although factors that link these processes remain under-appreciated. Here we show that, apart from their established transcriptional roles in pattern formation, IRX3/5 help to shape the limb bud primordium by promoting the separation and intercalation of dividing mesodermal cells. Surprisingly, IRX3/5 are required for appropriate cell cycle progression and chromatid segregation during mitosis, possibly in a nontranscriptional manner. IRX3/5 associate with, promote the abundance of, and share overlapping functions with co-regulators of cell division such as the cohesin subunits SMC1, SMC3, NIPBL and CUX1. The findings imply that IRX3/5 coordinate early limb bud morphogenesis with skeletal pattern formation.
Collapse
Affiliation(s)
- Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Theodora M Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, ON M5S 3G8, Canada
| | - Noah A Hahn
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Danyi Li
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kendra Sturgeon
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Vijitha Puviindran
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Xiaoyun Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Wuming Gong
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiao Xiao Chen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Anderson
- Mouse Imaging Centre, Hospital for Sick Children, Toronto Centre for Phenogenomics, Department of Medical Biophysics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto Centre for Phenogenomics, Department of Medical Biophysics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, ON M5S 3G8, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| |
Collapse
|
15
|
Distinct clinical and biological implications of CUX1 in myeloid neoplasms. Blood Adv 2020; 3:2164-2178. [PMID: 31320321 DOI: 10.1182/bloodadvances.2018028423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/01/2019] [Indexed: 01/19/2023] Open
Abstract
Somatic mutations of the CUT-like homeobox 1 (CUX1) gene (CUX1 MT) can be found in myeloid neoplasms (MNs), in particular, in myelodysplastic syndromes (MDSs). The CUX1 locus is also deleted in 3 of 4 MN cases with -7/del(7q). A cohort of 1480 MN patients was used to characterize clinical features and clonal hierarchy associated with CUX1 MT and CUX1 deletions (CUX1 DEL) and to analyze their functional consequences in vitro. CUX1 MT were present in 4% of chronic MNs. CUX1 DEL were preferentially found in advanced cases (6%). Most MDS and acute myeloid leukemia (AML) patients with -7/del(7q) and up to 15% of MDS patients and 5% of AML patients diploid for the CUX1 locus exhibited downmodulated CUX1 expression. In 75% of mutant cases, CUX1 MT were heterozygous, whereas microdeletions and homozygous and compound-heterozygous mutations were less common. CUX MT/DEL were associated with worse survival compared with CUX1 WT Within the clonal hierarchy, 1 of 3 CUX1 MT served as founder events often followed by secondary BCOR and ASXL1 subclonal hits, whereas TET2 was the most common ancestral lesion, followed by subclonal CUX1 MT Comet assay of patients' bone marrow progenitor cells and leukemic cell lines performed in various experimental conditions revealed that frameshift mutations, hemizygous deletions, or experimental CUX1 knockdown decrease the repair of oxidized bases. These functional findings may explain why samples with either CUX1 MT or low CUX1 expression coincided with significantly higher numbers of somatic hits by whole-exome sequencing. Our findings implicate the DNA repair dysfunction resulting from CUX1 lesions in the pathogenesis of MNs, in which they lead to a mutator phenotype.
Collapse
|
16
|
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. CUX1, A Controversial Player in Tumor Development. Front Oncol 2020; 10:738. [PMID: 32547943 PMCID: PMC7272708 DOI: 10.3389/fonc.2020.00738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and functionally conserved from Drosophila to humans. In addition to the involvement in various physiological events including tissue development, cell proliferation, differentiation and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis. Interestingly, CUX1 has been recently recognized as a haploinsufficient tumor suppressor, which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or mutations of CUX1 have been frequently detected in many types of cancers, genomic amplification, and overexpression of CUX1 have also been reported in cancer tissues and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering the roles of different CUX1 isoforms and in different tumor stages is required to establish a CUX1-based therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Qiliang Sun
- Department of Respiratory Medicine, Taian City Central Hospital, Tai'an, China
| | - Long Wan
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Xuan Wang
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Judong Luo
- Department of Radiation Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Abdollahi-Arpanahi R, Carvalho MR, Ribeiro ES, Peñagaricano F. Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle. J Dairy Sci 2019; 102:10020-10029. [PMID: 31477299 DOI: 10.3168/jds.2019-17068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 01/19/2023]
Abstract
Elongation of the preimplantation conceptus is a requirement for pregnancy success in ruminants, and failures in this process are highly associated with subfertility in dairy cattle. Identifying genetic markers that are related to early conceptus development and survival and utilizing these markers in selective breeding can improve the reproductive efficiency of dairy herds. Here, we evaluated the association of 1,679 SNP markers within or close to 183 candidate genes involved in lipid metabolism of the elongating conceptus with different fertility traits in US Holstein cattle. A total of 27,371 bulls with predicted transmitting ability records for daughter pregnancy rate, cow conception rate, and heifer conception rate were used as the discovery population. The associations found in the discovery population were validated using 2 female populations (1,122 heifers and 2,138 lactating cows) each with 4 fertility traits, including success to first insemination, number of services per conception, age at first conception for heifers, or days open for cows. Marker effects were estimated using a linear mixed model with SNP genotype as a linear covariate and a random polygenic effect. After multiple testing correction, 39 SNP flagging 27 candidate genes were associated with at least one fertility trait in the discovery population. Of these 39 markers, 3 SNP were validated in the heifer population and 4 SNP were validated in the cow population. The 3 SNP validated in heifers are located within or near genes CAT, MYOF, and RBP4, and the 4 SNP validated in lactating cows are located within or close to genes CHKA, GNAI1, and HMOX2. These validated genes seem to be relevant for reducing pregnancy losses, and the SNP within these genes are excellent candidates for inclusion in genomic tests to improve reproductive performance in dairy cattle.
Collapse
Affiliation(s)
| | - Murilo R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Eduardo S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville 32611; University of Florida Genetics Institute, University of Florida, Gainesville 32611.
| |
Collapse
|
18
|
Anitha A, Gupta YR, Deepa S, Ningappa M, Rajanna KB, Senthilkumaran B. Gonadal transcriptome analysis of the common carp, Cyprinus carpio: Identification of differentially expressed genes and SSRs. Gen Comp Endocrinol 2019; 279:67-77. [PMID: 30571963 DOI: 10.1016/j.ygcen.2018.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/19/2023]
Abstract
Common carp (Cyprinus carpio) is a world-wide freshwater fish of eutrophic waters. C. carpio, have various reproductive traits, including early sexual maturity, that may make them excellent, large, realistic, aquaculture model species. In the present work, de novo assembly of gonadal (testicular and ovarian) transcriptomes from juvenile common carp was performed to identify genes involved in gonadal development. A total of 81,757 and 43,257 transcripts with average lengths of 769 and 856 bp, were obtained from the immature testicular and ovarian transcriptomes, respectively. About 84,367 unigenes were constructed after removing redundancy involving representation of transcripts in both gonadal transcriptomes. Gene ontology (39,171 unigenes), clusters of orthologous group's analysis (6651 unigenes) and Kyoto encyclopedia of genes, and genomes automatic annotation server analysis (4783 unigenes) were performed to identify potential genes along with their functions. Furthermore, 18,342 (testis) and 8693 (ovary) simple sequence repeats were identified. About 298 differentially expressed genes were identified, of which 171 and 127 genes were up-regulated in testis and ovary, respectively. Quantitative real-time reverse transcription PCR was performed to validate differential expression of selected genes in testis and ovary. Nearly 809 genes related to reproduction were identified, sex-wise expression pattern of genes related to steroid synthesis, endocrine regulation, germ cell maintenance and others factors related to gonadal differentiation was observed, and expression analysis of nanos, ad4bp/sf-1, and gdf9 was performed. The present study identified certain important genes/factors involved in the gonadal development of C. carpio which may provide insights into the understanding of sex-differentiation and gonadal development processes.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Yugantak-Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Manjappa Ningappa
- Fisheries Research and Information Center (KVAFSU), Hesaraghatta Lake Post, Hesaraghatta, Bengaluru 560 089, India
| | - Karani Boraiah Rajanna
- KVAFSU, 10th cross, Mayura street, Papanna layout, Hebbal outer ring road, Bengaluru 560 089, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
19
|
Xu H, He JH, Xu SJ, Xie SJ, Ma LM, Zhang Y, Zhou H, Qu LH. A group of tissue-specific microRNAs contribute to the silencing of CUX1 in different cell lineages during development. J Cell Biochem 2018; 119:6238-6248. [PMID: 29663529 DOI: 10.1002/jcb.26852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/09/2018] [Indexed: 01/19/2023]
Abstract
Cut-like homeobox 1 (CUX1) is a highly conserved homeoprotein that functions as a transcriptional repressor of genes specifying terminal differentiation. We previously showed that liver-specific microRNA-122 (miR-122) regulates the timing of liver development by silencing CUX1 post-transcriptionally. Since the CUX1 protein is expressed in a subset of embryonic tissues, we hypothesized that it is regulated by specific microRNAs (miRNAs) in each cell type during development. Using a large-scale screening method, we identified ten tissue-specific miRNAs from different cell lineages that directly targeted CUX1. An analysis of the interaction between heart-specific microRNA-208a (miR-208a) and CUX1 in the hearts of developing mouse embryos and in P19CL6 cells undergoing cardiac differentiation indicated that CUX1 is regulated by miR-208a during heart development and cardiomyocyte differentiation. Functional analysis of miR-208a in P19CL6 cells using lentiviral-mediated over-expression showed that it regulates the transition between cellular proliferation and differentiation. These results suggest that these tissue-specific miRNAs might play a common role in timing the progression of terminal differentiation of different cell lineages, possibly by silencing the differentiation repressor CUX1.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shi-Jun Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li-Ming Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
20
|
Abstract
Since a report of some 50 years ago describing refractory anemia associated with group C monosomy, monosomy 7 (-7) and interstitial deletions of chromosome 7 (del(7q)) have been established as one of the most frequent chromosomal aberrations found in essentially all types of myeloid tumors regardless of patient age and disease etiology. In the last century, researchers sought recessive myeloid tumor-suppressor genes by attempting to determine commonly deleted regions (CDRs) in del(7q) patients. However, these efforts were not successful. Today, tumor suppressors located in 7q are believed to act in a haploinsufficient fashion, and powerful new technologies such as microarray comparative genomic hybridization and high-throughput sequencing allow comprehensive searches throughout the genes encoded on 7q. Among those proposed as promising candidates, 4 have been validated by gene targeting in mouse models. SAMD9 (sterile α motif domain 9) and SAMD9L (SAMD9-like) encode related endosomal proteins, mutations of which cause hereditary diseases with strong propensity to infantile myelodysplastic syndrome (MDS) harboring monosomy 7. Because MDS develops in SAMD9L-deficient mice over their lifetime, SAMD9/SAMD9L are likely responsible for sporadic MDS with -7/del(7q) as the sole anomaly. EZH2 (enhancer of zeste homolog 2) and MLL3 (mixed lineage leukemia 3) encode histone-modifying enzymes; loss-of-function mutations of these are detected in some myeloid tumors at high frequencies. In contrast to SAMD9/SAMD9L, loss of EZH2 or MLL3 likely contributes to myeloid tumorigenesis in cooperation with additional specific gene alterations such as of TET2 or genes involved in the p53/Ras pathway, respectively. Distinctive roles with different significance of the loss of multiple responsible genes render the complex nature of myeloid tumors carrying -7/del(7q).
Collapse
|
21
|
Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS. Blood 2018; 131:2682-2697. [PMID: 29592892 DOI: 10.1182/blood-2017-10-810028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/21/2018] [Indexed: 01/19/2023] Open
Abstract
Monosomy 7 (-7) and del(7q) are high-risk cytogenetic abnormalities common in myeloid malignancies. We previously reported that CUX1, a homeodomain-containing transcription factor encoded on 7q22, is frequently inactivated in myeloid neoplasms, and CUX1 myeloid tumor suppressor activity is conserved from humans to Drosophila. CUX1-inactivating mutations are recurrent in clonal hematopoiesis of indeterminate potential as well as myeloid malignancies, in which they independently carry a poor prognosis. To determine the role for CUX1 in hematopoiesis, we generated 2 short hairpin RNA-based mouse models with ∼54% (Cux1mid) or ∼12% (Cux1low) residual CUX1 protein. Cux1mid mice develop myelodysplastic syndrome (MDS) with anemia and trilineage dysplasia, whereas CUX1low mice developed MDS/myeloproliferative neoplasms and anemia. In diseased mice, restoration of CUX1 expression was sufficient to reverse the disease. CUX1 knockdown bone marrow transplant recipients exhibited a transient hematopoietic expansion, followed by a reduction of hematopoietic stem cells (HSCs), and fatal bone marrow failure, in a dose-dependent manner. RNA-sequencing after CUX1 knockdown in human CD34+ cells identified a -7/del(7q) MDS gene signature and altered differentiation, proliferative, and phosphatidylinositol 3-kinase (PI3K) signaling pathways. In functional assays, CUX1 maintained HSC quiescence and repressed proliferation. These homeostatic changes occurred in parallel with decreased expression of the PI3K inhibitor, Pik3ip1, and elevated PI3K/AKT signaling upon CUX1 knockdown. Our data support a model wherein CUX1 knockdown promotes PI3K signaling, drives HSC exit from quiescence and proliferation, and results in HSC exhaustion. Our results also demonstrate that reduction of a single 7q gene, Cux1, is sufficient to cause MDS in mice.
Collapse
|
22
|
Abstract
Cux1 and Cux2 are the vertebrate members of a family of homeodomain transcription factors (TF) containing Cut repeat DNA-binding sequences. Perturbation of their expression has been implicated in a wide variety of diseases and disorders, ranging from cancer to autism spectrum disorder (ASD). Within the nervous system, both genes are expressed during neurogenesis and in specific neuronal subpopulations. Their role during development and circuit specification is discussed here, with a particular focus on the cortex where their restricted expression in pyramidal neurons of the upper layers appears to be responsible for many of the specialized functions of these cells, and where their functions have been extensively investigated. Finally, we discuss how Cux TF represent a promising avenue for manipulating neuronal function and for reprogramming.
Collapse
|
23
|
Porath B, Livingston S, Andres EL, Petrie AM, Wright JC, Woo AE, Carlton CG, Baybutt R, Vanden Heuvel GB. Cux1 promotes cell proliferation and polycystic kidney disease progression in an ADPKD mouse model. Am J Physiol Renal Physiol 2017; 313:F1050-F1059. [PMID: 28701314 PMCID: PMC5668583 DOI: 10.1152/ajprenal.00380.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn-/- mice did not show any cysts. Because Cux1tm2Ejn-/- are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn-/- mice, newborn Pkd1CD;Cux1tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.
Collapse
Affiliation(s)
- Binu Porath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Erica L Andres
- Department of Biology, Wheaton College, Wheaton, Illinois
| | | | | | - Anna E Woo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carol G Carlton
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| | - Richard Baybutt
- Department of Applied Health Sciences, Wheaton College, Wheaton, Illinois; and
| | - Gregory B Vanden Heuvel
- Department of Biology, Wheaton College, Wheaton, Illinois;
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| |
Collapse
|
24
|
Ramdzan ZM, Ginjala V, Pinder JB, Chung D, Donovan CM, Kaur S, Leduy L, Dellaire G, Ganesan S, Nepveu A. The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 2017; 8:19021-19038. [PMID: 28147323 PMCID: PMC5386666 DOI: 10.18632/oncotarget.14875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Ionizing radiation generates a broad spectrum of oxidative DNA lesions, including oxidized base products, abasic sites, single-strand breaks and double-strand breaks. The CUX1 protein was recently shown to function as an auxiliary factor that stimulates enzymatic activities of OGG1 through its CUT domains. In the present study, we investigated the requirement for CUX1 and OGG1 in the resistance to radiation. Cancer cell survival following ionizing radiation is reduced by CUX1 knockdown and increased by higher CUX1 expression. However, CUX1 knockdown is sufficient by itself to reduce viability in many cancer cell lines that exhibit high levels of reactive oxygen species (ROS). Consequently, clonogenic results expressed relative to that of non-irradiated cells indicate that CUX1 knockdown confers no or modest radiosensitivity to cancer cells with high ROS. A recombinant protein containing only two CUT domains is sufficient for rapid recruitment to DNA damage, acceleration of DNA repair and increased survival following radiation. In agreement with these findings, OGG1 knockdown and treatment of cells with OGG1 inhibitors sensitize cancer cells to radiation. Together, these results validate CUX1 and more specifically the CUT domains as therapeutic targets.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903, USA
| | - Jordan B Pinder
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Caroline M Donovan
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Simran Kaur
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903, USA
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montreal, Quebec, H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
25
|
Abstract
Using a combination of high throughput and bioinformatics strategies, in combination with a system biology approach, a group of related genes including EAP1 and CUX1 whose expression increased at the time of female puberty were singled out from the hypothalamus of nonhuman primates and rats. It was hypothesized that EAP1 and CUX1 genes may be required for the timely initiation of female puberty by regulating the expression of KISS1 gene. Therefore, we measured the hypothalamic expression of EAP1 and CUX1 genes of female SD rats in mRNA and protein levels along with the numbers of respective immunoreactive cells at three different development stages (juvenile, early puberty and adult). Besides, we investigated the distribution of their immunoreactive cells. Although there was no changes in the mRNA levels of EAP1 and CUX1 in the hypothalamus during the different sexual development stages, the protein expression of EAP1 in the early-puberty group was significantly higher than that in the juvenile group. Moreover, we found that EAP1 and CUX1 genes were localized in neuronal nuclei. Both were prominent in cells of the the arcuate nucleus (ARC) of the rat hypothalamus which was also the main localization of KISS1 gene. Especially, CUX1 gene was co-expressed in the kisspeptin neurons. Furthermore, the number and percentage of EAP1 immunoreactive cells in the early-puberty group were both significantly more than the juvenile group. Above results indicate that EAP1 gene may be involved in the neuroendocrine control of female puberty in correlation with the kisspeptin signaling.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | | |
Collapse
|
26
|
Rodríguez-Tornos FM, Briz CG, Weiss LA, Sebastián-Serrano A, Ares S, Navarrete M, Frangeul L, Galazo M, Jabaudon D, Esteban JA, Nieto M. Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing. Neuron 2016; 89:494-506. [PMID: 26804994 DOI: 10.1016/j.neuron.2015.12.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/23/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
Neuronal subtype-specific transcription factors (TFs) instruct key features of neuronal function and connectivity. Activity-dependent mechanisms also contribute to wiring and circuit assembly, but whether and how they relate to TF-directed neuronal differentiation is poorly investigated. Here we demonstrate that the TF Cux1 controls the formation of the layer II/III corpus callosum (CC) projections through the developmental transcriptional regulation of Kv1 voltage-dependent potassium channels and the resulting postnatal switch to a Kv1-dependent firing mode. Loss of Cux1 function led to a decrease in the expression of Kv1 transcripts, aberrant firing responses, and selective loss of CC contralateral innervation. Firing and innervation were rescued by re-expression of Kv1 or postnatal reactivation of Cux1. Knocking down Kv1 mimicked Cux1-mediated CC axonal loss. These findings reveal that activity-dependent processes are central bona fide components of neuronal TF-differentiation programs and establish the importance of intrinsic firing modes in circuit assembly within the neocortex.
Collapse
Affiliation(s)
| | - Carlos G Briz
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Linnea A Weiss
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Alvaro Sebastián-Serrano
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Saúl Ares
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain; Departamento de Matemáticas Universidad Carlos III de Madrid, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Madrid, Spain
| | - Marta Navarrete
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC-UAM), 28049 Madrid, Spain
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Maria Galazo
- HSCRB Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - José A Esteban
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Ramdzan ZM, Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer 2014; 14:673-82. [PMID: 25190083 DOI: 10.1038/nrc3805] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CUT-like homeobox 1 (CUX1) is a homeobox gene that is implicated in both tumour suppression and progression. The accumulated evidence supports a model of haploinsufficiency whereby reduced CUX1 expression promotes tumour development. Paradoxically, increased CUX1 expression is associated with tumour progression, and ectopic CUX1 expression in transgenic mice increases tumour burden in several tissues. One CUX1 isoform functions as an ancillary factor in base excision repair and the other CUX1 isoforms act as transcriptional activators or repressors. Several transcriptional targets and cellular functions of CUX1 affect tumorigenesis; however, we have yet to develop a mechanistic framework to reconcile the opposite roles of CUX1 in cancer protection and progression.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| | - Alain Nepveu
- 1] Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [2] Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [3] Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [4] Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
28
|
Bokolia NP, Mishra M. Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster. Dev Neurobiol 2014; 75:109-30. [PMID: 25081222 DOI: 10.1002/dneu.22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner-ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Orissa, India
| | | |
Collapse
|
29
|
Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 2014; 75:163-72. [PMID: 25059644 DOI: 10.1002/dneu.22215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 01/19/2023]
Abstract
A number of recent reports implicate the differential regulation of apical and basal dendrites in autism disorders and in the higher functions of the human brain. They show that apical and basal dendrites are functionally specialized and that mechanisms regulating their development have important consequences for neuron function. The molecular identity of layer II-III neurons of the cerebral cortex is determined by the overlapping expression of Cux1 and Cux2. We previously showed that both Cux1 and Cux2 are necessary and nonredundant for normal dendrite development of layer II-III neurons. Loss of function of either gene reduced dendrite arbors, while overexpression increased dendritic complexity and suggested additive functions. We herein characterize the function of Cux1 and Cux2 in the development of apical and basal dendrites. By in vivo loss and gain of function analysis, we show that while the expression level of either Cux1 or Cux2 influences both apical and basal dendrites, they have distinct effects. Changes in Cux1 result in a marked effect on the development of the basal compartment whereas modulation of Cux2 has a stronger influence on the apical compartment. These distinct effects of Cux genes might account for the functional diversification of layer II-III neurons into different subpopulations, possibly with distinct connectivity patterns and modes of neuron response. Our data suggest that by their differential effects on basal and apical dendrites, Cux1 and Cux2 can promote the integration of layer II-III neurons in the intracortical networks in highly specific ways.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, UAM-CSIC, Nicolás Cabrera, 1, Madrid, 28049, Spain
| | | | | | | |
Collapse
|
30
|
Vadnais C, Awan AA, Harada R, Clermont PL, Leduy L, Bérubé G, Nepveu A. Long-range transcriptional regulation by the p110 CUX1 homeodomain protein on the ENCODE array. BMC Genomics 2013; 14:258. [PMID: 23590133 PMCID: PMC3770232 DOI: 10.1186/1471-2164-14-258] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/26/2013] [Indexed: 01/19/2023] Open
Abstract
Background Overexpression of the Cut homeobox 1 gene, CUX1, inversely
correlates with patient survival in breast cancers. Cell-based assays and
molecular studies have revealed that transcriptional regulation by
CUX1 involves mostly the proteolytically processed p110
isoform. As there is no antibody specific to p110 CUX1 only, an alternate
strategy must be employed to identify its targets. Results We expressed physiological levels of a tagged-p110 CUX1 protein and performed
chromatin affinity purification followed by hybridization on ENCODE and
promoter arrays. Targets were validated by chromatin immunoprecipitation and
transcriptional regulation by CUX1 was analyzed in expression profiling and
RT-qPCR assays following CUX1 knockdown or p110 CUX1 overexpression.
Approximately 47% and 14% of CUX1 binding sites were respectively mapped
less than 4 Kbp, or more than 40 Kbp, away from a transcription start site.
More genes exhibited changes in expression following CUX1 knockdown than
p110 CUX1 overexpression. CUX1 directly activated or repressed 7.4% and 8.4%
of putative targets identified on the ENCODE and promoter arrays
respectively. This proportion increased to 11.2% for targets with 2 binding
sites or more. Transcriptional repression was observed in a slightly higher
proportion of target genes. The CUX1 consensus binding motif, ATCRAT, was
found at 47.2% of the CUX1 binding sites, yet only 8.3% of the CUX1
consensus motifs present on the array were bound in vivo. The
presence of a consensus binding motif did not have an impact on whether a
target gene was repressed or activated. Interestingly, the distance between
a binding site and a transcription start site did not significantly reduced
the ability of CUX1 to regulate a target gene. Moreover, CUX1 not only was
able to regulate the next adjacent gene, but also regulated the gene located
beyond this one as well as the gene located further away in the opposite
direction. Conclusion Our results demonstrate that p110 CUX1 can activate or repress transcription
when bound at a distance and can regulate more than one gene on certain
genomic loci.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Centre, McGill University, 1160 Pine avenue West, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Favero CB, Henshaw RN, Grimsley-Myers CM, Shrestha A, Beier DR, Dwyer ND. Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain. J Comp Neurol 2013; 521:677-96. [PMID: 22821687 PMCID: PMC3515720 DOI: 10.1002/cne.23199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 05/13/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023]
Abstract
Proper development of axonal connections is essential for brain function. A forward genetic screen for mice with defects in thalamocortical development previously isolated a mutant called baffled. Here we describe the axonal defects of baffled in further detail and identify a point mutation in the Hspa5 gene, encoding the endoplasmic reticulum chaperone BiP/GRP78. This hypomorphic mutation of BiP disrupts proper development of the thalamocortical axon projection and other forebrain axon tracts, as well as cortical lamination. In baffled mutant brains, a reduced number of thalamic axons innervate the cortex by the time of birth. Thalamocortical and corticothalamic axons are delayed, overfasciculated, and disorganized along their pathway through the ventral telencephalon. Furthermore, dissociated mutant neurons show reduced axon extension in vitro. Together, these findings demonstrate a sensitive requirement for the endoplasmic reticulum chaperone BiP/GRP78 during axon outgrowth and pathfinding in the developing mammalian brain.
Collapse
Affiliation(s)
- Carlita B. Favero
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rasha N. Henshaw
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Ayushma Shrestha
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - David R. Beier
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
32
|
Liu KC, Lin BS, Zhao M, Wang KY, Lan XP. Cutl1: a potential target for cancer therapy. Cell Signal 2012; 25:349-54. [PMID: 23085261 DOI: 10.1016/j.cellsig.2012.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/19/2023]
Abstract
CDP, a key transcription regulator encoded by Cutl1 gene, has been demonstrated to be involved in repressing or promoting expression of target genes through its specific DNA-binding, meanwhile, the activity of CDP was influenced by some types of modifications including transcriptional, posttranscriptional, translational and posttranslational modifications. In this review, we systematically analyzed the role of CDP in normal development and tumor progression, and then emphasized its interactors and downstream molecules. Eventually, we concluded that Cut1 could promote cancer progression and its down-regulating expression will be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Kuan-can Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | | | | | | | | |
Collapse
|
33
|
Mueller JK, Koch I, Lomniczi A, Loche A, Rulfs T, Castellano JM, Kiess W, Ojeda S, Heger S. Transcription of the human EAP1 gene is regulated by upstream components of a puberty-controlling Tumor Suppressor Gene network. Mol Cell Endocrinol 2012; 351:184-98. [PMID: 22209758 PMCID: PMC3288847 DOI: 10.1016/j.mce.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
Mammalian puberty is initiated by an increased pulsatile release of gonadotropin-releasing hormone (GnRH) from specialized neurons located in the hypothalamus. GnRH secretion is controlled by neuronal and glial networks, whose activity appears to be coordinated via transcriptional regulation. One of the transcription factors involved in this process is thought to be the recently described gene Enhanced at Puberty 1 (EAP1), which encodes a protein with dual transcriptional activity. In this study we used gene reporter and chromatin immunoprecipitation (ChIP) assays to examine the hypothesis that EAP1 expression is controlled by transcriptional regulators earlier postulated to serve as central nodes of a gene network involved in the neuroendocrine control of puberty. These regulators include Thyroid Transcription Factor 1 (TTF1), Yin Yang 1 (YY1), and CUX1, in addition to EAP1 itself. While TTF1 has been shown to facilitate the advent of puberty, YY1 (a zinc finger protein component of the Polycomb silencing complex) may play a repressive role. The precise role of CUX1 in this context is not known, but like EAP1, CUX1 can either activate or repress gene transcription. We observed that DNA segments of two different lengths (998 and 2744bp) derived from the 5'-flanking region of the human EAP1 gene display similar transcriptional activity. TTF1 stimulates transcription from both DNA segments with equal potency, whereas YY1, CUX1, and EAP1 itself, behave as transcriptional repressors. All four proteins are recruited in vivo to the EAP1 5'-flanking region. These observations suggest that EAP1 gene expression is under dual transcriptional regulation imposed by a trans-activator (TTF1) and two repressors (YY1 and CUX1) previously postulated to be upstream components of a puberty-controlling gene network. In addition, EAP1 itself appears to control its own expression via a negative auto-feedback loop mechanism. Further studies are needed to determine if the occupancy of the EAP1 promoter by these regulatory factors changes at the time of puberty.
Collapse
Affiliation(s)
- Johanna K. Mueller
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ines Koch
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Alejandro Lomniczi
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Alberto Loche
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Tomke Rulfs
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Juan M. Castellano
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Wieland Kiess
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Sergio Ojeda
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Sabine Heger
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
- Children’s Hospital “Auf der Bult”, Hanover, Germany
| |
Collapse
|
34
|
Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont PL, Drobetsky E, Nepveu A. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res 2012; 40:4483-95. [PMID: 22319212 PMCID: PMC3378881 DOI: 10.1093/nar/gks041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The p110 Cut homeobox 1 (CUX1) transcription factor regulates genes involved in DNA replication and chromosome segregation. Using a genome-wide-approach, we now demonstrate that CUX1 also modulates the constitutive expression of DNA damage response genes, including ones encoding ATM and ATR, as well as proteins involved in DNA damage-induced activation of, and signaling through, these kinases. Consistently, RNAi knockdown or genetic inactivation of CUX1 reduced ATM/ATR expression and negatively impacted hallmark protective responses mediated by ATM and ATR following exposure to ionizing radiation (IR) and UV, respectively. Specifically, abrogation of CUX1 strongly reduced ATM autophosphorylation after IR, in turn causing substantial decreases in (i) levels of phospho-Chk2 and p53, (ii) γ-H2AX and Rad51 DNA damage foci and (iii) the efficiency of DNA strand break repair. Similarly remarkable reductions in ATR-dependent responses, including phosphorylation of Chk1 and H2AX, were observed post-UV. Finally, multiple cell cycle checkpoints and clonogenic survival were compromised in CUX1 knockdown cells. Our results indicate that CUX1 regulates a transcriptional program that is necessary to mount an efficient response to mutagenic insult. Thus, CUX1 ensures not only the proper duplication and segregation of the genetic material, but also the preservation of its integrity.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Centre, Department of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada, H3A 1A3
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lettice LA, Daniels S, Sweeney E, Venkataraman S, Devenney PS, Gautier P, Morrison H, Fantes J, Hill RE, FitzPatrick DR. Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat 2011; 32:1492-9. [PMID: 21948517 DOI: 10.1002/humu.21615] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/01/2011] [Indexed: 01/19/2023]
Abstract
Disruption of the long-range cis-regulation of developmental gene expression is increasingly recognized as a cause of human disease. Here, we report a novel type of long-range cis-regulatory mutation, in which ectopic expression of a gene is driven by an enhancer that is not its own. We have termed this gain of regulatory information as "enhancer adoption." We mapped the breakpoints of a de novo 7q inversion in a child with features of a holoprosencephaly spectrum (HPES) disorder and severe upper limb syndactyly with lower limb synpolydactyly. The HPES plausibly results from the 7q36.3 breakpoint dislocating the sonic hedgehog (SHH) gene from enhancers that are known to drive expression in the early forebrain. However, the limb phenotype cannot be explained by loss of known SHH enhancers. The SHH transcription unit is relocated to 7q22.1, ∼190 kb 3' of a highly conserved noncoding element (HCNE2) within an intron of EMID2. We show that HCNE2 functions as a limb bud enhancer in mouse embryos and drives ectopic expression of Shh in vivo recapitulating the limb phenotype in the child. This developmental genetic mechanism may explain a proportion of the novel or unexplained phenotypes associated with balanced chromosome rearrangements.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu LJ, Xie R, Hussain S, Lian JB, Rivera-Perez J, Jones SN, Stein JL, Stein GS, van Wijnen AJ. Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development. Gene 2011; 483:1-10. [PMID: 21605641 PMCID: PMC3164518 DOI: 10.1016/j.gene.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
Transcription factor Histone Nuclear Factor P (HiNF-P; gene symbol Hinfp) mediates cell cycle control of histone H4 gene expression to support the packaging of newly replicated DNA as chromatin. The HiNF-P/p220(NPAT) complex controls multiple H4 genes in established human cell lines and is critical for cell proliferation. The mouse Hinfp(LacZ) null allele causes early embryonic lethality due to a blastocyst defect. However, neither Hinfp function nor its temporal expression relative to histone H4 genes during fetal development has been explored. Here, we establish that expression of Hinfp is biologically coupled with expression of twelve functional mouse H4 genes during pre- and post-natal tissue-development. Both Hinfp and H4 genes are robustly expressed at multiple embryonic (E) days (from E5.5 to E15.5), coincident with ubiquitous LacZ staining driven by the Hinfp promoter. Five highly expressed mouse H4 genes (Hist1h4d, Histh4f, Hist1h4m and Hist2h4) account for >90% of total histone H4 mRNA throughout development. Post-natal expression of H4 genes in mice is most evident in lung, spleen, thymus and intestine, and with few exceptions (e.g., adult liver) correlates with Hinfp gene expression. Histone H4 gene expression decreases butHinfp levels remain constitutive upon cell growth inhibition in culture. The in vivo co-expression of Hinfp and histone H4 genes is consistent with the biological function of Hinfp as a principal transcriptional regulator of histone H4 gene expression during mouse development.
Collapse
Affiliation(s)
- Li-Jun Liu
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Ronglin Xie
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Sadiq Hussain
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Jaime Rivera-Perez
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Stephen N. Jones
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
37
|
Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem 2011; 286:36875-87. [PMID: 21880732 DOI: 10.1074/jbc.m110.188888] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sperm-oocyte interactions are among the most remarkable processes in cell biology. These cellular recognition events are initiated by an exquisitely specific adhesion of free-swimming spermatozoa to the zona pellucida, an acellular matrix that surrounds the ovulated oocyte. Decades of research focusing on this interaction have led to the establishment of a widely held paradigm that the zona pellucida receptor is a single molecular entity that is constitutively expressed on the sperm cell surface. In contrast, we have employed the techniques of blue native-polyacrylamide gel electrophoresis, far Western blotting, and proximity ligation to secure the first direct evidence in support of a novel hypothesis that zona binding is mediated by multimeric sperm receptor complex(es). Furthermore, we show that one such multimeric association, comprising the chaperonin-containing TCP1 complex (CCT/TRiC) and a zona-binding protein, zona pellucida-binding protein 2, is present on the surface of capacitated spermatozoa and could account for the zona binding activity of these cells. Collectively, these data provide an important biochemical insight into the molecular basis of sperm-zona pellucida interaction and a plausible explanation for how spermatozoa gain their ability to fertilize.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Mueller JK, Dietzel A, Lomniczi A, Loche A, Tefs K, Kiess W, Danne T, Ojeda SR, Heger S. Transcriptional regulation of the human KiSS1 gene. Mol Cell Endocrinol 2011; 342:8-19. [PMID: 21672609 PMCID: PMC3148268 DOI: 10.1016/j.mce.2011.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 01/28/2023]
Abstract
Kisspeptin, the product of the KiSS1 gene, has emerged as a key component of the mechanism by which the hypothalamus controls puberty and reproductive development. It does so by stimulating the secretion of gonadotropin releasing hormone (GnRH). Little is known about the transcriptional control of the KiSS1 gene. Here we show that a set of proteins postulated to be upstream components of a hypothalamic network involved in controlling female puberty regulates KiSS1 transcriptional activity. Using RACE-PCR we determined that transcription of KiSS1 mRNA is initiated at a single transcription start site (TSS) located 153-156bp upstream of the ATG translation initiation codon. Promoter assays performed using 293 MSR cells showed that the KiSS1 promoter is activated by TTF1 and CUX1-p200, and repressed by EAP1, YY1, and CUX1-p110. EAP1 and CUX-110 were also repressive in GT1-7 cells. All four TFs are recruited in vivo to the KiSS1 promoter and are expressed in kisspeptin neurons. These results suggest that expression of the KiSS1 gene is regulated by trans-activators and repressors involved in the system-wide control of mammalian puberty.
Collapse
Affiliation(s)
| | - Anja Dietzel
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Alejandro Lomniczi
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Alberto Loche
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Katrin Tefs
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Thomas Danne
- Children’s Hospital “Auf der Bult”, Hannover, Germany
| | - Sergio R. Ojeda
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Sabine Heger
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
- Children’s Hospital “Auf der Bult”, Hannover, Germany
| |
Collapse
|
39
|
A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates. Mol Cell Biol 2011; 31:2729-41. [PMID: 21518956 DOI: 10.1128/mcb.05165-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Formation of facultative heterochromatin at specific genomic loci is fundamentally important in defining cellular properties such as differentiation potential and responsiveness to developmental, physiological, and environmental stimuli. By the nature of their formation, heterochromatin and repressive histone marks propagate until the chain reaction is broken. While certain active promoters can block propagation of heterochromatin, there are also specialized DNA elements, referred to as chromatin barriers, that serve to demarcate the boundary of facultative heterochromatin formation. In this study, we identified a chromatin barrier that specifically limits the formation of repressive chromatin to a distal enhancer region so that repressive histone modifications cannot reach the promoter and promoter-proximal enhancer regions of reaper. Unlike all of the known boundary elements identified for Drosophila melanogaster, this IRER (irradiation-responsive enhancer region) left barrier (ILB) does not exhibit enhancer-blocking activity. Not only has the ILB been conserved in different Drosophila species, it can also function as an effective chromatin barrier in vertebrate cells. This suggests that the mechanism by which it functions to spatially restrict the formation of repressive chromatin marked by trimethylated H3K27 has also been conserved widely during evolution.
Collapse
|
40
|
Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem 2010; 286:2155-70. [PMID: 21037323 DOI: 10.1074/jbc.m110.188482] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The first intron of FTO contains common single nucleotide polymorphisms associated with body weight and adiposity in humans. In an effort to identify the molecular basis for this association, we discovered that FTO and RPGRIP1L (a ciliary gene located in close proximity to the transcriptional start site of FTO) are regulated by isoforms P200 and P110 of the transcription factor, CUX1. This regulation occurs via a single AATAAATA regulatory site (conserved in the mouse) within the FTO intronic region associated with adiposity in humans. Single nucleotide polymorphism rs8050136 (located in this regulatory site) affects binding affinities of P200 and P110. Promoter-probe analysis revealed that binding of P200 to this site represses FTO, whereas binding of P110 increases transcriptional activity from the FTO as well as RPGRIP1L minimal promoters. Reduced expression of Fto or Rpgrip1l affects leptin receptor isoform b trafficking and leptin signaling in N41 mouse hypothalamic or N2a neuroblastoma cells in vitro. Leptin receptor clusters in the vicinity of the cilium of arcuate hypothalamic neurons in C57BL/6J mice treated with leptin, but not in fasted mice, suggesting a potentially important role of the cilium in leptin signaling that is, in part, regulated by FTO and RPGRIP1L. Decreased Fto/Rpgrip1l expression in the arcuate hypothalamus coincides with decreased nuclear enzymatic activity of a protease (cathepsin L) that has been shown to cleave full-length CUX1 (P200) to P110. P200 disrupts (whereas P110 promotes) leptin receptor isoform b clustering in the vicinity of the cilium in vitro. Clustering of the receptor coincides with increased leptin signaling as reflected in protein levels of phosphorylated Stat3 (p-Stat3). Association of the FTO locus with adiposity in humans may reflect functional consequences of A/C alleles at rs8050136. The obesity-risk (A) allele shows reduced affinity for the FTO and RPGRIP1L transcriptional activator P110, leading to the following: 1) decreased FTO and RPGRIP1L mRNA levels; 2) reduced LEPR trafficking to the cilium; and, as a consequence, 3) a diminished cellular response to leptin.
Collapse
Affiliation(s)
- George Stratigopoulos
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
41
|
Yao X, Nie H, Rojas IC, Harriss JV, Maika SD, Gottlieb PD, Rathbun G, Tucker PW. The L2a element is a mouse CD8 silencer that interacts with MAR-binding proteins SATB1 and CDP. Mol Immunol 2010; 48:153-63. [PMID: 20884053 DOI: 10.1016/j.molimm.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 02/07/2023]
Abstract
Previous transgenic-reporter and targeted-deletion studies indicate that the subset-specific expression of CD8αβ heterodimers is controlled by multiple enhancer activities, since no silencer elements had been found within the locus. We have identified such a silencer as L2a, a previously characterized ∼ 220 bp nuclear matrix associating region (MAR) located ∼ 4.5 kb upstream of CD8α. L2a transgenes driven by the E8(I) enhancer showed no reporter expression in thymic subsets or T cells in splenic, inguinal and mesenteric lymph node peripheral T cells. Deletion of L2a resulted in significant reporter de-repression, even in the CD4(+)CD8(+) double positive (DP) thymocyte population. L2a contains binding sites for two MAR-interacting proteins, SATB1 and CDP. We found that that binding of these factors was markedly influenced by the content and spacing of L2a sub-motifs (L and S) and that SATB1 binds preferentially to the L motif both in vitro and in vivo. A small fraction of the transgenic CD8 single positive (SP) thymocytes and peripheral CD8(+) T cells bypassed L2a-silencing to give rise to variegated expression of the transgenic reporter. Crossing the L2a-containing transgene onto a SATB1 knockdown background enhanced variegated expression, suggesting that SATB1 is critical in overcoming L2a-silenced transcription.
Collapse
Affiliation(s)
- Xin Yao
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78721-0162, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The Promyelocytic Leukemia Zinc Finger (PLZF ) gene is a novel transcriptional target of the CCAAT-Displacement-Protein (CUX1) repressor. FEBS J 2010; 277:4241-53. [DOI: 10.1111/j.1742-4658.2010.07813.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P, Walsh CA, Nieto M. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 2010; 66:523-35. [PMID: 20510857 PMCID: PMC2894581 DOI: 10.1016/j.neuron.2010.04.038] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 01/31/2023]
Abstract
Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular, and electrophysiological analysis, we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development, and synapse formation in layer II-III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2(-/-) mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049. Spain
- Centro de Biología Molecular Severo Ochoa. CSIC-UAM. Nicolas Cabrera 1, Madrid 28049
| | | | - Leonardo Beccari
- Departamento de Neurobiología Celular Molecular y del Desarrollo, Instituto Cajal, CSIC, and CIBER de Enfermedades Raras (CIBERER), Dr Arce 37, Madrid 28002, Spain
| | | | - Elsa Cisneros
- Departamento de Neurobiología Celular Molecular y del Desarrollo, Instituto Cajal, CSIC, and CIBER de Enfermedades Raras (CIBERER), Dr Arce 37, Madrid 28002, Spain
| | - Seonhee Kim
- Department of Pediatrics. University of Texas Health Science Center Houston, Houston, TX
| | - Ana Dopazo
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid 28029. Spain
| | - Manuel Alvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine, CABIMER, CSIC, Seville 41092, Spain
| | - Juan Miguel Redondo
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid 28029. Spain
| | - Paola Bovolenta
- Departamento de Neurobiología Celular Molecular y del Desarrollo, Instituto Cajal, CSIC, and CIBER de Enfermedades Raras (CIBERER), Dr Arce 37, Madrid 28002, Spain
| | - Christopher A. Walsh
- Division of Genetics, Children’s Hospital Boston and Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston. Massachusetts 02115
| | - Marta Nieto
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049. Spain
| |
Collapse
|
44
|
Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5:2. [PMID: 20180967 PMCID: PMC2835679 DOI: 10.1186/1747-1028-5-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/07/2023] Open
Abstract
The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA. Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover, expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allowing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progression. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially different roles in vivo.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
45
|
Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 2009; 5:267-78. [PMID: 19664980 PMCID: PMC2756832 DOI: 10.1016/j.stem.2009.06.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 01/19/2023]
Abstract
In homeostasis of adult vertebrate tissues, stem cells are thought to self-renew by infrequent and asymmetric divisions that generate another stem cell daughter and a progenitor daughter cell committed to differentiate. This model is based largely on in vivo invertebrate or in vitro mammal studies. Here, we examine the dynamic behavior of adult hair follicle stem cells in their normal setting by employing mice with repressible H2B-GFP expression to track cell divisions and Cre-inducible mice to perform long-term single-cell lineage tracing. We provide direct evidence for the infrequent stem cell division model in intact tissue. Moreover, we find that differentiation of progenitor cells occurs at different times and tissue locations than self-renewal of stem cells. Distinct fates of differentiation or self-renewal are assigned to individual cells in a temporal-spatial manner. We propose that large clusters of tissue stem cells behave as populations whose maintenance involves unidirectional daughter-cell-fate decisions.
Collapse
Affiliation(s)
- Ying V. Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - David J. McDermitt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Ghule PN, Dominski Z, Lian JB, Stein JL, van Wijnen AJ, Stein GS. The subnuclear organization of histone gene regulatory proteins and 3' end processing factors of normal somatic and embryonic stem cells is compromised in selected human cancer cell types. J Cell Physiol 2009; 220:129-35. [PMID: 19277982 PMCID: PMC3167205 DOI: 10.1002/jcp.21740] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human histone gene expression is controlled at the level of transcription initiation and subsequent 3'end processing to generate non-polyadenylated stem-loop containing histone mRNAs. Transcription is controlled at the G1/S phase transition by the Cyclin E/CDK2 mediated induction of p220(NPAT)/HiNF-P complexes at subnuclear domains designated Histone Locus Bodies (HLBs) that associate with histone gene clusters. Histone mRNA maturation is mediated by Lsm10 containing U7snRNP complexes. In normal human somatic and embryonic stem cells, the 6p histone locus, the transcription marker p220(NPAT) and the 3'end processing marker Lsm10 (but not the Cajal Body marker coilin) co-localize, reflecting the assembly of an integrated factory for histone gene expression. Using in situ immuno-fluorescence microscopy and fluorescence in situ hybridization (FISH), we show that this subnuclear organization is compromised in some cancer cell lines. In aneuploid cells, the presence of HLBs correlates with the number of histone gene loci. More importantly, the in situ co-localization of p220(NPAT) and Lsm10 is disrupted in HeLa S3 cervical carcinoma cells and MCF7 breast adenocarcinoma cells, with most Lsm10 residing in Cajal Bodies. The finding that the subnuclear integration of transcriptional initiation and 3'end processing of histone gene transcripts is deregulated may be causally linked to tumor-related modifications in molecular pathways controlling histone gene expression during the cell cycle.
Collapse
Affiliation(s)
- Prachi N. Ghule
- Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Zbigniew Dominski
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jane B. Lian
- Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Janet L. Stein
- Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Andre J. van Wijnen
- Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Gary S. Stein
- Center for Stem Cell Biology and Regenerative Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
47
|
Sharma M, Brantley JG, Vassmer D, Chaturvedi G, Baas J, Vanden Heuvel GB. The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development. Gene 2009; 439:87-94. [PMID: 19332113 PMCID: PMC2742960 DOI: 10.1016/j.gene.2009.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 01/19/2023]
Abstract
The homeodomain protein Cux1 is highly expressed in the nephrogenic zone of the developing kidney where it functions to regulate cell proliferation. Here we show that Cux1 directly interacts with the co-repressor Grg4 (Groucho 4), a known effector of Notch signaling. Promoter reporter based luciferase assays revealed enhanced repression of p27(kip1) promoter activity by Cux1 in the presence of Grg4. Chromatin immunoprecipitation (ChIP) assays demonstrated the direct interaction of Cux1 with p27(kip1) in newborn kidney tissue in vivo. ChIP assays also identified interactions of Cux1, Grg4, HDAC1, and HDAC3 with p27(kip1) at two separate sites in the p27(kip1) promoter. DNAse1 footprinting experiments revealed that Cux1 binds to the p27(kip1) promoter on the sequence containing two Sp1 sites and a CCAAT box approximately 500 bp from the transcriptional start site, and to an AT rich sequence approximately 1.5 kb from the transcriptional start site. Taken together, these results identify Grg4 as an interacting partner for Cux1 and suggest a mechanism of p27(kip1) repression by Cux1 during kidney development.
Collapse
Affiliation(s)
- Madhulika Sharma
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Jennifer G. Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Dianne Vassmer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Gaurav Chaturvedi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Jennifer Baas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Gregory B. Vanden Heuvel
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| |
Collapse
|
48
|
Alcalay NI, Vanden Heuvel GB. Regulation of cell proliferation and differentiation in the kidney. FRONT BIOSCI-LANDMRK 2009; 14:4978-91. [PMID: 19482600 PMCID: PMC2749561 DOI: 10.2741/3582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian cut proteins are a broadly expressed family of nuclear transcription factors related to the Drosophila protein cut. One member of the cut family, Cux1, has been shown to function as a cell cycle dependent transcription factor, regulating the expression of a number of cell cycle regulatory proteins. Cux1 expression is developmentally regulated in multiple tissues suggesting an important regulatory function. Cux1 exists as multiple isoforms that arise from proteolytic processing of a 200 kD protein or use of an alternate promoter. Several mouse models of Cux1 have been generated that suggest important roles for this gene in cell cycle regulation during hair growth, lung development and maturation, and genitourinary tract development. Moreover, the aberrant expression of Cux1 may contribute to diseases such as polycystic kidney disease and cancer. In this review, we will focus on the phenotypes observed in the five existing transgenic mouse models of Cux1, and discuss the role of Cux1 in kidney development and disease.
Collapse
Affiliation(s)
- Neal I Alcalay
- Department of Anatomy, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
49
|
Staged assembly of histone gene expression machinery at subnuclear foci in the abbreviated cell cycle of human embryonic stem cells. Proc Natl Acad Sci U S A 2008; 105:16964-9. [PMID: 18957539 DOI: 10.1073/pnas.0809273105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human embryonic stem (hES) cells have an abbreviated G(1) phase of the cell cycle. How cells expedite G(1) events that are required for the initiation of S phase has not been resolved. One key regulatory pathway that controls G(1)/S-phase transition is the cyclin E/CDK2-dependent activation of the coactivator protein nuclear protein, ataxia-telangiectasia locus/histone nuclear factor-P (p220(NPAT)/HiNF-P) complex that induces histone gene transcription. In this study, we use the subnuclear organization of factors controlling histone gene expression to define mechanistic differences in the G(1) phase of hES and somatic cells using in situ immunofluorescence microscopy and fluorescence in situ hybridization (FISH). We show that histone gene expression is supported by the staged assembly and modification of a unique subnuclear structure that coordinates initiation and processing of transcripts originating from histone gene loci. Our results demonstrate that regulatory complexes that mediate transcriptional initiation (e.g., p220(NPAT)) and 3'-end processing (e.g., Lsm10, Lsm11, and SLBP) of histone gene transcripts colocalize at histone gene loci in dedicated subnuclear foci (histone locus bodies) that are distinct from Cajal bodies. Although appearance of CDK2-phosphorylated p220(NPAT) in these domains occurs at the time of S-phase entry, histone locus bodies are formed approximately 1 to 2 h before S phase in embryonic cells but 6 h before S phase in somatic cells. These temporal differences in the formation of histone locus bodies suggest that the G(1) phase of the cell cycle in hES cells is abbreviated in part by contraction of late G(1).
Collapse
|
50
|
Wilson BJ, Harada R, LeDuy L, Hollenberg MD, Nepveu A. CUX1 transcription factor is a downstream effector of the proteinase-activated receptor 2 (PAR2). J Biol Chem 2008; 284:36-45. [PMID: 18952606 DOI: 10.1074/jbc.m803808200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proteinase-activated receptors (PARs) are G-protein-coupled receptors that have been linked to an array of cellular processes, including inflammation, migration, and proliferation. Although signal transduction downstream of PARs has been actively investigated, little is known about the mechanisms that lead to changes in transcriptional programs. Here we show that the CUX1 homeodomain protein is a downstream effector of PAR2. Treatment of epithelial and fibroblastic cells with trypsin or the PAR2-activating peptide (PAR2-AP) caused a rapid increase in CUX1 DNA binding activity. The stimulation of CUX1 was specific to PAR2 because no effect was observed with thrombin or the PAR1-AP. Using a panel of recombinant CUX1 proteins, the regulation was found to involve the cut repeat 3 (CR3) and the cut homeodomain, two DNA binding domains that are present in all CUX1 isoforms. Expression analysis in cux1(-/-) mouse embryo fibroblasts led to the identification of three genes that are regulated downstream of both PAR2 and CUX1 as follows: interleukin-1alpha, matrix metalloproteinase-10, and cyclo-oxygenase-2. p110 CUX1 was able to activate each of these genes, both in reporter assays and following the infection of cells. Moreover, the treatment of Hs578T breast tumor cells with trypsin led to a rapid recruitment of p110 CUX1 to the promoter of these genes and to a concomitant increase in their mRNA steady-state levels. Altogether, these results suggest a model whereby activation of PAR2 triggers a signaling cascade that culminates with the stimulation of p110 CUX1 DNA binding and the transcriptional activation of target genes.
Collapse
Affiliation(s)
- Brian J Wilson
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ryoko Harada
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Lam LeDuy
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Morley D Hollenberg
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|