1
|
Barham SY, Omotade D, Yılmaz S, Akdeniz FT, Goralı BÇ, Attar R, İsbir T. Investigation of Polymorphisms in Global Genome Repair Genes in Patients With Ovarian Cancer in the Turkish Population. Cancer Control 2024; 31:10732748241270597. [PMID: 39090825 PMCID: PMC11378165 DOI: 10.1177/10732748241270597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Ovarian cancer (OC) poses significant challenges due to its high mortality rate, particularly in advanced stages where symptoms may not be evident. DNA repair mechanisms, including nucleotide excision repair (NER), are crucial in maintaining genomic stability and preventing cancer. This study focuses on exploring the role of two NER-related genes, Xeroderma Pigmentosum Complementation Group C (XPC) and DNA Damage Binding Protein 2 (DDB2), in OC susceptibility. OBJECTIVES This study aims to investigate the association between variations in two NER-related genes, XPC rs2228001 and DDB2 rs830083, among a cohort of Turkish individuals with OC and control subjects. METHODS Genotyping of XPC rs2228001 and DDB2 rs830083 was performed on 103 OC patients and 104 control subjects from the Turkish population using the Fast Real-Time 7500 PCR platform from Applied Biosystems. RESULTS Individuals with the homozygous AA genotype of XPC rs2228001 exhibited a reduced likelihood of developing OC (OR 0.511; 95% CI 0.261 - 1.003; P-value 0.049), whereas those with the CC variant faced an elevated risk (OR = 2.32, 95% CI = 1.75-3.08; P-value 0.035). The presence of the A allele was associated with decreased OC occurrence (P-value = 0.035). Similarly, for DDB2 rs830083, individuals with the homozygous CG genotype had a diminished risk of OC (P-value 0.036), compared to those with the GG polymorphism (OR 1.895; 95% CI 1.033 - 3.476; P-value 0.038). Furthermore, the presence of the C allele was associated with a 1.89-fold decrease in the likelihood of OC. CONCLUSION These findings shed light on the genetic factors influencing OC susceptibility, emphasizing the importance of DNA repair systems in disease. Further research in larger and more diverse populations is warranted to validate these findings, facilitating precise risk assessment, and potentially guiding tailored treatment strategies for OC patients.
Collapse
Affiliation(s)
- Sara Yaser Barham
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Dorcas Omotade
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Seda Yılmaz
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatma Tuba Akdeniz
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Betül Çapar Goralı
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Rukset Attar
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Turgay İsbir
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
2
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
3
|
Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair. PLoS Genet 2021; 17:e1009356. [PMID: 33544716 PMCID: PMC7891740 DOI: 10.1371/journal.pgen.1009356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.
Collapse
|
4
|
Jia B, Liang F. Joint estimation of multiple mixed graphical models for pan-cancer network analysis. Stat (Int Stat Inst) 2020; 9:e271. [PMID: 33223572 PMCID: PMC7676750 DOI: 10.1002/sta4.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023]
Abstract
Graphical models have been used in many scientific fields for exploration of conditional independence relationships for a large set of random variables. Although a variety of methods have been proposed in the literature for estimating graphical models with different types of data, none of them is applicable for jointly estimating multiple mixed graphical models. To tackle this problem, we propose a joint mixed learning method. The proposed method is very flexible, which works for various mixed types of data, such as those mixed with Gaussian, multinomial, and Poisson, and also allows people to incorporate domain knowledge into network construction by restricting some links to be included in or excluded from the networks. As an application, the proposed method is applied to pan-cancer network analysis for six types of cancer with data from The Cancer Genome Atlas. To our knowledge, this is the first work for joint estimation of multiple mixed graphical models.
Collapse
Affiliation(s)
- Bochao Jia
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46225, USA
| | - Faming Liang
- Department of Statistics, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|
5
|
Yang R, Kong Q, Duan Y, Li W, Sang H. Identification of a novel DDB2 mutation in a Chinese Han family with Xeroderma pigmentosum group E:a case report and literature review. BMC MEDICAL GENETICS 2020; 21:67. [PMID: 32228487 PMCID: PMC7106656 DOI: 10.1186/s12881-020-00997-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Background Xeroderma pigmentosum (XP) is a rare autosomal recessive genodermatosis. There are eight complementation groups of XP (XP-A to G and a variant form). XP-E is one of the least common forms, and XP-E patients are generally not diagnosed until they are adults due to a later onset of skin alterations. Case presentation We report a case of a 28-year-old Chinese woman with freckle-like hyperpigmented macules in a sun-exposed area who is prone to develop basal cell carcinomas. A genetic study revealed a novel homozygous c.111_112del deletion in exon 1 of the DDB2 gene. Western blotting analysis revealed that the patient lacked the expression of the wild-type mature DDB2 protein. The proband was first diagnosed with XPE on the basis of clinical findings and genetic testing. Sun protection was recommended, and the patient did not develop any skin cancers during the one-year follow-up. Conclusions We identified a novel homozygous deletion in DDB2 gene in Chinese XP-E patients having unique clinical features.
Collapse
Affiliation(s)
- Rui Yang
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China
| | - Yuanyuan Duan
- Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Weiwei Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
6
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
7
|
Cleaver JE. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis. DNA Repair (Amst) 2017; 58:21-28. [DOI: 10.1016/j.dnarep.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
|
8
|
Chen HH, Fan P, Chang SW, Tsao YP, Huang HP, Chen SL. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 2017; 8:21501-21515. [PMID: 28212551 PMCID: PMC5400601 DOI: 10.18632/oncotarget.15308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ping Fan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genetics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
9
|
Liu J, Sun L, Xu Q, Tu H, He C, Xing C, Yuan Y. Association of nucleotide excision repair pathway gene polymorphisms with gastric cancer and atrophic gastritis risks. Oncotarget 2016; 7:6972-83. [PMID: 26760766 PMCID: PMC4872762 DOI: 10.18632/oncotarget.6853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022] Open
Abstract
Polymorphisms of NER genes could change NER ability, thereby altering individual susceptibility to GC. We systematically analyzed 39 SNPs of 8 key genes of NER pathway in 2686 subjects including 898 gastric cancer (GC), 851 atrophic gastritis (AG) and 937 controls (CON) in northern Chinese. SNP genotyping were performed using Sequenom MassARRAY platform. The results demonstrated that DDB2 rs830083 GG genotype was significantly associated with increased GC risk compared with wildtype CC (OR=2.32, P = 6.62 × 10−9); XPC rs2607775 CG genotype conferred a 1.73 increased odds of GC risk than non-cancer subjects compared with wild-type CC (OR=1.73, P= 3.04 × 10−4). The combined detection of these two polymorphisms demonstrated even higher GC risk (OR=3.05). Haplotype analysis suggested that DDB2 rs2029298-rs326222-rs3781619-rs830083 GTAG haplotype was significantly associated with disease risk in each step of CON→AG→GC development (AG vs. CON: OR=2.88, P= 7.51 × 10−7; GC vs. AG: OR=2.90, P=5.68 × 10−15; GC vs. CON: OR=8.42, P=2.22 × 10−15); DDB2 GTAC haplotype was associated with reduced risk of GC compared with CON (OR=0.63, P= 8.31 × 10−12). XPC rs1870134-rs2228000- rs2228001-rs2470352-rs2607775 GCAAG haplotype conferred increased risk of GC compared with AG (OR=1.88, P= 6.98 × 10−4). XPA rs2808668 and drinking, DDB2 rs326222, rs3781619, rs830083 and smoking demonstrated significant interactions in AG; XPC rs2607775 had significant interaction with smoking in GC. In conclusion, NER pathway polymorphisms especially in “damage incision” step were significantly associated with GC risk and had interactions with environment factors. The detection of NER pathway polymorphisms such as DDB2 and XPC might be applied in the prediction of GC risk and personalized prevention in the future.
Collapse
Affiliation(s)
- Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Huakang Tu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Caiyun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
10
|
Murray HC, Maltby VE, Smith DW, Bowden NA. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp Hematol Oncol 2016; 5:6. [PMID: 26913219 PMCID: PMC4765239 DOI: 10.1186/s40164-016-0035-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background The causative link between UV exposure and melanoma development is well known, however the mechanistic relationship remains incompletely characterised. UVA and UVB components of sunlight are implicated in melanomagenesis; however the majority of studies have focused on the effects of UVB and UVC light. Interestingly, melanoma tumour sequencing has revealed an overrepresentation of mutations signature of unrepaired UV-induced DNA damage. Repair of UVA-induced DNA damage is thought to occur primarily through the Nucleotide Excision Repair (NER) pathway, which recognises and repairs damage either coupled to transcription (Transcription Coupled Repair; TCR), or through global genome scanning (Global Genome Repair; GGR). Current literature suggests NER is deficient in melanoma, however the cause of this remains unknown; and whether reduced NER activity in response to UVA may be involved in melanoma development remains uncharacterised. In this study we aimed to determine if melanoma cells exhibit reduced levels of NER activity in response to UVA. Methods Melanocyte and melanoma cell lines were UVA-irradiated, and DNA damage levels assessed by immunodetection of Cyclobutane Pyrimidine Dimer (CPD) and (6-4) Photoproduct [(6-4)PP] lesions. Expression of NER pathway components and p53 following UVA treatment was quantified by qPCR and western blot. Results UVA did not induce detectable induction of (6-4)PP lesions, consistent with previous studies. Repair of CPDs induced by UVA was initiated at 4 h and complete within 48 h in normal melanocytes, whereas repair initiation was delayed to 24 h and >40 % of lesions remained in melanoma cell lines at 48 h. This was coupled with a delayed and reduced induction of GGR component XPC in melanoma cells, independent of p53. Conclusion These findings support that NER activity is reduced in melanoma cells due to deficient GGR. Further investigation into the role of NER in UVA-induced melanomagenesis is warranted and may have implications for melanoma treatment.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Vicki E Maltby
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Nikola A Bowden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| |
Collapse
|
11
|
Dai W, Ma W, Li Q, Tao Y, Ding P, Zhu R, Jin J. The 5'-UTR of DDB2 harbors an IRES element and upregulates translation during stress conditions. Gene 2015; 573:57-63. [PMID: 26187069 DOI: 10.1016/j.gene.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
DDB2 is a tumor-inhibiting factor not only involved a major DNA repair mechanism in the Nucleotide Excision Repair (NER), but also correlated with cell apoptosis in the DNA damage response pathway. During serum-starvation, we noted that the translation levels of DDB2 were increased. To evaluate whether the 5'-UTR of DDB2 harbors an IRES element, we used a bicistronic luciferase plasmid with the 5'-UTR of DDB2 inserted between two cistron coding regions. We found that DDB2 5'-UTR could initiate the downstream reporter, demonstrating that the 5'-UTR of DDB2 contained an IRES. The 5'-UTR of DDB2 was predicted into a relatively stable secondary structure by the Mfold program. We deleted the stem-loops in turn to analyze the core part of IRES and found that full length of the 5'-UTR was significant for the IRES activity. Furthermore, our data demonstrated that the DDB2 IRES activity was promoted during stress conditions. These results reveal a novel mechanism contributing to DDB2 expression.
Collapse
Affiliation(s)
- Wenyan Dai
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wennan Ma
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qi Li
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Yifen Tao
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Pengpeng Ding
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Ruiyu Zhu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
12
|
DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells. Biochem J 2015. [PMID: 26205499 DOI: 10.1042/bj20150253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DDB2 (damage-specific DNA-binding protein 2) is the product of the xeroderma pigmentosum group E gene which is involved in the initiation of nucleotide excision repair via an ubiquitin ligase complex together with DDB1 and CUL4A (cullin 4A). PAQR3 (progestin and adipoQ receptor family member III) is a newly discovered tumour suppressor that is implicated in the development of many types of human cancers. In the present paper, we report that DDB2 is involved in ubiquitination and degradation of PAQR3. DDB2 is able to interact with PAQR3 in vivo and in vitro. Both overexpression and knockdown experiments reveal that the protein expression level, protein stability and polyubiquitination of PAQR3 are changed by DDB2. Negative regulation of EGF (epidermal growth factor)- and insulin-induced signalling by PAQR3 is also altered by DDB2. At the molecular level, Lys(61) of PAQR3 is targeted by DDB2 for ubiquitination. The cell proliferation rate and migration of gastric cancer cells are inhibited by DDB2 knockdown and such effects are abrogated by PAQR3 knockdown, indicating that the effect of DDB2 on the cancer cells is mediated by PAQR3. Collectively, our studies not only pinpoint that DDB2 is a post-translational regulator of PAQR3, but also indicate that DDB2 may play an active role in tumorigenesis via regulating PAQR3.
Collapse
|
13
|
Matsumoto S, Fischer ES, Yasuda T, Dohmae N, Iwai S, Mori T, Nishi R, Yoshino KI, Sakai W, Hanaoka F, Thomä NH, Sugasawa K. Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Res 2015; 43:1700-13. [PMID: 25628365 PMCID: PMC4330392 DOI: 10.1093/nar/gkv038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.
Collapse
Affiliation(s)
- Syota Matsumoto
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Eric S Fischer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Takeshi Yasuda
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Naoshi Dohmae
- Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Toshio Mori
- Advanced Medical Research Center, Nara Medical University, Kashihara 634-8521, Japan
| | - Ryotaro Nishi
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Ken-ichi Yoshino
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Wataru Sakai
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Melanson BD, Cabrita MA, Bose R, Hamill JD, Pan E, Brochu C, Marcellus KA, Zhao TT, Holcik M, McKay BC. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression. Nucleic Acids Res 2013; 41:5692-703. [PMID: 23605047 PMCID: PMC3675493 DOI: 10.1093/nar/gkt279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.
Collapse
Affiliation(s)
- Brian D Melanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada, K1H 8L6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Roy N, Elangovan I, Kopanja D, Bagchi S, Raychaudhuri P. Tumor regression by phenethyl isothiocyanate involves DDB2. Cancer Biol Ther 2013; 14:108-116. [PMID: 23114715 PMCID: PMC3571992 DOI: 10.4161/cbt.22631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) is a promising cancer chemopreventive agent commonly found in edible cruciferous vegetables. It has been implicated also for therapy, and is in clinical trial for lung cancer. Here, we provide evidence that the tumor suppressive effect of PEITC is related to its ability to induce expression of damaged DNA binding protein 2 (DDB2), a DNA repair protein involved also in apoptosis and premature senescence. DDB2 expression is attenuated in a wide variety of cancers including the aggressive colon cancers. We show that, in colon cancer cells, reactive oxygen species, which are induced by PEITC, augment expression of DDB2 through the p38MAPK/JNK pathway, independently of p53. PEITC-induced expression of DDB2 is critical for inhibition of tumor progression by PEITC. Tumors derived from DDB2-deficient colon cancer cells are refractory to PEITC-treatments, resulting from deficiencies in apoptosis and senescence. The DDB2-proficient tumors, on the other hand, respond effectively to PEITC. The results show that PEITC can be used to induce expression of DDB2, and that expression of DDB2 is critical for effective response of tumors to PEITC.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Indira Elangovan
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Srilata Bagchi
- Department of Medicine; University of Illinois at Chicago; Chicago, Il USA
- Center of Molecular Biology of Oral Diseases; College of Dentistry; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
16
|
Choi SY, Jang H, Roe JS, Kim ST, Cho EJ, Youn HD. Phosphorylation and ubiquitination-dependent degradation of CABIN1 releases p53 for transactivation upon genotoxic stress. Nucleic Acids Res 2013; 41:2180-90. [PMID: 23303793 PMCID: PMC3575827 DOI: 10.1093/nar/gks1319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CABIN1 acts as a negative regulator of p53 by keeping p53 in an inactive state on chromatin. Genotoxic stress causes rapid dissociation of CABIN1 and activation of p53. However, its molecular mechanism is still unknown. Here, we reveal the phosphorylation- and ubiquitination-dependent degradation of CABIN1 upon DNA damage, releasing p53 for transcriptional activation. The DNA-damage-signaling kinases, ATM and CHK2, phosphorylate CABIN1 and increase the degradation of CABIN1 protein. Knockdown or overexpression of these kinases influences the stability of CABIN1 protein showing that their activity is critical for degradation of CABIN1. Additionally, CABIN1 was found to undergo ubiquitin-dependent proteasomal degradation mediated by the CRL4DDB2 ubiquitin ligase complex. Both phosphorylation and ubiquitination of CABIN1 appear to be relevant for controlling the level of CABIN1 protein upon genotoxic stress.
Collapse
Affiliation(s)
- Soo-Youn Choi
- Department of Biomedical Sciences, Department of Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Lubin A, Chen H, Sun Z, Gong F. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 2012; 11:4378-84. [PMID: 23159851 PMCID: PMC3552920 DOI: 10.4161/cc.22688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL USA
| | | | | | | | | |
Collapse
|
18
|
DDB2 is a novel AR interacting protein and mediates AR ubiquitination/degradation. Int J Biochem Cell Biol 2012; 44:1952-61. [DOI: 10.1016/j.biocel.2012.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
|
19
|
Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair (Amst) 2012; 11:595-605. [PMID: 22870513 DOI: 10.1016/j.dnarep.2011.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Roy N, Bagchi S, Raychaudhuri P. Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Int J Mol Sci 2012; 13:11012-11026. [PMID: 23109835 PMCID: PMC3472727 DOI: 10.3390/ijms130911012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022] Open
Abstract
Premature senescence induced by DNA damage or oncogene is a critical mechanism of tumor suppression. Reactive oxygen species (ROS) have been implicated in the induction of premature senescence response. Several pathological disorders such as cancer, aging and age related neurological abnormalities have been linked to ROS deregulation. Here, we discuss how Damaged DNA binding Protein-2 (DDB2), a nucleotide excision repair protein, plays an important role in ROS regulation by epigenetically repressing the antioxidant genes MnSOD and Catalase. We further revisit a model in which DDB2 plays an instrumental role in DNA damage induced ROS accumulation, ROS induced premature senescence and inhibition of skin tumorigenesis.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave, Chicago, IL 60612, USA; E-Mail:
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| |
Collapse
|
21
|
Wong SS, Ainger SA, Leonard JH, Sturm RA. MC1R variant allele effects on UVR-induced phosphorylation of p38, p53, and DDB2 repair protein responses in melanocytic cells in culture. J Invest Dermatol 2012; 132:1452-61. [PMID: 22336944 DOI: 10.1038/jid.2011.473] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Variant alleles of the human melanocortin 1 receptor (MC1R) reduce the ability of melanocytes to produce the dark pigment eumelanin, with R alleles being most deficient. Cultured melanocytes of MC1R R/R variant genotype give reduced responses to [Nle(4), D-Phe(7)]α-melanocyte-stimulating hormone (NDP-MSH) ligand stimulation and lower levels of DNA repair than MC1R wild-type strains. p38 controls xeroderma pigmentosum (XP)-C recruitment to DNA damage sites through regulating ubiquitylation of the DNA damage-binding protein 2 (DDB2) protein, and p53 is implicated in the nuclear excision repair process through its regulation of XP-C and DDB2 protein expression. We report the effects of MC1R ligand treatment and UVR exposure on phosphorylation of p38 and p53, and DDB2 protein expression in MC1R variant strains. Wild-type MC1R melanocyte strains grown together with keratinocytes in coculture, when treated with NDP-MSH and exposed to UVR, gave synergistic activation of p38 and p53 phosphorylation, and were not replicated by R/R variant melanocytes, which have lower basal levels of phosphorylated forms of p38. Minor increases in p38 phosphorylation status in R/R variant melanocyte cocultures could be attributed to the keratinocytes alone. We also found that MC1R wild-type strains regulate DDB2 protein levels through p38, but MC1R R/R variant melanocytes do not. This work confirms the important functional role that the MC1R receptor plays in UVR stress-induced DNA repair.
Collapse
Affiliation(s)
- Shu Shyan Wong
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
22
|
Fei J, Kaczmarek N, Luch A, Glas A, Carell T, Naegeli H. Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol 2011; 9:e1001183. [PMID: 22039351 PMCID: PMC3201922 DOI: 10.1371/journal.pbio.1001183] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
This study reveals the molecular mechanism by which the nucleotide excision repair protein DDB2 prioritises excision of UV-induced DNA lesions in the nucleosome landscape. How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. Like all molecules in living organisms, DNA undergoes spontaneous decay and is constantly under attack by endogenous and environmental agents. Unlike other molecules, however, DNA—the blueprint of heredity—cannot be re-created de novo; it can only be copied. The original blueprint must therefore remain pristine. All kinds of DNA damage pose a health hazard. DNA lesions induced by the ultraviolet (UV) component of sunlight, for example, can lead to skin aging and skin cancer. A repair process known as nucleotide excision repair (NER) is dedicated to correcting this UV damage. Although the enzymatic steps of this repair process are known in detail, we still do not understand how it copes with the native situation in the cell, where the DNA is tightly wrapped around protein spools called nucleosomes. Our study has revealed the molecular mechanism by which an enigmatic component of NER called UV-DDB stimulates excision of UV-induced lesions in the landscape of nucleosome-packaged DNA in human skin cells. In particular, we describe how this accessory protein prioritizes, in space and time, which UV lesions in packaged DNA to target for repair by NER complexes, thus optimizing the repair process.
Collapse
Affiliation(s)
- Jia Fei
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Nina Kaczmarek
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Product Safety & Center for Alternatives to Animal Testing, Berlin, Germany
| | - Andreas Glas
- Department of Chemistry and Biochemistry, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Oh KS, Emmert S, Tamura D, DiGiovanna JJ, Kraemer KH. Multiple skin cancers in adults with mutations in the XP-E (DDB2) DNA repair gene. J Invest Dermatol 2011; 131:785-8. [PMID: 21107348 PMCID: PMC3471370 DOI: 10.1038/jid.2010.352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyu-Seon Oh
- DNA Repair Section, Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Steffen Emmert
- Department of Dermatology, Goettingen University, Goettingen, Germany
| | - Deborah Tamura
- DNA Repair Section, Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - John J. DiGiovanna
- DNA Repair Section, Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Dermatology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Barakat BM, Wang QE, Han C, Milum K, Yin DT, Zhao Q, Wani G, Arafa ESA, El-Mahdy MA, Wani AA. Overexpression of DDB2 enhances the sensitivity of human ovarian cancer cells to cisplatin by augmenting cellular apoptosis. Int J Cancer 2010; 127:977-88. [PMID: 20013802 DOI: 10.1002/ijc.25112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is one of the most widely used anticancer agents, displaying activity against a wide variety of tumors. However, development of drug resistance presents a challenging barrier to successful cancer treatment by cisplatin. To understand the mechanism of cisplatin resistance, we investigated the role of damaged DNA binding protein complex subunit 2 (DDB2) in cisplatin-induced cytotoxicity and apoptosis. We show that DDB2 is not required for the repair of cisplatin-induced DNA damage, but can be induced by cisplatin treatment. DDB2-deficient noncancer cells exhibit enhanced resistance to cell growth inhibition and apoptosis induced by cisplatin than cells with fully restored DDB2 function. Moreover, DDB2 expression in cisplatin-resistant ovarian cancer cell line CP70 and MCP2 was lower than their cisplatin-sensitive parental A2780 cells. Overexpression of DDB2 sensitized CP70 cells to cisplatin-induced cytotoxicity and apoptosis via activation of the caspase pathway and downregulation of antiapoptotic Bcl-2 protein. Further analysis indicates that the overexpression of DDB2 in CP70 cells downregulates Bcl-2 expression through decreasing Bcl-2 mRNA level. These results suggest that ovarian cancer cells containing high level of DDB2 become susceptible to cisplatin by undergoing enhanced apoptosis.
Collapse
Affiliation(s)
- Bassant M Barakat
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roy N, Stoyanova T, Dominguez-Brauer C, Park HJ, Bagchi S, Raychaudhuri P. DDB2, an essential mediator of premature senescence. Mol Cell Biol 2010; 30:2681-2692. [PMID: 20351176 PMCID: PMC2876515 DOI: 10.1128/mcb.01480-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/27/2009] [Accepted: 03/21/2010] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) is critical for premature senescence, a process significant in tumor suppression and cancer therapy. Here, we reveal a novel function of the nucleotide excision repair protein DDB2 in the accumulation of ROS in a manner that is essential for premature senescence. DDB2-deficient cells fail to undergo premature senescence induced by culture shock, exogenous oxidative stress, oncogenic stress, or DNA damage. These cells do not accumulate ROS following DNA damage. The lack of ROS accumulation in DDB2 deficiency results from high-level expression of the antioxidant genes in vitro and in vivo. DDB2 represses antioxidant genes by recruiting Cul4A and Suv39h and by increasing histone-H3K9 trimethylation. Moreover, expression of DDB2 also is induced by ROS. Together, our results show that, upon oxidative stress, DDB2 functions in a positive feedback loop by repressing the antioxidant genes to cause persistent accumulation of ROS and induce premature senescence.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Hyun Jung Park
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Srilata Bagchi
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| |
Collapse
|
26
|
Bagchi S, Raychaudhuri P. Damaged-DNA Binding Protein-2 Drives Apoptosis Following DNA Damage. Cell Div 2010; 5:3. [PMID: 20205757 PMCID: PMC2822757 DOI: 10.1186/1747-1028-5-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 02/06/2023] Open
Abstract
Apoptosis induced by DNA damage is an important mechanism of tumor suppression and it is significant also in cancer chemotherapy. Mammalian cells activate the pathways of p53 to induce apoptosis of cells harboring irreparable DNA damages. While p53 induces expression of various pro-apoptotic genes and directly participates in the disruption of mitochondrial membrane polarization, it also increases expression of the cell cycle inhibitor p21 that is a dominant inhibitor of caspase-activation and apoptosis. Here we discuss how Damaged-DNA Binding Protein-2 (DDB2) subdues the level of p21 in cells harboring irreparable DNA damage to support activation of the caspases. We speculate a model in which DDB2 detects and couples the presence of un-repaired DNA damages to the proteolysis of p21, leading to the induction of apoptosis.
Collapse
Affiliation(s)
- Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave, Chicago, IL-60612, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL-60607, USA
| |
Collapse
|
27
|
Stoyanova T, Roy N, Kopanja D, Bagchi S, Raychaudhuri P. DDB2 decides cell fate following DNA damage. Proc Natl Acad Sci U S A 2009; 106:10690-10695. [PMID: 19541625 PMCID: PMC2705559 DOI: 10.1073/pnas.0812254106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 12/23/2022] Open
Abstract
The xeroderma pigmentosum complementation group E (XP-E) gene product damaged-DNA binding protein 2 (DDB2) plays important roles in nucleotide excision repair (NER). Previously, we showed that DDB2 participates in NER by regulating the level of p21(Waf1/Cip1). Here we show that the p21(Waf1/Cip1) -regulatory function of DDB2 plays a central role in defining the response (apoptosis or arrest) to DNA damage. The DDB2-deficient cells are resistant to apoptosis in response to a variety of DNA-damaging agents, despite activation of p53 and the pro-apoptotic genes. Instead, these cells undergo cell cycle arrest. Also, the DDB2-deficient cells are resistant to E2F1-induced apoptosis. The resistance to apoptosis of the DDB2-deficient cells is caused by an increased accumulation of p21(Waf1/Cip1) after DNA damage. We provide evidence that DDB2 targets p21(Waf1/Cip1) for proteolysis. The resistance to apoptosis in DDB2-deficient cells also involves Mdm2 in a manner that is distinct from the p53-regulatory activity of Mdm2. Our results provide evidence for a new regulatory loop involving the NER protein DDB2, Mdm2, and p21(Waf1/Cip1) that is critical in deciding cell fate (apoptosis or arrest) upon DNA damage.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 South Paulina Avenue, Chicago, IL 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| |
Collapse
|
28
|
Chen B, Simpson DA, Zhou Y, Mitra A, Mitchell DL, Cordeiro-Stone M, Kaufmann WK. Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 2009; 8:1775-87. [PMID: 19411857 DOI: 10.4161/cc.8.11.8724] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function, fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45-120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells.
Collapse
Affiliation(s)
- Bo Chen
- Department of Nutrition Health and Food Safety, School of Public Health, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
29
|
UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair (Amst) 2009; 8:767-76. [PMID: 19332393 DOI: 10.1016/j.dnarep.2009.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/30/2008] [Accepted: 02/17/2009] [Indexed: 11/24/2022]
Abstract
Although the basic principle of nucleotide excision repair (NER), which can eliminate various DNA lesions, have been dissected at the genetic, biochemical and cellular levels, the important in vivo regulation of the critical damage recognition step is poorly understood. Here we analyze the in vivo dynamics of the essential NER damage recognition factor XPC fused to the green fluorescence protein (GFP). Fluorescence recovery after photobleaching analysis revealed that the UV-induced transient immobilization of XPC, reflecting its actual engagement in NER, is regulated in a biphasic manner depending on the number of (6-4) photoproducts and titrated by the number of functional UV-DDB molecules. A similar biphasic UV-induced immobilization of TFIIH was observed using XPB-GFP. Surprisingly, subsequent integration of XPA into the NER complex appears to follow only the low UV dose immobilization of XPC. Our results indicate that when only a small number of (6-4) photoproducts are generated, the UV-DDB-dependent damage recognition pathway predominates over direct recognition by XPC, and they also suggest the presence of rate-limiting regulatory steps in NER prior to the assembly of XPA.
Collapse
|
30
|
The XPE gene of xeroderma pigmentosum, its product and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 637:57-64. [PMID: 19181111 DOI: 10.1007/978-0-387-09599-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
31
|
Stubbert LJ, Smith JM, Hamill JD, Arcand TL, McKay BC. The anti-apoptotic role for p53 following exposure to ultraviolet light does not involve DDB2. Mutat Res 2009; 663:69-76. [PMID: 19428372 DOI: 10.1016/j.mrfmmm.2009.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 12/24/2008] [Accepted: 01/27/2009] [Indexed: 01/26/2023]
Abstract
The p53 tumour suppressor is a transcription factor that can either activate or repress the expression of specific genes in response to cellular stresses such as exposure to ultraviolet light. The p53 protein can exert both pro- and anti-apoptotic effects depending on cellular context. In primary human fibroblasts, p53 protects cells from UV-induced apoptosis at moderate doses but this is greatly affected by the nucleotide excision repair (NER) capacity of the cells. The damage-specific DNA binding protein 2 (DDB2) is involved in NER and is associated with xeroderma pigmentosum subgroup E (XP-E). Importantly, DDB2 is also positively regulated by the p53 protein. To study the potential interplay between DDB2 and p53 in determining the apoptotic response of primary fibroblasts exposed to UV light, the expression of these proteins was manipulated in primary normal and XP-E fibroblast strains using human papillomavirus E6 protein (HPV-E6), RNA interference and recombinant adenoviruses expressing either p53 or DDB2. Normal and XP-E fibroblast strains were equally sensitive to UV-induced apoptosis over a broad range of doses and disruption of p53 in these strains using HPV-E6 or RNA interference led to a similar increase in apoptosis following exposure to UV light. In contrast, forced expression of p53 or DDB2 did not affect UV-induced apoptosis greatly in these normal or XP-E fibroblast strains. Collectively, these results indicate that p53 is primarily protective against UV-induced apoptosis in primary human fibroblasts and this activity of p53 does not require DDB2.
Collapse
Affiliation(s)
- L J Stubbert
- Cancer Therapeutics Program, Ottawa Health Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
32
|
Andressoo JO, Hoeijmakers JHJ, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:45-83. [PMID: 18727498 DOI: 10.1007/1-4020-3764-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jaan-Olle Andressoo
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Kattan Z, Marchal S, Brunner E, Ramacci C, Leroux A, Merlin JL, Domenjoud L, Dauça M, Becuwe P. Damaged DNA binding protein 2 plays a role in breast cancer cell growth. PLoS One 2008; 3:e2002. [PMID: 18431487 PMCID: PMC2291195 DOI: 10.1371/journal.pone.0002002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 12/23/2022] Open
Abstract
The Damaged DNA binding protein 2 (DDB2), is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER)-positive (MCF-7 and T47D), but not in ER-negative breast cancer (MDA-MB231 and SKBR3) or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold) higher in ER-positive than in ER-negative tumor samples (P = 0.0208) from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase). These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer.
Collapse
Affiliation(s)
- Zilal Kattan
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Sophie Marchal
- Centre Alexis Vautrin, UMR 7039 Institut Polytechnique de Lorraine/Université Henri Poincaré-Nancy Université/ CNRS, Vandoeuvre les Nancy, France
| | - Emilie Brunner
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Carole Ramacci
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Agnès Leroux
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Jean Louis Merlin
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Lionel Domenjoud
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Michel Dauça
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Philippe Becuwe
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Ferguson-Yates BE, Li H, Dong TK, Hsiao JL, Oh DH. Impaired repair of cyclobutane pyrimidine dimers in human keratinocytes deficient in p53 and p63. Carcinogenesis 2007; 29:70-5. [PMID: 17984111 DOI: 10.1093/carcin/bgm244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While many p53-deficient cell types are impaired in global genomic nucleotide excision repair of cyclobutane pyrimidine dimers (CPDs), human epidermal keratinocytes expressing human papillomavirus type 16 E6 and E7 are p53 deficient and yet maintain repair of CPD. We hypothesized that the p53 homolog, p63, may participate in governing global repair instead of p53 in keratinocytes. Following ultraviolet radiation (UVR) of E6/E7 keratinocytes, depletion of p63 but not of p73 impaired global genomic repair of CPD relative to control cells. In all cases, repair of pyrimidine(6-4)pyrimidone photoproducts, the other major UVR-induced DNA lesions, was unaffected. In E6/E7 keratinocytes treated with p63 small interfering RNA, reduced global repair of CPD was associated not with reduced levels of messenger RNA-encoding DNA damage recognition proteins but rather with decreased levels of DDB2 and XPC proteins, suggesting that p63 posttranscriptionally regulates levels of these proteins. These results indicate that global repair may be regulated at multiple levels and suggest a novel role for p63 in modulating repair of DNA damage in human keratinocytes. The results may provide insight into mechanisms of genomic stability in epithelia infected with oncogenic human papilloma viruses and may further explain the lack of increased skin cancer incidence in Li-Fraumeni syndrome.
Collapse
|
35
|
Kaufmann WK, Nevis KR, Qu P, Ibrahim JG, Zhou T, Zhou Y, Simpson DA, Helms-Deaton J, Cordeiro-Stone M, Moore DT, Thomas NE, Hao H, Liu Z, Shields JM, Scott GA, Sharpless NE. Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J Invest Dermatol 2007; 128:175-87. [PMID: 17597816 PMCID: PMC2753794 DOI: 10.1038/sj.jid.5700935] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Itoh T, Iwashita S, Cohen MB, Meyerholz DK, Linn S. Ddb2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis. Hum Mol Genet 2007; 16:1578-86. [PMID: 17468495 DOI: 10.1093/hmg/ddm107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Damage-specific DNA-binding (DDB) protein heterodimer has been extensively studied in the context of nucleotide excision repair. However, the smaller subunit, DDB2, is also implicated in tumor suppressor p53-mediated processes, although the precise details of the DDB2 - p53 interactions are unknown. Here, we report that Ddb2(-/-) and Ddb2(+/-) mice have shortened lifespans and increased frequency and spectrum of spontaneous tumors. Notably, Ddb2 deficiency enhances lung and mammary adenocarcinomas. Ddb2(-/-) mice are smaller than normal. Whereas weights of kidneys and livers are reduced proportionately, spleens from Ddb2(-/-) mice gradually enlarge with age due to lymphoid proliferation. Ddb2(-/-) mice also have larger testes, and the testicular germ cells show significantly decreased spontaneous apoptosis. These changes parallel reduced levels of p53 and its serine 15 phosphorylation in testicular germ cells. Since tumors that appeared in heterozygous Ddb2(+/-) mice conserve the wild-type Ddb2 allele, Ddb2 RNA expression and Ddb2 exon sequence, Ddb2 heterozygosity can facilitate tumor development as a haploinsufficient tumor suppressor. These results demonstrate that in whole animals as in cultured cells Ddb2 can regulate apoptosis and tumor incidence.
Collapse
Affiliation(s)
- Toshiki Itoh
- Department of Pathology, The University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
37
|
Zhu YL, Chen XP, Zhang WG, Qiu FZ. Role of oval cells in carcinogenesis of experimental hepatocellular carcinoma in rats. Shijie Huaren Xiaohua Zazhi 2006; 14:2830-2833. [DOI: 10.11569/wcjd.v14.i29.2830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To discuss the role of oval cells in the carcinogenesis and progression of hepatocellular carcinoma.
METHODS: A total of 60 male Sprague Dawley rats were divided into experiment group (n = 48) and control group (n = 12). 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) was used to induce hepatocellular carcinoma, and the presence of oval cells, the expression of p53 gene and P53 protein were dynamically (4, 8, 12, 16, 20, 24 wk) detected by immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively.
RESULTS: Large numbers of oval cells appeared in the periportal regions 4 wk after the induction of carcinoma, and these cells were OV-6-positive. Cancer nodules were observed at the 16th wk, and the oval cells were located in and around the cancer nodule. A part of these proliferated cells were P53-positive, and the two kinds of cells were almost located in the same region. Twenty weeks after cancer induction, the levels of p53 mRNA (F = 4.78, P < 0.05) and P53 protein in the cancer tissues of rat liver were significantly elevated (F = 2.46, P < 0.05).
CONCLUSION: Oval cells are involved in the process of rat hepatocarcinogesis induced by 3'-Me-DAB, and its mechanism may be related to the mutation of p53 gene.
Collapse
|
38
|
Sugasawa K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 2006; 37:189-202. [PMID: 16858626 DOI: 10.1007/s10735-006-9044-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 12/31/2022]
Abstract
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Genome Damage Response Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
39
|
Liu G, Chen X. DNA polymerase eta, the product of the xeroderma pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activation. Mol Cell Biol 2006; 26:1398-413. [PMID: 16449651 PMCID: PMC1367184 DOI: 10.1128/mcb.26.4.1398-1413.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase eta (PolH) is the product of the xeroderma pigmentosum variant (XPV) gene and a well-characterized Y-family DNA polymerase for translesion synthesis. Cells derived from XPV patients are unable to faithfully bypass UV photoproducts and DNA adducts and thus acquire genetic mutations. Here, we found that PolH can be up-regulated by DNA breaks induced by ionizing radiation or chemotherapeutic agents, and knockdown of PolH gives cells resistance to apoptosis induced by DNA breaks in multiple cell lines and cell types in a p53-dependent manner. To explore the underlying mechanism, we examined p53 activation upon DNA breaks and found that p53 activation is impaired in PolH knockdown cells and PolH-null primary fibroblasts. Importantly, reconstitution of PolH into PolH knockdown cells restores p53 activation. Moreover, we provide evidence that, upon DNA breaks, PolH is partially colocalized with phosphorylated ATM at gamma-H2AX foci and knockdown of PolH impairs ATM to phosphorylate Chk2 and p53. However, upon DNA damage by UV, PolH knockdown cells exhibit two opposing temporal responses: at the early stage, knockdown of PolH suppresses p53 activation and gives cells resistance to UV-induced apoptosis in a p53-dependent manner; at the late stage, knockdown of PolH suppresses DNA repair, leading to sustained activation of p53 and increased susceptibility to apoptosis in both a p53-dependent and a p53-independent manner. Taken together, we found that PolH has a novel role in the DNA damage checkpoint and that a p53 target can modulate the DNA damage response and subsequently regulate p53 activation.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cell Biology, The University of Alabama at Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
40
|
Hu Z, Shao M, Yuan J, Xu L, Wang F, Wang Y, Yuan W, Qian J, Ma H, Wang Y, Liu H, Chen W, Yang L, Jin G, Huo X, Chen F, Jin L, Wei Q, Huang W, Lu D, Wu T, Shen H. Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study. Carcinogenesis 2006; 27:1475-80. [PMID: 16522664 DOI: 10.1093/carcin/bgi350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA damage binding protein 2 (DDB2) is one of the major DNA repair proteins involved in the nucleotide excision repair (NER) pathway. Mutations in the DDB2 gene can cause a repair-deficiency syndrome xeroderma pigmentosum group E. Because tobacco carcinogens can cause DNA damage that is repaired by NER and suboptimal NER capacity is reported to be associated with lung cancer risk, we hypothesized that common variants in the DDB2 gene are associated with lung cancer risk. To test this hypothesis, we conducted a case-control study of 1010 patients with incident lung cancer and 1011 cancer-free controls and genotyped two DDB2 single nucleotide polymorphisms (SNPs) (rs830083 and rs3781620) that are in linkage disequilibrium with other untyped SNPs. We found that compared with the rs830083CC, subjects carrying the heterozygous rs830083CG genotype had a significantly 1.31-fold increased risk of lung cancer [95% confidence interval (CI) 1.08-1.60] and those carrying the homozygous rs830083GG genotype had a non-significantly 1.22-fold elevated risk (95% CI 0.89-1.67). In addition, effects of the combined rs830083CG/GG variant genotypes were more evident in young subjects, heavy smokers and subjects with a positive family history of cancer. These findings indicate, for the first time, that the DDB2 rs830083 polymorphism may contribute to the etiology of lung cancer. Further functional studies on this SNP and/or related variants are warranted to elucidate the underlying molecular mechanisms of the association.
Collapse
Affiliation(s)
- Zhibin Hu
- Department of Epidemiology and Biostatistics, Cancer Research Center of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Itoh T. Xeroderma pigmentosum group E and DDB2, a smaller subunit of damage-specific DNA binding protein: Proposed classification of xeroderma pigmentosum, Cockayne syndrome, and ultraviolet-sensitive syndrome. J Dermatol Sci 2006; 41:87-96. [PMID: 16325378 DOI: 10.1016/j.jdermsci.2005.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
Xeroderma pigmentosum is a rare photosensitive syndrome that comprises eight different genetic diseases (A to G; variant (V)). Although genotype-phenotype correlations have been evaluated in most XP groups, the relationship between the E subgroup of xeroderma pigmentosum (XP-E) and damage-specific DNA binding protein (DDB) still remained a mystery. Recent studies have provided new insight for XP-E and the role(s) of DDB2, a smaller subunit of DDB. Reclassification studies have confirmed that mutations in DDB2 give rise to XP-E. The mouse model of XP-E demonstrated that DDB2 was well conserved between mouse and human and was critical in controlling proper cell-survival through regulating the tumor suppressor p53-mediated responses after ultraviolet (UV)-irradiation: i.e. defective DDB2 causes the resistance to cell-killing by UV-irradiation due to decreased p53-mediated apoptosis. These phenotypes are unique to XP-E because other XP groups show normal (XP-V) or hypersensitivity (XP-A, B, C, D, F, and G) to UV-irradiation. Thus XP-E is defined as a skin cancer prone disease with unique resistance to UV-irradiation.
Collapse
Affiliation(s)
- Toshiki Itoh
- Department of Pathology, The University of Iowa, Carver College of Medicine, 200 Hawkins dr., Iowa City, IA 52242, USA.
| |
Collapse
|
42
|
Alekseev S, Kool H, Rebel H, Fousteri M, Moser J, Backendorf C, de Gruijl FR, Vrieling H, Mullenders LHF. Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res 2006; 65:10298-306. [PMID: 16288018 DOI: 10.1158/0008-5472.can-05-2295] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome repair (GGR) of UV-induced cyclobutane pyrimidine dimers (CPD). Unlike human cells, rodent epidermal cells are deficient in GGR of CPDs and express a subunit of UV-DDB, DDB2, at a low level. In this study, we generated mice (K14-DDB2) ectopically expressing mouse DDB2 at elevated levels. Enhanced expression of DDB2 both delayed the onset of squamous cell carcinoma and decreased the number of tumors per mouse in chronically UV-B light-exposed hairless mice. Enhanced expression of DDB2 improved repair of both CPDs and pyrimidine(6-4)pyrimidone photoproducts (6-4PP) in dermal fibroblasts. However, GGR of CPDs in K14-DDB2 mice did not reach the level of efficiency of human cells, suggesting that another repair protein may become rate limiting when DDB2 is abundantly present. To complement these studies, we generated mice in which the DDB2 gene was disrupted. DDB2-/- and DDB2+/- mice were found to be hypersensitive to UV-induced skin carcinogenesis. On the cellular level, we detected a delay in the repair of 6-4PPs in DDB2-/- dermal fibroblasts. Neither the absence nor the enhanced expression of DDB2 affected the levels of UV-induced apoptosis in epidermal keratinocytes or cultured dermal fibroblasts. Our results show an important role for DDB2 in the protection against UV-induced cancer and indicate that this protection is most likely mediated by accelerating the repair of photolesions.
Collapse
Affiliation(s)
- Sergey Alekseev
- Department of Toxicogenetics, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oh DH, Yeh K. Differentiating human keratinocytes are deficient in p53 but retain global nucleotide excision repair following ultraviolet radiation. DNA Repair (Amst) 2006; 4:1149-59. [PMID: 16043423 DOI: 10.1016/j.dnarep.2005.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/03/2005] [Accepted: 06/08/2005] [Indexed: 11/20/2022]
Abstract
Terminally differentiating keratinocytes constitute the predominant cell type within the skin epidermis and play an important role in the overall photobiology of human skin following ultraviolet radiation. However, the DNA repair capacity of differentiating keratinocytes is unclear, and little is known regarding how such repair activity is regulated in these cells. We systematically compared the global genomic nucleotide excision repair response of cultured undifferentiated human keratinocytes to those that were allowed to differentiate in 1.2 mM Ca(2+), in some cases supplemented with phorbol ester or Vitamin C. Differentiated cells ceased replication and expressed typical markers of differentiation. Following ultraviolet radiation, keratinocytes that were differentiated up to 12 days removed cyclobutane pyrimidine dimers and pyrimidine(6,4)pyrimidone photoproducts from the global genome as efficiently as undifferentiated cells. However, following the onset of calcium-induced differentiation, basal levels of p53 were nearly undetectable by 12 days of differentiation when global repair activity was unaffected. Following ultraviolet radiation, induction of p53 following ultraviolet radiation was abrogated by 6 days of calcium-induced differentiation. Basal levels of mRNA encoding the DNA damage recognition proteins, XPC and DDB2, were relatively insensitive to differentiation and p53 levels. However, following ultraviolet radiation, inductions of mRNA encoding the DNA damage recognition proteins, DDB2 and XPC, were differentially affected by differentiation. Rapid loss of DDB2 mRNA induction was associated with differentiation, while XPC mRNA induction diminished more slowly with differentiation. These results indicate that human keratinocytes preserve global nucleotide excision repair as well as expression of genes encoding key DNA damage recognition proteins well into the terminal differentiation process, perhaps using mechanisms other than p53.
Collapse
Affiliation(s)
- Dennis H Oh
- Department of Dermatology, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
44
|
Reardon JT, Sancar A. Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme systems. Methods Enzymol 2006; 408:189-213. [PMID: 16793370 DOI: 10.1016/s0076-6879(06)08012-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleotide excision repair is a multicomponent, multistep enzymatic system that removes a wide spectrum of DNA damage by dual incisions in the damaged strand on both sides of the lesion. The basic steps are damage recognition, dual incisions, resynthesis to replace the excised DNA, and ligation. Each step has been studied in vitro using cell extracts or highly purified repair factors and radiolabeled DNA of known sequence with DNA damage at a defined site. This chapter describes procedures for preparation of DNA substrates designed for analysis of damage recognition, either the 5' or the 3' incision event, excision (resulting from concerted dual incisions), and repair synthesis. Excision in Escherichia coli is accomplished by the three-subunit Uvr(A)BC excision nuclease and in humans by six repair factors: XPA, RPA, XPChR23B, TFIIH, XPFERCC1, and XPG. This chapter outlines methods for expression and purification of these essential repair factors and provides protocols for performing each of the in vitro repair assays with either the E. coli or the human excision nuclease.
Collapse
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, USA
| | | |
Collapse
|
45
|
Kulaksiz G, Reardon JT, Sancar A. Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol 2005; 25:9784-92. [PMID: 16260596 PMCID: PMC1280284 DOI: 10.1128/mcb.25.22.9784-9792.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xeroderma pigmentosum is characterized by increased sensitivity of the affected individuals to sunlight and light-induced skin cancers and, in some cases, to neurological abnormalities. The disease is caused by a mutation in genes XPA through XPG and the XP variant (XPV) gene. The proteins encoded by the XPA, -B, -C, -D, -F, and -G genes are required for nucleotide excision repair, and the XPV gene encodes DNA polymerase eta, which carries out translesion DNA synthesis. In contrast, the mechanism by which the XPE gene product prevents sunlight-induced cancers is not known. The gene (XPE/DDB2) encodes the small subunit of a heterodimeric DNA binding protein with high affinity to UV-damaged DNA (UV-damaged DNA binding protein [UV-DDB]). The DDB2 protein exists in at least four forms in the cell: monomeric DDB2, DDB1-DDB2 heterodimer (UV-DDB), and as a protein associated with both the Cullin 4A (CUL4A) complex and the COP9 signalosome. To better define the role of DDB2 in the cellular response to DNA damage, we purified all four forms of DDB2 and analyzed their DNA binding properties and their effects on mammalian nucleotide excision repair. We find that DDB2 has an intrinsic damaged DNA binding activity and that under our assay conditions neither DDB2 nor complexes that contain DDB2 (UV-DDB, CUL4A, and COP9) participate in nucleotide excision repair carried out by the six-factor human excision nuclease.
Collapse
Affiliation(s)
- Gülnihal Kulaksiz
- Biyokimya Anabilim Dali, Hacettepe Universitesi Tip Fakültesi, Ankara, Turkey
| | | | | |
Collapse
|
46
|
Ferguson BE, Oh DH. Proficient global nucleotide excision repair in human keratinocytes but not in fibroblasts deficient in p53. Cancer Res 2005; 65:8723-9. [PMID: 16204041 DOI: 10.1158/0008-5472.can-05-1457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 tumor suppressor protein is important for many cellular responses to DNA damage in mammalian cells, but its role in regulating DNA repair in human keratinocytes is undefined. We compared the nucleotide excision repair (NER) response of human fibroblasts and keratinocytes deficient in p53. Fibroblasts expressing human papillomavirus 16 E6 oncoprotein had impaired repair of UV radiation-induced cyclobutane pyrimidine dimers in association with reduced levels of p53 and XPC, which is involved in DNA damage recognition. In contrast, keratinocytes expressing E6 alone or concurrently with the E7 oncoprotein, while possessing reduced levels of p53 but normal levels of XPC, continued to repair pyrimidine dimers as efficiently as control cells with normal p53 levels. Despite preservation of DNA repair, E6 and E6/E7 keratinocytes were hypersensitive to UV radiation. E6 fibroblasts exhibited markedly reduced basal and induced levels of mRNA encoding DDB2, another protein implicated in early events in global NER. In contrast, E6 or E6/E7 keratinocytes possessed basal DDB2 mRNA levels that were not significantly altered relative to control cells, although little induction occurred following UV radiation. Intact global NER was also confirmed in SCC25 cells possessing inactivating mutations in p53 as well as in cells treated with pifithrin-alpha, a chemical inhibitor of p53 that decreased sensitivity of cells to UV radiation. Collectively, these results indicate that human keratinocytes, unlike fibroblasts, do not require p53 to maintain basal global NER activity, but p53 may still be important in mediating inducible responses following DNA damage.
Collapse
Affiliation(s)
- Bridget E Ferguson
- Department of Dermatology, University of California-San Francisco, San Francisco VA Medical Center, San Francisco, California 94121, USA
| | | |
Collapse
|
47
|
Abstract
p21(CDKN1A) is a critical regulator of cell cycle progression in response to DNA damage. There are conflicting conclusions as to whether p21(CDKN1A) levels increase or decrease after ultraviolet (UV)-irradiation and recently it was even reported to disappear entirely following 2.5-30 Jm(-2) of UV-irradiation in the presence of growth medium. The latter would suggest an alternative mechanism for cell cycle arrest after UV-irradiation, since p21(CDKN1A) induction has been considered to be the major mediator of p53-mediated cell cycle arrest after DNA damage. Using physiological UV doses based on cell-killing, we previously observed and here verify that low doses (1.2-6 Jm(-2)) induce p21(CDKN1A) immediately after UV-irradiation, though higher doses cause a latency during which p21(CDKN1A) levels remain fairly constant before increasing. As expected, p53 induction preceded p21(CDKN1A) induction at all doses. Thus, p21(CDKN1A) levels after low doses of UV-irradiation may be controlled in a p53-dependent manner without severe reduction. We propose that physiological relevant UV doses should be determined for each target cell type prior to studying UV-induced responses and that p21(CDKN1A) is indeed critical for cell cycle arrest in cells that survive UV-irradiation.
Collapse
Affiliation(s)
- Toshiki Itoh
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, 94720-3202, USA.
| | | |
Collapse
|
48
|
Matsuda N, Azuma K, Saijo M, Iemura SI, Hioki Y, Natsume T, Chiba T, Tanaka K, Tanaka K. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair (Amst) 2005; 4:537-45. [PMID: 15811626 DOI: 10.1016/j.dnarep.2004.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2004] [Indexed: 11/27/2022]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to UV irradiation and high incidence of skin cancer caused by inherited defects in DNA repair. Mutational malfunction of damaged-DNA binding protein 2 (DDB2) causes the XP complementation group E (XP-E). DDB2 together with DDB1 comprises a heterodimer called DDB complex, which is involved in damaged-DNA binding and nucleotide excision repair. Interestingly, by screening for a cellular protein(s) that interacts with Cullin 4A (Cul4A), a key component of the ubiquitin ligase complex, we identified DDB1. Immunoprecipitation confirmed that Cul4A interacts with DDB1 and also associates with DDB2. To date, it has been reported that DDB2 is rapidly degraded after UV irradiation and that overproduction of Cul4A stimulates the ubiquitylation of DDB2 in the cells. However, as biochemical analysis using pure Cul4A-containing E3 is missing, it is still unknown whether the Cul4A complex directly ubiquitylates DDB2 or not. We thus purified the Cul4A-containing E3 complex to near homogeneity and attempted to ubiquitylate DDB2 in vitro. The ubiquitylation of DDB2 was reconstituted using this pure E3 complex, indicating that DDB-Cul4A E3 complex in itself can ubiquitylate DDB2 directly. We also showed that an amino acid substitution, K244E, in DDB2 derived from a XP-E patient did not affect its ubiquitylation.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Holmberg C, Fleck O, Hansen HA, Liu C, Slaaby R, Carr AM, Nielsen O. Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 2005; 19:853-62. [PMID: 15805471 PMCID: PMC1074322 DOI: 10.1101/gad.329905] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cullin 4 (Pcu4), and CSN subunits Csn1 and Csn2 are required for degradation of the ribonucleotide reductase (RNR) inhibitor protein Spd1. Ddb1-deficient cells have >20-fold increased spontaneous mutation rate. This is partly dependent on the error-prone translesion DNA polymerases. Spd1 deletion substantially reduced the mutation rate, suggesting that insufficient RNR activity accounts for approximately 50% of observed mutations. Epistasis analysis indicated that Ddb1 contributed to mutation avoidance and tolerance to DNA damage in a pathway distinct from NER. Finally, we show that Ddb1/Csn1/Cullin 4-mediated Spd1 degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation.
Collapse
Affiliation(s)
- Christian Holmberg
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6:44-55. [PMID: 15688066 DOI: 10.1038/nrm1546] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|