1
|
Xu B, Fan B, Chen Z. A critical role of a plant-specific TFIIB-related protein, BRP1, in salicylic acid-mediated immune response. FRONTIERS IN PLANT SCIENCE 2024; 15:1427916. [PMID: 39139725 PMCID: PMC11319285 DOI: 10.3389/fpls.2024.1427916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
An integral part of plant immunity is transcription reprogramming by concerted action of specific transcription factors that activate or repress genes through recruitment or release of RNA polymerase II (Pol II). Pol II is assembled into Pol II holoenzyme at the promoters through association with a group of general transcription factors including transcription factor IIB (TFIIB) to activate transcription. Unlike other eukaryotic organisms, plants have a large family of TFIIB-related proteins with 15 members in Arabidopsis including several plant-specific TFIIB-related proteins (BRPs). Molecular genetic analysis has revealed important roles of some BRPs in plant reproductive processes. In this study, we report that Arabidopsis knockout mutants for BRP1, the founding member of the BRP protein family, were normal in growth and development, but were hypersusceptible to the bacterial pathogen Psuedomonas syringae. The enhanced susceptibility of the brp1 mutants was associated with reduced expression of salicylic acid (SA) biosynthetic gene ISOCHORISMATE SYNTHASE 1 (ICS1) and SA-responsive PATHOGENESIS-RELATED (PR) genes. Pathogen-induced SA accumulation was reduced in the brp1 mutants and exogenous SA rescued the brp1 mutants for resistance to the bacterial pathogen. In uninfected plants, BRP1 was primarily associated with the plastids but pathogen infection induced its accumulation in the nucleus. BRP1 acted as a transcription activator in plant cells and binded to the promoter of ICS1. These results collectively indicate that BRP1 is a functionally specialized transcription factor that increasingly accumulates in the nucleus in response to pathogen infection to promote defense gene expression.
Collapse
Affiliation(s)
- Binjie Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
3
|
Yang T, Zhang M, Yang Q, Liu K, Cui J, Chen J, Ren Y, Shao Y, Wang R, Li G. The S40 family members delay leaf senescence by promoting cytokinin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:99-109. [PMID: 36201884 DOI: 10.1016/j.plaphy.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Leaf senescence is regulated by both endogenous hormones and environmental stimuli in a programmed and concerted way. The members of the S40 family have been reported to play roles in leaf senescence. Here we identified an S40 family member, CiS40-11, from Caragana intermedia. Phylogenetic analysis revealed that the CiS40-11 protein had the highest identity with AtS40-5 (AT1G11700) and AtS40-6 (AT1G61930) of Arabidopsis thaliana. CiS40-11 was highly expressed in leaves and was down-regulated after dark treatment. The subcellular localization analysis showed that CiS40-11 was a cytoplasm-nucleus dual-localized protein. Leaf senescence was delayed in both the CiS40-11 overexpressed A. thaliana and its transiently expressed C. intermedia. Transcriptomic analysis and endogenous hormones assay revealed that CiS40-11 inhibited leaf senescence via promoting the biosynthesis of cytokinins by blocking AtMYB2 expression in the CiS40-11 overexpression lines. Furthermore, overexpression of either AtS40-5 or AtS40-6 showed similar phenotype as the CiS40-11 overexpressing lines, while in the ats40-5a or ats40-6a mutants, the AtMYB2 expression was increased and their leaves exhibited a premature senescence phenotype. These results provide a new molecular mechanism of the S40 family in leaf senescence regulation of plants.
Collapse
Affiliation(s)
- Tianrui Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Minna Zhang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Qi Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kun Liu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jiaming Cui
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jia Chen
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yufan Ren
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yunjie Shao
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Enterprise Key Laboratory of Tree Breeding, Mengshu Ecological Construction Group Co., Ltd., Hohhot, 011517, PR China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010021, PR China; Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010021, PR China.
| |
Collapse
|
4
|
Zhao L, Zhang S, Shan C, Shi Y, Wu H, Wu J, Peng D. De novo transcriptome assembly of Angelica dahurica and characterization of coumarin biosynthesis pathway genes. Gene 2021; 791:145713. [PMID: 33979682 DOI: 10.1016/j.gene.2021.145713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav (A. dahurica) is a famous Chinese herb known for the production of coumarins, important secondary metabolites with wide-ranging pharmacological activities. In particular, the methoxylated coumarins like those produced by A. dahurica are known for their anti-inflammatory, anti-cancer, and anti-oxidant pharmacological effects. However, the molecular mechanism of coumarin biosynthesis in A. dahurica has not been studied. Such investigation could help scientists harness the biosynthesis potential of methoxylated coumarins. Here we present, three transcriptomes corresponding to leaf, root, and stem tissues of A. dahurica. A total of 114,310 unigenes with an average length of 1118 bp were de novo assembled, and 81,404 (71.21%) of those unigenes were annotated. Then, 181 unigenes encoding the seven key enzymes involved were identified, for which COMT (Caffeic acid 3-O-methyltransferase) was spatially used in a phylogenetic analysis, and some of these key enzyme genes were verified by qRT-PCR. Differentially expressed genes and root-specific-expressed genes were identified, by comparing genes' profile activity between roots and other tissues. Furthermore, multiple genes encoding key enzymes or transcription factors related to coumarin biosynthesis were identified and analyzed. This study is the first to report comprehensive gene information of A. dahurica at the transcriptional level, and to distinguish candidate genes related to its biosynthesis of coumarin, thus laying a foundation for this pathway's further exploration in A. dahurica.
Collapse
Affiliation(s)
- Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| |
Collapse
|
5
|
Expansion and Functional Diversification of TFIIB-Like Factors in Plants. Int J Mol Sci 2021; 22:ijms22031078. [PMID: 33498602 PMCID: PMC7865254 DOI: 10.3390/ijms22031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants have evolved unique patterns of growth and development, elaborate metabolism and special perception and signaling mechanisms to environmental cues. Likewise, plants have complex and highly special programs for transcriptional control of gene expression. A case study for the special transcription control in plants is the expansion of general transcription factors, particularly the family of Transcription Factor IIB (TFIIB)-like factors with 15 members in Arabidopsis. For more than a decade, molecular and genetic analysis has revealed important functions of these TFIIB-like factors in specific biological processes including gametogenesis, pollen tube growth guidance, embryogenesis, endosperm development, and plant-microbe interactions. The redundant, specialized, and diversified roles of these TFIIB-like factors challenge the traditional definition of general transcription factors established in other eukaryotes. In this review, we discuss general transcription factors in plants with a focus on the expansion and functional analysis of plant TFIIB-like proteins to highlight unique aspects of plant transcription programs that can be highly valuable for understanding the molecular basis of plant growth, development and responses to stress conditions.
Collapse
|
6
|
Yi S, Song X, Yu W, Zhang R, Wang W, Zhao Y, Han B, Gai Y. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Gene Expr Patterns 2020; 40:119160. [PMID: 33253895 DOI: 10.1016/j.gep.2020.119160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Momordica charantia, a medicinal and edible species of the Cucurbitaceae family, has been widely used as a vegetable around the world. Hundreds of pharmacological compounds isolated from the M. charantia have been reported. However, the mechanism of action of the secondary metabolites has not been fully elucidated. In this study, 118,590 unigenes were gained by de novo assembly based on the raw data from high-throughput sequencing of mRNA (RNA-Sequencing) upon systemic analysis, among which, 51,860 (43.73%) could be annotated to the public sequence databases such as Nr, GO, Swiss-Prot, KEGG and KOG. The transcriptomic changes of M. charantia seedlings treated with or without methyl jasmonate (MeJA) were analyzed to identify key genes involved in MeJA treatment. Additionally, 554 differentially expressed genes (DEGs), including 328 up-regulated ones and 226 down-regulated genes, have been identified. Most DEGs were associated with secondary metabolism and stress responses. Meanwhile, six DEGs were further confirmed by quantitative real-time RT-PCR (qRT-PCR) analysis, resulting in similar expression patterns as compared to those of RNA-Sequencing. Nine significantly enriched pathways including 11 DEGs were identified to be possibly involved in the MeJA-responsive biosynthesis of secondary metabolites based on the transcriptome sequencing analysis. Among them, 4 DEGs, encoding two peroxidases, one cinnamyl alcohol dehydrogenase and one hypothetical protein Csa, might play important roles in the process of phenylpropanoid biosynthesis. In addition, 9 transcription factors (TFs) were also detected as DEGs from 1899 unigenes. Most of them up-regulated by MeJA treatment might be potentially involved in regulating secondary metabolites biosynthesis. This work is the first research on the large-scale assessment of M. charantia transcriptomic resources and the analysis of DEGs and TFs in secondary metabolites biosynthesis of M. charantia seedings treated with or without MeJA, which will be conducive to the further applications of M. charantia.
Collapse
Affiliation(s)
- Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Xiangwen Song
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Wangyang Yu
- Anhui Qiansouyan Biotechnology Co., Ltd, Lu'an 237200, Anhui, PR China.
| | - Rongfei Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Wei Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Yucheng Zhao
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, PR China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an 237012, Anhui, PR China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
7
|
Fu C, Liu X, Li X, Huo P, Ge J, Hou Y, Yang W, Zhang J, Zhang L, Zhao D, Ma C, Liu J. BRF Negatively Regulates Thermotolerance Defect of fes1a in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:171. [PMID: 32210987 PMCID: PMC7077510 DOI: 10.3389/fpls.2020.00171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
FES1A is a heat shock protein 70 binding protein. Mutation of FES1A leads to a defect in thermotolerance of Arabidopsis; however, independent fes1a mutants exhibit a range in the extent of thermosensitivity. Here, we found that BRF2, a gene adjacent to FES1A and encoding a component of transcription factor IIIB, affects the thermosensitivity of fes1a mutants. Knockout of BRF2 suppressed fes1a thermosensitivity, while overexpression of BRF2 increased thermosensitivity of fes1a. BRF2 in fes1a mutants regulates the transcriptional strength of RNA Polymerase II and accumulation of heat shock proteins and eventually affects the thermotolerance of fes1a. There is a cross-talking between RNA Pol III and Pol II. The cross-talking is initiated by BRF, magnified by the mutation of FES1A, and finally has an effect on thermotolerance.
Collapse
Affiliation(s)
- Can Fu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaxia Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuezhi Li
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Panfei Huo
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jingjing Ge
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanfei Hou
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenwen Yang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jingxia Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Limin Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jian Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Grübler B, Merendino L, Twardziok SO, Mininno M, Allorent G, Chevalier F, Liebers M, Blanvillain R, Mayer KFX, Lerbs-Mache S, Ravanel S, Pfannschmidt T. Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1. PLANT PHYSIOLOGY 2017; 175:1203-1219. [PMID: 28935841 PMCID: PMC5664474 DOI: 10.1104/pp.17.00982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the pap7-1 mutant of Arabidopsis (Arabidopsis thaliana). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown pap7-1 mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in pap7-1 mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.
Collapse
Affiliation(s)
- Björn Grübler
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Livia Merendino
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Sven O Twardziok
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Morgane Mininno
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Guillaume Allorent
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Fabien Chevalier
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Monique Liebers
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Robert Blanvillain
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Silva Lerbs-Mache
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Stéphane Ravanel
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Thomas Pfannschmidt
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| |
Collapse
|
9
|
Niu X, Zhou M, Henkel CV, van Heusden GPH, Hooykaas PJJ. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:914-924. [PMID: 26461850 DOI: 10.1111/tpj.13048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 05/29/2023]
Abstract
During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.
Collapse
Affiliation(s)
- Xiaolei Niu
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Meiliang Zhou
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Christiaan V Henkel
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - G Paul H van Heusden
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| |
Collapse
|
10
|
Inoue K. Emerging knowledge of the organelle outer membranes - research snapshots and an updated list of the chloroplast outer envelope proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:278. [PMID: 25983735 PMCID: PMC4415399 DOI: 10.3389/fpls.2015.00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 05/14/2023]
|
11
|
Qin Z, Zhang X, Zhang X, Xin W, Li J, Hu Y. The Arabidopsis transcription factor IIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2521-31. [PMID: 24723406 PMCID: PMC4036515 DOI: 10.1093/jxb/eru140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Male gametogenesis in angiosperms involves two rounds of mitosis that are essential for the generation of two sperm cells to achieve double fertilization, a distinct event in the sexual reproduction of flowering plants. Precise regulation of mitosis during male gametogenesis is critically important for the establishment of the male germline. However, the molecular mechanisms underlying mitotic division during male gametophyte development have not been characterized fully. Here, we report that the Arabidopsis transcription initiation factor TFIIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. BRP4 was expressed predominately in developing male gametophytes. Knockdown expression of BRP4 by a native promoter-driven RNA interference construct in Arabidopsis resulted in arrest of the mitotic progression of male gametophytes, leading to a defect in pollen development. Moreover, we showed that the level of expression of a gene encoding a subunit of the origin recognition complex, ORC6, was decreased in BRP4 knockdown plants, and that the ORC6 knockdown transgenic plants phenocopied the male gametophyte defect observed in BRP4 knockdown plants, suggesting that ORC6 acts downstream of BRP4 to mediate male mitotic progression. Taken together, our results reveal that BRP4 plays an important role in the regulation of mitotic cell-cycle progression during male gametogenesis.
Collapse
Affiliation(s)
- Zhixiang Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Xiaoran Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiao Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing, PR China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jia Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China National Center for Plant Gene Research, Beijing, PR China
| |
Collapse
|
12
|
Larkin RM. Chloroplast Signaling in Plants. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Niu QK, Liang Y, Zhou JJ, Dou XY, Gao SC, Chen LQ, Zhang XQ, Ye D. Pollen-expressed transcription factor 2 encodes a novel plant-specific TFIIB-related protein that is required for pollen germination and embryogenesis in Arabidopsis. MOLECULAR PLANT 2013; 6:1091-1108. [PMID: 23713077 DOI: 10.1093/mp/sst083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pollen germination and embryogenesis are important to sexual plant reproduction. The processes require a large number of genes to be expressed. Transcription of eukaryotic nuclear genes is accomplished by three conserved RNA polymerases acting in association with a set of auxiliary general transcription factors (GTFs), including B-type GTFs. The roles of B-type GTFs in plant reproduction remain poorly understood. Here we report functional characterization of a novel plant-specific TFIIB-related gene PTF2 in Arabidopsis. Mutation in PTF2 caused failure of pollen germination. Pollen-rescue revealed that the mutation also disrupted embryogenesis and resulted in seed abortion. PTF2 is expressed prolifically in developing pollen and the other tissues with active cell division and differentiation, including embryo and shoot apical meristem. The PTF2 protein shares a lower amino acid sequence similarity with other known TFIIB and TFIIB-related proteins in Arabidopsis. It can interact with TATA-box binding protein 2 (TBP2) and bind to the double-stranded DNA (dsDNA) as the other known TFIIB and TFIIB-related proteins do. In addition, PTF2 can form a homodimer and interact with the subunits of RNA polymerases (RNAPs), implying that it may be involved in the RNAPs transcription. These results suggest that PTF2 plays crucial roles in pollen germination and embryogenesis in Arabidopsis, possibly by regulating gene expression through interaction with TBP2 and the subunits of RNAPs.
Collapse
Affiliation(s)
- Qian-Kun Niu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Knutson BA. Emergence and expansion of TFIIB-like factors in the plant kingdom. Gene 2013; 526:30-8. [PMID: 23608173 DOI: 10.1016/j.gene.2013.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 11/27/2022]
Abstract
Many gene families in higher plants have expanded in number, giving rise to diverse protein paralogs with specialized biochemical functions. For instance, plant general transcription factors such as TFIIB have expanded in number and in some cases perform specialized transcriptional functions in the plant cell. To date, no comprehensive genome-wide identification of the TFIIB gene family has been conducted in the plant kingdom. To determine the extent of TFIIB expansion in plants, I used the remote homology program HHPred to search for TFIIB homologs in the plant kingdom and performed a comprehensive analysis of eukaryotic TFIIB gene families. I discovered that higher plants encode more than 10 different TFIIB-like proteins. In particular, Arabidopsis thaliana encodes 14 different TFIIB-like proteins and predicted domain architectures of the newly identified TFIIB-like proteins revealed that they have unique modular domain structures that are divergent in sequence and size. Phylogenetic analysis of selected eukaryotic organisms showed that most life forms encode three major TFIIB subfamilies that include TFIIB, Brf, Rrn7/TAF1B/MEE12 subfamilies, while all plants and some algae species encode one or two additional TFIIB-related protein subfamilies. A subset of A. thaliana GTFs have also expanded in number, indicating that GTF diversification and expansion is a general phenomenon in higher plants. Together, these findings were used to generate a model for the evolutionary history of TFIIB-like proteins in eukaryotes.
Collapse
Affiliation(s)
- Bruce A Knutson
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Ave N, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Duncan O, van der Merwe MJ, Daley DO, Whelan J. The outer mitochondrial membrane in higher plants. TRENDS IN PLANT SCIENCE 2013; 18:207-17. [PMID: 23291162 DOI: 10.1016/j.tplants.2012.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
The acquisition and integration of intracellular organelles, such as mitochondria and plastids, were important steps in the emergence of complex multicellular life. Although the outer membranes of these organelles have lost many of the functions of their free-living bacterial ancestor, others were acquired during organellogenesis. To date, the biological roles of these proteins have not been systematically characterized. In this review, we discuss the evolutionary origins and functions of outer membrane mitochondrial (OMM) proteins in Arabidopsis thaliana. Our analysis, using phylogenetic inference, indicates that several OMM proteins either acquired novel functional roles or were recruited from other subcellular localizations during evolution in Arabidopsis. These observations suggest the existence of novel communication routes and functions between organelles within plant cells.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | |
Collapse
|
16
|
Larkin RM. Cytoplasm: Chloroplast Signaling. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Knopf RR, Feder A, Mayer K, Lin A, Rozenberg M, Schaller A, Adam Z. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:559-71. [PMID: 22738221 DOI: 10.1111/j.1365-313x.2012.05090.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhomboids are intra-membrane serine proteases whose sequences are found in nearly all organisms. They are involved in a variety of biological functions in both eukaryotes and prokaryotes. Localization assays revealed that two Arabidopsis thaliana rhomboid-like proteases (AtRBL), AtRBL8 and AtRBL9, are targeted to the chloroplast. Using transgenic plants expressing epitope-tagged AtRBL9, we localized AtRBL9 to the chloroplast inner envelope membrane, with both its N- and C-termini facing the stroma. Mass spectrometry analyses confirmed this localization, and suggested that this is also the case for AtRBL8. Both are proteins of very low abundance. The results of size-exclusion chromatography implied that AtRBL9 forms homo-oligomers. In search of a putative function, a comparative proteomic analysis was performed on wild-type and double-knockout plants, lacking both AtRBL8 and AtRBL9, using the iTRAQ method. Of 180 envelope proteins, the level of only a few was either increased or decreased in the mutant line. One of the latter, allene oxide synthase, is involved in jasmonic acid biosynthesis. This observation provides an explanation for the recently reported aberration in flower morphology that is associated with the loss of AtRBL8.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Duchêne AM, Giegé P. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants? FRONTIERS IN PLANT SCIENCE 2012; 3:221. [PMID: 23056004 PMCID: PMC3457046 DOI: 10.3389/fpls.2012.00221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/10/2012] [Indexed: 05/29/2023]
Abstract
Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and/or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.
Collapse
Affiliation(s)
| | - Philippe Giegé
- *Correspondence: Philippe Giegé, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, University of Strasbourg, 12 Rue du General Zimmer, 67084 Strasbourg, France. e-mail:
| |
Collapse
|
19
|
Knutson BA, Hahn S. TFIIB-related factors in RNA polymerase I transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:265-73. [PMID: 22960599 DOI: 10.1016/j.bbagrm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023]
Abstract
Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Bruce A Knutson
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Ave. N, P.O. Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.
| | | |
Collapse
|
20
|
A plant-specific transcription factor IIB-related protein, pBRP2, is involved in endosperm growth control. PLoS One 2011; 6:e17216. [PMID: 21390310 PMCID: PMC3044737 DOI: 10.1371/journal.pone.0017216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/26/2011] [Indexed: 11/19/2022] Open
Abstract
General transcription factor IIB (TFIIB) and TFIIB-related factor (BRF), are conserved RNA polymerase II/III (RNAPII/III) selectivity factors that are involved in polymerase recruitment and transcription initiation in eukaryotes. Recent findings have shown that plants have evolved a third type of B-factor, plant-specific TFIIB-related protein 1 (pBRP1), which seems to be involved in RNAPI transcription. Here, we extend the repertoire of B-factors in plants by reporting the characterization of a novel TFIIB-related protein, plant-specific TFIIB-related protein 2 (pBRP2), which is found to date only in the Brassicacea family. Unlike other B-factors that are ubiquitously expressed, PBRP2 expression is restricted to reproductive organs and seeds as shown by RT-PCR, immunofluorescence labelling and GUS staining experiments. Interestingly, pbrp2 loss-of-function specifically affects the development of the syncytial endosperm, with both parental contributions required for wild-type development. pBRP2, is the first B-factor to exhibit cell-specific expression and regulation in eukaryotes, and might play a role in enforcing bi-parental reproduction in angiosperms.
Collapse
|
21
|
Retrograde signaling pathway from plastid to nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:167-204. [PMID: 21875565 DOI: 10.1016/b978-0-12-386037-8.00002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.
Collapse
|
22
|
Fischer-Kilbienski I, Miao Y, Roitsch T, Zschiesche W, Humbeck K, Krupinska K. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. PLANT MOLECULAR BIOLOGY 2010; 73:379-90. [PMID: 20238146 DOI: 10.1007/s11103-010-9618-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 02/22/2010] [Indexed: 05/08/2023]
Abstract
The Arabidopsis thaliana AtS40-3 gene belongs to a group of genes sharing the conserved DUF548 sequence motif with up to now unknown function. One member of this group, the barley HvS40, was shown before to play a role in regulation of leaf senescence. Similar as the barley gene, AtS40-3 is induced during senescence and is also regulated in response to dark treatment, ABA, salicylic acid and pathogen attack. By localization of the GUS fusion protein, the AtS40-3 gene was shown to encode a nucleus targeted protein. The s40-3a mutant with a T-DNA insertion in the promoter region of the gene was observed to have a staygreen phenotype. By quantitative real-time PCR analyses expression of the AtS40-3 gene in this mutant was observed to be constitutive and not induced during senescence. This coincided with WRKY53 gene expression in nonsenescent leaves and lowered expression levels of WRKY53 and SAG12 at later stages of development. While in the wildtype expression of AtS40-3 was activated by darkness, in the s40-3a mutant the expression of AtS40-3 stayed at a low level. This coincided with lower expression of the SEN1 and SAG12 genes. In another promoter mutant with a T-DNA insertion further upstream of the coding sequence the levels of AtS40-3 and SAG12 transcripts increased in parallel both in a natural light-dark regime and in darkness. The data on gene expression in promoter T-DNA insertion mutants of the s40-3 gene indicate that AtS40 regulates senescence either by modulation of WRKY53 or by activation of SAG12 independent of WRKY53.
Collapse
|
23
|
Krause K, Krupinska K. Nuclear regulators with a second home in organelles. TRENDS IN PLANT SCIENCE 2009; 14:194-9. [PMID: 19285907 DOI: 10.1016/j.tplants.2009.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 05/20/2023]
Abstract
In plants, increasing evidence points towards the existence of nuclear proteins that are also targeted to either mitochondria - a well-known phenomenon from yeast and mammalians - or to plastids. One such protein is Whirly1, which was the first protein to be identified in the nucleus and plastids of the same plant cell. Like Whirly1, most of the dual targeted (nucleus and organelle) proteins have functions in the maintenance of DNA, telomere structuring or gene expression. In some instances, proteins were even shown to be relocated from one compartment to another upon environmental or developmental clues. We hypothesize that one rationale of dual targeting is storage or sequestration of these proteins inside the organelles until specific conditions require their activity in the nucleus.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biology, University of Tromsø, 9037 Tromsø, Norway
| | | |
Collapse
|
24
|
The plant-specific TFIIB-related protein, pBrp, is a general transcription factor for RNA polymerase I. EMBO J 2009; 27:2317-27. [PMID: 18668124 DOI: 10.1038/emboj.2008.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 01/19/2023] Open
Abstract
TFIIB and BRF are general transcription factors (GTFs) for eukaryotic RNA polymerases II and III, respectively, and have important functions in transcriptional initiation. In this study, the third type of TFIIB-related protein, pBrp, found in plant lineages was characterized in the red alga Cyanidioschyzon merolae. Chromatin immunoprecipitation analysis revealed that CmpBrp specifically occupied the rDNA promoter region in vivo, and the occupancy was proportional to de novo 18S rRNA synthesis. Consistently, CmpBrp and CmTBP cooperatively bound the rDNA promoter region in vitro, and the binding site was identified at a proximal downstream region of the transcription start point. alpha-Amanitin-resistant transcription from the rDNA promoter in crude cell lysate was severely inhibited by the CmpBrp antibody and was also inhibited when DNA template with a mutated CmpBrp-CmTBP binding site was used. CmpBrp was shown to co-immunoprecipitate and co-localize with the RNA polymerase I subunit, CmRPA190, in the cell. Thus, together with comparative studies of Arabidopsis pBrp, we concluded that pBrp is a GTF for RNA polymerase I in plant cells.
Collapse
|
25
|
Shiraishi S, Tamamura N, Jogo M, Tanaka Y, Tamura TA. Rapid proteasomal degradation of transcription factor IIB in accordance with F9 cell differentiation. Gene 2009; 436:115-20. [PMID: 19393171 DOI: 10.1016/j.gene.2009.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 12/15/2008] [Accepted: 01/25/2009] [Indexed: 11/28/2022]
Abstract
We found that the levels of all general transcription factors (GTFs) for RNA polymerase II decreased in F9 cells when the cells were subjected to a differentiation procedure. Different from other GTFs, decrease of TFIIB during the differentiation was suppressed by addition of a proteasome inhibitor, MG132. The half-life of TFIIB in the differentiated cells was remarkably reduced compared with that in the undifferentiated cells. Moreover, it was demonstrated that TFIIB is a poly-ubiquitinated protein. Results of this study suggest that components of the transcription machinery decreased in accordance with cell differentiation and that TFIIB is specifically and rapidly degraded by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
26
|
Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:169-79. [PMID: 18643979 DOI: 10.1111/j.1365-313x.2008.03596.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.
Collapse
Affiliation(s)
- Jessica Marion
- Laboratoire Biologie Cellulaire, Institute Jean-Pierre Bourgin, INRA, 78000 Versailles, France
| | | | | | | | | | | |
Collapse
|
27
|
Moes D, Himmelbach A, Korte A, Haberer G, Grill E. Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:806-819. [PMID: 18298671 DOI: 10.1111/j.1365-313x.2008.03454.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABI1, a protein phosphatase 2C, is a key component of ABA signal transduction in Arabidopsis that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. The abi1-1 mutation, so far the only characterized dominant allele for ABI1, impairs ABA responsitivity in both seeds and vegetative tissues. The site of action of ABI1 is unknown. We show that there is an essential requirement for nuclear localization of abi1 to confer insensitivity towards ABA responses. Transient analyses in protoplasts revealed a strict dependence of wild-type ABI1 and mutant abi1 on a functional nuclear localization sequence (NLS) for regulating ABA-dependent gene expression. Arabidopsis lines with ectopic expression of various abi1 forms corroborated the necessity of a functional NLS to control ABA sensitivity. Disruption of the NLS function in abi1 rescued ABA-controlled gene transcription to wild-type levels, but also attenuated abi1-conferred insensitivity towards ABA during seed germination, root growth and stomatal movement. The mutation in the PP2C resulted in a preferential accumulation of the protein in the nucleus. Application of a proteosomal inhibitor led to both a preferential nuclear accumulation of ABI1 and an enhancement of PP2C-dependent inhibitory action on the ABA response. Thus, abi1-1 acts as a hypermorphic allele, and ABI1 reprograms sensitivity towards ABA in the nucleus.
Collapse
Affiliation(s)
- Danièle Moes
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
28
|
Courtois F, Merendino L, Demarsy E, Mache R, Lerbs-Mache S. Phage-type RNA polymerase RPOTmp transcribes the rrn operon from the PC promoter at early developmental stages in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:712-21. [PMID: 17885088 PMCID: PMC2048797 DOI: 10.1104/pp.107.103846] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/07/2007] [Indexed: 05/17/2023]
Abstract
The plastid genome of higher plants is transcribed by two different types of RNA polymerases named nucleus encoded RNA polymerase (NEP) and plastid encoded RNA polymerase. Plastid encoded RNA polymerase is a multimeric enzyme comparable to eubacterial RNA polymerases. NEP enzymes represent a small family of monomeric phage-type RNA polymerases. Dicotyledonous plants harbor three different phage-type enzymes, named RPOTm, RPOTp, and RPOTmp. RPOTm is exclusively targeted to mitochondria, RPOTp is exclusively targeted to plastids, and RPOTmp is targeted to plastids as well as to mitochondria. In this article, we have made use of RPOTp and RPOTmp T-DNA insertion mutants to answer the question of whether both plastid-located phage-type RNA polymerases have overlapping or specific functions in plastid transcription. To this aim, we have analyzed accD and rpoB messenger RNAs (mRNA; transcribed from type I NEP promoters), clpP mRNA (transcribed from the -59 type II NEP promoter), and the 16S rRNA (transcribed from the exceptional PC NEP promoter) by primer extension. Results suggest that RPOTp represents the principal RNA polymerase for transcribing NEP-controlled mRNA genes during early plant development, while RPOTmp transcribes specifically the rrn operon from the PC promoter during seed imbibition.
Collapse
Affiliation(s)
- Florence Courtois
- Laboratoire Plastes et Differenciation Cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, B.P. 53, F-38041 Grenoble, France
| | | | | | | | | |
Collapse
|
29
|
Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K. Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:134-46. [PMID: 17148695 DOI: 10.1093/pcp/pcl048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
TAF10 is one of the TATA box-binding protein (TBP)-associated factors (TAFs) which constitute a TFIID with a TBP. Initially most TAFs were thought to be necessary for accurate transcription initiation from a broad group of core promoters. However, it was recently revealed that several TAFs are expressed in limited tissues during animal embryogenesis, and are indispensable for normal development of the tissues. They are called 'selective' TAFs. In plants, however, little is known as to these 'selective' TAFs and their function. Here we isolated the Arabidopsis thaliana TAF10 gene (atTAF10), which is a single gene closely related to the TAF10 genes of other organisms. atTAF10 was expressed transiently during the development of several organs such as lateral roots, rosette leaves and most floral organs. Such an expression pattern was clearly distinct from that of Arabidopsis Rpb1, which encodes a component of RNA polymerase II, suggesting that atTAF10 functions in not only general transcription but also the selective expression of a subset of genes. In a knockdown mutant of atTAF10, we observed several abnormal phenotypes involved in meristem activity and leaf development, suggesting that atTAF10 is concerned in pleiotropic, but selected morphological events in Arabidopsis. These results clearly demonstrate that TAF10 is a 'selective' TAF in plants, providing a new insight into the function of TAFs in plants.
Collapse
Affiliation(s)
- Yosuke Tamada
- Laboratory of Plant Physiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
García-Rodríguez FM, Schrammeijer B, Hooykaas PJJ. The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 2006; 34:6496-504. [PMID: 17130174 PMCID: PMC1702499 DOI: 10.1093/nar/gkl877] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During the infection of plants, Agrobacterium tumefaciens introduces several Virulence proteins including VirE2, VirF, VirD5 and VirE3 into plant cells in addition to the T-DNA. Here, we report that double mutation of virF and virE3 leads to strongly diminished tumor formation on tobacco, tomato and sunflower. The VirE3 protein is translated from a polycistronic mRNA containing the virE1, virE2 and virE3 genes, in Agrobacterium. The VirE3 protein has nuclear localization sequences, which suggests that it is transported into the plant cell nucleus upon translocation. Indeed we show here that VirE3 interacts in vitro with importin-α and that a VirE3–GFP fusion protein is localized in the nucleus. VirE3 also interacts with two other proteins, viz. pCsn5, a component of the COP9 signalosome and pBrp, a plant specific general transcription factor belonging to the TFIIB family. We found that VirE3 is able to induce transcription in yeast when bound to DNA through the GAL4-BD. Our data indicate that the translocated effector protein VirE3 is transported into the nucleus and there it may interact with the transcription factor pBrp to induce the expression of genes needed for tumor development.
Collapse
Affiliation(s)
| | | | - Paul J. J. Hooykaas
- To whom correspondence should be addressed. Tel: +3171 5274933; Fax: +5274999;
| |
Collapse
|
31
|
Raynaud C, Sozzani R, Glab N, Domenichini S, Perennes C, Cella R, Kondorosi E, Bergounioux C. Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:395-407. [PMID: 16771839 DOI: 10.1111/j.1365-313x.2006.02799.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding these processes. Here we identify two Arabidopsis SET-domain proteins that interact with PCNA: ATXR5 and ATXR6. A truncated ATXR5Deltaex2, incapable of interacting with PCNA, also occurs in planta. ATXR6, upregulated during the S phase, is upregulated by AtE2F transcription factors, suggesting that it is required for S-phase progression. The two proteins differ in their subcellular localization: ATXR5 has a dual localization in plastids and in the nucleus, whereas ATXR6 is solely nuclear. This indicates that the two proteins may play different roles in plant cells. However, overexpression of either ATXR5 or ATXR6 causes male sterility because of the degeneration of defined cell types. Taken together, our results suggest that both proteins may play a role in the cell cycle or DNA replication, and that the activity of ATXR5 may be regulated via its subcellular localization.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biotechnologies des Plantes, CNRS UMR 8618, Bâtiment 630, Université Paris-Sud XI, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Buhot L, Horvàth E, Medgyesy P, Lerbs-Mache S. Hybrid transcription system for controlled plastid transgene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:700-7. [PMID: 16640605 DOI: 10.1111/j.1365-313x.2006.02718.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastid transformation technologies have developed rapidly over the last few years, reflecting their value in the study of the principal mechanisms of plastid gene expression and commercial interest in using plastids as bioreactors. Application of this technology is still limited by the difficulty of obtaining regulated, selective expression of plastid transgenes. The plastid genome is transcribed by two different types of RNA polymerase. One of them is of the eubacterial type of polymerase, and its subunits are encoded in the plastid genome [plastid-encoded RNA polymerase (PEP)]. The other one is of the phage type and nucleus-encoded [nucleus-encoded RNA polymerase (NEP)]. To obtain selective transgene expression, we have made use of the similarities and differences between the eubacterial and the plastid eubacterial type transcription systems. We created a hybrid transcription system in which the transgene is placed under the control of a eubacterial promoter which does not exist in the plastid genome and which is not recognized by the plastid endogenous transcriptional machinery. Selective transcription of the transgene is achieved by the supply of a chimeric transcription factor that interacts with PEP and directs it specifically to the foreign eubacterial-type transgene promoter. This hybrid transcription system could be used for biotechnological and fundamental research applications as well as in the characterization of the evolutionary differences between the eubacterial and the plastid eubacterial-type transcription systems.
Collapse
Affiliation(s)
- Laurence Buhot
- Laboratoire Plastes et Differenciation cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, BP 53, F-38041 Grenoble, France
| | | | | | | |
Collapse
|
33
|
|
34
|
Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 2005; 19:2030-40. [PMID: 16140984 PMCID: PMC1199573 DOI: 10.1101/gad.348405] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/29/2005] [Indexed: 11/25/2022]
Abstract
Recent genetic and biochemical studies have revealed the existence in plants of a fourth RNA polymerase, RNAPIV, which mediates siRNA accumulation and DNA methylation-dependent silencing of endogenous repeated sequences. Here, we show that Arabidopsis expresses, in fact, two evolutionarily related forms of RNAPIV, hereafter referred to as RNAPIVa and RNAPIVb. These two forms contain the same second-largest subunit (NRPD2), but differ at least by their largest subunit, termed NRPD1a and NRPD1b. Unlike NRPD1a, NRPD1b possesses a reiterated CTD, a feature that also characterizes the largest subunit of RNAPII. Our data indicate that RNAPIVb is the most abundant form of RNAPIV in Arabidopsis. Selective disruption of either form of RNAPIV indicates that RNAPIVa-dependent siRNA accumulation is not sufficient per se to drive robust silencing at endogenous loci and that high levels of DNA methylation and silencing depend on siRNA that are accumulated through a pathway involving the concerted action of both RNAPIV forms. Taken together, our results imply the existence of a novel two-step mechanism in siRNA synthesis at highly methylated loci, with RNAPIVb being an essential component of a self-reinforcing loop coupling de novo DNA methylation to siRNA production.
Collapse
Affiliation(s)
- Dominique Pontier
- LGDP, UMR 5096, Université de Perpignan, 66860 Perpignan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Raynaud C, Perennes C, Reuzeau C, Catrice O, Brown S, Bergounioux C. Cell and plastid division are coordinated through the prereplication factor AtCDT1. Proc Natl Acad Sci U S A 2005; 102:8216-21. [PMID: 15928083 PMCID: PMC1149429 DOI: 10.1073/pnas.0502564102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, Bâtiment 630, Université Paris XI, 91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
36
|
Voon DC, Subrata LS, Baltic S, Leu MP, Whiteway JM, Wong A, Knight SA, Christiansen FT, Daly JM. Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system. Nucleic Acids Res 2005; 33:e27. [PMID: 15716309 PMCID: PMC549429 DOI: 10.1093/nar/gni030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reporter assays are widely used in applications that require measurement of changes in gene expression over time (e.g. drug screening). With standard reporter vectors, the measurable effect of a treatment or compound (altered reporter activity) is substantially diluted and delayed, compared with its true effect (altered transcriptional activity). This problem is caused by the relatively long half-lives of both the reporter protein and its mRNA. As a result, the activities of compounds, ligands or treatments that have a relatively minor effect, or a substantial but transient effect, often remain undetected. To circumvent this problem, we introduced modular protein- and mRNA-destabilizing elements into a range of commonly used reporters. Our data show that both elements are required for maximal responses to both increases and decreases in transcriptional activity. The double-destabilized reporter vectors showed markedly improved performance in drug screening, kinetic assays and dose–response titrations.
Collapse
Affiliation(s)
- Dominic C. Voon
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Lily S. Subrata
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Svetlana Baltic
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Marco P. Leu
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Joanna M. Whiteway
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Agnes Wong
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Samuel A. Knight
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Frank T. Christiansen
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - John M. Daly
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- To whom correspondence should be addressed. Tel/Fax: +61 8 92051149;
| |
Collapse
|