1
|
Erin N, Tavşan E, Akdeniz Ö, Isca VMS, Rijo P. Rebound increases in chemokines by CXCR2 antagonist in breast cancer can be prevented by PKCδ and PKCε activators. Cytokine 2021; 142:155498. [PMID: 33773907 DOI: 10.1016/j.cyto.2021.155498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Activation of CXCR2 by chemokines such as CXCL1 and CXCL2 increases aggressiveness of breast cancer, inducing chemoresistance, hence CXCR2 antagonists are in clinical trials. We previously reported that inhibition of CXCR2 increases MIP-2 (CXCL2), which may inhibit anti-tumoral effects of CXCR2 antagonists. This seems to be due to inhibition of protein kinase C (PKC) by CXCR2 antagonist since specific inhibitor of PKC also enhances MIP-2 secretion. We here examined whether CXCR2 inhibitor also increases KC (CXCL1) secretion, ligand for CXCR2 involved in metastasis and PKC activators can prevent increases in chemokine secretion. We used SB 225002, which is a specific CXCR2 antagonist. The effects of PKC activators that have documented anti-tumoral effects and activates multiple isozymes of PKC such as Ingenol-3-angelate (I3A) and bryostatin-1 were examined here. In addition, FR236924, PKCε selective and 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), PKCδ selective activators were also tested. The effects of activators were determined using brain metastatic (4TBM) and heart metastatic (4THM) subset of 4T1 breast carcinoma cells because these aggressive carcinoma cells with cancer stem cell features secrete high levels of KC and MIP-2. Inhibition of CXCR-2 activity increased KC (CXCL1) secretion. PKC activators prevented SB225002-induced increases in KC and MIP-2 secretion. Different activators/modulators induce differential changes in basal and SB225002-induced chemokine secretion as well as cell proliferation and the activators that act on PKCδ and/or PKCε such as bryostatin 1, FR236924 and Roy-Bz are the most effective. These activators alone also decrease cell proliferation or chemokine secretion or both. Given the role of KC and MIP-2 in drug resistance including chemotherapeutics, activators of PKCε and PKCδ may prevent emerging of resistance to CXCR2 inhibitors as well as other chemotherapeutics.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Esra Tavşan
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey
| | - Özlem Akdeniz
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Vera M S Isca
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Shibata S, Kashiwagi M, Morgan BA, Georgopoulos K. Functional interactions between Mi-2β and AP1 complexes control response and recovery from skin barrier disruption. J Exp Med 2020; 217:132751. [PMID: 31834931 PMCID: PMC7062528 DOI: 10.1084/jem.20182402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/29/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Keratinocytes respond to environmental signals by eliciting induction of genes that preserve skin's integrity. Here we show that the transcriptional response to stress signaling is supported by short-lived epigenetic changes. Comparison of chromatin accessibility and transcriptional changes induced by barrier disruption or by loss of the nucleosome remodeler Mi-2β identified their striking convergence in mouse and human keratinocytes. Mi-2β directly repressed genes induced by barrier disruption by restricting AP1-enriched promoter-distal sites, occupied by Mi-2β and JUNB at steady state and by c-JUN after Mi-2β depletion or stress signaling. Barrier disruption led to a modest reduction in Mi-2β expression and a further selective reduction of Mi-2β localization at stress response genes, possibly through competition with activated c-JUN. Consistent with a repressive role at stress response genes, genetic ablation of Mi-2β did not prevent reestablishment of barrier integrity but was required for return to homeostasis. Thus, a competition between Mi-2β-repressive and activating AP1 complexes may permit rapid transcriptional response to and resolution from stress signaling.
Collapse
Affiliation(s)
- Sayaka Shibata
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| |
Collapse
|
3
|
The p38 Pathway: From Biology to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21061913. [PMID: 32168915 PMCID: PMC7139330 DOI: 10.3390/ijms21061913] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
The p38 MAPK pathway is well known for its role in transducing stress signals from the environment. Many key players and regulatory mechanisms of this signaling cascade have been described to some extent. Nevertheless, p38 participates in a broad range of cellular activities, for many of which detailed molecular pictures are still lacking. Originally described as a tumor-suppressor kinase for its inhibitory role in RAS-dependent transformation, p38 can also function as a tumor promoter, as demonstrated by extensive experimental data. This finding has prompted the development of specific inhibitors that have been used in clinical trials to treat several human malignancies, although without much success to date. However, elucidating critical aspects of p38 biology, such as isoform-specific functions or its apparent dual nature during tumorigenesis, might open up new possibilities for therapy with unexpected potential. In this review, we provide an extensive description of the main biological functions of p38 and focus on recent studies that have addressed its role in cancer. Furthermore, we provide an updated overview of therapeutic strategies targeting p38 in cancer and promising alternatives currently being explored.
Collapse
|
4
|
T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1. PLoS One 2018; 13:e0204775. [PMID: 30286151 PMCID: PMC6171881 DOI: 10.1371/journal.pone.0204775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when over-expressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/- adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e. the secondary hair germ) and in the stem cell niche (i.e. the bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative–differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/- and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/- mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KCs.
Collapse
|
5
|
Chang RS, Chen CS, Huang CL, Chang CT, Cui Y, Chung WJ, Shu WY, Chiang CS, Chuang CY, Hsu IC. Unexpected dose response of HaCaT to UVB irradiation. In Vitro Cell Dev Biol Anim 2018; 54:589-599. [PMID: 30083841 DOI: 10.1007/s11626-018-0280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
Abstract
Application of high-dosage UVB irradiation in phototherapeutic dermatological treatments present health concerns attributed to UV-exposure. In assessing UV-induced photobiological damage, we investigated dose-dependent effects of UVB irradiation on human keratinocyte cells (HaCaT). Our study implemented survival and apoptosis assays and revealed an unexpected dose response wherein higher UVB-dosage induced higher viability. Established inhibitors, such as AKT- (LY294002), PKC- (Gö6976, and Rottlerin), ERK- (PD98059), P38 MAPK- (SB203580), and JNK- (SP600125), were assessed to investigate UV-induced apoptotic pathways. Despite unobvious contributions of known signaling pathways in dose-response mediation, microarray analysis identified transcriptional expression of UVB-response genes related to the respiratory-chain. Observed correlation of ROS-production with UVB irradiation potentiated ROS as the underlying mechanism for observed dose responses. Inability of established pathways to explain such responses suggests the complex nature underlying UVB-phototherapy response.
Collapse
Affiliation(s)
- Rong-Shing Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ching-Lung Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chiu-Ting Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yujia Cui
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | | | - Wun-Yi Shu
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ian C Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
6
|
Krzywinska E, Zorawski MD, Taracha A, Kotarba G, Kikulska A, Mlacki M, Kwiatkowska K, Wilanowski T. Threonine 454 phosphorylation in Grainyhead-like 3 is important for its function and regulation by the p38 MAPK pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1002-1011. [PMID: 29702134 DOI: 10.1016/j.bbamcr.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
The mammalian Grainyhead-like 3 (GRHL3) transcription factor is essential for epithelial development and plays a protective role against squamous cell carcinoma of the skin and of the oral cavity. A single nucleotide polymorphism (SNP) in GRHL3, rs141193530 (p.P455A), is associated with non-melanoma skin cancer in human patients. Moreover, it is known that this SNP, as well as another variant, rs41268753 (p.T454M), are associated with nonsyndromic cleft palate and that rs41268753 negatively affects GRHL3 transcriptional activity. These SNPs are located in adjacent codons of the GRHL3 gene, and the occurrence of either SNP abolishes a putative threonine-proline phosphorylation motif at T454 in the encoded protein. The role of phosphorylation in regulating mammalian GRHL function is currently unknown. In this work we show that GRHL3 is phosphorylated at several residues in a human keratinocyte cell line, among them at T454. This site is essential for the full transcriptional activity of GRHL3. The T454 residue is phosphorylated by p38 MAPK in vitro and activation of p38 signaling in cells causes an increase in GRHL3 activity. The regulation of GRHL3 function by this pathway is dependent on T454, as the substitution of T454 with methionine inhibits the activation of GRHL3. Taken together, our results show that T454 is one of the phosphorylated residues in GRHL3 in keratinocytes and this residue is important for the upregulation of GRHL3 transcriptional activity by the p38 pathway.
Collapse
Affiliation(s)
- Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Marek Dominick Zorawski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Michal Mlacki
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Bajpai A, Ishii T, Miyauchi K, Gupta V, Nishio-Masaike Y, Shimizu-Yoshida Y, Kubo M, Kitano H. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci Rep 2017; 7:15830. [PMID: 29158586 PMCID: PMC5696538 DOI: 10.1038/s41598-017-16155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis.
Collapse
Affiliation(s)
- Archana Bajpai
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
| | - Takashi Ishii
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
| | - Kosuke Miyauchi
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
| | - Vipul Gupta
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- The Systems Biology Institute, Tokyo, Japan
| | | | - Yuki Shimizu-Yoshida
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Masato Kubo
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Kitano
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
- The Systems Biology Institute, Tokyo, Japan.
- Sony Computer Science Laboratories, Inc, Tokyo, Japan.
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
8
|
Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2016; 17:ijms17091400. [PMID: 27626409 PMCID: PMC5037680 DOI: 10.3390/ijms17091400] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.
Collapse
|
9
|
Saha K, Adhikary G, Eckert RL. MEP50/PRMT5 Reduces Gene Expression by Histone Arginine Methylation and this Is Reversed by PKCδ/p38δ Signaling. J Invest Dermatol 2016; 136:214-224. [PMID: 26763441 PMCID: PMC4899982 DOI: 10.1038/jid.2015.400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/03/2015] [Accepted: 09/26/2015] [Indexed: 02/08/2023]
Abstract
PKCδ and p38δ are key proteins in a cascade that stimulates keratinocyte differentiation. This cascade activates transcription of involucrin (hINV) and other genes associated with differentiation. Protein arginine methyltransferase 5 (PRMT5) is an arginine methyltransferase that symmetrically dimethylates arginine residues. This protein interacts with a cofactor, MEP50, and symmetrically dimethylates arginine eight of histone 3 (H3R8me2s) and arginine three of histone 4 (H4R3me2s) to silence gene expression. We use the involucrin gene as a tool to understand the relationship between PKCδ/p38δ and PRMT5/MEP50 signaling. MEP50 suppresses hINV mRNA level and promoter activity. This is associated with increased arginine dimethylation of hINV gene-associated H3/H4. We further show that the PKCδ/p38δ keratinocyte differentiation cascade reduces PRMT5 and MEP50 expression, association with the hINV gene promoter, and H3R8me2s and H4R2me2s formation. We propose that PRMT5/MEP50-dependent methylation is an epigenetic mechanism that assists in silencing of hINV expression, and that PKCδ signaling activates gene expression by directly activating transcription and by suppressing PRMT5/MEP50 dependent arginine dimethylation of promoter associated histones. This is an example of crosstalk between PKCδ/p38δ signaling and PRMT5/MEP50 epigenetic silencing.
Collapse
Affiliation(s)
- Kamalika Saha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Reyland ME, Jones DNM. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165:1-13. [PMID: 27179744 DOI: 10.1016/j.pharmthera.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Saha K, Eckert RL. Methylosome Protein 50 and PKCδ/p38δ Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression. J Biol Chem 2015; 290:13521-30. [PMID: 25851901 PMCID: PMC4505598 DOI: 10.1074/jbc.m115.642868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a key epigenetic regulator that symmetrically dimethylates arginine residues on histones H3 and H4 to silence gene expression. PRMT5 is frequently observed in a complex with the cofactor methylosome protein 50 (MEP50), which is required for PRMT5 activity. PKCδ/p38δ signaling, a key controller of keratinocyte proliferation and differentiation, increases p21(Cip1) expression to suppress keratinocyte proliferation. We now show that MEP50 enhances keratinocyte proliferation and survival via mechanisms that include silencing of p21(Cip1) expression. This is associated with enhanced PRMT5-MEP50 interaction at the p21(Cip1) promoter and enhanced arginine dimethylation of the promoter-associated histones H3 and H4. It is also associated with a MEP50-dependent reduction in the level of p53, a key controller of p21(Cip1) gene expression. We confirm an important biological role for MEP50 and PRMT5 in regulating keratinocyte proliferation using a stratified epidermal equivalent model that mimics in vivo epidermal keratinocyte differentiation. In this model, PRMT5 or MEP50 knockdown results in reduced keratinocyte proliferation. We further show that PKCδ/p38δ signaling suppresses MEP50 expression, leading to reduced H3/H4 arginine dimethylation at the p21(Cip1) promoter, and that this is associated with enhanced p21(Cip1) expression and reduced cell proliferation. These findings describe an opposing action between PKCδ/p38δ MAPK signaling and PRMT5/MEP50 epigenetic silencing mechanisms in regulating cell proliferation.
Collapse
Affiliation(s)
- Kamalika Saha
- From the Departments of Biochemistry and Molecular Biology
| | - Richard L Eckert
- From the Departments of Biochemistry and Molecular Biology, Dermatology, and Obstetrics and Gynecology and the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
12
|
Rorke EA, Adhikary G, Young CA, Roop DR, Eckert RL. Suppressing AP1 factor signaling in the suprabasal epidermis produces a keratoderma phenotype. J Invest Dermatol 2015; 135:170-180. [PMID: 25050598 PMCID: PMC4268309 DOI: 10.1038/jid.2014.310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
Abstract
Keratodermas comprise a heterogeneous group of highly debilitating and painful disorders characterized by thickening of the skin with marked hyperkeratosis. Some of these diseases are caused by genetic mutation, whereas other forms are acquired in response to environmental factors. Our understanding of signaling changes that underlie these diseases is limited. In the present study, we describe a keratoderma phenotype in mice in response to suprabasal epidermis-specific inhibition of activator protein 1 transcription factor signaling. These mice develop a severe phenotype characterized by hyperplasia, hyperkeratosis, parakeratosis, and impaired epidermal barrier function. The skin is scaled, constricting bands encircle the tail and digits, the footpads are thickened and scaled, and loricrin staining is markedly reduced in the cornified layers and increased in the nucleus. Features of this phenotype, including nuclear loricrin localization and pseudoainhum (autoamputation), are characteristic of the Vohwinkel syndrome. We confirm that the phenotype develops in a loricrin-null genetic background, indicating that suppressed suprabasal AP1 factor function is sufficient to drive this disease. We also show that the phenotype regresses when suprabasal AP1 factor signaling is restored. Our findings suggest that suppression of AP1 factor signaling in the suprabasal epidermis is a key event in the pathogenesis of keratoderma.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Ainhum/genetics
- Ainhum/metabolism
- Ainhum/pathology
- Animals
- Constriction, Pathologic/genetics
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Epidermis/pathology
- Epidermis/physiology
- Female
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/metabolism
- Keratoderma, Palmoplantar/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Mutant Strains
- Phenotype
- Signal Transduction/physiology
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
Collapse
Affiliation(s)
- Ellen A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christina A Young
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dennis R Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
14
|
Host Defense (Antimicrobial) Peptide, Human β-Defensin-3, Improves the Function of the Epithelial Tight-Junction Barrier in Human Keratinocytes. J Invest Dermatol 2014; 134:2163-2173. [DOI: 10.1038/jid.2014.143] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 02/20/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022]
|
15
|
Saha K, Adhikary G, Kanade SR, Rorke EA, Eckert RL. p38δ regulates p53 to control p21Cip1 expression in human epidermal keratinocytes. J Biol Chem 2014; 289:11443-11453. [PMID: 24599959 PMCID: PMC4036280 DOI: 10.1074/jbc.m113.543165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Indexed: 11/06/2022] Open
Abstract
PKCδ suppresses keratinocyte proliferation via a mechanism that involves increased expression of p21(Cip1). However, the signaling mechanism that mediates this regulation is not well understood. Our present studies suggest that PKCδ activates p38δ leading to increased p21(Cip1) promoter activity and p21(Cip1) mRNA/protein expression. We further show that exogenously expressed p38δ increases p21(Cip1) mRNA and protein and that p38δ knockdown or expression of dominant-negative p38 attenuates this increase. Moreover, p53 is an intermediary in this regulation, as p38δ expression increases p53 mRNA, protein, and promoter activity, and p53 knockdown attenuates the activation. We demonstrate a direct interaction of p38δ with PKCδ and MEK3 and show that exogenous agents that suppress keratinocyte proliferation activate this pathway. We confirm the importance of this regulation using a stratified epidermal equivalent model, which mimics in vivo-like keratinocyte differentiation. In this model, PKCδ or p38δ knockdown results in reduced p53 and p21(Cip1) levels and enhanced cell proliferation. We propose that PKCδ activates a MEKK1/MEK3/p38δ MAPK cascade to increase p53 levels and p53 drives p21(Cip1) gene expression.
Collapse
Affiliation(s)
- Kamalika Saha
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Santosh R Kanade
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ellen A Rorke
- Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Obstetrics and Gynecology, and University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
16
|
Koppel AC, Kiss A, Hindes A, Burns CJ, Marmer BL, Goldberg G, Blumenberg M, Efimova T. Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. Am J Physiol Cell Physiol 2014; 306:C899-909. [PMID: 24598361 DOI: 10.1152/ajpcell.00331.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.
Collapse
Affiliation(s)
- Aaron C Koppel
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Alexi Kiss
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Anna Hindes
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Carole J Burns
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Barry L Marmer
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Gregory Goldberg
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Miroslav Blumenberg
- R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York
| | - Tatiana Efimova
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
17
|
Fan Y, Li J, Zhang YQ, Jiang LH, Zhang YN, Yan CQ. Protein kinase C delta mediated cytotoxicity of 6-Hydroxydopamine via sustained extracellular signal-regulated kinase 1/2 activation in PC12 cells. Neurol Res 2013; 36:53-64. [PMID: 24107416 DOI: 10.1179/1743132813y.0000000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The incidence of Parkinson's disease (PD) is increasing as the global population ages. 6-hydroxydopamine (6-OHDA) can induce PD-like neuropathology and biochemical changes in both in vitro and in vivo models. Therefore, clarification of the molecular mechanism of 6-OHDA-induced cell death might contribute to the understanding of the pathogenesis of PD. METHODS With this goal in mind, we investigated the role of protein kinase C delta (PKC delta) in 6-OHDA-dependent death using the pheochromocytoma cell line, PC12. Cells were treated with 6-OHDA to induce toxicity with or without pretreatment using rottlerin (a PKC delta inhibitor), bisindolylmaleimide I (a general PKC inhibitor), Gö6976 (a PKC inhibitor selective for calcium-dependent PKC isoforms), or phorbol-12-myristate-13-acetate (PMA, a PKC activator). RESULTS Phorbol-12-myristate-13-acetate decreased cell survival and increased the rate of apoptosis while rottlerin increased cell survival and decreased the rate of apoptosis. In contrast, neither bisindolylmaleimide I nor Gö6976 affected 6-OHDA-induced cell death. Western analysis demonstrated that phosphorylation of PKC delta on Thr 505 as well as extracellular signal-regulated kinase (ERK) phosphorylation increased after exposure to 6-OHDA. This increase in PKC delta phosphorylation was potentiated by PMA. However, rottlerin attenuated the 6-OHDA-stimulated increase in PKC delta and ERK phosphorylation. CONCLUSION These data suggest that PKC delta, rather than classic-type PKC (alpha, beta1, beta2, gamma), participates in 6-OHDA-induced neurotoxicity in PC12 cells, and PKC delta activity is required for subsequent ERK activation during cell death.
Collapse
|
18
|
Xia L, Wang TD, Shen SM, Zhao M, Sun H, He Y, Xie L, Wu ZX, Han SF, Wang LS, Chen GQ. Phosphoproteomics study on the activated PKCδ-induced cell death. J Proteome Res 2013; 12:4280-301. [PMID: 23879269 DOI: 10.1021/pr400089v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proteolytic activation of protein kinase Cδ (PKCδ) generates a catalytic fragment called PKCδ-CF, which induces cell death. However, the mechanisms underlying PKCδ-CF-mediated cell death are largely unknown. On the basis of an engineering leukemic cell line with inducible expression of PKCδ-CF, here we employ SILAC-based quantitative phosphoproteomics to systematically and dynamically investigate the overall phosphorylation events during cell death triggered by PKCδ-CF expression. Totally, 3000 phosphorylation sites were analyzed. Considering the fact that early responses to PKCδ-CF expression initiate cell death, we sought to identify pathways possibly related directly with PKCδ by further analyzing the data set of phosphorylation events that occur in the initiation stage of cell death. Interacting analysis of this data set indicates that PKCδ-CF triggers complicated networks to initiate cell death, and motif analysis and biochemistry verification reveal that several kinases in the downstream of PKCδ conduct these networks. By analysis of the specific sequence motif of kinase-substrate, we also find 59 candidate substrates of PKCδ from the up-regulated phosphopeptides, of which 12 were randomly selected for in vitro kinase assay and 9 were consequently verified as substrates of PKCδ. To our greatest understanding, this study provides the most systematic analysis of phosphorylation events initiated by the cleaved activated PKCδ, which would vastly extend the profound understanding of PKCδ-directed signal pathways in cell death. The MS data have been deposited to the ProteomeXchange with identifier PXD000225.
Collapse
Affiliation(s)
- Li Xia
- The Department of Pathophysiology and Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM) , Shanghai, P.R. China , 200025
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao KN, Masci PP, Chen J, Lavin MF. Calcium prevents retinoic acid-induced disruption of the spectrin-based cytoskeleton in keratinocytes through the Src/PI3K-p85α/AKT/PKCδ/β-adducin pathways. Cell Calcium 2013; 54:151-62. [DOI: 10.1016/j.ceca.2013.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Kong-Nan Zhao
- Centre for Kidney Disease--Venomics Research, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia.
| | | | | | | |
Collapse
|
20
|
O'Callaghan C, Fanning LJ, Houston A, Barry OP. Loss of p38δ mitogen-activated protein kinase expression promotes oesophageal squamous cell carcinoma proliferation, migration and anchorage-independent growth. Int J Oncol 2013; 43:405-15. [PMID: 23722928 PMCID: PMC3775579 DOI: 10.3892/ijo.2013.1968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 11/23/2022] Open
Abstract
Oesophageal cancer is an aggressive tumour which responds poorly to both chemotherapy and radiation therapy and has a poor prognosis. Thus, a greater understanding of the biology of oesophageal cancer is needed in order to identify novel therapeutic targets. Among these targets p38 MAPK isoforms are becoming increasingly important for a variety of cellular functions. The physiological functions of p38α and -β are now well documented in contrast to -γ and -δ which are comparatively under-studied and ill-defined. A major obstacle to deciphering the role(s) of the latter two p38 isoforms is the lack of specific chemical activators and inhibitors. In this study, we analysed p38 MAPK isoform expression in oesophageal cancer cell lines as well as human normal and tumour tissue. We observed specifically differential p38δ expression. The role(s) of p38δ and active (phosphorylated) p38δ (p-p38δ) in oesophageal squamous cell carcinoma (OESCC) was delineated using wild-type p38δ as well as active p-p38δ, generated by fusing p38δ to its upstream activator MKK6b(E) via a decapeptide (Gly-Glu)5 linker. OESCC cell lines which are p38δ-negative (KE-3 and -8) grew more quickly than cell lines (KE-6 and -10) which express endogenous p38δ. Re-introduction of p38δ resulted in a time-dependent decrease in OESCC cell proliferation which was exacerbated with p-p38δ. In addition, we observed that p38δ and p-p38δ negatively regulated OESCC cell migration in vitro. Finally both p38δ and p-p38δ altered OESCC anchorage-independent growth. Our results suggest that p38δ and p-p38δ have a role in the suppression of OESCC. Our research may provide a new potential target for the treatment of oesophageal cancer.
Collapse
Affiliation(s)
- Carol O'Callaghan
- Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | | | | | | |
Collapse
|
21
|
AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer 2013; 2013:537028. [PMID: 23762562 PMCID: PMC3676924 DOI: 10.1155/2013/537028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
Collapse
|
22
|
Chew YC, Adhikary G, Xu W, Wilson GM, Eckert RL. Protein kinase C δ increases Kruppel-like factor 4 protein, which drives involucrin gene transcription in differentiating keratinocytes. J Biol Chem 2013; 288:17759-68. [PMID: 23599428 DOI: 10.1074/jbc.m113.477133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 is a member of the Kruppel-like factor family of transcriptional regulators. KLF4 has been shown to be required for normal terminal differentiation of keratinocytes, but the molecular mechanism whereby KLF4 regulates genes associated with the differentiation process has not been studied. In the present study, we explore the impact of KLF4 on expression of involucrin, a gene that is specifically expressed in differentiated keratinocytes. KLF4 overexpression and knockdown studies show that involucrin mRNA and protein level correlates directly with KLF4 level. Moreover, studies of mutant KLF4 proteins indicate that transcriptionally inactive forms do not increase involucrin expression. PKCδ is a regulator of keratinocyte differentiation that increases expression of differentiation-associated target genes, including involucrin. Overexpression of KLF4 augments the PKCδ-dependent increase in involucrin expression, whereas KLF4 knockdown attenuates this response. The KLF4 induction of human involucrin (hINV) promoter activity is mediated via KLF4 binding to a GC-rich element located in the hINV promoter distal regulatory region, a region of the promoter required for in vivo involucrin expression. Mutation of the GC-rich element, an adjacent AP1 factor binding site, or both sites severely attenuates the response. Moreover, loss of KLF4 in an epidermal equivalent model of differentiation results in loss of hINV expression. These studies suggest that KLF4 is part of a multiprotein complex that interacts that the hINV promoter distal regulatory region to drive differentiation-dependent hINV gene expression in epidermis.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
23
|
Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, Miller CA, Heier RF, Byers DE, Brett TJ, Holtzman MJ. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest 2012; 122:4555-68. [PMID: 23187130 PMCID: PMC3533556 DOI: 10.1172/jci64896] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Yael G. Alevy
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anand C. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arthur G. Romero
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dhara A. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Tucker
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William T. Roswit
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chantel A. Miller
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F. Heier
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tom J. Brett
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz) 2012; 60:361-72. [PMID: 22918451 DOI: 10.1007/s00005-012-0188-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/06/2012] [Indexed: 12/21/2022]
Abstract
Protein kinase C-delta (PKCδ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. In the past decade, the critical role of PKCδ in the regulation of both intrinsic and extrinsic apoptosis pathways has been widely explored. In most cases, over-expression or activation of PKCδ results in the induction of apoptosis. The phosphorylations and multiple cell organelle translocations of PKCδ initiate apoptosis by targeting multiple downstream effectors. During apoptosis, PKCδ is proteolytically cleaved by caspase-3 to generate a constitutively activated catalytic fragment, which amplifies apoptosis cascades in nucleus and mitochondria. However, PKCδ also exerts its anti-apoptotic and pro-survival roles in some cases. Therefore, the complicated role of PKCδ in apoptosis appears to be stimulus and cell type dependent. This review is mainly focused on how PKCδ gets activated in diverse ways in response to apoptotic signals and how PKCδ targets different downstream regulators to sponsor or restrain apoptosis induction.
Collapse
|
25
|
Han B, Rorke EA, Adhikary G, Chew YC, Xu W, Eckert RL. Suppression of AP1 transcription factor function in keratinocyte suppresses differentiation. PLoS One 2012; 7:e36941. [PMID: 22649503 PMCID: PMC3359321 DOI: 10.1371/journal.pone.0036941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Our previous study shows that inhibiting activator protein one (AP1) transcription factor function in murine epidermis, using dominant-negative c-jun (TAM67), increases cell proliferation and delays differentiation. To understand the mechanism of action, we compare TAM67 impact in mouse epidermis and in cultured normal human keratinocytes. We show that TAM67 localizes in the nucleus where it forms TAM67 homodimers that competitively interact with AP1 transcription factor DNA binding sites to reduce endogenous jun and fos factor binding. Involucrin is a marker of keratinocyte differentiation that is expressed in the suprabasal epidermis and this expression requires AP1 factor interaction at the AP1-5 site in the promoter. TAM67 interacts competitively at this site to reduce involucrin expression. TAM67 also reduces endogenous c-jun, junB and junD mRNA and protein level. Studies with c-jun promoter suggest that this is due to reduced transcription of the c-jun gene. We propose that TAM67 suppresses keratinocyte differentiation by interfering with endogenous AP1 factor binding to regulator elements in differentiation-associated target genes, and by reducing endogenous c-jun factor expression.
Collapse
Affiliation(s)
- Bingshe Han
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ellen A. Rorke
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
26
|
Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human β1 and α2 integrin. PLoS One 2012; 7:e36658. [PMID: 22590584 PMCID: PMC3349713 DOI: 10.1371/journal.pone.0036658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/04/2012] [Indexed: 12/03/2022] Open
Abstract
Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis.
Collapse
Affiliation(s)
| | - Johannes Madsen
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | | | - Juan Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, Tjele, Denmark
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peter M. Kragh
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Lars Svensson
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- HuaDa JiYin (BGI), Shenzhen, China
| | | |
Collapse
|
27
|
Grinnell K, Duong H, Newton J, Rounds S, Choudhary G, Harrington EO. Heterogeneity in apoptotic responses of microvascular endothelial cells to oxidative stress. J Cell Physiol 2012; 227:1899-910. [PMID: 21732361 DOI: 10.1002/jcp.22918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxidative stress contributes to disease and can alter endothelial cell (EC) function. EC from different vascular beds are heterogeneous in structure and function, thus we assessed the apoptotic responses of EC from lung and heart to oxidative stress. Since protein kinase Cδ (PKCδ) is activated by oxidative stress and is an important modulator of apoptosis, experiments assessed the level of apoptosis in fixed lung and heart sections of PKCδ wild-type (PKCδ(+/+)) and null (PKCδ(-/-)) mice housed under normoxia (21% O(2)) or hyperoxia (~95% O(2)). We noted a significantly greater number of TUNEL-positive cells in lungs of hyperoxic PKCδ(+/+) mice, compared to matched hearts or normoxic organs. We found that 33% of apoptotic cells identified in hyperoxic lungs of PKCδ(+/+) mice were EC, compared to 7% EC in hyperoxic hearts. We further noted that EC apoptosis was significantly reduced in lungs of PKCδ(-/-) hyperoxic mice, compared to lungs of PKCδ(+/+) hyperoxic mice. In vitro, both hyperoxia and H(2)O(2) promoted apoptosis in EC isolated from microvasculature of lung (LMVEC), but not from the heart (HMVEC). H(2)O(2) treatment significantly increased p38 activity in LMVEC, but not in HMVEC. Inhibition of p38 attenuated H(2)O(2)-induced LMVEC apoptosis. Baseline expression of total PKCδ protein, as well as the caspase-mediated, catalytically active PKCδ cleavage fragment, was higher in LMVEC, compared to HMVEC. PKCδ inhibition significantly attenuated H(2)O(2)-induced LMVEC p38 activation. Conversely, overexpression of wild-type PKCδ or the catalytically active PKCδ cleavage product greatly increased H(2)O(2)-induced HMVEC caspase and p38 activation. We propose that enhanced susceptibility of lung EC to oxidant-induced apoptosis is due to increased PKCδ→p38 signaling, and we describe a PKCδ-centric pathway which dictates the differential response of EC from distinct vascular beds to oxidative stress.
Collapse
Affiliation(s)
- Katie Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
29
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
30
|
Choudhury SR, Balasubramanian S, Chew YC, Han B, Marquez VE, Eckert RL. (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis 2011; 32:1525-32. [PMID: 21798853 PMCID: PMC3179425 DOI: 10.1093/carcin/bgr171] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polycomb group (PcG) protein-dependent histone methylation and ubiquitination drives chromatin compaction leading to reduced tumor suppressor expression and increased cancer cell survival. Green tea polyphenols and S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors are important candidate chemopreventive agents. Previous studies indicate that (-)-epigallocatechin-3-gallate (EGCG), a potent green tea polyphenol, suppresses PcG protein level and skin cancer cell survival. Inhibition of AdoHcy hydrolase with 3-deazaneplanocin A (DZNep) inhibits methyltransferases by reducing methyl group availability. In the present study, we examine the impact of EGCG and DZNep cotreatment on skin cancer cell function. EGCG and DZNep, independently and in combination, reduce the level of PcG proteins including Ezh2, eed, Suz12, Mel18 and Bmi-1. This is associated with reduced H3K27me3 and H2AK119ub formation, histone modifications associated with closed chromatin. Histone deacetylase 1 level is also reduced and acetylated H3 formation is increased. These changes are associated with increased tumor suppressor expression and reduced cell survival and are partially reversed by vector-mediated maintenance of Bmi-1 level. The reduction in PcG protein level is associated with increased ubiquitination and is reversed by proteasome inhibitors, suggesting proteasome-associated degradation.
Collapse
Affiliation(s)
- Subhasree Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem 2011; 286:28772-28782. [PMID: 21652709 PMCID: PMC3190685 DOI: 10.1074/jbc.m110.205245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/16/2010] [Indexed: 11/06/2022] Open
Abstract
PKCδ increases keratinocyte differentiation and suppresses keratinocyte proliferation and survival. However, the mechanism of proliferation suppression is not well understood. The present studies show that PKCδ overexpression increases p21(Cip1) mRNA and protein level and promoter activity and that treatment with dominant-negative PKCδ, PKCδ-siRNA, or rottlerin inhibits promoter activation. Analysis of the p21(Cip1) promoter upstream regulatory region reveals three DNA segments that mediate PKCδ-dependent promoter activation. The PKCδ response element most proximal to the transcription start site encodes six GC-rich DNA elements. Mutation of these sites results in a loss of PKCδ-dependent promoter activation. Gel mobility supershift and chromatin immunoprecipitation reveal that these DNA elements bind the Kruppel-like transcription factor KLF4. PKCδ increases KLF4 mRNA and protein level and KLF4 binding to the GC-rich elements in the p21(Cip1) proximal promoter. In addition, KLF4-siRNA inhibits PKCδ-dependent p21(Cip1) promoter activity. PKCδ increases KLF4 expression leading to enhanced KLF4 interaction with the GC-rich elements in the p21(Cip1) promoter to activate transcription.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - E Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
32
|
Isaeva AR, Mitev VI. The protein kinase CK2 inhibitor TBB mediates up-regulation of MEK3/6 and p38δ activities, down-regulation of ERK1/2 activity and induction of G1/S arrest in normal human epidermal autocrine proliferating keratinocytes. J Dermatol Sci 2011; 63:124-6. [PMID: 21620683 DOI: 10.1016/j.jdermsci.2011.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/23/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
33
|
Becatti M, Prignano F, Fiorillo C, Pescitelli L, Nassi P, Lotti T, Taddei N. The involvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: Protective effects of curcumin and capsaicin. Antioxid Redox Signal 2010; 13:1309-21. [PMID: 20085492 DOI: 10.1089/ars.2009.2779] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has been suggested as the initial pathogenetic event in melanocyte degeneration in vitiligo. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. In the present study, biopsies were taken from the perilesional skin of 12 patients suffering from nonsegmental vitiligo. The intracellular pathways involved in keratinocyte damage and apoptosis and the antioxidant protection of curcumin and capsaicin in these cells were investigated. In keratinocytes from perilesional vitiligo skin, we observed high levels of activated p38, NF-kB p65 subunit, p53, and Smac/DIABLO proteins. In contrast, low levels of ERK phosphorylation were present. To investigate the relationship between these pathways, we used specific inhibitors and evaluated the alteration of each pathway. For the first time, our study demonstrates the pivotal role of p38 MAP kinase as an upstream signal of perilesional keratinocyte damage, and the important contribution of p38 and NF-kB on p53 accumulation. Curcumin and capsaicin also increase ERK phosphorylation, thus inhibiting apoptosis. Moreover, pretreatment with such natural antioxidants inhibited caspase activation, increased total antioxidant capacity, repressed intracellular ROS generation and lipid peroxidation, and improved mitochondrial activity. These results suggest that antioxidants might represent an alternative approach to protect against vitiligo progression.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Andreucci M, Lucisano G, Faga T, Bertucci B, Tamburrini O, Pisani A, Sabbatini M, Salzano S, Vitale M, Fuiano G, Michael A. Differential activation of signaling pathways involved in cell death, survival and inflammation by radiocontrast media in human renal proximal tubular cells. Toxicol Sci 2010; 119:408-16. [PMID: 21036957 DOI: 10.1093/toxsci/kfq332] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Radiocontrast media (RCM) are widely used in clinical medicine but may lead to radiocontrast-induced nephropathy (RCIN). The pathogenesis of acute renal failure secondary to RCM is not fully understood, but direct toxic effects are believed to be a major cause of RCIN. We have investigated the effect of different types of RCM on signaling pathways known to play a role in cell death, survival, and inflammation. HK-2 cells were incubated with sodium diatrizoate and iomeprol (IOM) at a concentration of 75 mg I/ml for 2 h. Both RCM caused an increase in phosphorylation of p38 mitogen-activated protein kinase (MAPK) (p38) and c-Jun N-terminal kinases (JNKs) and NF-κB (at Ser 276), with sodium diatrizoate having a more drastic effect. Although cell viability was reduced significantly by both RCM, in cells pretreated with IOM the cell viability recovered over a 22-h time period after removal of the RCM. However, viability of diatrizoate-treated cells rose at 5 h but then fell at 22 h after removal of the RCM. The decrease in cell viability in diatrizoate-treated cells corresponded with an increase in phosphorylation of JNKs, p38, and NF-κB and a decrease in phosphorylation of Akt, signal transducer and activator of transcription 3, and forkhead box O3a, as well as poly (ADP-ribose) polymerase and caspase-3 cleavage. The recovery in viability of IOM-treated cells corresponded most notably with an increase in STAT3 phosphorylation and induction of Pim-1 kinase. There was also an increase in interleukin-8 release by diatrizoate-treated cells indicating the possibility of proinflammatory effects of RCM. A knowledge of the signaling pathways by which RCM exert their cytotoxic actions may help in finding future therapies for RCIN.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Nephrology, Magna Graecia University, Catanzaro I-88100, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leong DJ, Li YH, Gu XI, Sun L, Zhou Z, Nasser P, Laudier DM, Iqbal J, Majeska RJ, Schaffler MB, Goldring MB, Cardoso L, Zaidi M, Sun HB. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J 2010; 25:182-91. [PMID: 20826544 DOI: 10.1096/fj.10-164277] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.
Collapse
Affiliation(s)
- Daniel J Leong
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rorke EA, Adhikary G, Jans R, Crish JF, Eckert RL. AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation. Oncogene 2010; 29:5873-82. [PMID: 20818430 PMCID: PMC2974027 DOI: 10.1038/onc.2010.315] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activator protein one (AP1) (jun/fos) factors comprise a family of transcriptional regulators (c-jun, junB, junD, c-fos, FosB, Fra-1 and Fra-2) that are key controllers of epidermal keratinocyte survival and differentiation, and are important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each member is expressed in defined cell layers during epidermal differentiation, and because AP1 factors regulate competing processes (that is, proliferation, apoptosis and differentiation). We have proposed that AP1 factors function differently in basal versus suprabasal epidermis. To test this, we inactivated suprabasal AP1 factor function in mouse epidermis by targeted expression of dominant-negative c-jun (TAM67), which inactivates function of all AP1 factors. This produces increased basal keratinocyte proliferation, delayed differentiation and extensive hyperkeratosis. These findings contrast with previous studies showing that basal layer AP1 factor inactivation does not perturb resting epidermis. It is interesting that in spite of extensive keratinocyte hyperproliferation, susceptibility to carcinogen-dependent tumor induction is markedly attenuated. These novel observations strongly suggest that AP1 factors have distinct roles in the basal versus suprabasal epidermis, confirm that AP1 factor function is required for normal terminal differentiation, and suggest that AP1 factors have a different role in normal epidermis versus cancer progression.
Collapse
Affiliation(s)
- E A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
37
|
Adhikary G, Chew YC, Reece EA, Eckert RL. PKC-delta and -eta, MEKK-1, MEK-6, MEK-3, and p38-delta are essential mediators of the response of normal human epidermal keratinocytes to differentiating agents. J Invest Dermatol 2010; 130:2017-30. [PMID: 20445555 PMCID: PMC3120227 DOI: 10.1038/jid.2010.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that the novel protein kinase C (PKC) isoforms initiate a mitogen-activated protein kinase (MAPK) signaling cascade that regulates keratinocyte differentiation. However, assigning these functions has relied on treatment with pharmacologic inhibitors and/or manipulating kinase function using overexpression of wild-type or dominant-negative kinases. As these methods are not highly specific, an obligatory regulatory role for individual kinases has not been assigned. In this study, we use small interfering RNA knockdown to study the role of individual PKC isoforms as regulators of keratinocyte differentiation induced by the potent differentiating stimulus, 12-O-tetradecanoylphorbol-13-acetate (TPA). PKC-delta knockdown reduces TPA-activated involucrin promoter activity, nuclear activator protein-1 factor accumulation and binding to DNA, and cell morphology change. Knockdown of PKC downstream targets, including MEKK-1, MEK-6, MEK-3, or p38-delta, indicates that these kinases are required for these responses. Additional studies indicate that knockdown of PKC-eta inhibits TPA-dependent involucrin promoter activation. In contrast, knockdown of PKC-alpha (a classical PKC isoform) or PKC-epsilon (a novel isoform) does not inhibit these TPA-dependent responses. Further studies indicate that PKC-delta is required for calcium and green tea polyphenol-dependent regulation of end responses. These findings are informative as they suggest an essential role for selected PKC and MAPK cascade enzymes in mediating a range of end responses to a range of differentiation stimuli in keratinocytes.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E. Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Mortensen KE, Conley LN, Nygaard I, Sorenesen P, Mortensen E, Bendixen C, Revhaug A. Increased sinusoidal flow is not the primary stimulus to liver regeneration. COMPARATIVE HEPATOLOGY 2010. [PMID: 20148099 DOI: 10.1186/1476.5926-9-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hemodynamic changes in the liver remnant following partial hepatectomy (PHx) have been suggested to be a primary stimulus in triggering liver regeneration. We hypothesized that it is the increased sinusoidal flow per se and hence the shear-stress stimulus on the endothelial surface within the liver remnant which is the main stimulus to regeneration. In order to test this hypothesis we wanted to increase the sinusoidal flow without performing a concomitant liver resection. Accordingly, we constructed an aorto-portal shunt to the left portal vein branch creating a standardized four-fold increase in flow to segments II, III and IV. The impact of this manipulation was studied in both an acute model (6 animals, 9 hours) using a global porcine cDNA microarray chip and in a chronic model observing weight and histological changes (7 animals, 3 weeks). RESULTS Gene expression profiling from the shunted segments does not suggest that increased sinusoidal flow per se results in activation of genes promoting mitosis. Hyperperfusion over three weeks results in the whole liver gaining a supranormal weight of 3.9% of the total body weight (versus the normal 2.5%). Contrary to our hypothesis, the weight gain was observed on the non-shunted side without an increase in sinusoidal flow. CONCLUSIONS An isolated increase in sinusoidal flow does not have the same genetic, microscopic or macroscopic impact on the liver as that seen in the liver remnant after partial hepatectomy, indicating that increased sinusoidal flow may not be a sufficient stimulus in itself for the initiation of liver regeneration.
Collapse
Affiliation(s)
- Kim E Mortensen
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | | | | | | | | | | | | |
Collapse
|
39
|
Mortensen KE, Conley LN, Nygaard I, Sorenesen P, Mortensen E, Bendixen C, Revhaug A. Increased sinusoidal flow is not the primary stimulus to liver regeneration. COMPARATIVE HEPATOLOGY 2010; 9:2. [PMID: 20148099 PMCID: PMC2819042 DOI: 10.1186/1476-5926-9-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 01/20/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemodynamic changes in the liver remnant following partial hepatectomy (PHx) have been suggested to be a primary stimulus in triggering liver regeneration. We hypothesized that it is the increased sinusoidal flow per se and hence the shear-stress stimulus on the endothelial surface within the liver remnant which is the main stimulus to regeneration. In order to test this hypothesis we wanted to increase the sinusoidal flow without performing a concomitant liver resection. Accordingly, we constructed an aorto-portal shunt to the left portal vein branch creating a standardized four-fold increase in flow to segments II, III and IV. The impact of this manipulation was studied in both an acute model (6 animals, 9 hours) using a global porcine cDNA microarray chip and in a chronic model observing weight and histological changes (7 animals, 3 weeks). RESULTS Gene expression profiling from the shunted segments does not suggest that increased sinusoidal flow per se results in activation of genes promoting mitosis. Hyperperfusion over three weeks results in the whole liver gaining a supranormal weight of 3.9% of the total body weight (versus the normal 2.5%). Contrary to our hypothesis, the weight gain was observed on the non-shunted side without an increase in sinusoidal flow. CONCLUSIONS An isolated increase in sinusoidal flow does not have the same genetic, microscopic or macroscopic impact on the liver as that seen in the liver remnant after partial hepatectomy, indicating that increased sinusoidal flow may not be a sufficient stimulus in itself for the initiation of liver regeneration.
Collapse
Affiliation(s)
- Kim E Mortensen
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | - Lene N Conley
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Ingvild Nygaard
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | - Peter Sorenesen
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Elin Mortensen
- Department of Pathology, University Hospital of Northern-Norway, Tromsoe, Norway
| | - Christian Bendixen
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Arthur Revhaug
- Department of Gastrointestinal Surgery, University Hospital of North-Norway, Tromsoe, Norway
| |
Collapse
|
40
|
Fan Y, Zhang YQ, Sun DJ, Zhang YN, Wu XW, Li J. Rottlerin protected dopaminergic cell line from cytotoxicity of 6-hydroxydopamine by inhibiting PKCdelta phosphorylation. Neurosci Bull 2009; 25:187-95. [PMID: 19633700 PMCID: PMC5552553 DOI: 10.1007/s12264-009-0416-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The present study aims to investigate the role of protein kinase C delta subtype (PKCdelta) phosphorylation in the process of 6-hydroxydopamine (6-OHDA)-induced dopaminergic cell death, and demonstrate the molecular basis of neurological disorders, such as Parkinson's disease. METHODS The pheochromocytoma (PC12) cell line was employed in the present study. Cells were treated with 2 mumol/L PKCdelta inhibitor Rottlerin, 10 nmol/L protein kinase C delta subtype (PKCdelta) inhibitor bisindolylmaleimide I, or 5 nmol/L Gö6976 that could specifically inhibit the calcium-dependent PKCdelta isoforms, respectively. PKC activator phorbol-12-myristate-13-acetate (PMA, 100 nmol/L) was also used in this study. All these agents were added to the medium before cells were incubated with 6-OHDA. Cells with no treatment served as control. The cytotoxicity of 6-OHDA was determined by methyl thiazolyl tetrazolium (MTT) reduction assay and PKCdelta phosphorylation levels in various groups were measured by western blotting. RESULTS Bisindolylmaleimide I and Gö6976 exerted no significant attenuation on the cytotoxicity of 6-OHDA, nor any effects on PKCdelta phosphorylation in PC12 cells. However, Rottlerin could inhibit the phosphorylation of PKCdelta and attenuate 6-OHDA-induced cell death, and the cell viability was raised to (69.6+/-2.63)% of that in control group (P<0.05). In contrast, PMA induced a significant increase in PKCdelta phosphorylation and also strengthened the cytotoxic effects of 6-OHDA. The cell viability of PMA-treated PC12 cells decreased to (49.8+/-5.06)% of that in control group (P<0.001). CONCLUSION Rottlerin can protect PC12 cells from cytotoxicity of 6-OHDA probably by inhibiting PKCdelta phosphorylation. The results suggest that PKCdelta may be a key regulator of neuron loss in Parkinson's disease.
Collapse
Affiliation(s)
- Ying Fan
- Department of Geriatrics, Second Affiliated Hospital, Harbin Medical University, Harbin 150080, China.
| | | | | | | | | | | |
Collapse
|
41
|
Schindler EM, Hindes A, Gribben EL, Burns CJ, Yin Y, Lin MH, Owen RJ, Longmore GD, Kissling GE, Arthur JSC, Efimova T. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice. Cancer Res 2009; 69:4648-55. [PMID: 19458068 DOI: 10.1158/0008-5472.can-08-4455] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology and Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eckert RL, Sturniolo MT, Jans R, Kraft CA, Jiang H, Rorke EA. TIG3: a regulator of type I transglutaminase activity in epidermis. Amino Acids 2009; 36:739-46. [PMID: 18612777 PMCID: PMC3124850 DOI: 10.1007/s00726-008-0123-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/15/2008] [Indexed: 12/23/2022]
Abstract
Keratinocytes undergo a process of terminal cell differentiation that results in the construction of a multilayered epithelium designed to produce a structure that functions to protect the body from dehydration, abrasion and infection. These protective properties are due to the production of a crosslinked layer of protein called the cornified envelope. Type I transglutaminase (TG1), an enzyme that catalyzes the formation of epsilon-(gamma-glutamyl)lysine bonds, is the key protein responsible for generation of the crosslinks. The mechanisms that lead to activation of transglutaminase during terminal differentiation are not well understood. We have identified a protein that interacts with TG1 and regulates its activity. This protein, tazarotene-induced gene 3 (TIG3), is expressed in the differentiated layers of the epidermis and its expression is associated with transglutaminase activation and cornified envelope formation. We describe a novel mechanism whereby TIG3 regulates TG1 activity.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 2009; 136:235-48. [PMID: 19135240 PMCID: PMC2638021 DOI: 10.1016/j.cell.2008.11.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/22/2008] [Accepted: 11/03/2008] [Indexed: 11/19/2022]
Abstract
Dysfunction and loss of insulin-producing pancreatic beta cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38delta display improved glucose tolerance due to enhanced insulin secretion from pancreatic beta cells. Deletion of p38delta results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38delta catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38delta null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated beta cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38delta-deficient islets and glucose tolerance in p38delta null mice as well as their susceptibility to oxidative stress. In conclusion, the p38delta-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic beta cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.
Collapse
Affiliation(s)
- Grzegorz Sumara
- Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ivan Formentini
- Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Stephan Collins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Izabela Sumara
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renata Windak
- Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | - Huiping Jiang
- Department of Biotherapeutics and Integrative Biology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, CT 06877, USA
| | | | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
- Institute for Systems Physiology, Seattle, WA 98103, USA
- Competence Center for Systems Physiology and Metabolic Diseases, CH-8093 Zurich, Switzerland
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Romeo Ricci
- Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB, Versalovic J. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cell Microbiol 2008; 10:1442-52. [PMID: 18331465 DOI: 10.1111/j.1462-5822.2008.01137.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The molecular mechanisms of pro-apoptotic effects of human-derived Lactobacillus reuteri ATCC PTA 6475 were investigated in this study. L. reuteri secretes factors that potentiate apoptosis in myeloid leukemia-derived cells induced by tumour necrosis factor (TNF), as indicated by intracellular esterase activity, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling assays and poly (ADP-ribose) polymerase cleavage. L. reuteri downregulated nuclear factor-kappaB (NF-kappaB)-dependent gene products that mediate cell proliferation (Cox-2, cyclin D1) and cell survival (Bcl-2, Bcl-xL). L. reuteri suppressed TNF-induced NF-kappaB activation, including NF-kappaB-dependent reporter gene expression in a dose-and time-dependent manner. L. reuteri stabilized degradation of IkappaBalpha and inhibited nuclear translocation of p65 (RelA). Although phosphorylation of IkappaBalpha was not affected, subsequent polyubiquitination necessary for regulated IkappaBalpha degradation was abrogated by L. reuteri. In addition, L. reuteri promoted apoptosis by enhancing mitogen-activated protein kinase (MAPK) activities including c-Jun N-terminal kinase and p38 MAPK. In contrast, L. reuteri suppressed extracellular signal-regulated kinases 1/2 in TNF-activated myeloid cells. L. reuteri may regulate cell proliferation by promoting apoptosis of activated immune cells via inhibition of IkappaBalpha ubiquitination and enhancing pro-apoptotic MAPK signalling. An improved understanding of L. reuteri-mediated effects on apoptotic signalling pathways may facilitate development of future probiotics-based regimens for prevention of colorectal cancer and inflammatory bowel disease.
Collapse
Affiliation(s)
- Chandra Iyer
- Departments of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
45
|
Jans R, Sturniolo MT, Eckert RL. Localization of the TIG3 transglutaminase interaction domain and demonstration that the amino-terminal region is required for TIG3 function as a keratinocyte differentiation regulator. J Invest Dermatol 2008; 128:517-29. [PMID: 17762858 DOI: 10.1038/sj.jid.5701035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tazarotene-induced gene 3 (TIG3) regulates keratinocyte terminal differentiation by activating type I transglutaminase (TG1). TIG3 consists of an amino-terminal (N-terminal) segment, that encodes several conserved motifs, and a carboxy-terminal (C-terminal) membrane-anchoring domain. By producing a series of truncation mutants that remove segments of the N-terminal region, and monitoring the ability of each mutant to co-precipitate TG1, function as a TG1 substrate, or functionally localize with TG1 in cells, we show that the TIG3 domain that interacts with TG1 is located within a TIG3 segment spanning amino acids 112-164. Although they bind TG1, TIG3 mutants lacking the conserved N-terminal region drive apoptosis-like cell death characterized by cell rounding, membrane blebbing, cytochrome c release, procaspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage, and reduced p53 and p21 levels. Compared with TIG3, these truncated mutants have an increased tendency to associate with membranes. A mutant lacking the C-terminal membrane-anchoring domain is inactive. These findings suggest that TIG3 interaction with TG1 does not require the N-terminal conserved domains, that the TIG3 N-terminal region is required for TIG3-dependent keratinocyte differentiation, that its removal converts TIG3 into a proapoptotic protein, and that this change in action of TIG3 is associated with an intracellular redistribution.
Collapse
Affiliation(s)
- Ralph Jans
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
46
|
Junttila MR, Li S, Westermarck J. Phosphatase‐mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2007; 22:954-65. [PMID: 18039929 DOI: 10.1096/fj.06-7859rev] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa R. Junttila
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Song‐Ping Li
- Institute of BiomedicineDepartment of Molecular MedicineUniversity of Helsinki, and National Public Health Institute (KTL)BiomedicumHelsinkiFinland
| | - Jukka Westermarck
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Institute of Medical TechnologyUniversity of Tampere and University Hospital of TampereTampereFinland
| |
Collapse
|
47
|
Reyland ME. Protein Kinase C and Apoptosis. APOPTOSIS, CELL SIGNALING, AND HUMAN DISEASES 2007:31-55. [DOI: 10.1007/978-1-59745-199-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Multiple PKCdelta tyrosine residues are required for PKCdelta-dependent activation of involucrin expression--a key role of PKCdelta-Y311. J Invest Dermatol 2007; 128:833-45. [PMID: 17943181 DOI: 10.1038/sj.jid.5701103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C-delta (PKCdelta) is a key regulator of human involucrin (hINV) gene expression and is regulated by tyrosine phosphorylation. However, a comprehensive analysis of the requirement for individual PKCdelta tyrosine residues is lacking. We show that multiple tyrosine residues influence the ability of PKCdelta to increase hINV gene expression. Mutation of individual PKCdelta tyrosine residues 52, 64, 155, 187, or 565 does not reduce the ability of PKCdelta to increase hINV promoter activity; however, simultaneous mutation of these five tyrosines markedly reduces activity. Moreover, restoration of any one of these residues results in nearly full activity restoration. It is significant that phosphorylation of PKCdelta-Y(311) is reduced in the five-tyrosine mutant and that mutation of Y(311) results in reduced PKCdelta activity comparable to that observed in the five-tyrosine mutant. Restoration of any one of the tyrosine residues in the five-tyrosine mutant restores Y(311) phosphorylation and biological activity. In addition, reduced phosphorylation of endogenous PKCdelta-Y(311) is associated with reduced biological activity. These findings indicate that PKCdelta activity requires Y(311) and a second tyrosine residue; however, any one of the several tyrosine residues can serve in the secondary role.
Collapse
|
49
|
Balasubramanian S, Eckert RL. Keratinocyte proliferation, differentiation, and apoptosis--differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicol Appl Pharmacol 2007; 224:214-9. [PMID: 17493651 PMCID: PMC2698294 DOI: 10.1016/j.taap.2007.03.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 11/17/2022]
Abstract
We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38delta-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents.
Collapse
Affiliation(s)
- Sivaprakasam Balasubramanian
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
50
|
Zhu L, Rorke EA, Eckert RL. DeltaNp63alpha promotes apoptosis of human epidermal keratinocytes. J Invest Dermatol 2007; 127:1980-91. [PMID: 17392828 DOI: 10.1038/sj.jid.5700797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we show that deltaNp63alpha overexpression in primary human epidermal keratinocytes causes decreased cell proliferation and increased apoptosis. These changes are associated with increased levels of p21 and p27, decreased cyclin D1 and cyclin E levels, reduced mitochondrial membrane potential, and enhanced procaspase and poly(ADP-ribose) polymerase cleavage. Bcl-xS and Bax levels are increased and Bcl-xL level is reduced. p53 levels are increased in the deltaNp63alpha-expressing cells and p53 overexpression reproduces features of the deltaNp63alpha phenotype. Increased p53 expression results in reduced deltaNp63alpha, suggesting that p53 may negatively regulate deltaNp63alpha level. DeltaNp63alpha also induces apoptosis in HaCaT and SCC-13 cells, which encode inactive p53 genes, suggesting that the response is p53 independent in these cell lines. Both deltaNp63alpha and TAp63alpha reduce SCC-13 cell survival. These studies indicate that both deltaNp63alpha and TAp63alpha can negatively regulate keratinocyte survival.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Physiology and Biophysics, Case School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|