1
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025; 30:2754-2772. [PMID: 40033044 PMCID: PMC12092303 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Liu ZH, Tsanai M, Zhang O, Head-Gordon T, Forman-Kay JD. Biological insights from integrative modeling of intrinsically disordered protein systems. Curr Opin Struct Biol 2025; 93:103063. [PMID: 40349675 DOI: 10.1016/j.sbi.2025.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Intrinsically disordered proteins and regions are increasingly appreciated for their abundance in the proteome and the many functional roles they play in the cell. In this short review, we describe a variety of approaches used to obtain biological insight from the structural ensembles of disordered proteins, regions, and complexes and the integrative biology challenges that arise from combining diverse experiments and computational models. Importantly, we highlight findings regarding structural and dynamic characterization of disordered regions involved in binding and phase separation, as well as drug targeting of disordered regions, using a broad framework of integrative modeling approaches.
Collapse
Affiliation(s)
- Zi Hao Liu
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Maria Tsanai
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, United States; Department of Chemistry, University of California, Berkeley, CA, 94720-1460, United States
| | - Oufan Zhang
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, United States; Department of Chemistry, University of California, Berkeley, CA, 94720-1460, United States
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA, 94720, United States; Department of Chemistry, University of California, Berkeley, CA, 94720-1460, United States; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720-1462, United States; Department of Bioengineering, University of California, Berkeley, CA, 94720-1762, United States
| | - Julie D Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
3
|
Knier AS, Olivier-Van Stichelen S. O-GlcNAcylation in Endocrinology: The Sweet Link. Endocrinology 2025; 166:bqaf072. [PMID: 40209111 PMCID: PMC12013285 DOI: 10.1210/endocr/bqaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/12/2025]
Abstract
O-GlcNAcylation is a dynamic posttranslational modification that involves the addition of N-acetylglucosamine (GlcNAc) to the serine and threonine residues of proteins. Over the past 4 decades, this modification has become increasingly recognized as having a critical influence in the field of endocrinology. The carefully controlled hormonal input for regulating sleep, mood, response to stress, growth, development, and metabolism are often associated with O-GlcNAc-dependent signaling. As protein O-GlcNAcylation patterns are heavily dependent on environmental glucose concentrations, hormone-secreting cells sense the changes in local environmental glucose concentrations and adjust hormone secretion accordingly. This ability of cells to sense nutritional cues and fine-tune hormonal production is particularly relevant toward maintaining a functional and responsive endocrine system, therefore emphasizing the importance of O-GlcNAc in the scope and application of endocrinology. This review examines how O-GlcNAcylation participates in hormonal homeostasis in different endocrine tissues and systems, from the pineal gland to the placenta, and underscores the significance of O-GlcNAc in the field of endocrinology.
Collapse
Affiliation(s)
- Adam Salm Knier
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Formichetti S, Serrano JB, Chitnavis U, Sadowska A, Liu N, Boskovic A, Boulard M. Perturbing nuclear glycosylation in the mouse preimplantation embryo slows down embryonic development. Proc Natl Acad Sci U S A 2025; 122:e2410520122. [PMID: 40203037 PMCID: PMC12012502 DOI: 10.1073/pnas.2410520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The main form of intracellular protein glycosylation (O-GlcNAc) is reversible and has been mapped on thousands of cytoplasmic and nuclear proteins, including RNA polymerase II, transcription factors, and chromatin modifiers. The O-GlcNAc modification is catalyzed by a single enzyme known as O-GlcNAc Transferase, that is required for mammalian early development. Yet, neither the regulatory function of protein O-GlcNAcylation in the embryo nor the embryonic O-GlcNAc proteome have been documented. Here, we devised a strategy to enzymatically remove O-GlcNAc from preimplantation embryonic nuclei, where this modification accumulates coincidently with embryonic genome activation (EGA). Unexpectedly, the depletion of nuclear O-GlcNAc to undetectable levels has no impact on EGA, but dampens the transcriptional upregulation of the translational machinery, and triggers a spindle checkpoint response. These molecular alterations were phenotypically associated with a developmental delay starting from early cleavage stages and persisting after embryo implantation, establishing a link between nuclear glycosylation and the pace of embryonic development.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
- Combined Faculty of Mathematics, Engineering and Natural Sciences, collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg69117, Germany
| | - Joana B. Serrano
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Urvashi Chitnavis
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Agnieszka Sadowska
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Na Liu
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Ana Boskovic
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| |
Collapse
|
5
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
6
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
7
|
Ma Y, Zhang F, Li J, Li J, Li Y. Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1436033. [PMID: 39777265 PMCID: PMC11703921 DOI: 10.3389/fcell.2024.1436033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells. However, drug resistance to TKIs is inevitable. EGFR is also a highly glycosylated receptor tyrosine kinase, and a wide range of crosstalk occurs between phosphorylation and glycosylation. Therefore, can the phosphorylation state be altered by glycosylation to improve drug resistance? In this review, we summarize phosphorylation, glycosylation and the crosstalk between these processes as well as the current research status and methods. We also summarize the autophosphorylation and glycosylation sites of the EGFR protein and their crosstalk. By exploring the relationship between EGFR glycosylation and autophosphorylation in targeted TKI therapy, we find that research on EGFR glycosylation is crucial for targeted NSCLC treatment and will become a research direction for identifying potential targets related to regulating TKI drug sensitivity.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanhua Li
- Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
9
|
Morales MM, Pratt MR. The post-translational modification O-GlcNAc is a sensor and regulator of metabolism. Open Biol 2024; 14:240209. [PMID: 39474868 PMCID: PMC11523104 DOI: 10.1098/rsob.240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.
Collapse
Affiliation(s)
- Murielle M. Morales
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA90089, USA
| |
Collapse
|
10
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
11
|
Zhang L, Bai W, Peng Y, Lin Y, Tian M. Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review. Mol Neurobiol 2024; 61:7075-7091. [PMID: 38367136 DOI: 10.1007/s12035-024-04045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The development of central nervous system (CNS) can form perceptual, memory, and cognitive functions, while injuries to CNS often lead to severe neurological dysfunction and even death. As one of the prevalent post-translational modifications (PTMs), O-GlcNAcylation has recently attracted great attentions due to its functions in regulating the activity, subcellular localization, and stability of target proteins. It has been indicated that O-GlcNAcylation could interact with phosphorylation, ubiquitination, and methylation to jointly regulate the function and activity of proteins. Furthermore, a growing number of studies have suggested that O-GlcNAcylation played an important role in the CNS. During development, O-GlcNAcylation participated in the neurogenesis, neuronal development, and neuronal function. In addition, O-GlcNAcylation was involved in the progress of CNS injuries including ischemic stroke, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH) and played a crucial role in the improvement of brain damage such as attenuating cognitive impairment, inhibiting neuroinflammation, suppressing endoplasmic reticulum (ER) stress, and maintaining blood-brain barrier (BBB) integrity. Therefore, O-GlcNAcylation showed great promise as a potential target in CNS development and injuries. In this article, we presented a review highlighting the role of O-GlcNAcylation in CNS development and injuries. Hence, on the basis of these properties and effects, intervention with O-GlcNAcylation may be developed as therapeutic agents for CNS diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Jiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
12
|
Yu SB, Wang H, Sanchez RG, Carlson NM, Nguyen K, Zhang A, Papich ZD, Abushawish AA, Whiddon Z, Matysik W, Zhang J, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Myers SA, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. Dev Cell 2024; 59:2143-2157.e9. [PMID: 38843836 PMCID: PMC11338717 DOI: 10.1016/j.devcel.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
Collapse
Affiliation(s)
- Seungyoon B Yu
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Haoming Wang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard G Sanchez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natasha M Carlson
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Khanh Nguyen
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA
| | - Andrew Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary D Papich
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zachary Whiddon
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Weronika Matysik
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas C Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - John N Koberstein
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, Center of Autoimmunity and Inflammation, and Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92093, USA; Department of Pharmacology, Program in Immunology, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Alghusen IM, Carman MS, Wilkins HM, Strope TA, Gimore C, Fedosyuk H, Shawa J, Ephrame SJ, Denson AR, Wang X, Swerdlow RH, Slawson C. O-GlcNAc impacts mitophagy via the PINK1-dependent pathway. Front Aging Neurosci 2024; 16:1387931. [PMID: 39175808 PMCID: PMC11339348 DOI: 10.3389/fnagi.2024.1387931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Background The accumulation of dysfunctional mitochondria is an early feature of Alzheimer's disease (AD). The impaired turnover of damaged mitochondria increases reactive oxygen species production and lowers ATP generation, leading to cellular toxicity and neurodegeneration. Interestingly, AD exhibits a disruption in the global post-translational modification β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a ubiquitous single sugar modification found in the nuclear, cytoplasmic, and mitochondrial proteins. Cells maintain a homeostatic level of O-GlcNAc by cycling the addition and removal of the sugar by O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA), respectively. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma cell lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) or OGT deficiency on mitophagy using biochemical analyses. Results Here, we established an essential role for O-GlcNAc in regulating mitophagy (mitochondria-selective autophagy). Stimulating mitophagy using urolithin A (UA) decreases cellular O-GlcNAc and elevates mitochondrial O-GlcNAc. Sustained elevation in O-GlcNAcylation via pharmacologically inhibiting OGA using Thiamet-G (TMG) increases the mitochondrial level of mitophagy protein PTEN-induced kinase 1 (PINK1) and autophagy-related protein light chain 3 (LC3). Moreover, we detected O-GlcNAc on PINK1 and TMG increases its O-GlcNAcylation level. Conversely, decreasing cellular O-GlcNAcylation by knocking down OGT decreases both PINK1 protein expression and LC3 protein expression. Mitochondria isolated from CAMKII-OGT-KO mice also had decreased PINK1 and LC3. Moreover, human brain organoids treated with TMG showed significant elevation in LC3 compared to control. However, TMG-treated AD organoids showed no changes in LC3 expression. Conclusion Collectively, these data demonstrate that O-GlcNAc plays a crucial role in the activation and progression of mitophagy, and this activation is disrupted in AD.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Taylor A. Strope
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb Gimore
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jad Shawa
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
14
|
Murray M, Davidson L, Ferenbach AT, Lefeber D, van Aalten DMF. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Mol Genet Metab 2024; 142:108492. [PMID: 38759397 DOI: 10.1016/j.ymgme.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.
Collapse
Affiliation(s)
- Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark
| | - Dirk Lefeber
- Department of Neurology, Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NL, the Netherlands
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark.
| |
Collapse
|
15
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Potter SC, Gibbs BE, Hammel FA, Joiner CM, Paulo JA, Janetzko J, Levine ZG, Fei GQ, Haggarty SJ, Walker S. Dissecting OGT's TPR domain to identify determinants of cellular function. Proc Natl Acad Sci U S A 2024; 121:e2401729121. [PMID: 38768345 PMCID: PMC11145291 DOI: 10.1073/pnas.2401729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.
Collapse
Affiliation(s)
- Sarah C Potter
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Bettine E Gibbs
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Forrest A Hammel
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Cassandra M Joiner
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - John Janetzko
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Zebulon G Levine
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - George Q Fei
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute of Harvard Medical School, Boston, MA 02115
| |
Collapse
|
17
|
Persello A, Dupas T, Vergnaud A, Blangy-Letheule A, Aillerie V, Erraud A, Guilloux Y, Denis M, Lauzier B. Changes in transcriptomic landscape with macronutrients intake switch are independent from O-GlcNAcylation levels in heart throughout postnatal development in rats. Heliyon 2024; 10:e30526. [PMID: 38737268 PMCID: PMC11087977 DOI: 10.1016/j.heliyon.2024.e30526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Background Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.
Collapse
Affiliation(s)
- Antoine Persello
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Thomas Dupas
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | | | - Virginie Aillerie
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Angélique Erraud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
18
|
Authier F, Ondruskova N, Ferenbach AT, McNeilly AD, van Aalten DMF. Neurodevelopmental defects in a mouse model of O-GlcNAc transferase intellectual disability. Dis Model Mech 2024; 17:dmm050671. [PMID: 38566589 PMCID: PMC11095632 DOI: 10.1242/dmm.050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.
Collapse
Affiliation(s)
- Florence Authier
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 128 08 Praha 2, Czech Republic
| | - Andrew T. Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Alison D. McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Daan M. F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Wang G, Zhang D, Qin L, Liu Q, Tang W, Liu M, Xu F, Tang F, Cheng L, Mo H, Yuan X, Wang Z, Huang B. Forskolin-driven conversion of human somatic cells into induced neurons through regulation of the cAMP-CREB1-JNK signaling. Theranostics 2024; 14:1701-1719. [PMID: 38389831 PMCID: PMC10879881 DOI: 10.7150/thno.92700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Human somatic cells can be reprogrammed into neuron cell fate through regulation of a single transcription factor or application of small molecule cocktails. Methods: Here, we report that forskolin efficiently induces the conversion of human somatic cells into induced neurons (FiNs). Results: A large population of neuron-like phenotype cells was observed as early as 24-36 h post-induction. There were >90% TUJ1-, >80% MAP2-, and >80% NEUN-positive neurons at 5 days post-induction. Multiple subtypes of neurons were present among TUJ1-positive cells, including >60% cholinergic, >20% glutamatergic, >10% GABAergic, and >5% dopaminergic neurons. FiNs exhibited typical neural electrophysiological activity in vitro and the ability to survive in vitro and in vivo more than 2 months. Mechanistically, forskolin functions in FiN reprogramming by regulating the cAMP-CREB1-JNK signals, which upregulates cAMP-CREB1 expression and downregulates JNK expression. Conclusion: Overall, our studies identify a safer and efficient single-small-molecule-driven reprogramming approach for induced neuron generation and reveal a novel regulatory mechanism of neuronal cell fate acquisition.
Collapse
Affiliation(s)
- Guodong Wang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Dandan Zhang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Liangshan Qin
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Quanhui Liu
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Wenkui Tang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Mingxing Liu
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Fan Xu
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Fen Tang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Leping Cheng
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, and Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Huiming Mo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, and Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiang Yuan
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Zhiqiang Wang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Ben Huang
- Guangxi Key Laboratory of Eye Health, Department of Technical Support, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
20
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
22
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
23
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
24
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 PMCID: PMC12083504 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J. Costa
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W. Wilson
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T. Fontes
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School,
University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F. Wenceslau
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G. McCarthy
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
25
|
Wulff-Fuentes E, Boakye J, Kroenke K, Berendt RR, Martinez-Morant C, Pereckas M, Hanover JA, Olivier-Van Stichelen S. O-GlcNAcylation regulates OTX2's proteostasis. iScience 2023; 26:108184. [PMID: 38026167 PMCID: PMC10661118 DOI: 10.1016/j.isci.2023.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
O-GlcNAcylation is a key post-translational modification, playing a vital role in cell signaling during development, especially in the brain. In this study, we investigated the role of O-GlcNAcylation in regulating the homeobox protein OTX2, which contributes to various brain disorders, such as combined pituitary hormone deficiency, retinopathy, and medulloblastoma. Our research demonstrated that, under normal physiological conditions, the proteasome plays a pivotal role in breaking down endogenous OTX2. However, when the levels of OTX2 rise, it forms oligomers and/or aggregates that require macroautophagy for clearance. Intriguingly, we demonstrated that O-GlcNAcylation enhances the solubility of OTX2, thereby limiting the formation of these aggregates. Additionally, we unveiled an interaction between OTX2 and the chaperone protein CCT5 at the O-GlcNAc sites, suggesting a potential collaborative role in preventing OTX2 aggregation. Finally, our study demonstrated that while OTX2 physiologically promotes cell proliferation, an O-GlcNAc-depleted OTX2 is detrimental to cancer cells.
Collapse
Affiliation(s)
| | - Jeffrey Boakye
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Kaeley Kroenke
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rex R. Berendt
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
26
|
Saunders H, Dias WB, Slawson C. Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 2023; 299:105330. [PMID: 37820866 PMCID: PMC10641531 DOI: 10.1016/j.jbc.2023.105330] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner B Dias
- Federal University of Rio De Janeiro, Rio De Janeiro, Brazil; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
27
|
Ha C, Bakshi S, Brahma MK, Potter LA, Chang SF, Sun Z, Benavides GA, He L, Umbarkar P, Zou L, Curfman S, Sunny S, Paterson AJ, Rajasekaran N, Barnes JW, Zhang J, Lal H, Xie M, Darley‐Usmar VM, Chatham JC, Wende AR. Sustained Increases in Cardiomyocyte Protein O-Linked β-N-Acetylglucosamine Levels Lead to Cardiac Hypertrophy and Reduced Mitochondrial Function Without Systolic Contractile Impairment. J Am Heart Assoc 2023; 12:e029898. [PMID: 37750556 PMCID: PMC10727241 DOI: 10.1161/jaha.123.029898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked β-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.
Collapse
Affiliation(s)
- Chae‐Myeong Ha
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Manoja K. Brahma
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Luke A. Potter
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel F. Chang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Zhihuan Sun
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Gloria A. Benavides
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Lihao He
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel Curfman
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sini Sunny
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Andrew J. Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | | | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Hind Lal
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Min Xie
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Victor M. Darley‐Usmar
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
28
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
29
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
30
|
Cai H, Xiong W, Zhu H, Wang Q, Liu S, Lu Z. Protein O-GlcNAcylation in multiple immune cells and its therapeutic potential. Front Immunol 2023; 14:1209970. [PMID: 37675125 PMCID: PMC10477433 DOI: 10.3389/fimmu.2023.1209970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that involves the addition of O-GlcNAc to serine or threonine residues of nuclear or cytoplasmic proteins, catalyzed by O-GlcNAc transferase (OGT). This modification is highly dynamic and can be reversed by O-GlcNAcase (OGA). O-GlcNAcylation is widespread in the immune system, which engages in multiple physiologic and pathophysiologic processes. There is substantial evidence indicating that both the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation are critically involved in regulating immune cell function. However, the precise role of O-GlcNAcylation in the immune system needs to be adequately elucidated. This review offers a thorough synopsis of the present research on protein O-GlcNAcylation, accentuating the molecular mechanisms that control immune cells' growth, maturation, and performance via this PTM.
Collapse
Affiliation(s)
- Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Qiongxin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Wang B, Moon SP, Cutolo G, Javed A, Ahn BS, Ryu AH, Pratt MR. HSP27 Inhibitory Activity against Caspase-3 Cleavage and Activation by Caspase-9 Is Enhanced by Chaperone O-GlcNAc Modification in Vitro. ACS Chem Biol 2023; 18:1698-1704. [PMID: 37450938 PMCID: PMC10442853 DOI: 10.1021/acschembio.3c00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
One of the O-GlcNAc modifications is the protection of cells against a variety of stressors that result in cell death. Previous experiments have focused on the overall ability of O-GlcNAc to prevent protein aggregation under stress as well as its ability to affect stress-response signaling pathways. Less attention has been paid to the potential role for O-GlcNAc in the direct inhibition of a major cell-death pathway, apoptosis. Apoptosis involves the sequential activation of caspase proteases, including the transfer of cell-stress information from initiator caspase-9 to effector caspase-3. Cells have multiple mechanisms to slow the apoptotic cascade, including heat shock protein HSP27, which can directly inhibit the activation of caspase-3 by caspase-9. We have previously shown that O-GlcNAc modification increases the chaperone activity of HSP27 against amyloid aggregation, raising the question as to whether this modification may play important roles in other facets of HSP27 biology. Here, we use protein chemistry to generate different versions of O-GlcNAc modified HSP27 and demonstrate that the modification enhances this antiapoptotic function of the chaperone, at least in an in vitro context. These results provide additional molecular insight into how O-GlcNAc functions as a mediator of cellular stress with important implications for human diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Binyou Wang
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Stuart P. Moon
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Giuliano Cutolo
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Benjamin S. Ahn
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrew H. Ryu
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
32
|
Coppin E, Zhang X, Ohayon L, Johny E, Dasari A, Zheng KH, Stiekema L, Cifuentes-Pagano E, Pagano PJ, Chaparala S, Stroes ES, Dutta P. Peripheral Ischemia Imprints Epigenetic Changes in Hematopoietic Stem Cells to Propagate Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:889-906. [PMID: 36891902 PMCID: PMC10213134 DOI: 10.1161/atvbaha.123.318956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.
Collapse
Affiliation(s)
- Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Stiekema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
33
|
Bi Y, Shrestha R, Zhang Z, Hsu CC, Reyes AV, Karunadasa S, Baker PR, Maynard JC, Liu Y, Hakimi A, Lopez-Ferrer D, Hassan T, Chalkley RJ, Xu SL, Wang ZY. SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis. THE PLANT CELL 2023; 35:1318-1333. [PMID: 36739885 PMCID: PMC10118272 DOI: 10.1093/plcell/koad023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Peter R Baker
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Yang Liu
- ThermoFisher Scientific, San Jose, California 95134, USA
| | | | | | - Tahmid Hassan
- ThermoFisher Scientific, Somerset, New Jersey 08873, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
34
|
Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angew Chem Int Ed Engl 2023; 62:e202300500. [PMID: 36852467 DOI: 10.1002/anie.202300500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
Collapse
Affiliation(s)
- Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yujie Shi
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yanwen He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiwen Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyu Hu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Taira TM, Ramos-Junior ES, Melo PH, Costa-Silva CC, Alteen MG, Vocadlo DJ, Dias WB, Cunha FQ, Alves-Filho JC, Søe K, Fukada SY. HBP/O-GlcNAcylation Metabolic Axis Regulates Bone Resorption Outcome. J Dent Res 2023; 102:440-449. [PMID: 36749069 DOI: 10.1177/00220345221141043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Osteoclasts play a key role in the regulation of bone mass and are highly active metabolically. Here we show that a metabolic reprogramming toward the hexosamine biosynthetic pathway (HBP) is required not only for osteoclast differentiation but also to determine the bone resorption mode during physiological and pathological bone remodeling. We found that pharmacological inhibition of O-GlcNAc transferase (OGT) significantly reduced protein O-GlcNAcylation and osteoclast differentiation. Accordingly, genetic deletion of OGT also inhibited osteoclast formation and downregulated critical markers related to osteoclasts differentiation and function (NFATc1, αvintegrin, cathepsin K). Indeed, cells treated with OSMI-1, an OGT inhibitor, also reduced nuclear translocation of NFATc1. Furthermore, the addition of exogenous N-acetylglucosamine (GlcNAc) strongly increased osteoclast formation and demineralization ability. Strikingly, our data show for the first time that O-GlcNAcylation facilitates an aggressive trench resorption mode in human cells. The incubation of osteoclasts with exogenous GlcNAc increases the percentage of erosion by trench while having no effect on pit resorption mode. Through time-lapse recording, we documented that osteoclasts making trenches moving across the bone surface are sensitive to GlcNAcylation. Finally, osteoclast-specific Ogt-deficient mice show increased bone density and reduced inflammation-induced bone loss during apical periodontitis model. We show that osteoclast-specific Ogt-deficient mice are less susceptible to develop bacterial-induced periapical lesion. Consistent with this, Ogt-deleted mice showed a decreased number of tartrate-resistant acid phosphatase-positive cells lining the apical periodontitis site. In summary, here we describe a hitherto undiscovered role of the HBP/O-GlcNAcylation axis tuning resorption mode and dictating bone resorption outcome.
Collapse
Affiliation(s)
- T M Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Pediatric, School of Dentistry of Ribeirão Preto, Preventive and Social Dentistry, University of São Paulo, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| | - E S Ramos-Junior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - P H Melo
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - C C Costa-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
| | - M G Alteen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - D J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6 Canada
| | - W B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, Brazil
| | - F Q Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - J C Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - K Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - S Y Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café, sn, 14040-903, Ribeirão Preto, Brazil
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, casa 3, 14049-900, Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
37
|
OGT controls mammalian cell viability by regulating the proteasome/mTOR/ mitochondrial axis. Proc Natl Acad Sci U S A 2023; 120:e2218332120. [PMID: 36626549 PMCID: PMC9934350 DOI: 10.1073/pnas.2218332120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
O-GlcNAc transferase (OGT) modifies serine and threonine residues on nuclear and cytosolic proteins with O-linked N-acetylglucosamine (GlcNAc). OGT is essential for mammalian cell viability, but the underlying mechanisms are still enigmatic. We performed a genome-wide CRISPR-Cas9 screen in mouse embryonic stem cells (mESCs) to identify candidates whose depletion rescued the block in cell proliferation induced by OGT deficiency. We show that the block in cell proliferation in OGT-deficient cells stems from mitochondrial dysfunction secondary to mTOR (mechanistic target of rapamycin) hyperactivation. In normal cells, OGT maintains low mTOR activity and mitochondrial fitness through suppression of proteasome activity; in the absence of OGT, increased proteasome activity results in increased steady-state amino acid levels, which in turn promote mTOR lysosomal translocation and activation, and increased oxidative phosphorylation. mTOR activation in OGT-deficient mESCs was confirmed by an independent phospho-proteomic screen. Our study highlights a unique series of events whereby OGT regulates the proteasome/ mTOR/ mitochondrial axis in a manner that maintains homeostasis of intracellular amino acid levels, mitochondrial fitness, and cell viability. A similar mechanism operates in CD8+ T cells, indicating its generality across mammalian cell types. Manipulating OGT activity may have therapeutic potential in diseases in which this signaling pathway is impaired.
Collapse
|
38
|
Yu SB, Sanchez RG, Papich ZD, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523512. [PMID: 36711626 PMCID: PMC9882081 DOI: 10.1101/2023.01.11.523512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-GlcNAc transferase regulates neuronal activity-driven mitochondrial bioenergetics. We show that neuronal activity upregulates O-GlcNAcylation mainly in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven fuel consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
Collapse
|
39
|
Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype. ADVANCES IN NEUROBIOLOGY 2023; 29:255-280. [DOI: 10.1007/978-3-031-12390-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Hart G, Huang CW, Rust N, Wu HF. Altered O-GlcNAcylation and mitochondrial dysfunction, a molecular link between brain glucose dysregulation and sporadic Alzheimer’s disease. Neural Regen Res 2023; 18:779-783. [DOI: 10.4103/1673-5374.354515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
42
|
Werlen G, Li ML, Tottone L, da Silva-Diz V, Su X, Herranz D, Jacinto E. Dietary glucosamine overcomes the defects in αβ-T cell ontogeny caused by the loss of de novo hexosamine biosynthesis. Nat Commun 2022; 13:7404. [PMID: 36456551 PMCID: PMC9715696 DOI: 10.1038/s41467-022-35014-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
T cell development requires the coordinated rearrangement of T cell receptor (TCR) gene segments and the expression of either αβ or γδ TCR. However, whether and how de novo synthesis of nutrients contributes to thymocyte commitment to either lineage remains unclear. Here, we find that T cell-specific deficiency in glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1), the rate-limiting enzyme of the de novo hexosamine biosynthesis pathway (dn-HBP), attenuates hexosamine levels, blunts N-glycosylation of TCRβ chains, reduces surface expression of key developmental receptors, thus impairing αβ-T cell ontogeny. GFAT1 deficiency triggers defects in N-glycans, increases the unfolded protein response, and elevates γδ-T cell numbers despite reducing γδ-TCR diversity. Enhancing TCR expression or PI3K/Akt signaling does not reverse developmental defects. Instead, dietary supplementation with the salvage metabolite, glucosamine, and an α-ketoglutarate analogue partially restores αβ-T cell development in GFAT1T-/- mice, while fully rescuing it in ex vivo fetal thymic organ cultures. Thus, dn-HBP fulfils, while salvage nutrients partially satisfy, the elevated demand for hexosamines during early T cell development.
Collapse
Affiliation(s)
- Guy Werlen
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Mei-Ling Li
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Luca Tottone
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL Miami, 33136 USA
| | - Victoria da Silva-Diz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Xiaoyang Su
- grid.430387.b0000 0004 1936 8796Dept. of Medicine, Div. of Endocrinology, Child Health Inst. of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Daniel Herranz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Estela Jacinto
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
43
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Marmolejo-Garza A, Medeiros-Furquim T, Rao R, Eggen BJL, Boddeke E, Dolga AM. Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119326. [PMID: 35839870 DOI: 10.1016/j.bbamcr.2022.119326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Alzheimers disease (AD) is the main cause of dementia and it is defined by cognitive decline coupled to extracellular deposit of amyloid-beta protein and intracellular hyperphosphorylation of tau protein. Historically, efforts to target such hallmarks have failed in numerous clinical trials. In addition to these hallmark-targeted approaches, several clinical trials focus on other AD pathological processes, such as inflammation, mitochondrial dysfunction, and oxidative stress. Mitochondria and mitochondrial-related mechanisms have become an attractive target for disease-modifying strategies, as mitochondrial dysfunction prior to clinical onset has been widely described in AD patients and AD animal models. Mitochondrial function relies on both the nuclear and mitochondrial genome. Findings from omics technologies have shed light on AD pathophysiology at different levels (e.g., epigenome, transcriptome and proteome). Most of these studies have focused on the nuclear-encoded components. The first part of this review provides an updated overview of the mechanisms that regulate mitochondrial gene expression and function. The second part of this review focuses on evidence of mitochondrial dysfunction in AD. We have focused on published findings and datasets that study AD. We analyzed published data and provide examples for mitochondrial-related pathways. These pathways are strikingly dysregulated in AD neurons and glia in sex-, cell- and disease stage-specific manners. Analysis of mitochondrial omics data highlights the involvement of mitochondria in AD, providing a rationale for further disease modeling and drug targeting.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiago Medeiros-Furquim
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ramya Rao
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, the Netherlands.
| |
Collapse
|
45
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|
46
|
Kim S, Backe SJ, Wengert LA, Johnson AE, Isakov RV, Bratslavsky MS, Woodford MR. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration. Cell Stress Chaperones 2022; 27:573-585. [PMID: 35976490 PMCID: PMC9485411 DOI: 10.1007/s12192-022-01293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.
Collapse
Affiliation(s)
- Seungchan Kim
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Anna E Johnson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Roman V Isakov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael S Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
47
|
Mitchell CW, Czajewski I, van Aalten DM. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J Biol Chem 2022; 298:102276. [PMID: 35863433 PMCID: PMC9428853 DOI: 10.1016/j.jbc.2022.102276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic posttranslational modification that is catalyzed by the enzyme O-GlcNAc transferase (OGT) and is essential for neurodevelopment and postnatal neuronal function. Missense mutations in OGT segregate with a novel X-linked intellectual disability syndrome, the OGT congenital disorder of glycosylation (OGT-CDG). One hypothesis for the etiology of OGT-CDG is that loss of OGT activity leads to hypo-O-GlcNAcylation of as yet unidentified, specific neuronal proteins, affecting essential embryonic, and postnatal neurodevelopmental processes; however, the identity of these O-GlcNAcylated proteins is not known. Here, we used bioinformatic techniques to integrate sequence conservation, structural data, clinical data, and the available literature to identify 22 candidate proteins that convey OGT-CDG. We found using gene ontology and PANTHER database data that these candidate proteins are involved in diverse processes including Ras/MAPK signaling, translational repression, cytoskeletal dynamics, and chromatin remodeling. We also identify pathogenic missense variants at O-GlcNAcylation sites that segregate with intellectual disability. This work establishes a preliminary platform for the mechanistic dissection of the links between protein O-GlcNAcylation and neurodevelopment in OGT-CDG.
Collapse
Affiliation(s)
- Conor W. Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacy Czajewski
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M.F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom,For correspondence: Daan M. F. van Aalten
| |
Collapse
|
48
|
Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022; 23:ijms23147815. [PMID: 35887161 PMCID: PMC9324263 DOI: 10.3390/ijms23147815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification is a ubiquitous, reversible, and highly dynamic post-translational modification, which takes charge of almost all biological processes examined. However, little information is available regarding the molecular regulation of O-GlcNAcylation in granulosa cell function and glucose metabolism. This study focused on the impact of disrupted O-GlcNAc cycling on the proliferation and apoptosis of bovine granulosa cells, and further aimed to determine how this influenced glucose metabolism. Pharmacological inhibition of OGT with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BADGP) led to decreased cellular O-GlcNAc levels, as well as OGT and OGA protein expressions, whereas increasing O-GlcNAc levels with the OGA inhibitor, O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene) (PUGNAc), resulted in elevated OGA protein expression and decreased OGT protein expression in granulosa cells. Dysregulated O-GlcNAc cycling reduced cell viability, downregulated the proliferation-related genes of CDC42 and PCNA transcripts, upregulated the pro-apoptotic genes of BAX and CASPASE-3 mRNA and the ratio of BAX/BCL-2, and increased the apoptotic rate. Glycolytic enzyme activities of hexokinase and pyruvate kinase, metabolite contents of pyruvate and lactate, mitochondrial membrane potential, ATP levels, and intermediate metabolic enzyme activities of succinate dehydrogenase and malate dehydrogenase involved in the tricarboxylic acid cycle, were significantly impaired in response to altered O-GlcNAc levels. Moreover, inhibition of OGT significantly increased the expression level of thioredoxin-interacting protein (TXNIP), but repression of OGA had no effect. Collectively, our results suggest that perturbation of O-GlcNAc cycling has a profound effect on granulosa cell function and glucose metabolism.
Collapse
|
49
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
50
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|