1
|
Ge H, Wang C, Zhao H, Chen H, Gong Y, Qiao L, Zhang Y, Liu P, Yang B. Targeting NCAPD2 as a Therapeutic Strategy for Crohn's Disease: Implications for Autophagy and Inflammation. Inflamm Bowel Dis 2025; 31:178-188. [PMID: 39340820 DOI: 10.1093/ibd/izae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Our earlier studies identified that non-SMC condensin I complex subunit D2 (NCAPD2) induces inflammation through the IKK/NF-κB pathway in ulcerative colitis. However, its role in the development of Crohn's disease (CD) and the specific molecular mechanism still need to be further studied. METHODS NCAPD2 expression in clinical ileal CD mucosa vs normal mucosa was examined, alongside its correlation with CD patients' clinical characteristics via their medical records. The biological function and molecular mechanism of NCAPD2 in CD were explored using a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD mouse model, along with immunofluorescence, western blot, quantitative real-time PCR, immunohistochemistry, hematoxylin and eosin staining, and cell functional analysis. RESULTS NCAPD2 was overexpressed in CD tissues and significantly correlated with disease activity in CD patients (P = .016). In a TNBS-induced CD mouse model, NCAPD2 knockdown inhibited the development of TNBS-induced intestinal inflammation in mice. In addition, we found that NCAPD2 inhibited autophagy. Mechanistically, NCAPD2 promoted the phosphorylation of mammalian target of the rapamycin (mTOR) and its direct effector S6K and downregulated the expression of autophagy-related proteins Beclin1, LC3II, and Atg5. In addition, NCAPD2 activates the NF-κB signaling pathway, and the downstream inflammatory factors are continuously released, leading to the persistence of inflammation. CONCLUSIONS Our results show that NCAPD2 suppresses autophagy and worsens intestinal inflammation by modulating mTOR signaling and impacting the NF-κB pathway, suggesting a critical role in CD progression. Targeting NCAPD2 could be a promising therapeutic approach to stop CD advancement.
Collapse
Affiliation(s)
- Hao Ge
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoran Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hao Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuxia Gong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lichao Qiao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Bolin Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Gu JX, Huang K, Zhao WL, Zheng XM, Wu YQ, Yan SR, Huang YG, Hu P. NCAPD2 augments the tumorigenesis and progression of human liver cancer via the PI3K‑Akt‑mTOR signaling pathway. Int J Mol Med 2024; 54:84. [PMID: 39092569 PMCID: PMC11315656 DOI: 10.3892/ijmm.2024.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single‑cell sequencing data, gene‑set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M‑phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3‑kinase (PI3K)‑Akt‑mammalian target of rapamycin (mTOR)/c‑Myc signaling pathway and epithelial‑mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease‑specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M‑phase transition, activation of the PI3K‑Akt‑mTOR/c‑Myc signaling pathway and EMT progression in human liver cancer cells.
Collapse
Affiliation(s)
- Jiang-Xue Gu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ke Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei-Lin Zhao
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Ming Zheng
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Qin Wu
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shi-Rong Yan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Gang Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pei Hu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Hepatocellular Carcinoma, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
3
|
Liu C, Han X, Zhang S, Huang M, Guo B, Zhao Z, Yang S, Jin J, Pu W, Yu H. The role of NCAPH in cancer treatment. Cell Signal 2024; 121:111262. [PMID: 38901722 DOI: 10.1016/j.cellsig.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Many solid tumors frequently overexpress Non-SMC Condensin I Complex Subunit H (NCAPH), and new studies suggest that NCAPH may be a target gene for clinical cancer therapy. Numerous investigations have shown that a variety of transcription factors, including as MYBL2, FOXP3, GATA3, and OTC1, can stimulate the transcription of NCAPH. Additionally, NCAPH stimulates many oncogenic signaling pathways, such as β-Catenin/PD-L1, PI3K/AKT/SGK3, MEK/ERK, AURKB/AKT/mTOR, PI3K/PDK1/AKT, and Chk1/Chk2. Tumor immune microenvironment modification and tumor growth, apoptosis, metastasis, stemness, and treatment resistance all depend on these signals. NCAPH has the ability to form complexes with other proteins that are involved in glycolysis, DNA damage repair, and chromatin remodeling. This review indicates that NCAPH expression in most malignant tumors is associated with poor prognosis and low recurrence-free survival.
Collapse
Affiliation(s)
- Caiyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenshen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Jin
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weiling Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
WU PEILING, ZHAO LIFANG, ZHANG HONGYAN, LOU YUEYAN, CHEN DONGFANG, XUE SHAN, LIU XUEQING, JIANG HANDONG. NCAPD2 serves as a potential prognostic biomarker for lung adenocarcinoma and promotes cell proliferation, migration, invasion and cell cycle in vitro. Oncol Res 2024; 32:1439-1452. [PMID: 39220139 PMCID: PMC11361896 DOI: 10.32604/or.2024.047490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types; however, its precise role within the context of lung adenocarcinoma (LUAD) remains elusive. This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways. Methods Utilizing bioinformatics methodologies, we explored the differential expression of NCAPD2 between normal and tumor samples, along with its correlations with clinical-pathological characteristics, survival prognosis, and immune infiltration. Results In the TCGA-LUAD dataset, tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples (p < 0.001). Clinically, higher NCAPD2 expression was notably associated with advanced T, N, and M stages, pathologic stage, gender, smoking status, and diminished overall survival (OS). Moreover, differentially expressed genes (DEGs) associated with NCAPD2 were predominantly enriched in pathways related to cell division. Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells, naïve CD4+ T cells, activated memory CD4+ T cells, and M1 macrophages. In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and cell cycle progression. Conclusions In summary, NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD.
Collapse
Affiliation(s)
| | | | - HONGYAN ZHANG
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - YUEYAN LOU
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - DONGFANG CHEN
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - SHAN XUE
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - XUEQING LIU
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - HANDONG JIANG
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
5
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
6
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
7
|
Identification of NCAPH as a biomarker for prognosis of breast cancer. Mol Biol Rep 2020; 47:7831-7842. [DOI: 10.1007/s11033-020-05859-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
|
8
|
Non-SMC Condensin I Complex Subunit D2 Is a Prognostic Factor in Triple-Negative Breast Cancer for the Ability to Promote Cell Cycle and Enhance Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:37-47. [DOI: 10.1016/j.ajpath.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022]
|
9
|
Identification of candidate molecular targets of the novel antineoplastic antimitotic NP-10. Sci Rep 2019; 9:16825. [PMID: 31727981 PMCID: PMC6856148 DOI: 10.1038/s41598-019-53259-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
We previously reported the identification of a novel antimitotic agent with carbazole and benzohydrazide structures: N′-[(9-ethyl-9H-carbazol-3-yl)methylene]-2-iodobenzohydrazide (code number NP-10). However, the mechanism(s) underlying the cancer cell-selective inhibition of mitotic progression by NP-10 remains unclear. Here, we identified NP-10-interacting proteins by affinity purification from HeLa cell lysates using NP-10-immobilized beads followed by mass spectrometry. The results showed that several mitosis-associated factors specifically bind to active NP-10, but not to an inactive NP-10 derivative. Among them, NUP155 and importin β may be involved in NP-10-mediated mitotic arrest. Because NP-10 did not show antitumor activity in vivo in a previous study, we synthesized 19 NP-10 derivatives to identify more effective NP-10-related compounds. HMI83-2, an NP-10-related compound with a Cl moiety, inhibited HCT116 cell tumor formation in nude mice without significant loss of body weight, suggesting that HMI83-2 is a promising lead compound for the development of novel antimitotic agents.
Collapse
|
10
|
Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc Natl Acad Sci U S A 2018; 115:E11681-E11690. [PMID: 30478057 DOI: 10.1073/pnas.1811818115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The dramatic reorganization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. We have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were incorporated into nucleosomes to visualize histone H3 Lys-9 trimethylation (H3K9me3) and histone H3 Ser-10 phosphorylation (H3S10p) simultaneously in the same live cell. We observed an anticorrelated coupling in time between H3K9me3 and H3S10p in a single live cell during mitosis. A transient increase of H3S10p during mitosis is accompanied by a decrease of H3K9me3 that recovers before the restoration of H3S10p upon mitotic exit. We further showed that H3S10p is causatively critical for the decrease of H3K9me3 and the consequent reduction of heterochromatin structure, leading to the subsequent global chromatin reorganization and nuclear envelope dissolution as a cell enters mitosis. These results suggest a tight coupling of H3S10p and H3K9me3 dynamics in the regulation of heterochromatin dissolution before a global chromatin reorganization during mitosis.
Collapse
|
11
|
Wang HZ, Yang SH, Li GY, Cao X. Subunits of human condensins are potential therapeutic targets for cancers. Cell Div 2018; 13:2. [PMID: 29467813 PMCID: PMC5819170 DOI: 10.1186/s13008-018-0035-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
The main role of condensins is to regulate chromosome condensation and segregation during cell cycles. Recently, it has been suggested in the literatures that subunits of condensin I and condensin II are involved in some human cancers. This paper will first briefly discuss discoveries of human condensins, their components and structures, and their multiple cellular functions. This will be followed by reviews of most recent studies on subunits of human condensins and their dysregulations or mutations in human cancers. It can be concluded that many of these subunits have potentials to be novel targets for cancer therapies. However, hCAP-D2, a subunit of human condensin I, has not been directly documented to be associated with any human cancers to date. This review hypothesizes that hCAP-D2 can also be a potential therapeutic target for human cancers, and therefore that all subunits of human condensins are potential therapeutic targets for human cancers.
Collapse
Affiliation(s)
- Hong-Zhen Wang
- 1School of Life Sciences, Jilin Normal University, Siping, 136000 P. R. China.,2Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 P. R. China.,3Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, K1N 6N5 Canada
| | - Si-Han Yang
- 1School of Life Sciences, Jilin Normal University, Siping, 136000 P. R. China
| | - Gui-Ying Li
- 2Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 P. R. China
| | - Xudong Cao
- 3Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, K1N 6N5 Canada
| |
Collapse
|
12
|
López-Soop G, Rønningen T, Rogala A, Richartz N, Blomhoff HK, Thiede B, Collas P, Küntziger T. AKAP95 interacts with nucleoporin TPR in mitosis and is important for the spindle assembly checkpoint. Cell Cycle 2017; 16:947-956. [PMID: 28379780 DOI: 10.1080/15384101.2017.1310350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Faithful chromosome segregation during mitosis relies on a proofreading mechanism that monitors proper kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) is based on the concerted action of numerous components that maintain a repressive signal inhibiting transition into anaphase until all chromosomes are attached. Here we show that A-Kinase Anchoring Protein 95 (AKAP95) is necessary for proper SAC function. AKAP95-depleted HeLa cells show micronuclei formed from lagging chromosomes at mitosis. Using a BioID proximity-based proteomic screen, we identify the nuclear pore complex protein TPR as a novel AKAP95 binding partner. We show interaction between AKAP95 and TPR in mitosis, and an AKAP95-dependent enrichment of TPR in the spindle microtubule area in metaphase, then later in the spindle midzone area. AKAP95-depleted cells display faster prometaphase to anaphase transition, escape from nocodazole-induced mitotic arrest and show a partial delocalization from kinetochores of the SAC component MAD1. Our results demonstrate an involvement of AKAP95 in proper SAC function likely through its interaction with TPR.
Collapse
Affiliation(s)
- Graciela López-Soop
- a Department of Molecular Medicine, Faculty of Medicine , University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Torunn Rønningen
- a Department of Molecular Medicine, Faculty of Medicine , University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Agnieszka Rogala
- c Department of Oral Biology, Faculty of Dentistry , University of Oslo , Oslo , Norway
| | - Nina Richartz
- a Department of Molecular Medicine, Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Heidi Kiil Blomhoff
- a Department of Molecular Medicine, Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Bernd Thiede
- d Department of Biosciences, Faculty of Mathematics and Natural Sciences , University of Oslo , Oslo , Norway
| | - Philippe Collas
- a Department of Molecular Medicine, Faculty of Medicine , University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Thomas Küntziger
- c Department of Oral Biology, Faculty of Dentistry , University of Oslo , Oslo , Norway
| |
Collapse
|
13
|
Cai Y, Nogales-Cadenas R, Zhang Q, Lin JR, Zhang W, O’Brien K, Montagna C, Zhang ZD. Transcriptomic dynamics of breast cancer progression in the MMTV-PyMT mouse model. BMC Genomics 2017; 18:185. [PMID: 28212608 PMCID: PMC5316186 DOI: 10.1186/s12864-017-3563-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malignant breast cancer with complex molecular mechanisms of progression and metastasis remains a leading cause of death in women. To improve diagnosis and drug development, it is critical to identify panels of genes and molecular pathways involved in tumor progression and malignant transition. Using the PyMT mouse, a genetically engineered mouse model that has been widely used to study human breast cancer, we profiled and analyzed gene expression from four distinct stages of tumor progression (hyperplasia, adenoma/MIN, early carcinoma and late carcinoma) during which malignant transition occurs. RESULTS We found remarkable expression similarity among the four stages, meaning genes altered in the later stages showed trace in the beginning of tumor progression. We identified a large number of differentially expressed genes in PyMT samples of all stages compared with normal mammary glands, enriched in cancer-related pathways. Using co-expression networks, we found panels of genes as signature modules with some hub genes that predict metastatic risk. Time-course analysis revealed genes with expression transition when shifting to malignant stages. These may provide additional insight into the molecular mechanisms beyond pathways. CONCLUSIONS Thus, in this study, our various analyses with the PyMT mouse model shed new light on transcriptomic dynamics during breast cancer malignant progression.
Collapse
Affiliation(s)
- Ying Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | | | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Wen Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Kelly O’Brien
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Zhengdong D. Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
14
|
Zhang P, Liu L, Huang J, Shao L, Wang H, Xiong N, Wang T. Non-SMC condensin I complex, subunit D2 gene polymorphisms are associated with Parkinson's disease: a Han Chinese study. Genome 2014; 57:253-7. [PMID: 25166511 DOI: 10.1139/gen-2014-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have indicated that non-SMC condensin I complex, subunit D2 (NCAPD2), an important protein in chromosome condensation, gene polymorphisms are associated with Alzheimer's disease. But no study has shown the relationship between NCAPD2 polymorphisms and Parkinson's disease. Here, we conducted a case-control study to investigate the relationship between NCAPD2 polymorphisms and the risk of Parkinson's disease in a Han Chinese population. Two single nuclear polymorphisms (SNPs) of NCAPD2 (rs7311174 and rs2072374) showed significant p values (p = 0.046 and p = 0.043, respectively) in 265 patients and 267 controls. Further analysis showed an effect of age and gender on the relationship between the two SNPs and the risk for Parkinson's disease. The A allele of rs7311174 and the T allele of rs2072374 were protective in the male patients (p = 0.016 and p = 0.019, respectively). The frequencies of the T allele of rs7311174 and the C allele of rs2072374 were significantly associated with late-onset Parkinson's disease (p = 0.048 and p = 0.044, respectively). This research demonstrates a positive relationship between the NCAPD2 gene and the risk for Parkinson's disease in a Han Chinese population and provides a potential genetic marker for sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Ping Zhang
- a Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Watrin E, Demidova M, Watrin T, Hu Z, Prigent C. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells. EMBO Rep 2014; 15:948-55. [PMID: 25092791 DOI: 10.15252/embr.201438640] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.
Collapse
Affiliation(s)
- Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Maria Demidova
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Tanguy Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Zheng Hu
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Claude Prigent
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| |
Collapse
|
16
|
Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour AA, Avner S, Henry C, Percevault F, Belaud-Rotureau MA, Huet S, Watrin E, Eeckhoute J, Legagneux V, Salbert G, Métivier R. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol 2014; 34:2418-36. [PMID: 24752895 PMCID: PMC4054307 DOI: 10.1128/mcb.00918-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.
Collapse
Affiliation(s)
- Justine Quintin
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Christine Le Péron
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Gaëlle Palierne
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Maud Bizot
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphanie Cunha
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Aurélien A Sérandour
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Stéphane Avner
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Catherine Henry
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France
| | - Frédéric Percevault
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Cytogenetics and Cellular Biology Department, CHU, Rennes, France BIOSIT, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Sébastien Huet
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Erwan Watrin
- Equipe CC, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Jérôme Eeckhoute
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France INSERM U1011, Université Lille-Nord de France, Faculté de Médecine de Lille-Pôle Recherche, Lille, France
| | - Vincent Legagneux
- Equipe EGD, UMR CNRS 6290, Université de Rennes I, Faculté de Médecine, Rennes, France
| | - Gilles Salbert
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| | - Raphaël Métivier
- Equipe SP@RTE, UMR CNRS 6290, Equipe Labellisée Ligue contre le Cancer, Université de Rennes I, Rennes, France
| |
Collapse
|
17
|
Gatta V, D'Aurora M, Lanuti P, Pierdomenico L, Sperduti S, Palka G, Gesi M, Marchisio M, Miscia S, Stuppia L. Gene expression modifications in Wharton's Jelly mesenchymal stem cells promoted by prolonged in vitro culturing. BMC Genomics 2013; 14:635. [PMID: 24053474 PMCID: PMC3849041 DOI: 10.1186/1471-2164-14-635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 09/17/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has been demonstrated that the umbilical cord matrix, represented by the Wharton's Jelly (WJ), contains a great number of mesenchymal stem cells (MSCs), characterized by the expression of specific MSCs markers, shared by both human and animal models. The easy access to massive WJ amount makes it an attractive source of MSCs for cell-based therapies. However, as in other stem cell models, a deeper investigation of WJ-derived MSCs (WJ-MSCs) biological properties, probably modulated by their prolonged expansion and fast growth abilities, is required before their use in clinical settings. In this context, in order to analyze specific gene expression modifications occurring in WJ-MSCs, along with their culture prolongation, we investigated the transcriptomic profiles of WJ-MSCs after 4 and 12 passages of in vitro expansion by microarray analysis. RESULTS Hierarchical clustering analysis of the data set originated from a total of 6 experiments revealed that in vitro expansion of WJ-MSCs up to 12 passages promote selective over-expression of 157 genes and down-regulation of 440 genes compared to the 4th passage. IPA software analysis of the biological functions related to the identified sets of genes disclosed several transcripts related to inflammatory and cell stress response, cell proliferation and maturation, and apoptosis. CONCLUSIONS Taken together, these modifications may lead to an impairment of both cell expansion ability and resistance to apoptosis, two hallmarks of aging cells. In conclusion, results provided by the present study suggest the need to develop novel culture protocols able to preserve stem cell plasticity.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Medicine and Aging Science, School of Medicine and Health Sciences, University "G, d'Annunzio" Chieti-Pescara, via dei Vestini 31, 66013, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KHA, Hudson DF. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 2012; 125:1591-604. [PMID: 22344259 DOI: 10.1242/jcs.097790] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.
Collapse
Affiliation(s)
- Lydia C Green
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells. Cell Biol Int 2011; 35:735-40. [PMID: 21395557 DOI: 10.1042/cbi20100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.
Collapse
|
20
|
DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc Natl Acad Sci U S A 2011; 108:12007-12. [PMID: 21730191 DOI: 10.1073/pnas.1106245108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During mitosis, faithful inheritance of genetic material is achieved by chromosome segregation, as mediated by the condensin I and II complexes. Failed chromosome segregation can result in neoplasm formation, infertility, and birth defects. Recently, the germ-line-specific DEAD-box RNA helicase Vasa was demonstrated to promote mitotic chromosome segregation in Drosophila by facilitating robust chromosomal localization of Barren (Barr), a condensin I component. This mitotic function of Vasa is mediated by Aubergine and Spindle-E, which are two germ-line components of the Piwi-interacting RNA pathway. Faithful segregation of chromosomes should be executed both in germ-line and somatic cells. However, whether a similar mechanism also functions in promoting chromosome segregation in somatic cells has not been elucidated. Here, we present evidence that belle (vasa paralog) and the RNA interference pathway regulate chromosome segregation in Drosophila somatic cells. During mitosis, belle promotes robust Barr chromosomal localization and chromosome segregation. Belle's localization to condensing chromosomes depends on dicer-2 and argonaute2. Coimmunoprecipitation experiments indicated that Belle interacts with Barr and Argonaute2 and is enriched at endogenous siRNA (endo-siRNA)-generating loci. Our results suggest that Belle functions in promoting chromosome segregation in Drosophila somatic cells via the endo-siRNA pathway. DDX3 (human homolog of belle) and DICER function in promoting chromosome segregation and hCAP-H (human homolog of Barr) localization in HeLa cells, indicating a conserved function for those proteins in human cells. Our results suggest that the RNA helicase Belle/DDX3 and the RNA interference pathway perform a common role in regulating chromosome segregation in Drosophila and human somatic cells.
Collapse
|
21
|
Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J, Birrer MJ, Clarke CL, Chenevix-Trench G, Bowtell DDL, Harnett PR, deFazio A. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One 2011; 6:e17617. [PMID: 21423607 PMCID: PMC3057977 DOI: 10.1371/journal.pone.0017617] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/02/2011] [Indexed: 12/30/2022] Open
Abstract
Molecular events leading to epithelial ovarian cancer are poorly understood but
ovulatory hormones and a high number of life-time ovulations with concomitant
proliferation, apoptosis, and inflammation, increases risk. We identified genes
that are regulated during the estrous cycle in murine ovarian surface epithelium
and analysed these profiles to identify genes dysregulated in human ovarian
cancer, using publically available datasets. We identified 338 genes that are
regulated in murine ovarian surface epithelium during the estrous cycle and
dysregulated in ovarian cancer. Six of seven candidates selected for
immunohistochemical validation were expressed in serous ovarian cancer,
inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium.
Most were overexpressed in ovarian cancer compared with ovarian surface
epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2
were expressed as highly in fallopian tube epithelium as in ovarian cancer. We
prioritised the 338 genes for those likely to be important for ovarian cancer
development by in silico analyses of copy number aberration and
mutation using publically available datasets and identified genes with
established roles in ovarian cancer as well as novel genes for which we have
evidence for involvement in ovarian cancer. Chromosome segregation emerged as an
important process in which genes from our list of 338 were over-represented
including two (BUB1, NCAPD2) for which there
is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface
epithelium in proestrus and predicted to have a driver mutation in ovarian
cancer, was examined in a larger cohort of serous ovarian cancer where patients
with lower NUAK2 expression had shorter overall survival. In conclusion,
defining genes that are activated in normal epithelium in the course of
ovulation that are also dysregulated in cancer has identified a number of
pathways and novel candidate genes that may contribute to the development of
ovarian cancer.
Collapse
Affiliation(s)
- Catherine Emmanuel
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc Natl Acad Sci U S A 2010; 107:18832-7. [PMID: 20921377 DOI: 10.1073/pnas.1008678107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In contrast to the current state of knowledge in the field of eukaryotic chromosome segregation, relatively little is known about the mechanisms coordinating the appropriate segregation of bacterial chromosomes. In Escherichia coli, the MukB/E/F complex and topoisomerase IV (Topo IV) are both crucial players in this process. Topo IV removes DNA entanglements following the replication of the chromosome, whereas MukB, a member of the structural maintenance of chromosomes protein family, serves as a bacterial condensin. We demonstrate here a direct physical interaction between the dimerization domain of MukB and the C-terminal domain of the ParC subunit of Topo IV. In addition, we find that MukB alters the activity of Topo IV in vitro. Finally, we isolate a MukB mutant, D692A, that is deficient in its interaction with ParC and show that this mutant fails to rescue the temperature-sensitive growth phenotype of a mukB(-) strain. These results show that MukB and Topo IV are linked physically and functionally and indicate that the activities of these proteins are not limited to chromosome segregation but likely also play a key role in the control of higher-order bacterial chromosome structure.
Collapse
|
23
|
Watrin E, Peters JM. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J 2009; 28:2625-35. [PMID: 19629043 PMCID: PMC2738698 DOI: 10.1038/emboj.2009.202] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023] Open
Abstract
Cohesin complexes mediate sister chromatid cohesion. Cohesin also becomes enriched at DNA double-strand break sites and facilitates recombinational DNA repair. Here, we report that cohesin is essential for the DNA damage-induced G2/M checkpoint. In contrast to cohesin's role in DNA repair, the checkpoint function of cohesin is independent of its ability to mediate cohesion. After RNAi-mediated depletion of cohesin, cells fail to properly activate the checkpoint kinase Chk2 and have defects in recruiting the mediator protein 53BP1 to DNA damage sites. Earlier work has shown that phosphorylation of the cohesin subunits Smc1 and Smc3 is required for the intra-S checkpoint, but Smc1/Smc3 are also subunits of a distinct recombination complex, RC-1. It was, therefore, unknown whether Smc1/Smc3 function in the intra-S checkpoint as part of cohesin. We show that Smc1/Smc3 are phosphorylated as part of cohesin and that cohesin is required for the intra-S checkpoint. We propose that accumulation of cohesin at DNA break sites is not only needed to mediate DNA repair, but also facilitates the recruitment of checkpoint proteins, which activate the intra-S and G2/M checkpoints.
Collapse
Affiliation(s)
- Erwan Watrin
- Research Institute of Molecular Pathology (I.M.P.), Vienna, Austria
| | | |
Collapse
|
24
|
Uchida KSK, Takagaki K, Kumada K, Hirayama Y, Noda T, Hirota T. Kinetochore stretching inactivates the spindle assembly checkpoint. ACTA ACUST UNITED AC 2009; 184:383-90. [PMID: 19188492 PMCID: PMC2646554 DOI: 10.1083/jcb.200811028] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spindle assembly checkpoint (SAC) monitors the attachment of microtubules to the kinetochore and inhibits anaphase when microtubule binding is incomplete. The SAC might also respond to tension; however, how cells can sense tension and whether its detection is important to satisfy the SAC remain controversial. We generated a HeLa cell line in which two components of the kinetochore, centromere protein A and Mis12, are labeled with green and red fluorophores, respectively. Live cell imaging of these cells reveals repetitive cycles of kinetochore extension and recoiling after biorientation. Under conditions in which kinetochore stretching is suppressed, cells fail to silence the SAC and enter anaphase after a delay, regardless of centromere stretching. Monitoring cyclin B levels as a readout for anaphase-promoting complex/cyclosome activity, we find that suppression of kinetochore stretching delays and decelerates cyclin B degradation. These observations suggest that the SAC monitors stretching of kinetochores rather than centromeres and that kinetochore stretching promotes silencing of the SAC signal.
Collapse
Affiliation(s)
- Kazuhiko S K Uchida
- Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Murphy LA, Sarge KD. Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem Biophys Res Commun 2008; 377:1007-11. [PMID: 18977199 PMCID: PMC2633222 DOI: 10.1016/j.bbrc.2008.10.114] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Condensin is a 5 subunit complex that plays an important role in the structure of chromosomes during mitosis. It is known that phosphorylation of condensin subunits by cdc2/cyclin B at the beginning of mitosis is important for condensin activity, but the sites of these phosphorylation events have not been identified nor has their role in regulating condensin function. Here we identify two threonine residues in the CAP-G subunit of condensin, threonines 308 and 332, that are targets of cdc2/cyclin B phosphorylation. Mutation of these threonines to alanines results in defects in CAP-G localization with chromosomes during mitosis. These results are the first to identify phosphorylation sites within the condensin complex that regulate condensin localization with chromosomal DNA.
Collapse
Affiliation(s)
- Lynea A. Murphy
- Department of Toxicology, Chandler Medical Center, University of Kentucky, Lexington, KY, 40536
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, KY, 40536
| | - Kevin D. Sarge
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
26
|
Abstract
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their significance inside the cell, where DNA configurations markedly differ from those of DNA in free solution. The eukaryotic type-2A enzyme, topoisomerase II, is the second most abundant chromatin protein after histones and its biological roles include the decatenation of newly replicated DNA and the relaxation of polymerase-driven supercoils. Yet, topoisomerase II is also implicated in other cellular processes such as chromatin folding and gene expression, in which the topological transformations catalysed by the enzyme are uncertain. Here, some capabilities of topoisomerase II that might be relevant to infer the enzyme performance in the context of chromatin architecture are discussed. Some aspects addressed are the importance of the DNA rejoining step to ensure genome stability, the regulation of the enzyme activity and of its putative structural role, and the selectively of DNA transport in the chromatin milieu.
Collapse
Affiliation(s)
- Joaquim Roca
- Institut de Biologia Molecular de Barcelona, CSIC, Baldiri i Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
27
|
Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, Copier J, Catchpole S, Burchell J, Taylor-Papadimitriou J. Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 2007; 27:7220-35. [PMID: 17709396 PMCID: PMC2168894 DOI: 10.1128/mcb.00274-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The PLU-1/JARID1B nuclear protein, which is upregulated in breast cancers, belongs to the ARID family of DNA binding proteins and has strong transcriptional repression activity. To identify the target genes regulated by PLU-1/JARID1B, we overexpressed or silenced the human PLU-1/JARID1B gene in human mammary epithelial cells by using adenovirus and RNA interference systems, respectively, and then applied microarray analysis to identify candidate genes. A total of 100 genes showed inversely correlated differential expression in the two systems. Most of the candidate genes were downregulated by the overexpression of PLU-1/JARID1B, including the MT genes, the tumor suppressor gene BRCA1, and genes involved in the regulation of the M phase of the mitotic cell cycle. Chromatin immunoprecipitation assays confirmed that the metallothionein 1H (MT1H), -1F, and -1X genes are direct transcriptional targets of PLU-1/JARID1B in vivo. Furthermore, the level of trimethyl H3K4 of the MT1H promoter was increased following silencing of PLU-1/JARID1B. Both the PLU-1/JARID1B protein and the ARID domain selectively bound CG-rich DNA. The GCACA/C motif, which is abundant in metallothionein promoters, was identified as a consensus binding sequence of the PLU-1/JARID1B ARID domain. As expected from the microarray data, cells overexpressing PLU-1/JARID1B have an impaired G(2)/M checkpoint. Our study provides insight into the molecular function of the breast cancer-associated transcriptional repressor PLU-1/JARID1B.
Collapse
Affiliation(s)
- Angelo G Scibetta
- Breast Cancer Biology Group, King's College London School of Medicine, 3rd Floor, Thomas Guy House, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gosling KM, Makaroff LE, Theodoratos A, Kim YH, Whittle B, Rui L, Wu H, Hong NA, Kennedy GC, Fritz JA, Yates AL, Goodnow CC, Fahrer AM. A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development. Proc Natl Acad Sci U S A 2007; 104:12445-50. [PMID: 17640884 PMCID: PMC1941488 DOI: 10.1073/pnas.0704870104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Condensins are ubiquitously expressed multiprotein complexes that are important for chromosome condensation and epigenetic regulation of gene transcription, but whose specific roles in vertebrates are poorly understood. We describe a mouse strain, nessy, isolated during an ethylnitrosourea screen for recessive immunological mutations. The nessy mouse has a defect in T lymphocyte development that decreases circulating T cell numbers, increases their expression of the activation/memory marker CD44, and dramatically decreases the numbers of CD4(+)CD8(+) thymocytes and their immediate DN4 precursors. A missense mutation in an unusual alternatively spliced first exon of the kleisin beta gene, a member of the condensin II complex, was shown to be responsible and act in a T cell-autonomous manner. Despite the ubiquitous expression and role of condensins, kleisin beta(nes/nes) mice were viable, fertile, and showed no defects even in the parallel pathway of B cell lymphocyte differentiation. These data define a unique lineage-specific requirement for kleisin beta in mammalian T cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Belinda Whittle
- John Curtin School of Medical Research, and
- Australian Phenomics Facility, Australian National University, Canberra ACT 0200 Australia
| | - Lixin Rui
- John Curtin School of Medical Research, and
| | - Hua Wu
- Phenomix Corporation, San Diego, CA 92121; and
| | | | - Gavin C. Kennedy
- Plant Industries, Commonwealth Scientific and Industrial Research Organisation, Canberra ACT 2601 Australia
| | | | | | - Christopher C. Goodnow
- John Curtin School of Medical Research, and
- Australian Phenomics Facility, Australian National University, Canberra ACT 0200 Australia
| | - Aude M. Fahrer
- *School of Biochemistry and Molecular Biology
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Ham MF, Takakuwa T, Rahadiani N, Tresnasari K, Nakajima H, Aozasa K. Condensin mutations and abnormal chromosomal structures in pyothorax-associated lymphoma. Cancer Sci 2007; 98:1041-7. [PMID: 17488335 PMCID: PMC11158810 DOI: 10.1111/j.1349-7006.2007.00500.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transfer of genetic information during mitosis is accurately conducted by proper condensation and segregation of chromosomes, for which condensins play a central role. Both condensin I and II have common structural maintenance of chromosomes subunits, named hCAP-C and hCAP-E. Pyothorax-associated lymphoma (PAL) is a non-Hodgkin's lymphoma developing in the pleural cavity of patients with long-standing pyothorax. Mutations of hCAP-C and hCAP-E were investigated in 24 leukemia-lymphoma cell lines including eight PAL cell lines, and their influences in chromosome morphology were evaluated. Heterozygous point mutations within hCAP-C were found in two PAL cell lines and corresponding tumor samples (OPL-3 and OPL-7). Deletion of exon 24 within hCAP-E and a point mutation at the donor splice site of intron 24 were detected in OPL-5 and original tumor samples. OPL-5 showed an extensive reduction in expression of not only hCAP-E but also hCAP-C proteins. OPL-5 occasionally showed the chromosome bridge in anaphase and telophase, indicating that segregation is not accurate. OPL-7 showed reduced hCAP-C protein expression, abnormality in chromosome length and width, and abnormal aggregates of hCAP-C protein. These findings indicated that condensin gene alteration might play a role in genome instability, which accelerates the accumulation of other gene alterations in PAL.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Oliveira RA, Heidmann S, Sunkel CE. Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes. Chromosoma 2007; 116:259-74. [PMID: 17318635 DOI: 10.1007/s00412-007-0097-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/06/2006] [Accepted: 01/10/2007] [Indexed: 12/21/2022]
Abstract
The condensed state of mitotic chromosomes is crucial for faithful genome segregation. Key factors implicated in the formation of mitotic chromosomes are the condensin I and II complexes. In Drosophila, condensin I appears to play a major role in mitotic chromosome organization. To analyze its dynamic behavior, we expressed Barren, a condensin I non-Structural Maintenance of Chromosomes subunit, as a fully functional enhanced green fluorescent protein (EGFP) fusion protein in the female and followed it during early embryonic divisions. We find that, in Drosophila, Barren-EGFP associates with chromatin early in prophase concomitantly with the initiation of chromosome condensation. Barren-EGFP loading starts at the centromeric region from where it spreads distally reaching maximum accumulation at metaphase/early anaphase. Fluorescence Recovery After Photobleaching analysis indicates that most of the bound protein exchanges rapidly with the cytoplasmic pool during prometaphase/metaphase. Taken together, our results suggest that in Drosophila, condensin I is involved in the initial stages of chromosome condensation. Furthermore, the rapid turnover of Barren-EGFP indicates that the mechanism by which condensin I promotes mitotic chromosome organization is inconsistent with a static scaffold model.
Collapse
Affiliation(s)
- Raquel A Oliveira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
31
|
Sheval EV, Polyakov VY. Chromosome scaffold and structural integrity of mitotic chromosomes. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406060014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Belmont AS. Mitotic chromosome structure and condensation. Curr Opin Cell Biol 2006; 18:632-8. [PMID: 17046228 DOI: 10.1016/j.ceb.2006.09.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 09/29/2006] [Indexed: 01/15/2023]
Abstract
Mitotic chromosome structure has been the cell biology equivalent of a 'riddle, wrapped in a mystery, inside an enigma'. Observations that genetic knockout or knockdown of condensin subunits or topoisomerase II cause only minimal perturbation in overall chromosome condensation, together with analysis of early stages of chromosome condensation and effects produced by histone H1 depletion, suggest a need to reconsider textbook models of mitotic chromosome condensation and organization.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign B107 CLSL 601 S. Goodwin Ave. Urbana, IL 61802, USA.
| |
Collapse
|
33
|
Blank M, Lerenthal Y, Mittelman L, Shiloh Y. Condensin I recruitment and uneven chromatin condensation precede mitotic cell death in response to DNA damage. J Cell Biol 2006; 174:195-206. [PMID: 16847100 PMCID: PMC2064180 DOI: 10.1083/jcb.200604022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022] Open
Abstract
Mitotic cell death (MCD) is a prominent but poorly defined form of death that stems from aberrant mitosis. One of the early steps in MCD is premature mitosis and uneven chromatin condensation (UCC). The mechanism underlying this phenomenon is currently unknown. In this study, we show that DNA damage in cells with a compromised p53-mediated G2/M checkpoint triggers the unscheduled activation of cyclin-dependent kinase 1 (Cdk1), activation and chromatin loading of the condensin I complex, and UCC followed by the appearance of multimicronucleated cells, which is evidence of MCD. We demonstrate that these processes engage some of the players of normal mitotic chromatin packaging but not those that drive the apoptotic chromatin condensation. Our findings establish a link between the induction of DNA damage and mitotic abnormalities (UCC) through the unscheduled activation of Cdk1 and recruitment of condensin I. These results demonstrate a clear distinction between the mechanisms that drive MCD-associated and apoptosis-related chromatin condensation and provide mechanistic insights and new readouts for a major cell death process in treated tumors.
Collapse
Affiliation(s)
- Michael Blank
- The David and Inez Myers Laboratory for Genetic Research, Department of Molecular Genetics and Biochemistry, and Interdepartmental Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
34
|
Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol 2006; 16:333-44. [PMID: 16488867 DOI: 10.1016/j.cub.2005.12.040] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/07/2005] [Accepted: 12/20/2005] [Indexed: 11/23/2022]
Abstract
BACKGROUND Restructuring chromatin into morphologically distinct chromosomes is essential for cell division, but the molecular mechanisms underlying this process are poorly understood. Condensin complexes have been proposed as key factors, although controversial conclusions about their contribution to chromosome structure were reached by different experimental approaches in fixed cells or cell extracts. Their function under physiological conditions still needs to be defined. RESULTS Here, we investigated the specific functions of condensin I and II in live cells by fluorescence microscopy and RNAi depletion. Photobleaching and quantitative time-lapse imaging showed that GFP-tagged condensin II bound stably to chromosomes throughout mitosis. By contrast, the canonical condensin I interacted dynamically with chromatin after completion of prophase compaction, reaching steady-state levels on chromosomes before congression. In condensin I-depleted cells, compaction was normal, but chromosomes were mechanically labile and unable to withstand spindle forces during alignment. However, normal levels of condensin II were not required for chromosome stability. CONCLUSIONS We conclude that while condensin I seems dispensable for normal chromosome compaction, its dynamic binding after nuclear envelope breakdown locks already condensed chromatin in a rigid state required for mechanically stable spindle attachment.
Collapse
Affiliation(s)
- Daniel Gerlich
- Gene Expression and Cell Biology/Biophysics Programmes, EMBL, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Oliveira RA, Coelho PA, Sunkel CE. The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol Cell Biol 2005; 25:8971-84. [PMID: 16199875 PMCID: PMC1265781 DOI: 10.1128/mcb.25.20.8971-8984.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During cell division, chromatin undergoes structural changes essential to ensure faithful segregation of the genome. Condensins, abundant components of mitotic chromosomes, are known to form two different complexes, condensins I and II. To further examine the role of condensin I in chromosome structure and in particular in centromere organization, we depleted from S2 cells the Drosophila CAP-H homologue Barren, a subunit exclusively associated with condensin I. In the absence of Barren/CAP-H the condensin core subunits DmSMC4/2 still associate with chromatin, while the other condensin I non-structural maintenance of chromosomes family proteins do not. Immunofluorescence and in vivo analysis of Barren/CAP-H-depleted cells showed that mitotic chromosomes are able to condense but fail to resolve sister chromatids. Additionally, Barren/CAP-H-depleted cells show chromosome congression defects that do not appear to be due to abnormal kinetochore-microtubule interaction. Instead, the centromeric and pericentromeric heterochromatin of Barren/CAP-H-depleted chromosomes shows structural problems. After bipolar attachment, the centromeric heterochromatin organized in the absence of Barren/CAP-H cannot withstand the forces exerted by the mitotic spindle and undergoes irreversible distortion. Taken together, our data suggest that the condensin I complex is required not only to promote sister chromatid resolution but also to maintain the structural integrity of centromeric heterochromatin during mitosis.
Collapse
Affiliation(s)
- Raquel A Oliveira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | |
Collapse
|
36
|
Abstract
Structural maintenance of chromosomes (SMC) proteins are chromosomal ATPases, highly conserved from bacteria to humans, that play fundamental roles in many aspects of higher-order chromosome organization and dynamics. In eukaryotes, SMC1 and SMC3 act as the core of the cohesin complexes that mediate sister chromatid cohesion, whereas SMC2 and SMC4 function as the core of the condensin complexes that are essential for chromosome assembly and segregation. Another complex containing SMC5 and SMC6 is implicated in DNA repair and checkpoint responses. The SMC complexes form unique ring- or V-shaped structures with long coiled-coil arms, and function as ATP-modulated, dynamic molecular linkers of the genome. Recent studies shed new light on the mechanistic action of these SMC machines and also expanded the repertoire of their diverse cellular functions. Dissecting this class of chromosomal ATPases is likely to be central to our understanding of the structural basis of genome organization, stability, and evolution.
Collapse
Affiliation(s)
- Ana Losada
- Spanish National Cancer Center (CNIO), Madrid
| | | |
Collapse
|