1
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal Profiling Defines Persistence and Resistance Dynamics during Targeted Treatment of Melanoma. Cancer Res 2025; 85:987-1002. [PMID: 39700408 PMCID: PMC11875961 DOI: 10.1158/0008-5472.can-24-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment. The persister state showed increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identified intrinsic and acquired resistance mechanisms (e.g., dual-specific phosphatases, reticulon-4, and cyclin-dependent kinase 2) and suggested specific temporal windows of potential therapeutic susceptibility. Deep learning-enabled analysis of histopathologic slides revealed morphologic features correlating with specific cell states, demonstrating that juxtaposition of transcriptomics and histologic data enabled identification of phenotypically distinct populations from using imaging data alone. In summary, this study defined state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Significance: Tracking clonal progression during treatment uncovers conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance, providing insights into therapy-induced tumor evolution.
Collapse
Affiliation(s)
- Jill C. Rubinstein
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Surgery, Hartford Healthcare, Hartford, CT, USA
- Department of Surgery, UCONN School of Medicine, Farmington, CT, USA
- These authors provided equal contribution to this work
- Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jill Rubinstein
| | - Sergii Domanskyi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- These authors provided equal contribution to this work
| | - Todd B. Sheridan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Surgery, Hartford Healthcare, Hartford, CT, USA
| | - Brian Sanderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jessica Kaster
- The Wistar Institute, Philadelphia, PA, USA
- Saint Joseph’s University, Philadelphia, PA, USA
| | - Haiyin Li
- The Wistar Institute, Philadelphia, PA, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | |
Collapse
|
2
|
Wang S, Peng X, Zhu Q, Lu S, Hu P, Kim IH, Liu HY, Ennab W, Muniyappan M, Cai D. Lithocholic acid attenuates DON-induced inflammatory responses via epigenetic regulation of DUSP5 and TRAF5 in porcine intestinal epithelial cells. Front Vet Sci 2025; 12:1493496. [PMID: 40093618 PMCID: PMC11906417 DOI: 10.3389/fvets.2025.1493496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates human food and animal feed, resulting in intestinal diseases and systemic immunosuppression. Lithocholic acid (LCA) exhibits various pharmacological activities. RNA-seq and ChIP-qPCR analysis were used in the current study to investigate the protective mechanism of LCA for DON-induced inflammatory Responses via Epigenetic Regulation of DUSP5 and TRAF5 in porcine ileal epithelial cell lines (IPI-2I) cells. The IPI-2I cells were treated with the vehicle group, 250 ng/mL DON, 20 μmol/L LCA, 250 ng/mL DON+ 20 μmol/L LCA for 24 h could induce inflammatory Responses via Epigenetic Regulation of DUSP5 and TRAF5 in IPI-2I cells. By analyzing the transcriptional profiles of DON and LCA-treated IPI-2I, we observed significant transcriptional changes in IPI-2I cells. Further analysis of up-and down-regulated differential genes revealed the enrichment of pathways closely related to inflammation and apoptosis, such as the MAPK signaling pathway, IL17 signaling pathway, and Wnt signaling pathway. An upregulated (p < 0.05) relative mRNA expression level of RAP1B, GDNF, FGF2, IL1R1, RAPGEF2, DUSP5, TGFB3, CACNA1G, TEK and RPS6KA2 were noted in IPI-2I exposed to DON. DON-exposed IPI-2I cells dramatically enhanced (p < 0.05) histone marks associated with transcriptional activation, H3K9ac, H3K18ac, H3K27ac, H3K4me1, H3K9bhb, H3K18bhb Pol-II and Ser5 Pol-II at the enhancers of DUSP5 and TRAF5. Overall, our findings provide a theoretical basis for understanding the mechanism of action of LCA in attenuating DON-induced intestinal injury and for better understanding the potential of LCA as a treatment or prevention of mycotoxin-associated intestinal diseases in swine production.
Collapse
Affiliation(s)
- Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sichen Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, Republic of Korea
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Madesh Muniyappan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Bai F, Wang C, Wang S, Zhao Y, Feng F, Yu K, Liu L, Yang X. DUSP5 deficiency suppresses the progression of acute kidney injury by enhancing autophagy through AMPK/ULK1 pathway. Transl Res 2024; 274:1-9. [PMID: 39218057 DOI: 10.1016/j.trsl.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) represents a critical clinical disease characterized by the rapid decline in renal function, carrying a substantial burden of morbidity and mortality. The treatment of AKI is frequently limited by its variable clinical presentations and intricate pathophysiology, highlighting the urgent need for a deeper understanding of its pathogenesis and potential therapeutic targets. Dual-specific protein phosphatase 5 (DUSP5), a member of the serine-threonine phosphatase family, possesses the capability to dephosphorylate extracellular regulated protein kinases (ERK). DUSP5 has emerged as a pivotal player in modulating metabolic signals, inflammatory responses, and cancer progression, while also being closely associated with various kidney diseases. This study systematically scrutinized the function and mechanism of DUSP5 in AKI for the first time, unveiling a substantial increase in DUSP5 expression during AKI. Moreover, DUSP5 knockdown was observed to attenuate the production of inflammatory factors and apoptotic cells in renal tubular epithelial cells by enhancing AMPK/ULK1-mediated autophagy, thus improving renal function. In a word, DUSP5 knockdown in AKI effectively impede disease progression by activating autophagy. This finding holds promise for introducing fresh perspectives and targets for AKI treatment.
Collapse
Affiliation(s)
- Fang Bai
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Chunjie Wang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Sha Wang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Yuxuan Zhao
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Feng Feng
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Department of Blood Purification, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Lei Liu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Department of Blood Purification, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China; Department of Blood Purification, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China.
| |
Collapse
|
4
|
Fan W, Xing Y, Yan S, Liu W, Ning J, Tian F, Wang X, Zhan Y, Luo L, Cao M, Huang J, Cai L. DUSP5 regulated by YTHDF1-mediated m6A modification promotes epithelial-mesenchymal transition and EGFR-TKI resistance via the TGF-β/Smad signaling pathway in lung adenocarcinoma. Cancer Cell Int 2024; 24:208. [PMID: 38872157 DOI: 10.1186/s12935-024-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-β) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-β/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.
Collapse
Affiliation(s)
- Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Lixin Luo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| |
Collapse
|
5
|
Tang C, Zhang H, Border JJ, Liu Y, Fang X, Jefferson JR, Gregory A, Johnson C, Lee TJ, Bai S, Sharma A, Shin SM, Yu H, Roman RJ, Fan F. Impact of knockout of dual-specificity protein phosphatase 5 on structural and mechanical properties of rat middle cerebral arteries: implications for vascular aging. GeroScience 2024; 46:3135-3147. [PMID: 38200357 PMCID: PMC11009215 DOI: 10.1007/s11357-024-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.
Collapse
Affiliation(s)
- Chengyun Tang
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Huawei Zhang
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jane J Border
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yedan Liu
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xing Fang
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joshua R Jefferson
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Claire Johnson
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard J Roman
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Song G, Zhao F, Ni R, Deng B, Chen S, Hu R, Zheng J, Peng Y, Liu H, Luo Y, Zhou Z, Huang G, Shen W. Epithelial cells derived exosomal miR-203a-3p facilitates stromal inflammation of type IIIA chronic prostatitis/chronic pelvic pain syndrome by targeting DUSP5 and increasing MCP-1 generation. J Nanobiotechnology 2024; 22:236. [PMID: 38724995 PMCID: PMC11084011 DOI: 10.1186/s12951-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.
Collapse
Affiliation(s)
- Guojing Song
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fuhan Zhao
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rongrong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Zheng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiji Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Luo
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Chen L, Su H, Tao Z, Liang C, Liu Z, Dong Y, Zheng P, Liu Y. DUSP22 Ameliorates Endothelial-to-Mesenchymal Transition in HUVECs through Smad2/3 and MAPK Signaling Pathways. Cardiovasc Ther 2024; 2024:5583961. [PMID: 38495810 PMCID: PMC10942825 DOI: 10.1155/2024/5583961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the process by which endothelial cells lose their endothelial properties and acquire mesenchymal characteristics. Dual-specific protein phosphatase 22 (DUSP22) inactivates various protein kinases and transcription factors by dephosphorylating serine/threonine residues: hence, it plays a key role in many diseases. The aim of this study was to explore the functional role of DUSP22 in EndMT. In the transforming growth factor-β-induced EndMT model in human umbilical vein endothelial cells (HUVECs), we observed a downregulation of DUSP22 expression. This DUSP22 deficiency could aggravate EndMT. Conversely, the overexpression of DUSP22 could ameliorate EndMT. We used signaling pathway inhibitors to verify our results and found that DUSP22 could regulate EndMT through the smad2/3 and the mitogen-activated protein kinase (MAPK) signaling pathways. In summary, DUSP22 ameliorates EndMT in HUVECs in vitro through the smad2/3 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zekai Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongzhao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal profiling defines persistence and resistance dynamics during targeted treatment of melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577085. [PMID: 38370717 PMCID: PMC10871267 DOI: 10.1101/2024.02.02.577085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.
Collapse
|
9
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
10
|
Tang C, Zhang H, Border JJ, Liu Y, Fang X, Jefferson JR, Gregory A, Johnson C, Lee TJ, Bai S, Sharma A, Shin SM, Yu H, Roman RJ, Fan F. Role of Dusp5 KO on Vascular Properties of Middle Cerebral Artery in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569939. [PMID: 38106132 PMCID: PMC10723354 DOI: 10.1101/2023.12.04.569939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.
Collapse
Affiliation(s)
- Chengyun Tang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Jane J. Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Joshua R. Jefferson
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Claire Johnson
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Richard J. Roman
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Fan Fan
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
11
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
12
|
Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, Wang S, Singh K, Menjolian G, Farrell T, Mesci A, Liu S, Berg T, Bramson JL, Steinberg GR, Tsakiridis T. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol 2023; 6:919. [PMID: 37684337 PMCID: PMC10491589 DOI: 10.1038/s42003-023-05289-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Radiotherapy is a non-invasive standard treatment for prostate cancer (PC). However, PC develops radio-resistance, highlighting a need for agents to improve radiotherapy response. Canagliflozin, an inhibitor of sodium-glucose co-transporter-2, is approved for use in diabetes and heart failure, but is also shown to inhibit PC growth. However, whether canagliflozin can improve radiotherapy response in PC remains unknown. Here, we show that well-tolerated doses of canagliflozin suppress proliferation and survival of androgen-sensitive and insensitive human PC cells and tumors and sensitize them to radiotherapy. Canagliflozin blocks mitochondrial respiration, promotes AMPK activity, inhibits the MAPK and mTOR-p70S6k/4EBP1 pathways, activates cell cycle checkpoints, and inhibits proliferation in part through HIF-1α suppression. Canagliflozin mediates transcriptional reprogramming of several metabolic and survival pathways known to be regulated by ETS and E2F family transcription factors. Genes downregulated by canagliflozin are associated with poor PC prognosis. This study lays the groundwork for clinical investigation of canagliflozin in PC prevention and treatment in combination with radiotherapy.
Collapse
Affiliation(s)
- Amr Ali
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Bassem Mekhaeil
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
| | - Olga-Demetra Biziotis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elham Ahmadi
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Simon Wang
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Kanwaldeep Singh
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Gabe Menjolian
- Department of Radiotherapy, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Thomas Farrell
- Department of Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Stanley Liu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tobias Berg
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan L Bramson
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Theodoros Tsakiridis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada.
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Feng Q, Feng Z, Yang B, Han S, Wen S, Lu G, Jin R, Xu B, Zhang H, Xu L, Xie Z. Metatranscriptome Reveals Specific Immune and Microbial Signatures of Respiratory Syncytial Virus Infection in Children. Microbiol Spectr 2023; 11:e0410722. [PMID: 36861979 PMCID: PMC10100699 DOI: 10.1128/spectrum.04107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequently detected respiratory virus in children with acute lower respiratory tract infection. Previous transcriptome studies have focused on systemic transcriptional profiles in blood and have not compared the expression of multiple viral transcriptomes. Here, we sought to compare transcriptome responses to infection with four common respiratory viruses for children (respiratory syncytial virus, adenovirus, influenza virus, and human metapneumovirus) in respiratory samples. Transcriptomic analysis showed that cilium organization and assembly were common pathways related to viral infection. Compared with other virus infections, collagen generation pathways were distinctively enriched in RSV infection. We identified two interferon-stimulated genes (ISGs), CXCL11 and IDO1, which were upregulated to a greater extent in the RSV group. In addition, a deconvolution algorithm was used to analyze the composition of immune cells in respiratory tract samples. The proportions of dendritic cells and neutrophils in the RSV group were significantly higher than those in the other virus groups. The RSV group exhibited a higher richness of Streptococcus than the other virus groups. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to RSV. Last, according to host-microbe network interference, RSV may disrupt respiratory microbial composition by changing the immune microenvironment. IMPORTANCE In the present study, we demonstrated the comparative results of host responses to infection between RSV and other three common respiratory viruses for children. The comparative transcriptomics study of respiratory samples sheds light on the significant roles that ciliary organization and assembly, extracellular matrix changes, and microbial interactions play in the pathogenesis of RSV infection. Additionally, it was demonstrated that the recruitment of neutrophils and dendritic cells (DCs) in the respiratory tract is more substantial in RSV infection than in other viral infections. Finally, we discovered that RSV infection dramatically increased the expression of two ISGs (CXCL11 and IDO1) and the abundance of Streptococcus.
Collapse
Affiliation(s)
- Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong, China
| | - Shuaibing Han
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Shunhang Wen
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gen Lu
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children’s Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Hailin Zhang
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Han P, Qiao Y, He J, Men Y, Liu Y, Liu X, Wang X. Identification and functional analysis of dual-specificity phosphatases (DUSP) genes in Japanese flounder (Paralichthys olivaceus) against temperature and Edwardsiella tarda stress. FISH & SHELLFISH IMMUNOLOGY 2022; 130:453-461. [PMID: 36162775 DOI: 10.1016/j.fsi.2022.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dual-specificity Phosphatases (DUSPs) are not only the key regulators of dephosphorylating and inactivating mitogen-activated protein kinases (MAPKs), but play a crucial role in the immune response. However, the role of DUSP genes in Japanese flounder (PoDUSPs) is still unclear. In this study, 28 DUSP genes in Japanese flounder were identified and classified based on the whole genome database. Phylogenetic analysis and protein structure analysis revealed that DUSPs had highly conserved domains in teleosts. Molecular evolution analysis indicated that the PoDUSP genes were conservative during evolution and were functional-constrained. Meanwhile, PoDUSP genes were found to express in different embryonic and larval stages which might play the role of sentinel in healthy organisms. Furthermore, PoDUSP genes' expression profiles after temperature stress and Edwardsiella tarda (E. tarda) infection were determined in Japanese flounder without precedent, and the results demonstrated that Podusp1, Podusp2 and Podusp16 were more respective to temperature variation whereas Podusp1 and Podusp6 were more respective to E. tarda infection. In summary, our results provide useful resources for understanding the immune responsibilities of DUSP genes in flatfish.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yu Men
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
15
|
Moonen JR, Chappell J, Shi M, Shinohara T, Li D, Mumbach MR, Zhang F, Nair RV, Nasser J, Mai DH, Taylor S, Wang L, Metzger RJ, Chang HY, Engreitz JM, Snyder MP, Rabinovitch M. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress. Nat Commun 2022; 13:4941. [PMID: 35999210 PMCID: PMC9399231 DOI: 10.1038/s41467-022-32566-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote the expression of homeostatic endothelial genes. By combining molecular and computational approaches we discover enhancers that loop to promoters of KLF4- and LSS-responsive genes that stabilize endothelial cells and suppress inflammation, such as BMPR2, SMAD5, and DUSP5. By linking enhancers to genes that they regulate under physiologic LSS, our work establishes a foundation for interpreting how non-coding DNA variants in these regions might disrupt protective gene expression to influence vascular disease.
Collapse
Affiliation(s)
- Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James Chappell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Minyi Shi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tsutomu Shinohara
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dan Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maxwell R Mumbach
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel H Mai
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ross J Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jesse M Engreitz
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Kidger AM, Saville MK, Rushworth LK, Davidson J, Stellzig J, Ono M, Kuebelsbeck LA, Janssen KP, Holzmann B, Morton JP, Sansom OJ, Caunt CJ, Keyse SM. Suppression of mutant Kirsten-RAS (KRAS G12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene 2022; 41:2811-2823. [PMID: 35418690 PMCID: PMC9106580 DOI: 10.1038/s41388-022-02302-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.
Collapse
Affiliation(s)
- Andrew M Kidger
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Mark K Saville
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Linda K Rushworth
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jane Davidson
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Julia Stellzig
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Motoharu Ono
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Ludwig A Kuebelsbeck
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jennifer P Morton
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
17
|
Repression of T cell-mediated alloimmunity by CX-5461 via the p53-DUSP5 pathway. Pharmacol Res 2022; 177:106120. [DOI: 10.1016/j.phrs.2022.106120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
|
18
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
19
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Drube S, Müller S, Weber F, Wegner P, Böttcher‐Loschinski R, Gaestel M, Hutloff A, Kamradt T, Andreas N. IL-3 is essential for ICOS-L stabilization on mast cells, and sustains the IL-33-induced RORγt + T reg generation via enhanced IL-6 induction. Immunology 2021; 163:86-97. [PMID: 33427298 PMCID: PMC8044339 DOI: 10.1111/imm.13305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
IL-33 is a member of the IL-1 family. By binding to its receptor ST2 (IL-33R) on mast cells, IL-33 induces the MyD88-dependent activation of the TAK1-IKK2 signalling module resulting in activation of the MAP kinases p38, JNK1/2 and ERK1/2, and of NFκB. Depending on the kinases activated in these pathways, the IL-33-induced signalling is essential for production of IL-6 or IL-2. This was shown to control the dichotomy between RORγt+ and Helios+ Tregs , respectively. SCF, the ligand of c-Kit (CD117), can enhance these effects. Here, we show that IL-3, another growth factor for mast cells, is essential for the expression of ICOS-L on BMMCs, and costimulation with IL-3 potentiated the IL-33-induced IL-6 production similar to SCF. In contrast to the enhanced IL-2 production by SCF-induced modulation of the IL-33 signalling, IL-3 blocked the production of IL-2. Consequently, IL-3 shifted the IL-33-induced Treg dichotomy towards RORγt+ Tregs at the expense of RORγt- Helios+ Tregs . However, ICOS-L expression was downregulated by IL-33. In line with that, ICOS-L did not play any important role in the Treg modulation by IL-3/IL-33-activated mast cells. These findings demonstrate that different from the mast cell growth factor SCF, IL-3 can alter the IL-33-induced and mast cell-dependent regulation of Treg subpopulations by modulating mast cell-derived cytokine profiles.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Sylvia Müller
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Franziska Weber
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Philine Wegner
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | | | - Matthias Gaestel
- Institut für ZellbiochemieMedizinische Hochschule HannoverHannoverGermany
| | - Andreas Hutloff
- Institut für Immunologie und Institut für Klinische MolekularbiologieUniversitätsklinikum Schleswig‐HolsteinKielGermany
| | - Thomas Kamradt
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Nico Andreas
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| |
Collapse
|
21
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
22
|
Jia Y, Liu J, Hu H, Duan Q, Chen J, Li L. MiR-363-3p attenuates neonatal hypoxic-ischemia encephalopathy by targeting DUSP5. Neurosci Res 2021; 171:103-113. [PMID: 33744332 DOI: 10.1016/j.neures.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023]
Abstract
Neonatal hypoxic-ischemia encephalopathy (HIE) refers to hypoxic-ischemic brain damage caused by perinatal asphyxia. Increasing evidence has revealed the crucial roles of microRNAs (miRNAs) in neonatal HIE. In the current research, we aimed to explore the biological role of miR-363-3p in neonatal HIE. For this purpose, we established in vitro models of PC-12 and SH-SY5Y cells subjected to oxygen-glucose deprivation and reperfusion (OGD/R) and an in vivo rat model subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) treatment. First, using H&E staining, TTC staining, and western blot analysis, we observed that DUSP5 knockdown suppressed HIE in vivo. Then, by performing flow cytometric analysis, western blotting, RT-qPCR, and MTT assays, we observed that DUSP5 silencing suppressed OGD/R-induced cell injury in vitro. Subsequently, we explored the potential regulatory mechanism of DUSP5 in OGD/R-treated cells with luciferase reporter assays and RT-qPCR analysis. The results demonstrated that DUSP5 was targeted by miR-363-3p. Next, functional assays, including flow cytometric analysis, MTT assays, western blotting and RT-qPCR, were conducted to explore the biological functions of miR-363-3p in SH-SY5Y and PC-12 cells. Our data showed that miR-363-3p overexpression suppressed OGD/R-induced cell injury. Finally, the results from rescue experiments showed that enhanced DUSP5 expression counteracted the effect of miR-363-3p overexpression. In conclusion, our data suggested that miR-363-3p attenuates neonatal HIE by targeting DUSP5.
Collapse
Affiliation(s)
- Ying Jia
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Jianping Liu
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China.
| | - Haozhong Hu
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Qingning Duan
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Jiebin Chen
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Lining Li
- Department of Paediatrics, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| |
Collapse
|
23
|
DUSP5 suppresses interleukin-1β-induced chondrocyte inflammation and ameliorates osteoarthritis in rats. Aging (Albany NY) 2020; 12:26029-26046. [PMID: 33361528 PMCID: PMC7803505 DOI: 10.18632/aging.202252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by deterioration of articular cartilage. Dual specificity phosphatase 5 (DUSP5), a member of the DUSP subfamily, is known to regulate cellular inflammation. Here, we studied the relationship between DUSP5 and OA by knockdown and overexpression DUSP5, respectively. Results from in vitro experiments demonstrated that the knockdown of DUSP5 increased interleukin-1β (IL-1β)-induced expression of inflammatory genes, such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), and matrix metalloproteinases (MMPs) in chondrocytes, whereas it decreased the expression of anti-inflammatory genes, such as tissue inhibitor of metalloproteinase 3 (TIMP3) and IL-10. Conversely, the overexpression of DUSP5 suppressed the IL-1β-induced expression of iNOS, COX-2, and MMPs, and upregulated the expression of TIMP3 and IL-10. Moreover, knockdown of DUSP5 enhanced the IL-1β-induced activation of NF-κB and ERK pathways, whereas its overexpression inhibited these pathways. DUSP5 overexpression prevented cartilage degeneration in a rat OA model, while its knockdown reversed that effect. Our findings reveal that DUSP5 suppresses IL-1β-induced chondrocyte inflammation by inhibiting the NF-κB and ERK signaling pathways and ameliorates OA.
Collapse
|
24
|
Elghobashy YA, Assar MFA, Mahmoud AA, Monem A Eltorgoman A, Elmasry S. The relation between mitogen activated protein kinase (MAPK) pathway and different genes expression in patients with beta Thalassemia. Biochem Biophys Rep 2020; 24:100836. [PMID: 33195827 PMCID: PMC7644576 DOI: 10.1016/j.bbrep.2020.100836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND β-thalassemia is an inherited hemoglobinopathy resulting in quantitative changes in the β-globin chain. Understanding the molecular basis of that disorder requires studying the expression of genes controlling the pathways that affect the erythropoietic homeostasis especially the MAPK pathway. The MAPKs are a family of serine/threonine kinases that play an essential role in connecting cell-surface receptors to DNA in the nucleus of the cell. AIM to study the effect of expression of GNAI2, DUSP5 and ARRB1 genes on MAPK signaling pathway in pediatric patients with beta thalassemia. METHODS Forty children with beta thalassemia major (TM), forty children with beta thalassemia intermedia (TI) and forty age and gender matched healthy controls were enrolled in this study. Detection of GNAI2, DUSP5 and ARRB1 mRNA expression was done by real time polymerase chain reaction (RT-PCR). RESULTS revealed increased expression of ARRB1 (Arrestin Beta 1) gene, and decreased expression of both GNAI2 (Guanine nucleotide-binding protein G (i) subunit alpha-2) and DUSP5 (Dual specificity protein phosphatase 5) genes in both patient groups than control groups respectively. CONCLUSIONS Change in the rate of expression of ARRB1, GNAI2 and DUSP5 may have a role in the pathogenesis of abnormal hematopoiesis in cases of β thalassemia through affecting the MAPK pathway.
Collapse
Affiliation(s)
- Yasser AbdElsattar Elghobashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Mohamed FA. Assar
- Biochemistry Division of Chemistry Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Asmaa A. Mahmoud
- Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | | - Saher Elmasry
- Biochemistry Division of Chemistry Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
25
|
Kanda Y, Mizuno A, Takasaki T, Satoh R, Hagihara K, Masuko T, Endo Y, Tanabe G, Sugiura R. Down-regulation of dual-specificity phosphatase 6, a negative regulator of oncogenic ERK signaling, by ACA-28 induces apoptosis in NIH/3T3 cells overexpressing HER2/ErbB2. Genes Cells 2020; 26:109-116. [PMID: 33249692 DOI: 10.1111/gtc.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Dual-specificity phosphatase 6 (DUSP6) is a key negative feedback regulator of the member of the RAS-ERK MAPK signaling pathway that is associated with cellular proliferation and differentiation. Deterioration of DUSP6 expression could therefore result in deregulated growth activity. We have previously discovered ACA-28, a novel anticancer compound with a unique property to stimulate ERK phosphorylation and induce apoptosis in ERK-active melanoma cells. However, the mechanism of cancer cell-specific-apoptosis by ACA-28 remains obscure. Here, we investigated the involvement of DUSP6 in the mechanisms of the ACA-28-mediated apoptosis by using the NIH/3T3 cells overexpressing HER2/ErbB2 (A4-15 cells), as A4-15 exhibited higher ERK phosphorylation and are more susceptible to ACA-28 than NIH/3T3. We showed that A4-15 exhibited high DUSP6 protein levels, which require ERK activation. Notably, the silencing of the DUDSP6 gene by siRNA inhibited proliferation and induced apoptosis in A4-15, but not in NIH/3T3, indicating that A4-15 requires high DUSP6 expression for growth. Importantly, ACA-28 preferentially down-regulated the DUSP6 protein and proliferation in A4-15 via the proteasome, while it stimulated ERK phosphorylation. Collectively, the up-regulation of DUSP6 may exert a growth-promoting role in cancer cells overexpressing HER2. DUSP6 down-regulation in ERK-active cancer cells might have the potential as a novel cancer measure.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Ayami Mizuno
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Takashi Masuko
- Laboratory of Natural Drug Resources, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Yuichi Endo
- Laboratory of Natural Drug Resources, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan.,Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
26
|
Ohwada W, Tanno M, Yano T, Ong SB, Abe K, Sato T, Kuno A, Miki T, Sugawara H, Igaki Y, Miura T. Distinct intra-mitochondrial localizations of pro-survival kinases and regulation of their functions by DUSP5 and PHLPP-1. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165851. [PMID: 32480039 DOI: 10.1016/j.bbadis.2020.165851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
ERK and Akt have been shown to regulate cell sensitivity to death-inducing stress by phosphorylating GSK-3β, a major modulator of the threshold for mitochondrial permeability transition. Here we examined intra-mitochondrial localization of the pro-survival kinases and their regulation by phosphatases. Stepwise trypsin digestion of mitochondria isolated from HEK293 or H9c2 cells was performed, and immunoblotting revealed that GSK-3β and ERK localized dominantly in the outer membrane (OM), while Akt resided at comparable levels in OM, the inner membrane (IM) and the matrix. Treatment with IGF-1 increased the protein level of Akt in the matrix, while ERK and GSK-3β protein levels were increased in OM. Simultaneously, IGF-1 treatment elevated the level of Thr202/Tyr204-phospho-ERK in IM and matrix and levels of Ser473-phospho-Akt and Ser9-phospho-GSK-3β in OM, IM and matrix. Exposing cells to reactive oxygen species (ROS) by using antimycin A increased the levels of DUSP5 and PHLPP-1 mainly in OM and induced dephosphorylation of Akt, ERK and GSK-3β. The mitochondrial localization of DUSP5 was confirmed by experiments with mitochondria purified by Percoll gradient centrifugation and by transfection of cells with GFP-tagged DUSP5. Knockdown of either DUSP5 or PHLPP-1 increased the levels of both Thr202/Tyr204-phospho-ERK and Ser473-phospho-Akt in mitochondria. Cell death induced by antimycin A was suppressed by siRNA-mediated knockdown of DUSP5. The results suggest that Akt and ERK in mitochondria show distinct intra-mitochondrial localization and crosstalk in GSK-3β regulation and that recruitment of DUSP5 as well as PHLPP-1 to mitochondria contributes to ROS-induced termination of the protective signaling.
Collapse
Affiliation(s)
- Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sang-Bing Ong
- Signature Research Program in Cardiovascular & Metabolic Diseases, Duke-NUS Medical School, Singapore
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Igaki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
27
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 766] [Impact Index Per Article: 153.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Chen LL, Zmuda EJ, Talavera MM, Frick J, Brock GN, Liu Y, Klebanoff MA, Trittmann JK. Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatr Res 2020; 87:81-87. [PMID: 31330530 PMCID: PMC6962530 DOI: 10.1038/s41390-019-0502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) in patients with bronchopulmonary dysplasia (BPD) results from vasoconstriction and/or vascular remodeling, which can be regulated by mitogen-activated protein kinases (MAPKs). MAPKs are deactivated by dual-specificity phosphatases (DUSPs). We hypothesized that single-nucleotide polymorphisms (SNPs) in DUSP genes could be used to predict PH in BPD. METHODS Preterm infants diagnosed with BPD (n = 188) were studied. PH was defined by echocardiographic criteria. Genomic DNA isolated from patient blood samples was analyzed for 31 SNPs in DUSP genes. Clinical characteristics and minor allele frequencies were compared between BPD-PH (cases) and BPD-without PH (control) groups. Biomarker models to predict PH in BPD using clinical and SNP data were tested by calculations of area under the ROC curve. RESULTS In our BPD cohort, 32% (n = 61) had PH. Of the DUSP SNPs evaluated, DUSP1 SNP rs322351 was less common, and DUSP5 SNPs rs1042606 and rs3793892 were more common in cases than in controls. The best fit biomarker model combines clinical and DUSP genetic data with an area under the ROC curve of 0.76. CONCLUSION We identified three DUSP SNPs as potential BPD-PH biomarkers. Combining clinical and DUSP genetic data yields the most robust predictor for PH in BPD.
Collapse
Affiliation(s)
- Lauren L Chen
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Erik J Zmuda
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Maria M Talavera
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jessica Frick
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Guy N Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yusen Liu
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mark A Klebanoff
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jennifer K Trittmann
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
29
|
Zhang H, Zhang C, Liu Y, Gao W, Wang S, Fang X, Guo Y, Li M, Liu R, Roman RJ, Sun P, Fan F. Influence of dual-specificity protein phosphatase 5 on mechanical properties of rat cerebral and renal arterioles. Physiol Rep 2020; 8:e14345. [PMID: 31960618 PMCID: PMC6971329 DOI: 10.14814/phy2.14345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
We recently reported that KO of Dual-specificity protein phosphatase 5 (Dusp5) enhances myogenic reactivity and blood flow autoregulation in the cerebral and renal circulations in association with increased levels of pPKC and pERK1/2 in the cerebral and renal arteries and arterioles. In the kidney, hypertension-related renal damage was significantly attenuated in Dusp5 KO rats. Elevations in pPKC and pERK1/2 promote calcium influx in VSMC and facilitate vasoconstriction. However, whether DUSP5 plays a role in altering the passive mechanical properties of cerebral and renal arterioles has never been investigated. In this study, we found that KO of Dusp5 did not alter body weights, kidney and brain weights, plasma glucose, and HbA1C levels. The expression of pERK is higher in the nucleus of primary VSMC isolated from Dusp5 KO rats. Dusp5 KO rats exhibited eutrophic vascular hypotrophy with smaller intracerebral parenchymal arterioles and renal interlobular arterioles without changing the wall-to-lumen ratios. These arterioles from Dusp5 KO rats displayed higher myogenic tones, better distensibility, greater compliance, and less stiffness compared with arterioles from WT control rats. VSMC of Dusp5 KO rats exhibited a stronger contractile capability. These results demonstrate, for the first time, that DUSP5 contributes to the regulation of the passive mechanical properties of cerebral and renal arterioles and provide new insights into the role of DUSP5 in vascular function, cancer, stroke, and other cardiovascular diseases.
Collapse
Affiliation(s)
- Huawei Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Department of NeurosurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chao Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Yedan Liu
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Wenjun Gao
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Shaoxun Wang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Xing Fang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ya Guo
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Man Li
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ruen Liu
- Department of NeurosurgeryPeking University People's HospitalBeijingChina
| | - Richard J. Roman
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Peng Sun
- Department of NeurosurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
30
|
Endoplasmic Reticulum Stress Increases DUSP5 Expression via PERK-CHOP Pathway, Leading to Hepatocyte Death. Int J Mol Sci 2019; 20:ijms20184369. [PMID: 31491992 PMCID: PMC6770509 DOI: 10.3390/ijms20184369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte death is critical for the pathogenesis of liver disease progression, which is closely associated with endoplasmic reticulum (ER) stress responses. However, the molecular basis for ER stress-mediated hepatocyte injury remains largely unknown. This study investigated the effect of ER stress on dual-specificity phosphatase 5 (DUSP5) expression and its role in hepatocyte death. Analysis of Gene Expression Omnibus (GEO) database showed that hepatic DUSP5 levels increased in the patients with liver fibrosis, which was verified in mouse models of liver diseases with ER stress. DUSP5 expression was elevated in both fibrotic and acutely injured liver of mice treated with liver toxicants. Treatment of ER stress inducers enhanced DUSP5 expression in hepatocytes, which was validated in vivo condition. The induction of DUSP5 by ER stress was blocked by either treatment with a chemical inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, or knockdown of C/EBP homologous protein (CHOP), whereas it was not affected by the silencing of IRE1 or ATF6. In addition, DUSP5 overexpression decreased extracellular-signal-regulated kinase (ERK) phosphorylation, but increased cleaved caspase-3 levels. Moreover, the reduction of cell viability under ER stress condition was attenuated by DUSP5 knockdown. In conclusion, DUSP5 expression is elevated in hepatocytes by ER stress through the PERK-CHOP pathway, contributing to hepatocyte death possibly through ERK inhibition.
Collapse
|
31
|
Li R, Grimm SA, Mav D, Gu H, Djukovic D, Shah R, Merrick BA, Raftery D, Wade PA. Transcriptome and DNA Methylome Analysis in a Mouse Model of Diet-Induced Obesity Predicts Increased Risk of Colorectal Cancer. Cell Rep 2019; 22:624-637. [PMID: 29346762 PMCID: PMC5793878 DOI: 10.1016/j.celrep.2017.12.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) tends to occur at older age; however, CRC incidence rates have been rising sharply among young age groups. The increasing prevalence of obesity is recognized as a major risk, yet the mechanistic underpinnings remain poorly understood. Using a diet-induced obesity mouse model, we identified obesity-associated molecular changes in the colonic epithelium of young and aged mice, and we further investigated whether the changes were reversed after weight loss. Transcriptome analysis indicated that obesity-related colonic cellular metabolic switch favoring long-chain fatty acid oxidation happened in young mice, while obesity-associated downregulation of negative feedback regulators of pro-proliferative signaling pathways occurred in older mice. Strikingly, colonic DNA methylome was pre-programmed by obesity at young age, priming for a tumor-prone gene signature after aging. Furthermore, obesity-related changes were substantially preserved after short-term weight loss, but they were largely reversed after long-term weight loss. We provided mechanistic insights into increased CRC risk in obesity.
Collapse
Affiliation(s)
- Ruifang Li
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Deepak Mav
- Sciome, LLC, 2 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Ruchir Shah
- Sciome, LLC, 2 Davis Drive, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
32
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
33
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
34
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int J Mol Sci 2019; 20:ijms20112668. [PMID: 31151270 PMCID: PMC6600639 DOI: 10.3390/ijms20112668] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of signal transduction and cell responses. Abnormalities in MAPKs are associated with multiple diseases. Dual-specificity phosphatases (DUSPs) dephosphorylate many key signaling molecules, including MAPKs, leading to the regulation of duration, magnitude, or spatiotemporal profiles of MAPK activities. Hence, DUSPs need to be properly controlled. Protein post-translational modifications, such as ubiquitination, phosphorylation, methylation, and acetylation, play important roles in the regulation of protein stability and activity. Ubiquitination is critical for controlling protein degradation, activation, and interaction. For DUSPs, ubiquitination induces degradation of eight DUSPs, namely, DUSP1, DUSP4, DUSP5, DUSP6, DUSP7, DUSP8, DUSP9, and DUSP16. In addition, protein stability of DUSP2 and DUSP10 is enhanced by phosphorylation. Methylation-induced ubiquitination of DUSP14 stimulates its phosphatase activity. In this review, we summarize the knowledge of the regulation of DUSP stability and ubiquitination through post-translational modifications.
Collapse
|
36
|
Gupta A, Brahmbhatt J, Syrlybaeva R, Bodnar C, Bodnar N, Bongard R, Pokkuluri PR, Sem DS, Ramchandran R, Rathore R, Talipov MR. Role of Conserved Histidine and Serine in the HCXXXXXRS Motif of Human Dual-Specificity Phosphatase 5. J Chem Inf Model 2019; 59:1563-1574. [PMID: 30835471 DOI: 10.1021/acs.jcim.8b00919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) pathway is functionally generic and critical in maintaining physiological homeostasis and normal tissue development. This pathway is under tight regulation, which is in part mediated by dual-specific phosphatases (DUSPs), which dephosphorylate serine, threonine, and tyrosine residues of the ERK family of proteins. DUSP5 is of high clinical interest because of mutations we identified in this protein in patients with vascular anomalies. Unlike other DUSPs, DUSP5 has unique specificity toward substrate pERK1/2. Using molecular docking and simulation strategies, we previously showed that DUSP5 has two pockets, which are utilized in a specific fashion to facilitate specificity toward catalysis of its substrate pERK1/2. Remarkably, most DUSPs share high similarity in their catalytic sites. Studying the catalytic domain of DUSP5 and identifying amino acid residues that are important for dephosphorylating pERK1/2 could be critical in developing small molecules for therapies targeting DUSP5. RESULTS In this study, we utilized computational modeling to identify and predict the importance of two conserved amino acid residues, H262 and S270, in the DUSP5 catalytic site. Modeling studies predicted that catalytic activity of DUSP5 would be altered if these critical conserved residues were mutated. We next generated independent Glutathione-S-Transferase (GST)-tagged full-length DUSP5 mutant proteins carrying specific mutations H262F and S270A in the phosphatase domain. Biochemical analysis was performed on these purified proteins, and consistent with our computational prediction, we observed altered enzyme activity kinetic profiles for both mutants with a synthetic small molecule substrate (pNPP) and the physiological relevant substrate (pERK) when compared to wild type GST-DUSP5 protein. CONCLUSION Our molecular modeling and biochemical studies combined demonstrate that enzymatic activity of phosphatases can be manipulated by mutating specific conserved amino acid residues in the catalytic site (phosphatase domain). This strategy could facilitate generation of small molecules that will serve as agonists/antagonists of DUSP5 activity.
Collapse
Affiliation(s)
- Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Children's Research Institute (CRI), Developmental Vascular Biology Program , Translational and Biomedical Research Center , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States
| | - Jaladhi Brahmbhatt
- BioTechnology Discovery Research, Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46221 , United States
| | - Raulia Syrlybaeva
- Department of Chemistry & Biochemistry , New Mexico State University , 1175 N. Horseshoe Drive , Las Cruces , New Mexico 88003 , United States
| | - Catherine Bodnar
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Natalia Bodnar
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Robert Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Phani Raj Pokkuluri
- Biosciences Division , Argonne National Laboratory , Lemont , Illinois 60439 United States
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Children's Research Institute (CRI), Developmental Vascular Biology Program , Translational and Biomedical Research Center , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States.,Department of Obstetrics and Gynecology , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States
| | - Rajendra Rathore
- Department of Chemistry , Marquette University , Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street , Milwaukee , Wisconsin 53201 , United States
| | - Marat R Talipov
- Department of Chemistry & Biochemistry , New Mexico State University , 1175 N. Horseshoe Drive , Las Cruces , New Mexico 88003 , United States
| |
Collapse
|
37
|
Bongard RD, Lepley M, Gastonguay A, Syrlybaeva RR, Talipov MR, Lipinsky RAJ, Leigh NR, Brahmbhatt J, Kutty R, Rathore R, Ramchandran R, Sem DS. Discovery and Characterization of Halogenated Xanthene Inhibitors of DUSP5 as Potential Photodynamic Therapeutics. J Photochem Photobiol A Chem 2019; 375:114-131. [PMID: 31839699 PMCID: PMC6910256 DOI: 10.1016/j.jphotochem.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual specific phosphatases (DUSPs) are an important class of mitogen-activated protein kinase (MAPK) regulators, and are drug targets for treating vascular diseases. Previously we had shown that DUSP5 plays a role in embryonic vertebrate vascular patterning. Herein, we screened a library of FDA-approved drugs and related compounds, using a para-nitrophenylphosphate substrate (pNPP)-based assay. This assay identified merbromin (also known as mercurochrome) as targeting DUSP5; and, we subsequently identified xanthene-ring based merbromin analogs eosin Y, erythrosin B, and rose bengal, all of which inhibit DUSP5 in vitro. Inhibition was time-dependent for merbromin, eosin Y, 2',7'-dibromofluorescein, and 2',7'-dichlorofluorescein, with enzyme inhibition increasing over time. Reaction progress curve data fit best to a slow-binding model of irreversible enzyme inactivation. Potency of the time-dependent compounds, except for 2',7'-dichlorofluorescein, was diminished when dithiothreitol (DTT) was present, suggesting thiol reactivity. Two additional merbromin analogs, erythrosin B and rose bengal also inhibit DUSP5, but have the therapeutic advantage of being less sensitive to DTT and exhibiting little time dependence for inhibition. Inhibition potency is correlated with the xanthene dye's LUMO energy, which affects ability to form light-activated radical anions, a likely active inhibitor form. Consistent with this hypothesis, rose bengal inhibition is light-dependent and demonstrates the expected red shifted spectrum upon binding to DUSP5, with a Kd of 690 nM. These studies provide a mechanistic foundation for further development of xanthene dyes for treating vascular diseases that respond to DUSP5 inhibition, with the following relative potencies: rose bengal > merbromin > erythrosin B > eosin Y.
Collapse
Affiliation(s)
- Robert D. Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097
| | - Michael Lepley
- Immucor Inc., 20925 Crossroads Circle, Waukesha, WI 53186
| | - Adam Gastonguay
- Nelson Mullins, One Post Office Square, 30 Floor, Boston MA 02109
| | - Raulia R. Syrlybaeva
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, NM 88003
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, NM 88003
| | - Rachel A. Jones Lipinsky
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14 Street, Milwaukee, WI 53201
| | - Noah R. Leigh
- Milwaukee Health Department, 841 N. Broadway, Milwaukee, WI 53202
| | - Jaladhi Brahmbhatt
- Eli Lilly and Company, Lilly Corporate Center Paten, Indianapolis, IN 46285
| | - Raman Kutty
- Department of Pediatrics, Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14 Street, Milwaukee, WI 53201
| | - Ramani Ramchandran
- Department of Pediatrics, Obstetrics and Gynecology, Children’s Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226
| | - Daniel S. Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097
| |
Collapse
|
38
|
Wang R, Bao H, Du W, Chen X, Liu H, Han D, Wang L, Wu J, Wang C, Yang M, Liu Z, Zhang N, Teng L. P68 RNA helicase promotes invasion of glioma cells through negatively regulating DUSP5. Cancer Sci 2019; 110:107-117. [PMID: 30387548 PMCID: PMC6317933 DOI: 10.1111/cas.13858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of NeurologyThe Second Clinical College of Harbin Medical UniversityHarbinChina
| | - Hong‐Bo Bao
- Department of NeurosurgeryCancer Hospital of Harbin Medical UniversityHarbinChina
| | - Wen‐Zhong Du
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Xiao‐Feng Chen
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Huai‐Lei Liu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Da‐Yong Han
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Li‐Gang Wang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Jia‐Ning Wu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Chun‐Lei Wang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Ming‐Chun Yang
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Zhan‐Wen Liu
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Na Zhang
- Department of Laboratory DiagnosticsThe First Clinical College of Harbin Medical UniversityHarbinChina
| | - Lei Teng
- Department of NeurosurgeryThe First Clinical College of Harbin Medical UniversityHarbinChina
| |
Collapse
|
39
|
DUSP5 expression associates with poor prognosis in human neuroblastoma. Exp Mol Pathol 2018; 105:272-278. [DOI: 10.1016/j.yexmp.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
|
40
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
41
|
Pourteymour S, Hjorth M, Lee S, Holen T, Langleite TM, Jensen J, Birkeland KI, Drevon CA, Eckardt K. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise. Physiol Rep 2018; 5:5/19/e13459. [PMID: 28989118 PMCID: PMC5641939 DOI: 10.14814/phy2.13459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
Abstract
Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen‐activated protein kinases (MAPKs) such as extracellular signal‐regulated kinase (ERK)1/2, which returns to pre‐exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2‐specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre‐exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre‐exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5. However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2‐independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Sindre Lee
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torgrim M Langleite
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
43
|
DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis. Sci Rep 2018; 8:1767. [PMID: 29379130 PMCID: PMC5788859 DOI: 10.1038/s41598-018-20176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
The ERK signalling pathway regulates key cell fate decisions in the intestinal epithelium and is frequently dysregulated in colorectal cancers (CRCs). Variations in the dynamics of ERK activation can induce different biological outcomes and are regulated by multiple mechanisms, including activation of negative feedback loops involving transcriptional induction of dual-specificity phosphatases (DUSPs). We have found that the nuclear ERK-selective phosphatase DUSP5 is downregulated in colorectal tumours and cell lines, as previously observed in gastric and prostate cancer. The DUSP5 promoter is methylated in a subset of CRC cell lines and primary tumours, particularly those with a CpG island methylator phenotype (CIMP). However, this epigenetic change alone could not account for reduced DUSP5 expression in CRC cells. Functionally, DUSP5 depletion failed to alter ERK signalling or proliferation in CRC cell lines, and its transgenic overexpression in the mouse intestine had minimal impact on normal intestinal homeostasis or tumour development. Our results suggest that DUSP5 plays a limited role in regulating ERK signalling associated with the growth of colorectal tumours, but that methylation the DUSP5 gene promoter can serve as an additional means of identifying CIMP-high colorectal cancers.
Collapse
|
44
|
Monteiro LF, Ferruzo PYM, Russo LC, Farias JO, Forti FL. DUSP3/VHR: A Druggable Dual Phosphatase for Human Diseases. Rev Physiol Biochem Pharmacol 2018; 176:1-35. [PMID: 30069819 DOI: 10.1007/112_2018_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Collapse
Affiliation(s)
- Lucas Falcão Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Jessica Oliveira Farias
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio Luís Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Seo H, Cho YC, Ju A, Lee S, Park BC, Park SG, Kim JH, Kim K, Cho S. Dual-specificity phosphatase 5 acts as an anti-inflammatory regulator by inhibiting the ERK and NF-κB signaling pathways. Sci Rep 2017; 7:17348. [PMID: 29229953 PMCID: PMC5725455 DOI: 10.1038/s41598-017-17591-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated kinase (ERK), suppresses tumors in several types of cancer, its functional roles remain largely unknown. Here, we show that DUSP5 is induced during lipopolysaccharide (LPS)-mediated inflammation and inhibits nuclear factor-κB (NF-κB) activity. DUSP5 mRNA and protein expression increased transiently in LPS-stimulated RAW 264.7 cells and then returned to basal levels. DUSP5 overexpression in RAW 264.7 cells suppressed the production of pro-inflammatory tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), whereas knockdown of DUSP5 increased their expression. Investigation of two major inflammatory signaling pathways, mitogen-activated protein kinase (MAPK) and NF-κB, using activator protein-1 (AP-1) and NF-κB reporter plasmids, respectively, showed that NF-κB transcription activity was downregulated by DUSP5 in a phosphatase activity-independent manner whereas AP-1 activity was inhibited by DUSP5 phosphatase activity towards ERK,. Further investigation showed that DUSP5 directly interacts with transforming growth factor beta-activated kinase 1 (TAK1) and inhibitor of κB (IκB) kinases (IKKs) but not with IκBα. DUSP5 binding to IKKs interfered with the association of TAK1 with IKKs, suggesting that DUSP5 might act as a competitive inhibitor of TAK1-IKKs association. Therefore, we propose that DUSP5 negatively regulates ERK and NF-κB in a phosphatase activity-dependent and -independent manner, respectively.
Collapse
Affiliation(s)
- Huiyun Seo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Anna Ju
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwang-ju, 61186, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
46
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
47
|
Habibian JS, Jefic M, Bagchi RA, Lane RH, McKnight RA, McKinsey TA, Morrison RF, Ferguson BS. DUSP5 functions as a feedback regulator of TNFα-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes. Sci Rep 2017; 7:12879. [PMID: 29018280 PMCID: PMC5635013 DOI: 10.1038/s41598-017-12861-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue inflammation is a central pathological element that regulates obesity-mediated insulin resistance and type II diabetes. Evidence demonstrates that extracellular signal-regulated kinase (ERK 1/2) activation (i.e. phosphorylation) links tumor necrosis factor α (TNFα) to pro-inflammatory gene expression in the nucleus. Dual specificity phosphatases (DUSPs) inactivate ERK 1/2 through dephosphorylation and can thus inhibit inflammatory gene expression. We report that DUSP5, an ERK1/2 phosphatase, was induced in epididymal white adipose tissue (WAT) in response to diet-induced obesity. Moreover, DUSP5 mRNA expression increased during obesity development concomitant to increases in TNFα expression. Consistent with in vivo findings, DUSP5 mRNA expression increased in adipocytes in response to TNFα, parallel with ERK1/2 dephosphorylation. Genetic loss of DUSP5 exacerbated TNFα-mediated ERK 1/2 signaling in 3T3-L1 adipocytes and in adipose tissue of mice. Furthermore, inhibition of ERK 1/2 and c-Jun N terminal kinase (JNK) signaling attenuated TNFα-induced DUSP5 expression. These data suggest that DUSP5 functions in the feedback inhibition of ERK1/2 signaling in response to TNFα, which resulted in increased inflammatory gene expression. Thus, DUSP5 potentially acts as an endogenous regulator of adipose tissue inflammation; although its role in obesity-mediated inflammation and insulin signaling remains unclear.
Collapse
Affiliation(s)
- Justine S Habibian
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA
| | - Mitra Jefic
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA
| | - Rushita A Bagchi
- University of Colorado Denver-Anschutz Medical Campus, Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, Aurora, Colorado, 80045, USA
| | - Robert H Lane
- Medical College of Wisconsin, Department of Pediatrics, Milwaukee, Wisconsin, 53226, USA
| | - Robert A McKnight
- University of Utah, Department of Pediatrics, Salt Lake City, Utah, 84108, USA
| | - Timothy A McKinsey
- University of Colorado Denver-Anschutz Medical Campus, Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, Aurora, Colorado, 80045, USA
| | - Ron F Morrison
- University of North Carolina Greensboro, Department of Nutrition, Greensboro, North Carolina, 27412, USA.
| | - Bradley S Ferguson
- University of Nevada, Department of Agriculture, Nutrition, and Veterinary Sciences, Reno, Reno, Nevada, 89557, USA.
| |
Collapse
|
48
|
Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, Bertherat J, Cochand-Priollet B, Raffin-Sanson ML, Cormier F, Groussin L. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS One 2017; 12:e0184861. [PMID: 28910386 PMCID: PMC5599027 DOI: 10.1371/journal.pone.0184861] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/03/2017] [Indexed: 02/05/2023] Open
Abstract
Background Molecular alterations of the MAPK pathway are frequently observed in papillary thyroid carcinomas (PTCs). It leads to a constitutive activation of the signalling pathway through an increase in MEK and ERK phosphorylation. ERK is negatively feedback-regulated by Dual Specificity Phosphatases (DUSPs), especially two ERK-specific DUSPs, DUSP5 (nuclear) and DUSP6 (cytosolic). These negative MAPK regulators may play a role in thyroid carcinogenesis. Methods MAPK pathway activation was analyzed in 11 human thyroid cancer cell lines. Both phosphatases were studied in three PCCL3 rat thyroid cell lines that express doxycycline inducible PTC oncogenes (RET/PTC3, H-RASV12 or BRAFV600E). Expression levels of DUSP5 and DUSP6 were quantified in 39 human PTCs. The functional role of DUSP5 and DUSP6 was investigated through their silencing in two human BRAFV600E carcinoma cell lines. Results BRAFV600E human thyroid cancer cell lines expressed higher phospho-MEK levels but not higher phospho-ERK levels. DUSP5 and DUSP6 are specifically induced by the MEK-ERK pathway in the three PTC oncogenes inducible thyroid cell lines. This negative feedback loop explains the tight regulation of p-ERK levels. DUSP5 and DUSP6 mRNA are overexpressed in human PTCs, especially in BRAFV600E mutated PTCs. DUSP5 and/or DUSP6 siRNA inactivation did not affect proliferation in two BRAFV600E mutated cell lines, which may be explained by a compensatory increase in other phosphatases. In the light of this, we observed a marked DUSP6 upregulation upon DUSP5 inactivation. Despite this, DUSP5 and DUSP6 positively control cell migration and invasion. Conclusions Our results are in favor of a stronger activation of the MAPK pathway in BRAFV600E PTCs. DUSP5 and DUSP6 have pro-tumorigenic properties in two BRAFV600E PTC cell line models.
Collapse
Affiliation(s)
- Camille Buffet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- * E-mail:
| | - Karine Hecale-Perlemoine
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Léopoldine Bricaire
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Florent Dumont
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Camille Baudry
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Frédérique Tissier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Pathology, Pitié-Salpêtrière Hospital, Paris, France
| | - Jérôme Bertherat
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Endocrinology, Cochin Hospital, Paris, France
| | | | | | - Françoise Cormier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Lionel Groussin
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Endocrinology, Cochin Hospital, Paris, France
| |
Collapse
|
49
|
Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R, Ramchandran R. Dual Specificity Phosphatase 5-Substrate Interaction: A Mechanistic Perspective. Compr Physiol 2017; 7:1449-1461. [PMID: 28915331 DOI: 10.1002/cphy.c170007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian genome contains approximately 200 phosphatases that are responsible for catalytically removing phosphate groups from proteins. In this review, we discuss dual specificity phosphatase 5 (DUSP5). DUSP5 belongs to the dual specificity phosphatase (DUSP) family, so named after the family members' abilities to remove phosphate groups from serine/threonine and tyrosine residues. We provide a comparison of DUSP5's structure to other DUSPs and, using molecular modeling studies, provide an explanation for DUSP5's mechanistic interaction and specificity toward phospho-extracellular regulated kinase, its only known substrate. We also discuss new insights from molecular modeling studies that will influence our current thinking of mitogen-activated protein kinase signaling. Finally, we discuss the lessons learned from identifying small molecules that target DUSP5, which might benefit targeting efforts for other phosphatases. © 2017 American Physiological Society. Compr Physiol 7:1449-1461, 2017.
Collapse
Affiliation(s)
- Raman G Kutty
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| | - Marat R Talipov
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico, USA
| | - Robert D Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rachel A Jones Lipinski
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA.,Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Noreena L Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
50
|
Li S, Hao G, Li J, Peng W, Geng X, Sun J. Comparative analysis of dual specificity protein phosphatase genes 1, 2 and 5 in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 68:368-376. [PMID: 28743632 DOI: 10.1016/j.fsi.2017.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Dual-specificity MAP kinase (MAPK) phosphatases (DUSPs) are well-established negative modulators in regulating MAPK signaling in mammalian cells and tissues. Our previous studies have shown the involvement of DUSP6 in regulating innate immunity in Japanese flounder Paralichthys olivaceus. In order to gain a better understanding of the role of DUSPs in fish innate immunity, in the present study we identified and characterized three additional DUSP genes including DUSP1, 2 and 5 in P. olivaceus. The three Japanese flounder DUSP proteins share common domain structures composed of a conserved N-terminal Rhodanase/CDC25 domain and a C-terminal catalytic phosphatase domain, while they show only less than 26% sequence identities, indicating that they may have different substrate selectivity. In addition, mRNA transcripts of all the three DUSP genes are detected in all examined Japanese flounder tissues; however, DUSP1 is dominantly expressed in spleen while DUSP2 and 5 are primarily expressed in skin. Furthermore, all the three DUSP genes are constitutively expressed in the Japanese flounder head kidney macrophages (HKMs) and peripheral blood leucocytes (PBLs) with unequal distribution patterns. Moreover, all the three DUSPs gene expression was induced differently in response to the LPS and double-stranded RNA mimic poly(I:C) stimulations both in the Japanese flounder HKMs and PBLs, suggesting an association of DUSPs with TLR signaling in fish. Taken together, the co-expression of various DUSPs members together with their different responses to the immune challenges indicate that the DUSP members may operate coordinately in regulating the MAPK-dependent immune responses in the Japanese flounder.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|