1
|
Sahu M, Jain U. Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167764. [PMID: 40088576 DOI: 10.1016/j.bbadis.2025.167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Responses against infection trigger several signaling pathways that lead to the production of cytokines, these cytokines release ROS and RNS, damaging DNA and proteins turn into various diseases including cancer. To combat these harmful cytokines, the Nrf2 pathway is activated. The gene NFE2L2 encodes Nrf2, which is divided into seven conserved domains (Neh1-7). The DLG and ETGE motifs, conserved sequences of amino acid in the Neh2 domain of Nrf2, bind to the BTB domain of Keap1. BTB domain promotes Keap1's homodimerization resulting in Cul3 recruitment providing scaffold formation to E2 ubiquitin ligase to form ubiquitin complex. Under normal conditions, this complex regularly degrades Nrf2. However, once the cell is exposed to oxidative stress by ROS interaction with Keap1 resulting in conformational changes that stabilize the Nrf2. Nrf2 further concentrates on the nucleus where it binds with the transcriptional factor to perform the desired genes transcription for synthesizing SOD, GSH, CAT, and various other proteins which reduce the ROS levels preventing certain diseases. To prevent cells from oxidative stress, molecular hydrogen activates the Nrf2 pathway. To activate the Nrf2 pathway, molecular hydrogen oxidizes the iron porphyrin which acts as an electrophile and interacts with Keap1's cysteine residue.
Collapse
Affiliation(s)
- Mridul Sahu
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India.
| |
Collapse
|
2
|
Yan L, Li X, Xu J, Tang S, Wang G, Shi M, Liu P. The CNC-family transcription factor NRF3: A crucial therapeutic target for cancer treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167794. [PMID: 40081618 DOI: 10.1016/j.bbadis.2025.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The CNC-bZIP family member NRF3 (NFE2L3) has received limited attention since its discovery. However, recent research has gradually revealed its biological functions, such as involvement in the regulation of cell differentiation, lipid metabolism, and malignant cell proliferation. Under physiological conditions, NRF3 is anchored to the endoplasmic reticulum within the cytoplasm and is biologically inactive. Upon cellular exposure to microenvironmental stresses such as oxidative stress, NRF3 translocates to the nucleus, binds to DNA, and acts as a transcription factor by inducing or repressing the expression of various genes. In terms of tumor regulation, NRF3 exhibits a dual role. It can function as a tumor suppressor to prevent the malignant progression of tumor tissues, protecting the organism from harm. Conversely, current research indicates that NRF3 plays a tumor-promoting role in most tumor tissues. NRF3 enhances the proliferation, migration and invasion of tumor cells by regulating cell cycle-related proteins and enhancing proteasome assembly to degrade tumor suppressors. Studies correlating NRF3 expression with clinical tumor features have found that elevated NRF3 expression is often associated with poor prognoses in various cancers, with patients exhibiting higher NRF3 expression typically having lower survival rates. Several studies suggest that NRF3 could serve as a clinical diagnostic and prognostic marker for tumors. Finally, from the clinical perspective, exploring the feasibility of inhibiting NRF3 activity in tumor treatment provides new insights for the development of NRF3-targeted oncological therapies.
Collapse
Affiliation(s)
- Liangwen Yan
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
3
|
Xiong Z, Liao Y, Zhang Z, Wan Z, Liang S, Guo J. Molecular Insights into Oxidative-Stress-Mediated Cardiomyopathy and Potential Therapeutic Strategies. Biomolecules 2025; 15:670. [PMID: 40427563 PMCID: PMC12108637 DOI: 10.3390/biom15050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has emerged as a key contributor to the pathogenesis of these conditions. ROS-mediated injury drives inflammation, protease activation, mitochondrial dysfunction, and cardiomyocyte damage, thereby promoting cardiac remodeling and functional decline. Although numerous studies implicate OS in cardiomyopathy progression, the precise molecular mechanisms remain incompletely defined. This review provides an updated synthesis of current findings on OS-related signaling pathways across cardiomyopathy subtypes, emphasizing emerging therapeutic targets within redox-regulatory networks. A deeper understanding of these mechanisms may guide the development of targeted antioxidant strategies to improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Yuanpeng Liao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Mauriello A, Giudice CD, Vecchio GED, Correra A, Maratea AC, Grieco M, Amata A, Quagliariello V, Maurea N, Proietti R, Giordano A, D’Andrea A, Russo V. Takotsubo Syndrome and Oxidative Stress: Physiopathological Linkage and Future Perspectives. Antioxidants (Basel) 2025; 14:522. [PMID: 40427405 PMCID: PMC12108290 DOI: 10.3390/antiox14050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Takotsubo syndrome (TTS) is an acute coronary syndrome of unknown prevalence with a physiopathological mechanism that is not yet fully understood. The course is generally benign. Current therapeutic management is based on limited evidence. Oxidative stress seems to play a role in the pathogenesis of cardiovascular diseases, especially regarding the endothelial dysfunction underlying TTS. The present review aims to describe the pathophysiological mechanisms linking oxidative stress and TTS, explore the impact of oxidative stress on TTS, and evaluate the efficacy of anti-oxidative stress therapies on TTS.
Collapse
Affiliation(s)
- Alfredo Mauriello
- S.C. Cardiologia, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (A.M.); (A.C.M.); (V.Q.); (N.M.)
| | - Carmen Del Giudice
- Cardiology Unit, Boscotrecase Hospital, ASL NA3Sud, 81042 Boscotrecase, Italy;
| | | | - Adriana Correra
- Intensive Cardiac Care Unit, “San Giuseppe Moscati” Hospital, ASL CE, 81031 Aversa, Italy;
| | - Anna Chiara Maratea
- S.C. Cardiologia, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (A.M.); (A.C.M.); (V.Q.); (N.M.)
| | - Martina Grieco
- Cardiology Unit, S. Giovanni Bosco Hospital, ASL NA1, 80100 Naples, Italy;
| | - Arianna Amata
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Vincenzo Quagliariello
- S.C. Cardiologia, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (A.M.); (A.C.M.); (V.Q.); (N.M.)
| | - Nicola Maurea
- S.C. Cardiologia, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy; (A.M.); (A.C.M.); (V.Q.); (N.M.)
| | - Riccardo Proietti
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L8 7TX, UK;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg, Suite 431-1900 N 12th Street, Philadelphia, PA 19122, USA;
| | - Antonello D’Andrea
- Cardiology and Intensive Care Unit, Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
5
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
6
|
Zhao Z, Lu H, Wang J, Wu T, Xu S, Ge Y, You Q, Jiang Z, Lu M. Discovery of β-amino acid substituted naphthalene sulfonamide derivatives as potent Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) protein-protein interaction inhibitors for ulcerative colitis management. Eur J Med Chem 2025; 288:117384. [PMID: 39965408 DOI: 10.1016/j.ejmech.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular defense system against oxidative insults. Directly inhibiting the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 protein-protein interaction (PPI) has emerged as a promising approach to activate Nrf2 for the treatment of diseases associated with oxidative stress. Herein, we identified β-amino acids as privileged structural fragments for designing novel naphthalene sulfonamide-based Keap1-Nrf2 PPI inhibitors. Comprehensive structure-activity relationship (SAR) exploration identified compound 19 as the optimal inhibitor with an IC50 of 0.55 μM for disrupting the Keap1-Nrf2 interaction and a Kd of 0.50 μM for binding to Keap1. Further studies demonstrated that 19 effectively activated the Nrf2-regulated cytoprotective system and provided protective effects against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in both in vitro and in vivo models. These findings highlight the potential of β-amino acid substituted naphthalene sulfonamide Keap1-Nrf2 inhibitor 19 as a prospective therapeutic agent for UC via Keap1 targeting.
Collapse
Affiliation(s)
- Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongjin Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| |
Collapse
|
7
|
Dziadosz-Brzezińska A, Kusiński S, Piróg A, Urban-Wójciuk Z, Padariya M, Kalathiya U, Kote S, Sznarkowska A. Considerations for antibody-based detection of NRF2 in human cells. Redox Biol 2025; 81:103549. [PMID: 40043449 PMCID: PMC11926719 DOI: 10.1016/j.redox.2025.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Based on the knockdown and overexpression experiments, it is accepted that in Tris-glycine SDS-PAGE human NRF2 migrates above 100 kDa, depending on the percentage of the gel. In 8 % Tris-glycine gel, monoclonal anti-NRF2 antibodies detect NRF2 signal as three bands migrating between 100 and 130 kDa. Here we used mass spectrometry to identify proteins immunoprecipitated by anti-NRF2 antibodies migrating in this range under steady state, upon NRF2 activator tert-BHQ and after translation inhibition with emetine. Our results show that three commercial monoclonal antibodies with epitopes in the center and in the C-terminus of NRF2 also bind calmegin, an ER-residing chaperone, that co-migrates with NRF2 in SDS-PAGE and gives stronger signal in western blot than NRF2. Calmegin has a much longer half life than NRF2 and resides in the cytoplasm, which differentiates it from NRF2. The most specific anti-NRF2 antibody in western blot, Cell Signaling Technology clone E5F1 is also specific in staining nuclear NRF2 in immunofluorescence. Other antibodies, that recognize calmegin in western blot, still can be specific for nuclear NRF2 in immunofluorescence, but require prior validation with NRF2 knockdown or knockout. These results appeal for caution and consideration when analyzing and interpreting results from antibody-based NRF2 detection.
Collapse
Affiliation(s)
- Alicja Dziadosz-Brzezińska
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Sara Kusiński
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Artur Piróg
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Zuzanna Urban-Wójciuk
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Monikaben Padariya
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Umesh Kalathiya
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Sachin Kote
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland
| | - Alicja Sznarkowska
- University of Gdansk, International Centre for Cancer Vaccine Science, Kladki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
8
|
Zakaria N, Menze ET, Elsherbiny DA, Tadros MG, George MY. Lycopene mitigates paclitaxel-induced cognitive impairment in mice; Insights into Nrf2/HO-1, NF-κB/NLRP3, and GRP-78/ATF-6 axes. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111262. [PMID: 39848561 DOI: 10.1016/j.pnpbp.2025.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemotherapy-induced cognitive impairment, referred to as "chemobrain", is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood. The current study explored the potential neuroprotective effect of lycopene in paclitaxel-induced cognitive impairment in mice and its potential underlying mechanisms. Mice were randomly allocated into six groups: control, paclitaxel-treated (10 mg/kg), lycopene-treated (5, 10, and 20 mg/kg) + paclitaxel, and lycopene alone-treated (20 mg/kg) groups. The effect of lycopene treatment on behavioral function and histological examination was assessed. Lycopene (20 mg/kg) was selected for additional investigation into the underlying mechanisms. Lycopene treatment counteracted paclitaxel-induced oxidative stress by reducing lipid peroxidation and enhancing catalase levels. Additionally, lycopene-treated mice demonstrated a significant elevation in nuclear factor erythroid 2-related factor 2 with no significant effect on hemeoxygenase-1. Moreover, paclitaxel administration elevated endoplasmic reticulum stress markers; glucose-regulated protein78, activating Transcription Factor 6, C/EBP homologous protein, and apoptosis marker annexin V which were significantly reduced by lycopene treatment. Furthermore, lycopene mitigated paclitaxel-induced neuroinflammation through the reduction of the levels of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome axis markers; nuclear factor-κB, NLRP3, caspase-1, interleukin-1β, and interleukin-18. Our study findings may provide new evidence that lycopene mitigates paclitaxel-induced cognitive impairment in mice by reversing oxidative stress, endoplasmic reticulum stress, and inflammatory mechanisms.
Collapse
Affiliation(s)
- Nora Zakaria
- Armed Forces Medical Complex- Kobry El-Qobba, Ministry of Defense, Kobry El-Qobba, Cairo 11766, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
9
|
Li K, Wang X, Ma L, Ren Y, Shi L. The mechanism of Se in regulating the proliferation and apoptosis of sheep Leydig cells through the miR-200a/NRF2 pathway. Theriogenology 2025; 235:103-113. [PMID: 39809100 DOI: 10.1016/j.theriogenology.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the mechanism by which Se in regulates the proliferation and apoptosis of sheep Leydig cells via the miR-200a/NRF pathway. The cells were isolated and purified from the testes of 8-month-old sheep via a Percoll density gradient. After the cells were treated with different concentrations of Se (0, 2.0, 4.0, 6.0, and 8.0 μmol/L of Se) for 18 h, the miR-200a levels was detected. MiR-200a mimics and inhibitors were transfected into the cells, resulting in five groups (control, NC mimics, miR-200a mimics, NC inhibitor and miR-200a inhibitor). Cell viability and antioxidant status were measured via CCK8 and antioxidant assays, respectively. The abundances of pro-apoptotic (BAX, CASPASE 3 and CASPASE 8), cell cycle (P21, P27 and CDK1), and NRF2-related (NRF2, HO-1, NQO1 and KEAP1) genes were detected by real-time PCR and Western blot analysis. The results revealed that miR-200a mimics group presented greater (P < 0.05) abundances of NRF2, HO-1 and NQO1 mRNA transcripts and proteins. Compared with those both in the NC mimics and the miR-200a inhibitor groups, the activities of GSH-Px and SOD, as well as cell viability in the miR-200a mimics group were significantly greater (P < 0.05). In contrast, the ROS levels, MDA content and abundances of KEAP1, P21, P27 and apoptosis-related genes mRNA transcripts and proteins were decreased (P < 0.05). The highest (P < 0.05) miR-200a expression level was detected in the Se6.0 group. Compared with that in the Se (6.0 μmol/L) group, cell viability in the Se + miR-200a inhibitor group was lower (P < 0.05). The abundances of NRF2, HO-1 and NQO1 in the Se + miR-200a inhibitor group were lower (P < 0.05) than those in the Se (6.0 μmol/L) group but greater (P < 0.05) than those in the inhibitor group, while KEAP1 displayed the opposite trend (P < 0.05). These results indicate that Se can activate the NRF2 antioxidant signaling pathway to regulate the proliferation and apoptosis of sheep Leydig cells and that miR-200a plays a vital role in this process. The regulatory effect of Se on male reproduction and spermatogenesis may be related to the number of Leydig cells. This study aimed to provide experimental data for Se regulation of spermatogenesis.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Wang
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Liang Ma
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
10
|
Banik SP, Kumar P, Basak P, Goel A, Ohia SE, Bagchi M, Chakraborty S, Kundu A, Bagchi D. A critical insight into the physicochemical stability of macular carotenoids with respect to their industrial production, safety profile, targeted tissue delivery, and bioavailability. Toxicol Mech Methods 2025; 35:215-229. [PMID: 39252190 DOI: 10.1080/15376516.2024.2401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Lutein, zeaxanthin, and mesozeaxanthin, collectively termed as macular pigments, are key carotenoids integral to optimized central vision of the eye. Therefore, nutraceuticals and functional foods have been developed commercially using carotenoid rich flowers, such as marigold and calendula or single celled photosynthetic algae, such as the Dunaliella. Industrial formulation of such products enriched in macular pigments have often suffered from serious bottlenecks in stability, delivery, and bioavailability. The two chief factors largely responsible for decreasing the shelf-life have been solubility and oxidation of these pigments owing to their strong lipophilic nature and presence of conjugated double bonds. In this regard, oil-based formulations have often been found to be more suitable than powder-based formulations in terms of shelf life and targeted delivery. In some cases, addition of phenolic acids in the formulations have also augmented the product value by enhancing micellization. In this regard, a novel proprietary formulation of these pigments has been developed in our laboratory utilizing marigold extracts in a colloidal solution of extra virgin olive oil and canola oil fortified with antioxidants like thyme oil, tocopherol, and ascorbyl palmitate. This review article presents an updated insight into the stability and bioavailability of industrially manufactured macular carotenoids together with their safety and solubility issues.
Collapse
Affiliation(s)
- Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Arijit Kundu
- Department of Chemistry, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
11
|
Hayes JD, Dayalan Naidu S, Dinkova-Kostova AT. Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Trends Biochem Sci 2025; 50:179-205. [PMID: 39875264 DOI: 10.1016/j.tibs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3Keap1, CRL4DCAF11, SCFβ-TrCP, and Hrd1). CRL3Keap1 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors. Repression of Nrf2 by CRL3Keap1 is attenuated by SQSTM1/p62, and this is reinforced by phosphorylation of SQSTM1/p62. Repression by SCFβ-TrCP requires phosphorylation of Nrf2 by GSK3, the activity of which is inhibited by PKB/Akt and other kinases. We discuss how Nrf2 activity is controlled by the ubiquitin ligases under different circumstances. We also describe endogenous signaling molecules that inactivate CRL3Keap1 to alleviate stress and restore homeostasis.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
12
|
Xu W, Hua Z, Wang Y, Tang W, Ge W, Chen Y, Wang Z, Gu Y, Liu C, Du P. Redox-Induced Stabilization of AMBRA1 by USP7 Promotes Intestinal Oxidative Stress and Colitis Through Antagonizing DUB3-Mediated NRF2 Deubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411320. [PMID: 39887666 PMCID: PMC11948009 DOI: 10.1002/advs.202411320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Inflammatory bowel disease (IBD) is associated with oxidative stress and redox signaling disruption. It is recently reported that proautophagic autophagy/beclin-1 regulator 1 (AMBRA1) is a positive modulator of the NF-κB pathway that promotes intestinal inflammation. However, its effect on intestinal redox state and whether AMBRA1 is regulated by oxidative stress remain unknown. In this study, it is found that AMBRA1 functions as a pro-oxidative factor that increases oxidative stress in intestinal epithelial cells (IECs) in vitro and in vivo. Mechanistically, the N-terminal F1 domain is required for AMBRA1 to competitively interact with the N-terminal domain of NRF2, thereby antagonizing the interaction between deubiquitinating protein 3 (DUB3) and NRF2, suppressing DUB3-mediated NRF2 deubiquitination, and leading to NRF2 degradation. In response to H2O2 stimulation, the interaction between AMBRA1 and ubiquitin-specific protease 7 (USP7) is enhanced, facilitating USP7 to deubiquitinate AMBRA1 at K83 and K86 and stabilize AMBRA1. Notably, the USP7 inhibitor, P5091, inhibits oxidative stress and colitis in vivo. Elevated AMBRA1 expression in inflamed colon tissues from ulcerative colitis patients is negatively correlated with decreased NRF2 protein levels. Overall, this study identifies AMBRA1 as a pro-oxidative factor in IECs and provides a redox-modulating therapeutic strategy for targeting USP7/AMBRA1 in IBD.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Zhebin Hua
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yaosheng Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wenbo Tang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wensong Ge
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - YingWei Chen
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - Zhongchuan Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yubei Gu
- Department of GastroenterologyRui Jin HospitalAffiliate to Shanghai Jiao Tong Universityschool of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Chen‐Ying Liu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Peng Du
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| |
Collapse
|
13
|
Tao T, Xu Y, Zhang CH, Zhang X, Chen J, Liu J. Single-cell transcriptomic analysis and luteolin treatment reveal three adipogenic genes, including Aspn, Htra1 and Efemp1. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159585. [PMID: 39662603 DOI: 10.1016/j.bbalip.2024.159585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
A comparative transcriptomic analysis in adipose stem and progenitor cells (ASPCs) between obese and lean mice might facilitate the identification of novel adipogenic genes. Here, we compare transcriptomic differences in the ASPCs of subcutaneous adipose tissue (SAT) between the mice fed on a high-fat-diet (HFD) and the chow diet (CD)-fed mice by analyzing three independent single-cell RNA sequencing datasets. Six differential genes, including three up-regulated genes Aspn, Rrbp1, Fbln2 and three down-regulated genes Htra1, Plpp3, Efemp1, are identified and confirmed in HFD-fed mice. Further, the expression of these genes is found to be significantly diminished in the differentiated 3T3-L1 cells. Treatment with luteolin, a dietary flavonoid known to inhibit 3T3-L1 adipogenesis, reverses the decreased expression of Aspn, Htra1 and Efemp1. Furthermore, knockdown of Aspn, Htra1 and Efemp1 significantly facilitates 3T3-L1 adipogenesis. Together, these genes not only are differential in ASPCs between obese and lean mice, but also are the adipogenic inhibitory genes that can be up-regulated by luteolin treatment.
Collapse
Affiliation(s)
- Tao Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanting Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Hui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Gunel R, Gulec A, Taysi S, Uzun E. Investigation of the cytotoxic and genotoxic effects of removable retention appliances. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00050-2. [PMID: 40019433 DOI: 10.1016/j.ajodo.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION This study aimed to examine and compare the cytotoxic and genotoxic effects of Hawley and Essix removable retainers on tissues. METHODS A total of 50 patients who had completed fixed orthodontic treatment were randomly assigned to 1 of 2 groups based on the type of retainer they would use for retention: Essix group (n = 25) or Hawley group (n = 25). For biochemical evaluation, saliva samples were collected at 3-time points: before appliance use, 1 month after appliance use (TB1), and 3 months after appliance use. The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), nuclear factor erythroid 2-related factor 2, and Kelch-like ECH-related protein 1 (Keap1) were then analyzed. For cytologic evaluation, swab samples were collected before and 14-21 days after the use of the appliance, and the occurrence of micronucleus, pyknosis, karyorrhexis, and karyolysis were analyzed. RESULTS Biochemical evaluation revealed that the 8-OHdG level was higher in the Hawley group at TB1 and TB2. Conversely, no significant differences were observed in nuclear factor erythroid 2-related factor 2 levels between the groups. Although no significant difference in Keap1 value was observed between the 2 groups at TB1, a notable elevation in Keap1 levels was evident in the Hawley group at TB2. A cytologic evaluation revealed that the levels of micronuclei, pyknosis, karyorrhexis, and karyolysis were higher in the Essix group at 14-21 days after appliance use. CONCLUSIONS The application of both appliances was observed to increase the number of findings indicating nuclear degeneration. However, the Hawley retainer increased the 8-OHdG level, whereas the Essix retainer showed a decrease in this 8-OHdG level.
Collapse
Affiliation(s)
- Rukiye Gunel
- Department of Orthodontics, Faculty of Dentistry, Gaziantep University, Gaziantep, Turkey
| | - Ayşegul Gulec
- Department of Orthodontics, Faculty of Dentistry, Gaziantep University, Gaziantep, Turkey.
| | - Seyithan Taysi
- Department of Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Evren Uzun
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
15
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
16
|
Sanchez N, Boskovic DS, Diamond CW, Lyons TW, Soriano S, Kirsch WM. Downregulation of Parahippocampal Copper Chaperone for Superoxide Dismutase in Alzheimer's Disease. Brain Sci 2025; 15:216. [PMID: 40149738 PMCID: PMC11940324 DOI: 10.3390/brainsci15030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Proper regulation of copper is essential for maintaining neuronal stability and is facilitated by several chaperone proteins, protecting cells from oxidative damage that would otherwise be caused by improperly regulated copper ions. Oxidative stress, resulting from such dysregulation, is hypothesized to play a significant role in the pathogenesis of Alzheimer's disease (AD). METHODS In this study, we evaluated the concentrations of the copper chaperones CCS, DCTN4, and ATOX1 in control and AD cases via Western blotting and ELISA, and quantified the copper concentrations in fractionated neurons using ICP-MS. RESULTS Our findings reveal a significant reduction in CCS levels in AD cases (p = 0.0085), with a progressive decline observed with advancing age. This decline was more pronounced in women, although the difference did not reach statistical significance (p = 0.0768). No significant differences were observed in copper concentrations within synaptosomal (p = 0.3869) or cytosolic fractions (p = 0.4461) between the AD and control cases. Additionally, comprehensive analyses of the effects of sex and age showed no significant impact on the levels of copper chaperones or copper distribution across cellular compartments. CONCLUSIONS These results suggest a strong association between reduced CCS levels and AD pathology, highlighting a potential role for CCS in the redistribution of copper ions within neurons. This redistribution may contribute to oxidative stress and neuronal dysfunction, offering new insights into the mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Sanchez
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (N.S.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (N.S.); (D.S.B.); (W.M.K.)
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA; (C.W.D.); (T.W.L.)
| | - Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA; (C.W.D.); (T.W.L.)
| | - Salvador Soriano
- Laboratory of Neurodegenerative Diseases, Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wolff M. Kirsch
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (N.S.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
17
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
18
|
Champsi S, Hood DA. Sulforaphane treatment mimics contractile activity-induced mitochondrial adaptations in muscle myotubes. Am J Physiol Cell Physiol 2025; 328:C335-C354. [PMID: 39672545 DOI: 10.1152/ajpcell.00669.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondria are metabolic hubs that govern skeletal muscle health. Although exercise has been established as a powerful inducer of quality control processes that ultimately enhance mitochondrial function, there are currently limited pharmaceutical interventions available that emulate exercise-induced mitochondrial adaptations. To investigate a novel candidate for this role, we examined sulforaphane (SFN), a naturally occurring compound found in cruciferous vegetables. SFN has been documented as a potent antioxidant inducer through its activation of the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response pathway. However, its effects on muscle health have been underexplored. To investigate the interplay between chronic exercise and SFN, C2C12 myotubes were electrically stimulated to model chronic contractile activity (CCA) in the presence or absence of SFN. SFN promoted Nrf-2 nuclear translocation, enhanced mitochondrial respiration, and upregulated key antioxidant proteins including catalase and glutathione reductase. These adaptations were accompanied by reductions in cellular and mitochondrial reactive oxygen species (ROS) emission. Signaling toward biogenesis was enhanced, demonstrated by increases in mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α nuclear translocation, PGC-1α promoter activity, mitochondrial content, and organelle branching, suggestive of a larger, more interconnected mitochondrial pool. These mitochondrial adaptations were accompanied by an increase in lysosomal proteins, suggesting coordinated regulation. There was no difference in mitochondrial and antioxidant-related proteins between CCA and non-CCA SFN-treated cells. Our data suggest that SFN activates signaling cascades that are common to those produced by contractile activity, indicating that SFN-centered therapeutic strategies may improve the mitochondrial phenotype in skeletal muscle.NEW & NOTEWORTHY Nrf-2 is a transcription factor that has been implicated in mitigating oxidative stress and regulating mitochondrial homeostasis. However, limited research has demonstrated how Nrf-2-mediated adaptations compare with those produced by exercise. To investigate this, we treated myotubes with Sulforaphane, a well-established Nrf-2 activator, and combined this with stimulation-induced chronic contractile activity to model exercise training. Our work is the first to establish that sulforaphane mimics training-induced mitochondrial adaptations, including enhancements in respiration, biogenesis, and dynamics.
Collapse
Affiliation(s)
- Sabrina Champsi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Carnicero-Senabre D, Jiménez-Villegas J, Álvarez-Garrote S, Escoll M, Cuadrado A, Rojo AI. NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17. Free Radic Biol Med 2025; 227:94-102. [PMID: 39613049 DOI: 10.1016/j.freeradbiomed.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Better knowledge of the molecular actors governing sequential amyloid precursor protein (APP) proteolysis is crucial to endorse novel therapies aimed to delay Alzheimer's disease (AD) progression. ADAM17 (A Disintegrin and Metalloproteinase 17) is a type-I transmembrane protease involved in the non-amyloidogenic processing of APP that contributes to the maintenance of synaptic functions. In this work, we analyzed the 5'-flanking region and first intron of ADAM17 gene employing an in silico analysis. This strategy evidenced two regions which concentrate the binding sites of diverse transcription factor-families, including members of the b-ZIP small MAF, NRF2 and BACH1 proteins. Then, we found that the natural isothiocyanate 6-MSITC (6 methylsulfinyl hexyl isothiocyanate) increased both mRNA and protein levels of ADAM17 in an NRF2-dependent manner. In line, SH-SY5Y neurons released higher levels of the soluble APPα peptide as a result of ADAM17 activation. Overall, our study identifies inducible expression of ADAM17, and consequently protease activity, by NRF2.
Collapse
Affiliation(s)
- Daniel Carnicero-Senabre
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Álvarez-Garrote
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Jochim BE, Topalidou I, Lehrbach NJ. Protein sequence editing defines distinct and overlapping functions of SKN-1A/Nrf1 and SKN-1C/Nrf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635299. [PMID: 39975340 PMCID: PMC11838306 DOI: 10.1101/2025.01.29.635299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The Nrf/NFE2L family of transcription factors regulates redox balance, xenobiotic detoxification, metabolism, proteostasis, and aging. Nrf1/NFE2L1 is primarily responsible for stress-responsive upregulation of proteasome subunit genes and is essential for adaptation to proteotoxic stress. Nrf2/NFE2L2 is mainly involved in activating oxidative stress responses and promoting xenobiotic detoxification. Nrf1 and Nrf2 contain very similar DNA binding domains and can drive similar transcriptional responses. In C. elegans, a single gene, skn-1, encodes distinct protein isoforms, SKN-1A and SKN-1C, that function analogously to mammalian Nrf1 and Nrf2, respectively, and share an identical DNA binding domain. Thus, the extent to which SKN-1A/Nrf1 and SKN-1C/Nrf2 functions are distinct or overlapping has been unclear. Regulation of the proteasome by SKN-1A/Nrf1 requires post-translational conversion of N-glycosylated asparagine residues to aspartate by the PNG-1/NGLY1 peptide:N-glycanase, a process we term 'sequence editing'. Here, we reveal the consequences of sequence editing for the transcriptomic output of activated SKN-1A. We confirm that activation of proteasome subunit genes is strictly dependent on sequence editing. In addition, we find that sequence edited SKN-1A can also activate genes linked to redox homeostasis and xenobiotic detoxification that are also regulated by SKN-1C, but the extent of these genes' activation is antagonized by sequence editing. Using mutant alleles that selectively inactivate either SKN-1A or SKN-1C, we show that both isoforms promote optimal oxidative stress resistance, acting as effectors for distinct signaling pathways. These findings suggest that sequence editing governs SKN-1/Nrf functions by tuning the SKN-1A/Nrf1 regulated transcriptome.
Collapse
|
22
|
Oskomić M, Tomić A, Barbarić L, Matić A, Kindl DC, Matovina M. KEAP1-NRF2 Interaction in Cancer: Competitive Interactors and Their Role in Carcinogenesis. Cancers (Basel) 2025; 17:447. [PMID: 39941813 PMCID: PMC11816071 DOI: 10.3390/cancers17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
An American Cancer Society report estimates the emergence of around 2 million new cancer cases in the US in 2024 [...].
Collapse
Affiliation(s)
| | | | | | | | | | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.O.); (A.T.); (L.B.); (A.M.); (D.C.K.)
| |
Collapse
|
23
|
Liu X, Tuerxun H, Zhao Y, Li Y, Wen S, Li X, Zhao Y. Crosstalk between ferroptosis and autophagy: broaden horizons of cancer therapy. J Transl Med 2025; 23:18. [PMID: 39762980 PMCID: PMC11702107 DOI: 10.1186/s12967-024-06059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis and autophagy are two main forms of regulated cell death (RCD). Ferroptosis is a newly identified RCD driven by iron accumulation and lipid peroxidation. Autophagy is a self-degradation system through membrane rearrangement. Autophagy regulates the metabolic balance between synthesis, degradation and reutilization of cellular substances to maintain intracellular homeostasis. Numerous studies have demonstrated that both ferroptosis and autophagy play important roles in cancer pathogenesis and cancer therapy. We also found that there are intricate connections between ferroptosis and autophagy. In this article, we tried to clarify how different kinds of autophagy participate in the process of ferroptosis and sort out the common regulatory pathways between ferroptosis and autophagy in cancer. By exploring the complex crosstalk between ferroptosis and autophagy, we hope to broaden horizons of cancer therapy.
Collapse
Affiliation(s)
- Xingyu Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Halahati Tuerxun
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yixin Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yawen Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhui Wen
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
25
|
Knetki-Wróblewska M, Wojas-Krawczyk K, Krawczyk P, Krzakowski M. Emerging insights into STK11, KEAP1 and KRAS mutations: implications for immunotherapy in patients with advanced non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:3718-3730. [PMID: 39830769 PMCID: PMC11736579 DOI: 10.21037/tlcr-24-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have become an established treatment option for patients with advanced non-small cell lung cancer (NSCLC). However, the efficacy of single-agent immunotherapy as well as in combination with chemotherapy seems to be dependent on the presence of molecular abnormalities in some genes-serine/threonine kinase 11 (STK11), Kelch-like ECH-associated protein 1 (KEAP1) and Kirsten rat sarcoma viral oncogene homolog (KRAS) among them. The KEAP1 gene is a critical regulator of the cellular response to oxidative stress and electrophilic stress, thus playing a pivotal role in maintaining cellular homeostasis. The STK11 gene encodes a serine/threonine kinase (STK11) involved the regulation of cell growth, polarity, motility, differentiation and cell metabolism. The STK11 gene mutations are often associated with an immunologically "cold" tumour microenvironment. The co-occurrence of STK11 or KEAP1 abnormalities with the KRAS mutation changes the composition of the tumour microenvironment as compared when presented alone. The current data, based on retrospective analyses of clinical trials, indicate that the co-existence of STK11 and KEAP1 genes mutations with the KRAS gene mutations have negative impact on the prognosis, regardless of treatment methods, in patients with advanced NSCLC. However, this group of patients should not be omitted because they constitute a significant percentage of advanced NSCLC patients. Immunotherapy focused on two ICIs [anti-programmed death 1 (PD-1)/anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4)] combined with chemotherapy, may be more effective than immunotherapy or chemotherapy alone in this group of patients. Confirmation of this thesis can be found in the results of available clinical studies. Here, we summarize the theoretical justification as well as the results of clinical trials for combining immunotherapy in patients with STK11-, KEAP1- and KRAS-mutated genes. There is certainly a need to create a prospective clinical trial to assess the effectiveness of combined immunotherapy in the discussed group of patients.
Collapse
Affiliation(s)
- Magdalena Knetki-Wróblewska
- Lung Cancer and Chest Tumours Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Kamila Wojas-Krawczyk
- Pneumonology, Oncology and Allergology Department, Medical University in Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Pneumonology, Oncology and Allergology Department, Medical University in Lublin, Lublin, Poland
| | - Maciej Krzakowski
- Lung Cancer and Chest Tumours Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
26
|
Cao S, Garcia SF, Shi H, James EI, Kito Y, Shi H, Mao H, Kaisari S, Rona G, Deng S, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Guttman M, Pagano M, Zheng N. Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress. Cell 2024; 187:7568-7584.e22. [PMID: 39504958 DOI: 10.1016/j.cell.2024.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Ubiquitin-dependent proteolysis regulates diverse cellular functions with high substrate specificity, which hinges on the ability of ubiquitin E3 ligases to decode the targets' degradation signals, i.e., degrons. Here, we show that BACH1, a transcription repressor of antioxidant response genes, features two distinct unconventional degrons encrypted in the quaternary structure of its homodimeric BTB domain. These two degrons are both functionalized by oxidative stress and are deciphered by two complementary E3s. FBXO22 recognizes a degron constructed by the BACH1 BTB domain dimer interface, which is unmasked from transcriptional co-repressors after oxidative stress releases BACH1 from chromatin. When this degron is impaired by oxidation, a second BACH1 degron manifested by its destabilized BTB dimer is probed by a pair of FBXL17 proteins that remodels the substrate into E3-bound monomers for ubiquitination. Our findings highlight the multidimensionality of protein degradation signals and the functional complementarity of different ubiquitin ligases targeting the same substrate.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Huigang Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sophia Deng
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Thuy PT, Ha NX. Theoretical studies on the antioxidant activity of potential marine xanthones. Free Radic Res 2024; 58:826-840. [PMID: 39676294 DOI: 10.1080/10715762.2024.2438918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (1), 1,4,5-trihydroxy-2-methylxanthone (2), arthone C (3), 2,3,4,6,8-pentahydroxy-1-methylxanthone (4), sterigmatocystin (5), oxisterigmatocystin C (6), and oxisterigmatocystin D (7) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds 1-4 exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 105 to 9.44 x 107 M-1·s-1. In lipid environments, compounds 1 and 2 also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones 1-7 potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.
Collapse
Affiliation(s)
- Phan Thi Thuy
- Department of Chemistry, Vinh University, Vinh, Vietnam
| | - Nguyen Xuan Ha
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
28
|
Ingersoll AJ, McCloud DM, Hu JY, Rape M. Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625235. [PMID: 39651249 PMCID: PMC11623662 DOI: 10.1101/2024.11.25.625235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The oxidative stress response is centered on the transcription factor NRF2 and protects cells from reactive oxygen species (ROS). While ROS inhibit the E3 ligase CUL3 KEAP1 to stabilize NRF2 and elicit antioxidant gene expression, cells recovering from stress must rapidly reactivate CUL3 KEAP1 to prevent reductive stress and oxeiptosis-dependent cell death. How cells restore efficient NRF2-degradation upon ROS clearance remains poorly understood. Here, we identify TRIP12, an E3 ligase dysregulated in Clark-Baraitser Syndrome and Parkinson's Disease, as a component of the oxidative stress response. TRIP12 is a ubiquitin chain elongation factor that cooperates with CUL3 KEAP1 to ensure robust NRF2 degradation. In this manner, TRIP12 accelerates stress response silencing as ROS are being cleared, but limits NRF2 activation during stress. The need for dynamic control of NRF2-degradation therefore comes at the cost of diminished stress signaling, suggesting that TRIP12 inhibition could be used to treat degenerative pathologies characterized by ROS accumulation.
Collapse
|
29
|
Wang Z, Li LF, Yan YJ, Huang JY, Xi YF, Yuan MY, Dong JY, Wang MD, Dang K. Oxidative stress levels and antioxidant defense mechanisms (Nrf2-Keap1 signaling pathway) in the Harderian glands of hibernating Daurian ground squirrels. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111044. [PMID: 39515635 DOI: 10.1016/j.cbpb.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cyclic hibernation bouts in Daurian ground squirrels (Spermophilus dauricus) lead to repeated suppression and recovery of mitochondrial respiratory function across multiple organs, potentially impacting reactive oxygen species (ROS) dynamics. The Harderian gland (HG) plays an important role in endocrine regulation through porphyrin secretion. However, the influence of hibernation on oxidative pressure and associated antioxidant pathways in the HG remains inadequately understood. In the current study, we investigated the morphological changes, secretory activity, ROS levels, and underlying mechanisms in the HG of Daurian ground squirrels at distinct circannual stages of hibernation. Results indicated that: (1) Protoporphyrin levels in the HG increased during hibernation compared to the summer active (SA) phase, with a reduction in acinar lumen during torpor, potentially related to hibernation in a low-light environment. (2) Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content during hibernation and post-hibernation (POST) did not exceed the levels observed in SA, indicating that the HG effectively mitigated oxidative pressure and lipid peroxidation during these periods. (3) Superoxide dismutase (SOD) activity increased while glutathione peroxidase (GPx) activity decreased during Inter-bout arousal (IBA) compared to both SA and torpor, although total antioxidant capacity (T-AOC) remained stable across all stages. (4) Overall fluorescent intensity of nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) was significantly lower than in SA. These findings demonstrate that the HG in Daurian ground squirrels maintains a favorable oxidative status through the regulation of antioxidant enzyme activities during hibernation and even post-hibernation.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China.
| | - Lu-Fan Li
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Yu-Jing Yan
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Jun-Yao Huang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Yan-Fei Xi
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Ming-Yan Yuan
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Jie-Yao Dong
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Ming-Di Wang
- School of Life Sciences, Qufu Normal University, 273165 Qufu, Shandong, China
| | - Kai Dang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
30
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
31
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
32
|
Chen J, Su S, Pickar-Oliver A, Chiarella A, Hahn Q, Goldfarb D, Cloer E, Small G, Sivashankar S, Ramsden D, Major M, Hathaway N, Gersbach C, Liu P. Engineered Cas9 variants bypass Keap1-mediated degradation in human cells and enhance epigenome editing efficiency. Nucleic Acids Res 2024; 52:11536-11551. [PMID: 39228373 PMCID: PMC11514467 DOI: 10.1093/nar/gkae761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
As a potent and convenient genome-editing tool, Cas9 has been widely used in biomedical research and evaluated in treating human diseases. Numerous engineered variants of Cas9, dCas9 and other related prokaryotic endonucleases have been identified. However, as these bacterial enzymes are not naturally present in mammalian cells, whether and how bacterial Cas9 proteins are recognized and regulated by mammalian hosts remain poorly understood. Here, we identify Keap1 as a mammalian endogenous E3 ligase that targets Cas9/dCas9/Fanzor for ubiquitination and degradation in an 'ETGE'-like degron-dependent manner. Cas9-'ETGE'-like degron mutants evading Keap1 recognition display enhanced gene editing ability in cells. dCas9-'ETGE'-like degron mutants exert extended protein half-life and protein retention on chromatin, leading to improved CRISPRa and CRISPRi efficacy. Moreover, Cas9 binding to Keap1 also impairs Keap1 function by competing with Keap1 substrates or binding partners for Keap1 binding, while engineered Cas9 mutants show less perturbation of Keap1 biology. Thus, our study reveals a mammalian specific Cas9 regulation and provides new Cas9 designs not only with enhanced gene regulatory capacity but also with minimal effects on disrupting endogenous Keap1 signaling.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Anna M Chiarella
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Smaran Sivashankar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Nathaniel A Hathaway
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Xu J, Tao L, Jiang L, Lai J, Hu J, Tang Z. Moderate Hypothermia Alleviates Sepsis-Associated Acute Lung Injury by Suppressing Ferroptosis Induced by Excessive Inflammation and Oxidative Stress via the Keap1/GSK3β/Nrf2/GPX4 Signaling Pathway. J Inflamm Res 2024; 17:7687-7704. [PMID: 39498104 PMCID: PMC11533192 DOI: 10.2147/jir.s491885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Sepsis-associated acute lung injury (SA-ALI) is a common complication in patients with sepsis, contributing to high morbidity and mortality. Excessive inflammation and oxidative stress are crucial contributors to lung injury in sepsis. This study aims to examine the protective effects of moderate hypothermia on SA-ALI and explore the underlying mechanisms. Methods Sepsis was induced in rats through cecal ligation and puncture followed by intervention with moderate hypothermia (32-33.9°C). Blood, bronchoalveolar lavage fluid, and lung tissues were collected 12 hours post-surgery. Inflammatory responses, oxidative injury, SA-ALI-related pathophysiological processes, and Keap1/GSK3β/Nrf2/GPX4 signaling in septic rats were observed by ELISA, lung W/D ratio, immunohistochemistry, immunofluorescence, histological staining, Western blotting, RT-qPCR, and TEM assays. Results Moderate hypothermia treatment alleviated lung injury in septic rats, reflected in amelioration of pathological changes in lung structure and improved pulmonary function. Further, moderate hypothermia reduced arterial blood lactate production and suppressed the expression of inflammatory factors IL-1β, IL-6, and TNF-α; downregulated ROS, MDA, and redox-active iron levels; and restored GSH and SOD content. TEM results demonstrated that moderate hypothermia could mitigate ferroptosis in PMVECs within lung tissue. The underlying mechanism may involve regulation of the Keap1/Nrf2/SLC7A11/GPX4 signaling pathway, with the insulin pathway PI3K/Akt/GSK3β also playing a partial role. Conclusion Collectively, we illustrated a novel potential therapeutic mechanism in which moderate hypothermia could alleviate ferroptosis induced by excessive inflammation and oxidative stress via the regulation of Keap1/GSK3β/Nrf2/GPX4 expression, hence ameliorating acute lung injury in sepsis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Liujun Tao
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liangyan Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jie Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Juntao Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhanhong Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
34
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Slastnikova TA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Pharmaceutics 2024; 16:1345. [PMID: 39458673 PMCID: PMC11511107 DOI: 10.3390/pharmaceutics16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The study of oxidative stress in cells and ways to prevent it attract increasing attention. Antioxidant defense of cells can be activated by releasing the transcription factor Nrf2 from a complex with Keap1, its inhibitor protein. The aim of the work was to study the effect of the modular nanotransporter (MNT) carrying an R1 anti-Keap1 monobody (MNTR1) on cell homeostasis. Methods: The murine hepatocyte AML12 cells were used for the study. The interaction of fluorescently labeled MNTR1 with Keap1 fused to hrGFP was studied using the Fluorescence-Lifetime Imaging Microscopy-Förster Resonance Energy Transfer (FLIM-FRET) technique on living AML12 cells transfected with the Keap1-hrGFP gene. The release of Nrf2 from the complex with Keap1 and its levels in the cytoplasm and nuclei of the AML12 cells were examined using a cellular thermal shift assay (CETSA) and confocal laser scanning microscopy, respectively. The effect of MNT on the formation of reactive oxygen species was studied by flow cytometry using 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Results: MNTR1 is able to interact with Keap1 in the cytoplasm, leading to the release of Nrf2 from the complex with Keap1 and a rapid rise in Nrf2 levels both in the cytoplasm and nuclei, ultimately causing protection of cells from the action of hydrogen peroxide. The possibility of cleavage of the monobody in endosomes leads to an increase in the observed effects. Conclusions: These findings open up a new approach to specifically modulating the interaction of intracellular proteins, as demonstrated by the example of the Keap1-Nrf2 system.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
35
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
36
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
37
|
Distefano A, Orlando L, Partsinevelos K, Longhitano L, Emma R, Caruso M, Vicario N, Denaro S, Sun A, Giordano A, Tomasello B, Alanazi AM, Li Volti G, Amorini AM. Comparative evaluation of cigarette smoke and a heated tobacco product on microglial toxicity, oxidative stress and inflammatory response. J Transl Med 2024; 22:876. [PMID: 39350202 PMCID: PMC11440907 DOI: 10.1186/s12967-024-05688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Tobacco smoking is the leading cause of preventable death and disease worldwide, with over 8 million annual deaths attributed to cigarette smoking. This study investigates the impact of cigarette smoke and heated tobacco products (HTPs) on microglial function, focusing on toxicological profiles, inflammatory responses, and oxidative stress using ISO standard and clinically relevant conditions of exposure. METHODS We assessed cell viability, reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial function, unfolded protein response, and inflammation in human microglial cells (HMC3) exposed to cigarette smoke, HTP aerosol or nicotine. RESULTS Our findings show that cigarette smoke significantly reduces microglial viability, increases ROS formation, induces lipid peroxidation, and reduces intracellular glutathione levels. Cigarette smoke also alters the expression of genes involved in mitochondrial dynamics and biogenesis, leading to mitochondrial dysfunction. Additionally, cigarette smoke impairs the unfolded protein response, activates the NF-κB pathway, and induces a pro-inflammatory state characterized by increased TNF and IL-18 expression. Furthermore, cigarette smoke causes DNA damage and decreases the expression of the aging marker Klotho β. In contrast, HTP, exhibited a lesser degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to conventional cigarettes. CONCLUSION These results highlight the differential toxicological profile of cigarette smoke and HTP on microglial cells, suggesting a potential harm reduction strategy for neurodegenerative disease for smokers unwilling or unable to quit.
Collapse
Affiliation(s)
- Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Konstantinos Partsinevelos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Rosalia Emma
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 89, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Ang Sun
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Barbara Tomasello
- Department of Drug and Health Science, Section of Biochemistry, University of Catania, Catania, 95125, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| |
Collapse
|
38
|
Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J 2024; 38:e23892. [PMID: 39230563 DOI: 10.1096/fj.202400602r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.
Collapse
Affiliation(s)
- Takahiro Onoki
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Melanie Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
40
|
Fan B, Guo Q, Wang S. The application of alkaloids in ferroptosis: A review. Biomed Pharmacother 2024; 178:117232. [PMID: 39098181 DOI: 10.1016/j.biopha.2024.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.
Collapse
Affiliation(s)
- Bocheng Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China
| | - Qihao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110013, China.
| |
Collapse
|
41
|
Kline GM, Madrazo N, Cole CM, Pannikkat M, Bollong MJ, Rosarda JD, Kelly JW, Wiseman RL. Metabolically activated proteostasis regulators that protect against erastin-induced ferroptosis. RSC Chem Biol 2024; 5:866-876. [PMID: 39211477 PMCID: PMC11353103 DOI: 10.1039/d4cb00027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
We previously showed that the proteostasis regulator compound AA147 (N-(2-hydroxy-5-methylphenyl)benzenepropanamide) potently protects against neurotoxic insults, such as glutamate-induced oxytosis. Though AA147 is a selective activator of the ATF6 arm of the unfolded protein response in non-neuronal cells, AA147-dependent protection against glutamate toxicity in cells of neuronal origin is primarily mediated through activation of the NRF2 oxidative stress response. AA147 activates NRF2 through a mechanism involving metabolic activation of AA147 by endoplasmic reticulum (ER) oxidases, affording an AA147-based quinone methide that covalently targets the NRF2 repressor protein KEAP1. Previous results show that the 2-amino-p-cresol A-ring of AA147 is required for NRF2 activation, while the phenyl B-ring of AA147 is amenable to modification. Here we explore whether the protease-sensitive amide linker between the A- and B-rings of this molecule can be modified to retain NRF2 activation. We show that replacement of the amide linker of AA147 with a carbamate linker retains NRF2 activation in neuronal cells and improves protection against neurotoxic insults, including glutamate-induced oxytosis and erastin-induced ferroptosis. Moreover, we demonstrate that inclusion of this carbamate linker facilitates identification of next-generation AA147 analogs with improved cellular tolerance and activity in disease-relevant assays.
Collapse
Affiliation(s)
- Gabriel M Kline
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Nicole Madrazo
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Christian M Cole
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Meera Pannikkat
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences Bethesda MD 20814 USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
42
|
Wang M, Wang Y, Li X, Yin Y, Zhang X, Wu S, Wang H, Zhao Y. Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:2492. [PMID: 39272277 PMCID: PMC11394043 DOI: 10.3390/ani14172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the effects of ursolic acid (UA) on the growth performance and intestinal health of largemouth bass (Micropterus salmoides). Four diets were formulated with UA supplementation at 0, 250, 500, and 1000 mg/kg, defined as the control (CON), UA250, UA500, and UA1000, respectively. After an 8-week feeding experiment, the results showed that, in the UA500 group, the final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) increased, and the feed conversion ratio (FCR) and hepatosomatic index decreased. Total superoxide dismutase (T-SOD) activity exhibited a significant increase, and malondialdehyde (MDA) content decreased. An intestinal histological analysis revealed an improvement in the intestinal structural integrity of the UA500 group. The mRNA relative expression levels of physical barrier-related genes [occludin, claudin-1, and zonula occluden-1 (zo-1)] were upregulated. The mRNA relative expression of interlenkin 10 (il-10) increased, and the mRNA relative expression of interlenkin 1β (il-1β) and tumor necrosis factor-α (tnf-α) significantly decreased. The abundance of Firmicutes and Proteobacteria decreased, and the abundance of Tenericutes increased. The abundance of Mycoplasma, Cyanobium, and Staphylococcus decreased, while the abundance of Clostridium increased. In conclusion, dietary supplementation of UA significantly enhanced the growth performance and antioxidant capacity of largemouth bass while improving intestinal barrier function through its influence on the abundance of intestinal flora, such as Tenericutes, Firmicutes, and Mycoplasma. Optimal dietary UA levels for largemouth bass were determined to be between 498 and 520 mg/kg based on quadratic regression analyses of WGR, SGR, and FCR or T-SOD and MDA content.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongfang Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yue Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Hongquan Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
43
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
44
|
Zhao D, Guo X, Lin B, Huang R, Li H, Wang Q, Zeng Y, Shang Y, Wu Y. Magnolol against enterovirus 71 by targeting Nrf2-SLC7A11-GSH pathway. Biomed Pharmacother 2024; 176:116866. [PMID: 38876045 DOI: 10.1016/j.biopha.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Enterovirus 71 (EV71), a prominent pathogen associated with hand, foot, and mouth disease (HFMD), has been reported worldwide. To date, the advancement of effective drugs targeting EV71 remains in the preliminary experimental stage. In this study, magnolol demonstrated a significant dose-dependent inhibition of EV71 replication in vitro. It upregulated the overall expression level of nuclear factor erythroid 2 - related factor 2 (Nrf2) and facilitated its nucleus translocation, resulting in the increased expression of various ferroptosis inhibitory genes. This process led to a reduction in reactive oxygen species (ROS) accumulation induced by viral infection. Additionally, magnolol exhibited a broad-spectrum antiviral effect against enteroviruses. Notably, treatment with magnolol substantially enhanced the survival rate of EV71-infected mice, attenuated viral load in heart, liver, brain, and limb tissues, and mitigated tissue inflammation. Taken together, magnolol emerges as a promising candidate for the development of anti-EV71 drugs.
Collapse
Affiliation(s)
- Dingran Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Xueyang Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Binbin Lin
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Hanyu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yunlong Zeng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
45
|
Tsuji A, Kotani E, Inoue YH. Sesamin Exerts an Antioxidative Effect by Activating the Nrf2 Transcription Factor in the Glial Cells of the Central Nervous System in Drosophila Larvae. Antioxidants (Basel) 2024; 13:787. [PMID: 39061856 PMCID: PMC11274309 DOI: 10.3390/antiox13070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Sesame seeds are abundant in sesamin, which exerts health-promoting effects such as extending the lifespan of adult Drosophila and suppressing oxidative stress by activating the Nrf2 transcription factor. Here, we investigated whether sesamin activated Nrf2 in larval tissues and induced the expression of Nrf2 target genes. In the sesamin-fed larvae, Nrf2 was activated in the central nervous system (CNS), gut, and salivary glands. The ectopic expression of Keap1 in glial cells inhibited sesamin-induced Nrf2 activation in the whole CNS more than in the neurons, indicating that sesamin activates Nrf2 in glia efficiently. We labeled the astrocytes as well as cortex and surface glia with fluorescence to identify the glial cell types in which Nrf2 was activated; we observed their activation in both cell types. These data suggest that sesamin may stimulate the expression of antioxidative genes in glial cells. Among the 17 candidate Nrf2 targets, the mRNA levels of Cyp6a2 and Cyp6g1 in cytochrome P450 were elevated in the CNS, gut, and salivary glands of the sesamin-fed larvae. However, this elevation did not lead to resistance against imidacloprid, which is detoxified by these enzymes. Our results suggest that sesamin may exert similar health-promoting effects on the human CNS and digestive tissues.
Collapse
Affiliation(s)
| | | | - Yoshihiro H. Inoue
- Biomedical Research Center, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan; (A.T.); (E.K.)
| |
Collapse
|
46
|
Cao S, Shi H, Garcia SF, Kito Y, Shi H, Goldberg HV, Ponce J, Ueberheide B, Lignitto L, Pagano M, Zheng N. Distinct Perception Mechanisms of BACH1 Quaternary Structure Degrons by Two F-box Proteins under Oxidative Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.594717. [PMID: 38895309 PMCID: PMC11185555 DOI: 10.1101/2024.06.03.594717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms. After BACH1 is released from chromatin by heme, FBXO22 asymmetrically recognizes a cross-protomer interface of the intact BACH1 BTB dimer, which is otherwise masked by the co-repressor NCOR1. If the BACH1 BTB dimer escapes the surveillance by FBXO22 due to oxidative modifications, its quaternary structure integrity is probed by a pair of FBXL17, which simultaneously engage and remodel the two BTB protomers into E3-bound monomers for ubiquitination. By unveiling the multifaceted regulatory mechanisms of BACH1 stability, our studies highlight the abilities of ubiquitin ligases to decode high-order protein assemblies and reveal therapeutic opportunities to block cancer invasion via compound-induced BACH1 destabilization.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Huigang Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sheena Faye Garcia
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuki Kito
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hui Shi
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
47
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
48
|
Shiba M, Kato T, Seko Y, Minamino-Muta E, Tanada Y, Kimura T, Ono K. Cobalt protoporphyrin promotes heme oxygenase 1 expression and ameliorates cardiac dysfunction in long-term fasting mice. Int J Cardiol 2024; 404:131972. [PMID: 38490272 DOI: 10.1016/j.ijcard.2024.131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The association between malnutrition and cardiac dysfunction has been reported. Heme oxygenase (HO)-1 played protective roles in the animals functioning as a myocardial infarction, heart failure, or cardiomyopathy model. We hypothesized that the administration of HO-1 inducer, cobalt protoporphyrin (CoPP) reduces oxidative stress and ameliorates cardiac systolic dysfunction in long-term fasting mice. METHODS C57BL/6 J mice were classified into three groups: fed mice (fed group), 48-h fasting mice with a single intraperitoneal injection of the corresponding vehicle (fasting group), and 48-h fasting mice with a single intraperitoneal injection of 5 mg/kg CoPP (CoPP group). RESULTS The fasting group showed a significant increase in heme and 4-hydroxy-2-nonenal (4HNE) protein in the heart tissue, and reduced left ventricular ejection fraction (LVEF) when compared with the fed group. The CoPP group showed significantly increased protein levels of nuclear factor-erythroid 2-related factor 2 and HO-1, and increased mRNA expression levels of HO-1, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, forkhead box protein O1, sirtuin-1, cyclooxygenase 2, and superoxide dismutase 2, and reduced levels of heme and 4HNE protein when compared with the fasting group. LVEF were significantly higher in the CoPP group than in the fasting group. CONCLUSIONS Administration of CoPP reduced heme accumulation and oxidative stress, and ameliorated cardiac systolic dysfunction in long-term fasting mice. This study suggests that heme accumulation may be associated with impaired cardiac function induced by long-term fasting and that HO-1 may be a key factor or therapeutic target.
Collapse
Affiliation(s)
- Masayuki Shiba
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takao Kato
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yuta Seko
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eri Minamino-Muta
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Tanada
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
49
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
50
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|