1
|
Eguchi T, Calderwood SK. Discovery of myeloid zinc finger (MZF) 1 nuclear bodies. Biochem Biophys Res Commun 2025; 752:151481. [PMID: 39954358 DOI: 10.1016/j.bbrc.2025.151481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Myeloid zinc finger 1 (MZF1) is a multifaceted transcription factor that can act either as a transcriptional activator or a gene repressor. We examined its production of nuclear bodies (NBs) and subcellular localization. Proteomic and protein-protein interaction analysis were used to identify its cofactors and interactions. These revealed the presence of MZF1-NBs (intranuclear oligomers containing MZF1). MZF-NBs are similar to some other nuclear bodies, notably promyelocytic leukemia (PML) -NBs in terms of size and morphology. However the two structures appear to be different. MZF-NBs and PML-NBs were found to associate in the nucleus. Both MZF1 and PML are SUMO1-SUMOylated in PC-3 cells. Sumoylated MZF1 can interact with proteins containing SUMO-interaction motifs (SIM) through SUMO-SIM interaction. Interactome analysis revealed that its NBs participate in the stress response (TPR and UBAP2L), protein folding (CALR and ANKRD40), transcription, post-translational modification (TRIM33, ACOT7, CAMK2D, and CAMK2G), and RNA binding (ALURBP and CPSF5).
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan.
| | - Stuart K Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Gabriel S, Czerny T, Riegel E. Repression motif in HSF1 regulated by phosphorylation. Cell Signal 2023; 110:110813. [PMID: 37468051 DOI: 10.1016/j.cellsig.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The heat shock factor 1 (HSF1) is a transcription factor that itself is a sensor for stress and integrates various intrinsic or environmental stress sensing pathways. Thus HSF1 orchestrates the heat shock response (HSR) by translating these pathways into a distinct transcriptional program that aids the cells to cope with and adapt to proteotoxic stress. Although heavily researched the regulation of HSF1 activation is still not completely understood. A conserved reaction to stress is the hyperphosphorylation of the otherwise confined constitutive phosphorylated HSF1. Therefore, this stress specific phosphorylation is believed to be involved in the regulatory mechanism and hence, was and is focus of many studies, ascribing various effects to single phosphorylation sites. To gain additional insight into effects of phosphorylation, HSF1 carrying amino acid substitutions on up to 18 amino acids were tested for their transactivation potential on an HSR reporter plasmid. A pattern of eleven phosphor-mimicking and diminishing amino acid substitutions on well-known phosphorylation sites of HSF1 were introduced to produce transcriptional active [11 M(+)] or repressed [11 M(-)] phenotypes. It could be confirmed that heat activates HSF1 regardless of phosphorylation. Distinct cellular stress, obtained by chemical HSR inducers or mimicked by a constitutively active HSF1, showed clear differences in the activation potential of HSF1-11 M(+) and 11 M(-). Further refinement to the single amino acid level identified the S303/307 double-phosphorylation motif, wherein phosphorylation of S303 was sole responsible for the repressing effect. The effect could be reproduced in different cell lines and is not entirely based on degradation. A small repression motif could be dissociated from the HSF1 context, which is still capable of repressing the background transcription of a specifically designed reporter plasmid. Taken together these results indicate, that besides already described mechanisms of pS303/307 mediated repression of HSF1 activation, an additional mechanism repressing the transcriptional output of the entire HSE containing promoter is mediated by this small repressive motif.
Collapse
Affiliation(s)
- Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria.
| |
Collapse
|
4
|
Kanwar M, Chaudhary C, Anand KA, Singh S, Garg M, Mishra SK, Sirohi P, Chauhan H. An insight into Pisum sativum HSF gene family-Genome-wide identification, phylogenetic, expression, and analysis of transactivation potential of pea heat shock transcription factor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107971. [PMID: 37619269 DOI: 10.1016/j.plaphy.2023.107971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Field pea (Pisum sativum L, 2n = 14) is a popular temperate legume with high economic value. Heat shock factors (HSFs) are the core element in the regulatory mechanism of heat stress responses. HSFs in pea (P. sativum) have not been characterized and their role remains unclear in different abiotic stresses. To address this knowledge gap, the current study aimed to characterize the HSF gene family in pea. We identified 38 PsHsf members in P. sativum, which are distributed on the seven chromosomes, and based on phylogenetic analysis, we classified them into three representative classes i.e. A, B, and C. Conserved motif and gene structure analysis confirmed a high degree of similarity among the members of the same class. Additionally, identified cis-acting regulatory elements (CAREs) related to abiotic responses, development, growth, and hormone signaling provides crucial insights into the regulatory mechanisms of PsHsfs. Our research revealed instances of gene duplication in PsHsf gene family, suggesting that this mechanism could be driving the expansion of the PsHsf gene family. Moreover, Expression analysis of PsHsfs exhibited upregulation under heat stress (HS), salt stress (SS), and drought stress (DS) showing their phenomenal role in stress conditions. PsHsfs protein interaction network suggested their involvement in stress-responsive mechanisms. Further transactivation potential was checked for spliced variant of PsHsfA2a (PsHsfA2aI, PsHsfA2aII, and PsHsfA2aIII), PsHsfA3, PsHsfA6b, PsHsfA9, PsHsfB1a, and PsHsfB2a. Overall, these findings provide valuable insight into the evolutionary relationship of PsHsf gene family and their role in abiotic stress responses.
Collapse
Affiliation(s)
- Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kumar Ankit Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shilpi Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Menus Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
5
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
6
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
7
|
Oliveira FRMB, Soares ES, Harms C, Cimarosti HI, Sordi R. SUMOylation in peripheral tissues under low perfusion-related pathological states. J Cell Biochem 2022; 123:1133-1147. [PMID: 35652521 DOI: 10.1002/jcb.30293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
SUMOylation is described as a posttranslational protein modification (PTM) that is involved in the pathophysiological processes underlying several conditions related to ischemia- and reperfusion-induced damage. Increasing evidence suggests that, under low oxygen levels, SUMOylation might be part of an endogenous mechanism, which is triggered by injury to protect cells within the central nervous system. However, the role of ischemia-induced SUMOylation in the periphery is still unclear. This article summarizes the results of recent studies regarding SUMOylation profiles in several diseases characterized by impaired blood flow to the cardiorenal, gastrointestinal, and respiratory systems. Our review shows that although ischemic injury per se does not always increase SUMOylation levels, as seen in strokes, it seems that in most cases the positive modulation of protein SUMOylation after peripheral ischemia might be a protective mechanism. This complex relationship warrants further investigation, as the role of SUMOylation during hypoxic conditions differs from organ to organ and is still not fully elucidated.
Collapse
Affiliation(s)
- Filipe R M B Oliveira
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ericks S Soares
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Centre for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena I Cimarosti
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil.,Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Regina Sordi
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
8
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
10
|
Pesonen L, Svartsjö S, Bäck V, de Thonel A, Mezger V, Sabéran-Djoneidi D, Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021; 26:819-833. [PMID: 34331200 PMCID: PMC8492855 DOI: 10.1007/s12192-021-01222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.
Collapse
Affiliation(s)
- Linda Pesonen
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Sally Svartsjö
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Viktor Bäck
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Aurélie de Thonel
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Valérie Mezger
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Délara Sabéran-Djoneidi
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland.
| |
Collapse
|
11
|
Hammoudi V, Beerens B, Jonker MJ, Helderman TA, Vlachakis G, Giesbers M, Kwaaitaal M, van den Burg HA. The protein modifier SUMO is critical for integrity of the Arabidopsis shoot apex at warm ambient temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab262. [PMID: 34106243 DOI: 10.1093/jxb/erab262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 06/12/2023]
Abstract
SUMO is a protein modification whose conjugate levels peak during acute heat stress. We find that SUMO is also critical for plant longevity when Arabidopsis experiences a prolonged non-damaging period of only 28 degrees Celsius. Remarkably, this thermo-lethality at 28 degrees was not seen with any other mutant of the SUMO pathway tested. Autoimmunity due to low SUMO1/2 expression levels was not causal for this thermo-lethality. The role of SUMO for thermo-resilience was also distinct from its requirement for thermomorphogenesis - a growth response triggered by the same warm temperature, as only the latter response was dependent on the SUMO ligase SIZ1 as well. Thermo-resilience at 28 degrees Celsius and (acquired) thermotolerance (a response that allows plants to recover and acclimate to brief extreme temperatures) both depend on the HEAT SHOCK TRANSCRIPTION FACTOR A1 (HSFA1). Acquired thermotolerance was, however, normal in the sumo1/2 knockdown mutant. Thus, SUMO-dependent thermo-resilience is potentially controlled in a different way than the protein damage pathway that underpins thermotolerance. Close inspection of shoot apices revealed that the cell patterning and tissue integrity of the shoot apex of the SUMO1/2 knockdown mutant was lost at 28, but not 22 degrees Celsius. We thus describe a novel SUMO-dependent phenotype.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Tieme A Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University, The Netherlands
| | - Mark Kwaaitaal
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
12
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Abstract
The functional health of the proteome is determined by properties of the proteostasis network (PN) that regulates protein synthesis, folding, macromolecular assembly, translocation, and degradation. In eukaryotes, the PN also integrates protein biogenesis across compartments within the cell and between tissues of metazoans for organismal health and longevity. Additionally, in metazoans, proteome stability and the functional health of proteins is optimized for development and yet declines throughout aging, accelerating the risk for misfolding, aggregation, and cellular dysfunction. Here, I describe the cell-nonautonomous regulation of organismal PN by tissue communication and cell stress-response pathways. These systems are robust from development through reproductive maturity and are genetically programmed to decline abruptly in early adulthood by repression of the heat shock response and other cell-protective stress responses, thus compromising the ability of cells and tissues to properly buffer against the cumulative stress of protein damage during aging. While the failure of multiple protein quality control processes during aging challenges cellular function and tissue health, genetic studies, and the identification of small-molecule proteostasis regulators suggests strategies that can be employed to reset the PN with potential benefit on cellular health and organismal longevity.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
14
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
15
|
Abstract
Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
Collapse
Affiliation(s)
- Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
16
|
Joutsen J, Sistonen L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034066. [PMID: 30420555 DOI: 10.1101/cshperspect.a034066] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the heat shock response and indispensable for maintaining cellular proteostasis. HSFs mediate their protective functions through diverse genetic programs, which are composed of genes encoding molecular chaperones and other genes crucial for cell survival. The mechanisms that are used to tailor HSF-driven proteostasis networks are not yet completely understood, but they likely comprise from distinct combinations of both genetic and proteomic determinants. In this review, we highlight the versatile HSF-mediated cellular functions that extend from cellular stress responses to various physiological and pathological processes, and we underline the key advancements that have been achieved in the field of HSF research during the last decade.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
17
|
Downregulation of heat shock factor 4 transcription activity via MAPKinase phosphorylation at Serine 299. Int J Biochem Cell Biol 2018; 105:61-69. [PMID: 30316871 DOI: 10.1016/j.biocel.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
Abstract
Dysfunction of HSF4 is associated with congenital cataracts. HSF4 transcription activity is turned on and regulated by phosphorylation during early postnatal lens development. Our previous data suggested that mutation HSF4b/S299A can upregulate HSF4 transcription activity in vitro, but the biological significance of posttranslational modification on HSF4/S299 during lens development remains unclear. Here, we found that the mutation HSF4/S299A can upregulate the expression of HSP25 and alpha B-crystallin at both protein and mRNA levels in mouse the lens epithelial cell line, but HSF4/S299D does not. Using the rabbit polyclonal antibody against phospho-S299 of HSF4, we found that EGF and ectopic expression of MEK1 can increase the phosphorylation of HSF4/S299 and induce HSF4 sumoylation, and these effects are inhibited by U0126. ERK1/2 can phosphorylate the S299 in HSF4/wt but not in HSF4/S299A in the in vitro kinase assay. Functionally, ectopic MEK1 can inhibit HSF4-controled alpha B-crystallin expression but has less effect on HSF4/S299A. EGF can upregulate phospho-HSF4/S299 and downregulate alpha B-crystallin expression in P3 mouse lens, and this downregulation is suppressed by U0126. During mouse lens development, phosphorylation of HSF4/S299 is downregulated in P3 lens and upregulated in P7 and P14 lens. However, in 2 months old lens, both phosphorylation of HSF4/S299 and total HSF4 protein are decreased. Interestingly, ERK1/2 activity is lower in P3 lens than in P7 and P14 lens, which is in line with the phosphorylation of HSF4/S299. Taken together, our data demonstrate that HSF4/299 is a phosphorylation target of MEK1-ERK1/2, and phosphorylation of S299 is responsible for tuning down HSF4 transcription activity during postnatal lens development.
Collapse
|
18
|
The E3 SUMO ligase PIASγ is a novel interaction partner regulating the activity of diabetes associated hepatocyte nuclear factor-1α. Sci Rep 2018; 8:12780. [PMID: 30143652 PMCID: PMC6109179 DOI: 10.1038/s41598-018-29448-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor hepatocyte nuclear factor-1α (HNF-1A) is involved in normal pancreas development and function. Rare variants in the HNF1A gene can cause monogenic diabetes, while common variants confer type 2 diabetes risk. The precise mechanisms for regulation of HNF-1A, including the role and function of post-translational modifications, are still largely unknown. Here, we present the first evidence for HNF-1A being a substrate of SUMOylation in cellulo and identify two lysine (K) residues (K205 and K273) as SUMOylation sites. Overexpression of protein inhibitor of activated STAT (PIASγ) represses the transcriptional activity of HNF-1A and is dependent on simultaneous HNF-1A SUMOylation at K205 and K273. Moreover, PIASγ is a novel HNF-1A interaction partner whose expression leads to translocation of HNF-1A to the nuclear periphery. Thus, our findings support that the E3 SUMO ligase PIASγ regulates HNF-1A SUMOylation with functional implications, representing new targets for drug development and precision medicine in diabetes.
Collapse
|
19
|
Lavania D, Dhingra A, Grover A. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors. PLANTA 2018; 247:1267-1276. [PMID: 29453664 DOI: 10.1007/s00425-018-2865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 05/14/2023]
Abstract
Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Anuradha Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
20
|
Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy. Int J Cardiol 2018; 257:283-290. [DOI: 10.1016/j.ijcard.2017.10.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
21
|
MD simulation of high-resolution X-ray structures reveals post-translational modification dependent conformational changes in HSF-DNA interaction. Protein Cell 2018; 7:916-920. [PMID: 27882499 PMCID: PMC5205663 DOI: 10.1007/s13238-016-0331-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
|
22
|
Lin YL, Tsai HC, Liu PY, Benneyworth M, Wei LN. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Cell Death Dis 2017; 8:3203. [PMID: 29233969 PMCID: PMC5870597 DOI: 10.1038/s41419-017-0008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan, ROC.,Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, ROC
| | - Pei-Yao Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Benneyworth
- Departments of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Das R, Melo JA, Thondamal M, Morton EA, Cornwell AB, Crick B, Kim JH, Swartz EW, Lamitina T, Douglas PM, Samuelson AV. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007038. [PMID: 29036198 PMCID: PMC5658188 DOI: 10.1371/journal.pgen.1007038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
An extensive proteostatic network comprised of molecular chaperones and protein clearance mechanisms functions collectively to preserve the integrity and resiliency of the proteome. The efficacy of this network deteriorates during aging, coinciding with many clinical manifestations, including protein aggregation diseases of the nervous system. A decline in proteostasis can be delayed through the activation of cytoprotective transcriptional responses, which are sensitive to environmental stress and internal metabolic and physiological cues. The homeodomain-interacting protein kinase (hipk) family members are conserved transcriptional co-factors that have been implicated in both genotoxic and metabolic stress responses from yeast to mammals. We demonstrate that constitutive expression of the sole Caenorhabditis elegans Hipk homolog, hpk-1, is sufficient to delay aging, preserve proteostasis, and promote stress resistance, while loss of hpk-1 is deleterious to these phenotypes. We show that HPK-1 preserves proteostasis and extends longevity through distinct but complementary genetic pathways defined by the heat shock transcription factor (HSF-1), and the target of rapamycin complex 1 (TORC1). We demonstrate that HPK-1 antagonizes sumoylation of HSF-1, a post-translational modification associated with reduced transcriptional activity in mammals. We show that inhibition of sumoylation by RNAi enhances HSF-1-dependent transcriptional induction of chaperones in response to heat shock. We find that hpk-1 is required for HSF-1 to induce molecular chaperones after thermal stress and enhances hormetic extension of longevity. We also show that HPK-1 is required in conjunction with HSF-1 for maintenance of proteostasis in the absence of thermal stress, protecting against the formation of polyglutamine (Q35::YFP) protein aggregates and associated locomotory toxicity. These functions of HPK-1/HSF-1 undergo rapid down-regulation once animals reach reproductive maturity. We show that HPK-1 fortifies proteostasis and extends longevity by an additional independent mechanism: induction of autophagy. HPK-1 is necessary for induction of autophagosome formation and autophagy gene expression in response to dietary restriction (DR) or inactivation of TORC1. The autophagy-stimulating transcription factors pha-4/FoxA and mxl-2/Mlx, but not hlh-30/TFEB or the nuclear hormone receptor nhr-62, are necessary for extended longevity resulting from HPK-1 overexpression. HPK-1 expression is itself induced by transcriptional mechanisms after nutritional stress, and post-transcriptional mechanisms in response to thermal stress. Collectively our results position HPK-1 at a central regulatory node upstream of the greater proteostatic network, acting at the transcriptional level by promoting protein folding via chaperone expression, and protein turnover via expression of autophagy genes. HPK-1 therefore provides a promising intervention point for pharmacological agents targeting the protein homeostasis system as a means of preserving robust longevity. Aging is the gradual and progressive decline of vitality. A hallmark of aging is the decay of protective mechanisms that normally preserve the robustness and resiliency of cells and tissues. Proteostasis is the term that applies specifically to those mechanisms that promote stability of the proteome, the collection of polypeptides that cells produce, by a combination of chaperone-assisted folding and degradation of misfolded or extraneous proteins. We have identified hpk-1 (encoding a homeodomain-interacting protein kinase) in the nematode C. elegans as an important transcriptional regulatory component of the proteostasis machinery. HPK-1 promotes proteostasis by linking two distinct mechanisms: first by stimulating chaperone gene expression via the heat shock transcription factor (HSF-1), and second by stimulating autophagy gene expression in opposition to the target of rapamycin (TOR) kinase signaling pathway. HPK-1 therefore provides an attractive target for interventions to preserve physiological resiliency during aging by preserving the overall health of the proteome.
Collapse
Affiliation(s)
- Ritika Das
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Justine A. Melo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elizabeth A. Morton
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Adam B. Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Beresford Crick
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Joung Heon Kim
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elliot W. Swartz
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Todd Lamitina
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter M. Douglas
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 2017; 19:4-19. [PMID: 28852220 DOI: 10.1038/nrm.2017.73] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heat shock transcription factors (HSFs) were discovered over 30 years ago as direct transcriptional activators of genes regulated by thermal stress, encoding heat shock proteins. The accepted paradigm posited that HSFs exclusively activate the expression of protein chaperones in response to conditions that cause protein misfolding by recognizing a simple promoter binding site referred to as a heat shock element. However, we now realize that the mammalian family of HSFs comprises proteins that independently or in concert drive combinatorial gene regulation events that activate or repress transcription in different contexts. Advances in our understanding of HSF structure, post-translational modifications and the breadth of HSF-regulated target genes have revealed exciting new mechanisms that modulate HSFs and shed new light on their roles in physiology and pathology. For example, the ability of HSF1 to protect cells from proteotoxicity and cell death is impaired in neurodegenerative diseases but can be exploited by cancer cells to support their growth, survival and metastasis. These new insights into HSF structure, function and regulation should facilitate the development tof new disease therapeutics to manipulate this transcription factor family.
Collapse
Affiliation(s)
- Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine.,Department of Biochemistry, Duke University School of Medicine.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
25
|
Carranco R, Prieto-Dapena P, Almoguera C, Jordano J. SUMO-Dependent Synergism Involving Heat Shock Transcription Factors with Functions Linked to Seed Longevity and Desiccation Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:974. [PMID: 28659940 PMCID: PMC5468958 DOI: 10.3389/fpls.2017.00974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 05/03/2023]
Abstract
A transcriptional synergism between HaHSFA9 (A9) and HaHSFA4a (A4a) contributes to determining longevity and desiccation tolerance of sunflower (Helianthus annuus, L.) seeds. Potential lysine SUMOylation sites were identified in A9 and A4a and mutated to arginine. We show that A9 is SUMOylated in planta at K38. Although we did not directly detect SUMOylated A4a in planta, we provide indirect evidence from transient expression experiments indicating that A4a is SUMOylated at K172. Different combinations of wild type and SUMOylation site mutants of A9 and A4a were analyzed by transient expression in sunflower embryos and leaves. Although most of the precedents in literature link SUMOylation with repression, the A9 and A4a synergism was fully abolished when the mutant forms for both factors were combined. However, the combination of mutant forms of A9 and A4a did not affect the nuclear retention of A4a by A9; therefore, the analyzed mutations would affect the synergism after the mutual interaction and nuclear co-localization of A9 and A4a. Our results suggest a role for HSF SUMOylation during late, zygotic, embryogenesis. The SUMOylation of A9 (or A4a) would allow a crucial, synergic, transcriptional effect that occurs in maturing sunflower seeds.
Collapse
Affiliation(s)
| | | | | | - Juan Jordano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones CientíficasSeville, Spain
| |
Collapse
|
26
|
Huang CY, Chen JY, Kuo CH, Pai PY, Ho TJ, Chen TS, Tsai FJ, Padma VV, Kuo WW, Huang CY. Mitochondrial ROS-induced ERK1/2 activation and HSF2-mediated AT 1 R upregulation are required for doxorubicin-induced cardiotoxicity. J Cell Physiol 2017; 233:463-475. [PMID: 28295305 DOI: 10.1002/jcp.25905] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/10/2017] [Indexed: 01/17/2023]
Abstract
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX-induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX-induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1 R) plays a critical role in DOX-induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1 R gene expression through DOX-induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1 R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX-induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK-mediated HSF2 nuclear translocation and AT1 R upregulation causing DOX-damaged heart failure in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Jia-Yi Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Tung-Sheng Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Jen Tsai
- Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Vijaya V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung
| |
Collapse
|
27
|
Calderwood SK, Murshid A. Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer's Disease: The Potential Roles of HSF1. Front Neurosci 2017; 11:192. [PMID: 28484363 PMCID: PMC5399083 DOI: 10.3389/fnins.2017.00192] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023] Open
Abstract
Molecular chaperones are required to maintain the proteome in a folded and functional state. When challenges to intracellular folding occur, the heat shock response is triggered, leading to increased synthesis of a class of inducible chaperones known as heat shock proteins (HSP). Although HSP synthesis is known to undergo a general decline in most cells with aging, the extent of this process varies quite markedly in some of the diseases associated with advanced age. In Alzheimer's disease (AD), a prevalent protein folding disorder in the brain, the heat shock response of some critical classes of neurons becomes reduced. The resulting decline in HSP expression may be a consequence of the general enfeeblement of many aspects of cell physiology with aging and/or a response to the pathological changes in metabolism observed specifically in AD. Cancer cells, in contrast to normal aging cells, undergo de novo increases in HSP levels. This expansion in HSP expression has been attributed to increases in folding demand in cancer or to the evolution of new mechanisms for induction of the heat shock response in rapidly adapting cancer cells. As the predominant pathway for regulation of HSP synthesis involves transcription factor HSF1, it has been suggested that dysregulation of this factor may play a decisive role in the development of each disease. We will discuss what is known of the mechanisms of HSF1 regulation in regard to the HSP dysregulation seen in in AD and cancer.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Center for Life Sciences 610, Harvard Medical SchoolBoston, MA, USA
| | - Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Center for Life Sciences 610, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
28
|
Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2 (Bcl-2)-associated athanogene 7 (BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. THE NEW PHYTOLOGIST 2017; 214:695-705. [PMID: 28032645 DOI: 10.1111/nph.14388] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/17/2016] [Indexed: 05/03/2023]
Abstract
To cope with stress and increased accumulation of misfolded proteins, plants and animals use a survival pathway known as the unfolded protein response (UPR) that signals between the endoplasmic reticulum (ER) and the nucleus to maintain cell homeostasis via proper folding of proteins. B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) proteins are an evolutionarily conserved family of co-chaperones that are linked to disease states in mammals and responses to environmental stimuli (biotic and abiotic) in plants. Molecular and physiological techniques were used to functionally characterize a newly identified branch of the UPR initiated by the ER-localized co-chaperone from Arabidopsis thaliana, AtBAG7. AtBAG7 has functional roles in both the ER and the nucleus. Upon heat stress, AtBAG7 is sumoylated, proteolytically processed and translocated from the ER to the nucleus, where interaction with the WRKY29 transcription factor occurs. Sumoylation and translocation are required for the AtBAG7-WRKY29 interaction and subsequent stress tolerance. In the ER, AtBAG7 interacts with the ER-localized transcription factor, AtbZIP28, and established UPR regulator, the AtBiP2 chaperone. The results indicate that AtBAG7 plays a central regulatory role in the heat-induced UPR pathway.
Collapse
Affiliation(s)
- Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Brisbane, 4001, Qld, Australia
| | - Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
29
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
30
|
Selective killing of cancer cells by small molecules targeting heat shock stress response. Biochem Biophys Res Commun 2016; 478:1509-14. [PMID: 27553278 DOI: 10.1016/j.bbrc.2016.08.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
HSF1 heat shock response has emerged as a valuable non-oncogenetic intervention point in targeted cancer therapy. Current reporter based high throughput screening has led to the discovery of several compounds or chemotypes that are effective in the growth inhibition of multiple cancer cell lines and relevant animal tumor models. However, some intrinsic limitations of reporter based assays can potentially lead to biased results. Using a previously validated high content image based assay, we performed a phenotypic screen targeting HSF1 heat shock pathway with a chemically diversified library of over 100,000 compounds. Several novel functional inhibitors of HSF1 pathway were identified with different chemotypes. Western blot analysis confirmed that selective compounds inhibit phosphorylation of HSF1, followed by reduced expression of HSP proteins. Moreover, HeLa cells stably transfected with HSF1 shRNA were more resistant to the compound treatment under lethal temperature than cells containing HSF1, validating HSF1 dependent mechanism of action. These compounds demonstrate nanomolar potency toward multiple cancer cell lines with relatively low cytotoxicity to normal cells. Further SAR and target identification study will pave the way for the potential development of next generation anticancer drugs.
Collapse
|
31
|
Affiliation(s)
- Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
32
|
Feng H, Liu W, Wang DC. Purification, crystallization and X-ray diffraction analysis of the DNA-binding domain of human heat-shock factor 2. Acta Crystallogr F Struct Biol Commun 2016; 72:294-9. [PMID: 27050263 PMCID: PMC4822986 DOI: 10.1107/s2053230x16003599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
Cells respond to various proteotoxic stimuli and maintain protein homeostasis through a conserved mechanism called the heat-shock response, which is characterized by the enhanced synthesis of heat-shock proteins. This response is mediated by heat-shock factors (HSFs). Four genes encoding HSF1-HSF4 exist in the genome of mammals. In this protein family, HSF1 is the orthologue of the single HSF in lower eukaryotic organisms and is the major regulator of the heat-shock response, while HSF2, which shows low sequence homology to HSF1, serves as a developmental regulator. Increasing evidence has revealed biochemical properties and functional roles that are unique to HSF2, such as its DNA-binding preference and sumoylation patterns, which are distinct from those of HSF1. The structural basis for such differences, however, is poorly understood owing to the lack of available mammalian HSF structures. The N-terminal DNA-binding domain (DBD) is the most conserved functional module and is the only crystallizable domain in HSFs. To date, only HSF1 homologue structures from yeast and fruit fly have been determined. Along with extensive studies of the HSF family, more structural information, particularly from members with a remoter phylogenic relationship to the reported structures, e.g. HSF2, is needed in order to better understand the detailed mechanisms of HSF biology. In this work, the recombinant DBD (residues 7-112) from human HSF2 was produced in Escherichia coli and crystallized. An X-ray diffraction data set was collected to 1.32 Å resolution from a crystal belonging to space group P212121 with unit cell-parameters a = 65.66, b = 67.26, c = 93.25 Å. The data-evaluation statistics revealed good quality of the collected data, thus establishing a solid basis for the determination of the first structure at atomic resolution in this protein family.
Collapse
Affiliation(s)
- Han Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
33
|
Lu M, Park JS. protonation behavior of histidine during HSF1 activation by physiological acidification. J Cell Biochem 2016; 116:977-84. [PMID: 25560907 DOI: 10.1002/jcb.25051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
Abstract
The expression of eukaryotic molecular chaperones (heat shock proteins, HSPs) is triggered in response to a wide range of environmental stresses, including: heat shock, hydrogen peroxide, heavy metal, low-pH, or virus infection. Biochemical and genetic studies have clearly shown the fundamental roles of heat shock factor 1 (HSF1) in stress-inducible HSP gene expression, resistance to stress-induced cell death, carcinogenesis, and other biological phenomena. Previous studies show that acidic pH changes within the physiological range directly activate the HSF1 function in vitro. However, the detailed mechanism is unclear. Though computational pKa-predications of the amino acid side-chain, acidic-pH induced protonation of a histidine residue was found to be most-likely involved in this process. The histidine 83 (His83) residue, which could be protonated by mild decrease in pH, causes mild acidic-induced HSF1 activation (including in-vitro trimerization, DNA binding, in-vivo nuclear accumulation, and HSPs expression). His83, which is located in the loop region of the HSF1 DNA binding domain, was suggested to enhance the intermolecular force with Arginine 79, which helps HSF1 form a DNA-binding competent. Therefore, low-pH-induced activation of HSF1 by the protonation of histidine can help us better to understand the HSF1 mechanism and develop more therapeutic applications (particularly in cancer therapy). J. Cell. Biochem. 116: 977-984, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Lu
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China; Department of Chemistry, Pusan National University, Busan, 609-735, Korea
| | | |
Collapse
|
34
|
Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 2016; 23:147-54. [PMID: 26727490 PMCID: PMC4973471 DOI: 10.1038/nsmb.3150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Heat Shock Transcription Factor (HSF) family members function in stress protection and in human disease including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, co-factor recruitment and target gene activation for specific HSF paralogs are unknown. We present high-resolution crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a novel carboxyl-terminal helix that directs the coiled-coil domain to wrap around DNA, exposing paralog-specific sequences of the DBD surface, for differential post-translational modifications and co-factor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation to influence the transcriptional response to cellular stress.
Collapse
|
35
|
Kang GY, Kim EH, Lee HJ, Gil NY, Cha HJ, Lee YS. Heat shock factor 1, an inhibitor of non-homologous end joining repair. Oncotarget 2015; 6:29712-24. [PMID: 26359349 PMCID: PMC4745757 DOI: 10.18632/oncotarget.5073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/13/2015] [Indexed: 11/25/2022] Open
Abstract
A novel role for HSF1 as an inhibitor of non-homologous end joining (NHEJ) repair activity was identified. HSF1 interacted directly with both of the N-terminal sequences of the Ku70 and Ku86 proteins, which inhibited the endogenous heterodimeric interaction between Ku70 and Ku86. The blocking of the Ku70 and Ku86 interaction by HSF1 induced defective NHEJ repair activity and ultimately activated genomic instability after ionizing radiation (IR), which was similar to effects seen in Ku70 or Ku80 knockout cells. The binding activity between HSF1 and Ku70 or Ku86 was dependent on DNA damage response such as IR exposure, but not on the heat shock mediated transcriptional activation of HSF1. Moreover, the posttranslational modification such as phosphorylation, acetylation and sumoylation of HSF1 did not alter the binding activities of HSF1-Ku70 or HSF1-Ku86. Furthermore, the defect in DNA repair activity by HSF1 was observed regardless of p53 status. Rat mammary tumors derived using dimethylbenz(a)anthracence revealed that high levels of HSF1 expression which correlate with aggressive malignancy, interfered with the binding of Ku70-Ku80. This data suggests that HSF1 interacts with both Ku70 and Ku86 to induce defective NHEJ repair activity and genomic instability, which in turn suggests a novel mechanism of HSF1-mediated cellular carcinogenesis.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line, Tumor
- Cells, Cultured
- DNA Damage
- DNA End-Joining Repair
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/cytology
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fibroblasts/radiation effects
- HEK293 Cells
- Heat Shock Transcription Factors
- Humans
- Immunoblotting
- Immunohistochemistry
- Ku Autoantigen
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mice, Knockout
- Radiation, Ionizing
- Rats, Sprague-Dawley
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ga-Young Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120–750, Korea
| | - Eun-Ho Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139–706, Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139–706, Korea
| | - Na-Yeon Gil
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121–742, Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121–742, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120–750, Korea
| |
Collapse
|
36
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
37
|
Anckar J, Bonni A. Regulation of neuronal morphogenesis and positioning by ubiquitin-specific proteases in the cerebellum. PLoS One 2015; 10:e0117076. [PMID: 25607801 PMCID: PMC4301861 DOI: 10.1371/journal.pone.0117076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin signaling mechanisms play fundamental roles in the cell-intrinsic control of neuronal morphogenesis and connectivity in the brain. However, whereas specific ubiquitin ligases have been implicated in key steps of neural circuit assembly, the roles of ubiquitin-specific proteases (USPs) in the establishment of neuronal connectivity have remained unexplored. Here, we report a comprehensive analysis of USP family members in granule neuron morphogenesis and positioning in the rodent cerebellum. We identify a set of 32 USPs that are expressed in granule neurons. We also characterize the subcellular localization of the 32 USPs in granule neurons using a library of expression plasmids encoding GFP-USPs. In RNAi screens of the 32 neuronally expressed USPs, we uncover novel functions for USP1, USP4, and USP20 in the morphogenesis of granule neuron dendrites and axons and we identify a requirement for USP30 and USP33 in granule neuron migration in the rodent cerebellar cortex in vivo. These studies reveal that specific USPs with distinct spatial localizations harbor key functions in the control of neuronal morphogenesis and positioning in the mammalian cerebellum, with important implications for our understanding of the cell-intrinsic mechanisms that govern neural circuit assembly in the brain.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Azad Bonni
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Leão TL, da Fonseca FG. Subversion of cellular stress responses by poxviruses. World J Clin Infect Dis 2014; 4:27-40. [DOI: 10.5495/wjcid.v4.i4.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasion and boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
Collapse
|
39
|
Jaeger AM, Makley LN, Gestwicki JE, Thiele DJ. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J Biol Chem 2014; 289:30459-30469. [PMID: 25204655 DOI: 10.1074/jbc.m114.591578] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer.
Collapse
Affiliation(s)
- Alex M Jaeger
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710
| | - Leah N Makley
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710; Departments of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710 and.
| |
Collapse
|
40
|
Bar M, Schuster S, Leibman M, Ezer R, Avni A. The function of EHD2 in endocytosis and defense signaling is affected by SUMO. PLANT MOLECULAR BIOLOGY 2014; 84:509-18. [PMID: 24154852 DOI: 10.1007/s11103-013-0148-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulates many cellular processes. SUMOylation has been shown to regulate cellular localization and function of a variety of proteins, in some cases affecting nuclear import or export. We have previously characterized two EHDs (EH domain containing proteins) in Arabidospis and showed their involvement in plant endocytosis. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and the leucine rich repeat receptor like protein LeEix2, an effect that requires and intact coiled-coil domain. Inhibition of endocytosis of LeEix2 by EHD2 is effective in inhibiting defense responses mediated by the LeEix2 receptor in response to its ligand EIX. In the present work we demonstrate that SUMOylation of EHD2 appears to be required for EHD2-induced inhibition of LeEix2 endocytosis. Indeed, we found that a mutant form of EHD2, possessing a defective SUMOylation site, has an increased nuclear abundance, can no longer be SUMOylated and is no longer effective in inhibiting LeEix2 endocytosis or defense signaling in response to EIX.
Collapse
Affiliation(s)
- Maya Bar
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
41
|
Wang HY, Fu JCM, Lee YC, Lu PJ. Hyperthermia stress activates heat shock protein expression via propyl isomerase 1 regulation with heat shock factor 1. Mol Cell Biol 2013; 33:4889-4899. [PMID: 24126052 PMCID: PMC3889542 DOI: 10.1128/mcb.00475-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/02/2013] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs), which are members of the chaperone family of proteins, are essential factors for cellular responses to environmental stressors, such as hyperthermia, and are antiapoptotic. The transcription of HSPs is mainly controlled by heat shock transcription factor 1 (HSF1). In response to environmental stress, HSF1 forms a trimer, undergoes hyperphosphorylation, and is translocated to the nucleus. In this study, we show that upon heat shock treatment of cells, a WW domain-containing propyl-isomerase, PIN1, is able to colocalize to and associate with phospho-HSF1 at Ser(326) in the nucleus via its WW domain. This interaction is required for the DNA-binding activity of HSF1 and is consistent with the lower induction of HSPs in PIN1-deficient cells. This function of PIN1 is further demonstrated by in vivo refolding and survival assays, which have shown that PIN1-deficient cells are temperature sensitive and develop apoptosis upon exposure to an environmental challenge. Moreover, the reduced levels of HSPs in PIN1-deficient cells resulted in less efficient refolding of denatured proteins. Based on our results, we propose a novel role for PIN1 whereby it acts as a stress sensor regulating HSF1 activity in response to stress on multiple levels through the transcriptional activation of stress response elements in embryonic fibroblast cells, tumor cells, and neurons.
Collapse
Affiliation(s)
- Hsiu-Yu Wang
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
42
|
Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 2013; 110:E3388-97. [PMID: 23959860 DOI: 10.1073/pnas.1305275110] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock factors (HSFs) are the master regulators of transcription under protein-damaging conditions, acting in an environment where the overall transcription is silenced. We determined the genomewide transcriptional program that is rapidly provoked by HSF1 and HSF2 under acute stress in human cells. Our results revealed the molecular mechanisms that maintain cellular homeostasis, including HSF1-driven induction of polyubiquitin genes, as well as HSF1- and HSF2-mediated expression patterns of cochaperones, transcriptional regulators, and signaling molecules. We characterized the genomewide transcriptional response to stress also in mitotic cells where the chromatin is tightly compacted. We found a radically limited binding and transactivating capacity of HSF1, leaving mitotic cells highly susceptible to proteotoxicity. In contrast, HSF2 occupied hundreds of loci in the mitotic cells and localized to the condensed chromatin also in meiosis. These results highlight the importance of the cell cycle phase in transcriptional responses and identify the specific mechanisms for HSF1 and HSF2 in transcriptional orchestration. Moreover, we propose that HSF2 is an epigenetic regulator directing transcription throughout cell cycle progression.
Collapse
|
43
|
Multiple crosstalks between mRNA biogenesis and SUMO. Chromosoma 2013; 122:387-99. [PMID: 23584125 DOI: 10.1007/s00412-013-0408-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/10/2013] [Accepted: 03/13/2013] [Indexed: 12/26/2022]
Abstract
mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.
Collapse
|
44
|
|
45
|
Miller MJ, Scalf M, Rytz TC, Hubler SL, Smith LM, Vierstra RD. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Mol Cell Proteomics 2012. [PMID: 23197790 DOI: 10.1074/mcp.m112.025056] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stress-induced attachment of small ubiquitin-like modifier (SUMO) to a diverse collection of nuclear proteins regulating chromatin architecture, transcription, and RNA biology has been implicated in protecting plants and animals against numerous environmental challenges. In order to better understand stress-induced SUMOylation, we combined stringent purification of SUMO conjugates with isobaric tag for relative and absolute quantification mass spectrometry and an advanced method to adjust for sample-to-sample variation so as to study quantitatively the SUMOylation dynamics of intact Arabidopsis seedlings subjected to stress. Inspection of 172 SUMO substrates during and after heat shock (37 °C) revealed that stress mostly increases the abundance of existing conjugates, as opposed to modifying new targets. Some of the most robustly up-regulated targets participate in RNA processing and turnover and RNA-directed DNA modification, thus implicating SUMO as a regulator of the transcriptome during stress. Many of these targets were also strongly SUMOylated during ethanol and oxidative stress, suggesting that their modification is crucial for general stress tolerance. Collectively, our quantitative data emphasize the importance of SUMO to RNA-related processes protecting plants from adverse environments.
Collapse
Affiliation(s)
- Marcus J Miller
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
46
|
Castro PH, Tavares RM, Bejarano ER, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 2012; 69:3269-83. [PMID: 22903295 PMCID: PMC11114757 DOI: 10.1007/s00018-012-1094-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022]
Abstract
Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Rui Manuel Tavares
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo R. Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Herlânder Azevedo
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Castro PH, Tavares RM, Bejarano ER, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 2012. [PMID: 22903295 DOI: 10.1007/s00018-00012-01094–1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CBFP/Biology Department, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | |
Collapse
|
48
|
Xu YM, Huang DY, Chiu JF, Lau ATY. Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 2012; 11:2625-34. [PMID: 22494029 DOI: 10.1021/pr201151a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat shock factors (HSFs) are vital for modulating stress and heat shock-related gene expression in cells. The activity of HSFs is controlled largely by post-translational modifications (PTMs). For example, basal phosphorylation of HSF1 on three serine sites suppresses the heat shock response, and hyperphosphorylation of HSF1 on several other serine and threonine sites by stress-activated kinases results in its activation, while acetylation on K80 inhibits its DNA-binding ability. Sumoylation of HSF2 on K82 regulates its DNA-binding ability, whereas sumoylation of HSF4B on K293 represses its transcriptional activity. With the advancement of proteomic technology, novel PTM sites on various HSFs have been identified with the use of tandem mass spectrometry (MS/MS), but the functions of many of these PTMs are still unclear. Yet, it should be noted that the discovery of these novel PTM sites provided the necessary evidence for the existence of these PTM marks in vivo. Followed by subsequent functional analysis, this would ultimately lead to a better understanding of these PTM marks. MS/MS-based proteomic approach is becoming a gold standard in PTM validation in the field of life science. Here, the recent literature of all known PTMs reported on human HSFs and the resulting functions will be discussed.
Collapse
Affiliation(s)
- Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | |
Collapse
|
49
|
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 2011; 10:930-44. [PMID: 22129991 DOI: 10.1038/nrd3453] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock transcription factor 1--the master activator of chaperone protein gene expression--to treat neurodegenerative diseases.
Collapse
|
50
|
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 2011; 3:3921-56. [PMID: 24213118 PMCID: PMC3763403 DOI: 10.3390/cancers3043921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more "addicted" to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.
Collapse
Affiliation(s)
- Elisa Zorzi
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
| | - Paolo Bonvini
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
- Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza, Italy
| |
Collapse
|