1
|
Yang CH, Li HC, Lo SY. Enhancing recombinant antibody yield in Chinese hamster ovary cells. Tzu Chi Med J 2024; 36:240-250. [PMID: 38993821 PMCID: PMC11236083 DOI: 10.4103/tcmj.tcmj_315_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 07/13/2024] Open
Abstract
A range of recombinant monoclonal antibodies (rMAbs) have found application in treating diverse diseases, spanning various cancers and immune system disorders. Chinese hamster ovary (CHO) cells have emerged as the predominant choice for producing these rMAbs due to their robustness, ease of transfection, and capacity for posttranslational modifications akin to those in human cells. Transient transfection and/or stable expression could be conducted to express rMAbs in CHO cells. To bolster the yield of rMAbs in CHO cells, a multitude of approaches have been developed, encompassing vector optimization, medium formulation, cultivation parameters, and cell engineering. This review succinctly outlines these methodologies when also addressing challenges encountered in the production process, such as issues with aggregation and fucosylation.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical, Hualien, Taiwan
| |
Collapse
|
2
|
Nöbel M, Barry C, MacDonald MA, Baker K, Shave E, Mahler S, Munro T, Martínez VS, Nielsen LK, Marcellin E. Harnessing metabolic plasticity in CHO cells for enhanced perfusion cultivation. Biotechnol Bioeng 2024; 121:1371-1383. [PMID: 38079117 DOI: 10.1002/bit.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 04/01/2024]
Abstract
Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.
Collapse
Affiliation(s)
- Matthias Nöbel
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
| | - Michael A MacDonald
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| |
Collapse
|
3
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Lakshmanan M, Kok YJ, Lee AP, Kyriakopoulos S, Lim HL, Teo G, Poh SL, Tang WQ, Hong J, Tan AH, Bi X, Ho YS, Zhang P, Ng SK, Lee D. Multi‐omics profiling of CHO parental hosts reveals cell line‐specific variations in bioprocessing traits. Biotechnol Bioeng 2019; 116:2117-2129. [DOI: 10.1002/bit.27014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Alison P. Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Sarantos Kyriakopoulos
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Hsueh Lee Lim
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Gavin Teo
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Swan Li Poh
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Wen Qin Tang
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Jongkwang Hong
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Andy Hee‐Meng Tan
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Xuezhi Bi
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Ying Swan Ho
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Peiqing Zhang
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Say Kong Ng
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwon Republic of Korea
| |
Collapse
|
5
|
Aeschlimann SH, Graf C, Mayilo D, Lindecker H, Urda L, Kappes N, Burr AL, Simonis M, Splinter E, Min M, Laux H. Enhanced CHO Clone Screening: Application of Targeted Locus Amplification and Next‐Generation Sequencing Technologies for Cell Line Development. Biotechnol J 2019; 14:e1800371. [DOI: 10.1002/biot.201800371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Samuel H. Aeschlimann
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Christian Graf
- Novartis Technical R&D, Technical Development BiosimilarsHexal AG, Keltenring 1+3 82041 Oberhaching Germany
| | - Dmytro Mayilo
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Hélène Lindecker
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Lorena Urda
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Nora Kappes
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | - Alicia Leone Burr
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| | | | - Erik Splinter
- Cergentis B.VYalelaan 62 3584 CM Utrecht The Netherlands
| | - Max Min
- Cergentis B.VYalelaan 62 3584 CM Utrecht The Netherlands
| | - Holger Laux
- Novartis Institutes for BioMedical Research, Integrated Biologics Profiling UnitCH‐4002 Basel Switzerland
| |
Collapse
|
6
|
Hamaker NK, Lee KH. Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Curr Opin Chem Eng 2018; 22:152-160. [PMID: 31086757 DOI: 10.1016/j.coche.2018.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the production of therapeutic proteins. Customarily, CHO production cell lines are established through random integration, which requires laborious screening of many clones to isolate suitable producers. In contrast, site-specific integration (SSI) accelerates cell line development by targeting integration of transgenes to pre-validated genomic loci capable of supporting high and stable expression. To date, a relatively small number of these so called 'hot spots' have been identified, mainly through empirical methods. Nevertheless, nuclease-mediated and recombinase-mediated SSI have revolutionized cell line engineering by enabling rational and reproducible transgene targeting.
Collapse
Affiliation(s)
- Nathaniel K Hamaker
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Kelvin H Lee
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
7
|
Tejwani V, Andersen MR, Nam JH, Sharfstein ST. Glycoengineering in CHO Cells: Advances in Systems Biology. Biotechnol J 2018; 13:e1700234. [PMID: 29316325 DOI: 10.1002/biot.201700234] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/28/2017] [Indexed: 12/19/2022]
Abstract
For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post-translational modifications, particularly glycosylation, which unlike protein synthesis, is a non-templated process. Consequently, both native and recombinant glycoprotein production generate heterogeneous mixtures containing variable amounts of different glycoforms. Stability, potency, plasma half-life, and immunogenicity of the glycoprotein biologic are directly influenced by the glycoforms. Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g., heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling, and glycan and glycoprotein analysis that together will provide new strategies for glycoengineering of CHO cells with desired or enhanced glycosylation capabilities.
Collapse
Affiliation(s)
- Vijay Tejwani
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, 12203, USA
| | - Mikael R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Susan T Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, 12203, USA
| |
Collapse
|
8
|
Inouye S. Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells. Protein Expr Purif 2018; 141:32-38. [DOI: 10.1016/j.pep.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022]
|
9
|
Yeo JHM, Ho SCL, Mariati M, Koh E, Tay SJ, Woen S, Zhang P, Yang Y. Optimized Selection Marker and CHO Host Cell Combinations for Generating High Monoclonal Antibody Producing Cell Lines. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Jessna H. M. Yeo
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Mariati Mariati
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Esther Koh
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
10
|
Enhanced Proteolytic Processing of Recombinant Human Coagulation Factor VIII B-Domain Variants by Recombinant Furins. Mol Biotechnol 2017; 58:404-14. [PMID: 27126696 DOI: 10.1007/s12033-016-9939-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6.
Collapse
|
11
|
Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells. Sci Rep 2017; 7:42805. [PMID: 28216629 PMCID: PMC5316954 DOI: 10.1038/srep42805] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.
Collapse
Affiliation(s)
- Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Xiao Guo
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Si-Jia Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Chang-Zheng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
12
|
Thoring L, Wüstenhagen DA, Borowiak M, Stech M, Sonnabend A, Kubick S. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives. PLoS One 2016; 11:e0163670. [PMID: 27684475 PMCID: PMC5042383 DOI: 10.1371/journal.pone.0163670] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.
Collapse
Affiliation(s)
- Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Doreen A. Wüstenhagen
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Maria Borowiak
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Marlitt Stech
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Andrei Sonnabend
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
13
|
FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13). PLoS One 2016; 11:e0163893. [PMID: 27684722 PMCID: PMC5042417 DOI: 10.1371/journal.pone.0163893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022] Open
Abstract
A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells.
Collapse
|
14
|
Lewis AM, Abu-Absi NR, Borys MC, Li ZJ. The use of 'Omics technology to rationally improve industrial mammalian cell line performance. Biotechnol Bioeng 2015; 113:26-38. [PMID: 26059229 DOI: 10.1002/bit.25673] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Biologics represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 being in this class. Furthermore, health authority approval of biologics in the immuno-oncology space is expected to transform treatment of patients with debilitating and deadly diseases. The growing importance of biologics in the healthcare field has also resulted in the recent approvals of several biosimilars. These recent developments, combined with pressure to provide treatments at lower costs to payers, are resulting in increasing need for the industry to quickly and efficiently develop high yielding, robust processes for the manufacture of biologics with the ability to control quality attributes within narrow distributions. Achieving this level of manufacturing efficiency and the ability to design processes capable of regulating growth, death and other cellular pathways through manipulation of media, feeding strategies, and other process parameters will undoubtedly be facilitated through systems biology tools generated in academic and public research communities. Here we discuss the intersection of systems biology, 'Omics technologies, and mammalian bioprocess sciences. Specifically, we address how these methods in conjunction with traditional monitoring techniques represent a unique opportunity to better characterize and understand host cell culture state, shift from an empirical to rational approach to process development and optimization of bioreactor cultivation processes. We summarize the following six key areas: (i) research applied to parental, non-recombinant cell lines; (ii) systems level datasets generated with recombinant cell lines; (iii) datasets linking phenotypic traits to relevant biomarkers; (iv) data depositories and bioinformatics tools; (v) in silico model development, and (vi) examples where these approaches have been used to rationally improve cellular processes. We critically assess relevant and state of the art research being conducted in academic, government and industrial laboratories. Furthermore, we apply our expertise in bioprocess to define a potential model for integration of these systems biology approaches into biologics development.
Collapse
Affiliation(s)
- Amanda M Lewis
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts.
| | - Nicholas R Abu-Absi
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Michael C Borys
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| |
Collapse
|
15
|
Kang SY, Kim YG, Lee HW, Lee EG. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr. Appl Microbiol Biotechnol 2015; 99:10117-26. [PMID: 26245680 DOI: 10.1007/s00253-015-6856-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022]
Abstract
Gene amplification using dihydrofolate reductase gene (dhfr) and methotrexate (MTX) is widely used for recombinant protein production in mammalian cells and is typically conducted in DHFR-deficient Chinese hamster ovary (CHO) cell lines. Generation of DHFR-deficient cells can be achieved by an expression vector incorporating short hairpin RNA (shRNA) that targets the 3'-untranslated region (UTR) of endogenous dhfr. Thus, shRNAs were designed to target the 3'-UTR of endogenous dhfr, and shRNA-2 efficiently down-regulated dhfr expression in CHO-K1 cells. A single gene copy of shRNA-2 also decreased the translational level of DHFR by 80% in Flp-In CHO cells. shRNA-2 was then incorporated into a plasmid vector expressing human erythropoietin (EPO) and an exogenous DHFR to develop EPO-producing cells in the Flp-In system. The specific EPO productivity (q EPO) was enhanced by stepwise increments of MTX concentration, and differences in the amplification rate were observed in Flp-In CHO cells that expressed shRNA-2. In addition, the q EPO increased by more than 2.5-fold in the presence of 500 nM MTX. The mRNA expression level and gene copy numbers of dhfr were correlated with increased productivity in the cells, which is influenced by inhibition of endogenous dhfr. This study reveals that an expression vector including shRNA that targets the 3'-UTR of endogenous dhfr can enhance the transgene amplification rate and productivity by generating DHFR-deficient cells. This approach may be applied for amplifying the foreign gene in wild-type cell lines as a versatile single-plasmid vector.
Collapse
Affiliation(s)
- Shin-Young Kang
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea
| | - Yeon-Gu Kim
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea
| | - Hong Weon Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea
| | - Eun Gyo Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea. .,Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 363-883, Republic of Korea.
| |
Collapse
|
16
|
Springer S, Yi KH, Park J, Rajpurohit A, Price AJ, Lauring J. Engineering targeted chromosomal amplifications in human breast epithelial cells. Breast Cancer Res Treat 2015; 152:313-21. [PMID: 26099605 PMCID: PMC4491111 DOI: 10.1007/s10549-015-3468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including “sawtooth” patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.
Collapse
Affiliation(s)
- Simeon Springer
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, CRB 1 Room 146, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 2015; 16:160. [PMID: 25887056 PMCID: PMC4359788 DOI: 10.1186/s12864-015-1391-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins. Results Here we present the genomic sequence of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC → AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing depths of 0x, 16x, 33x and 49x coverage corresponding to a copy number in the genome of 0, 1, 2 and 3 copies. This indicate that 17% of the genes are haploid revealing a large number of genes which can be knocked out with relative ease. This tendency of haploidy was furthermore shown to be present in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find ~2.5 million single nucleotide polymorphisms (SNP’s), 44 gene deletions in the CHO DXB11 genome and 9357 SNP's, which interfere with the coding regions of 3458 genes. Copy number variations for nine CHO genomes were mapped to the chromosomes of the Chinese hamster showing unique signatures for each chromosome. The data indicate that chromosome one and four appear to be more stable over the course of the CHO evolution compared to the other chromosomes thus might presenting the most attractive landing platforms for knock-ins of heterologous genes. Conclusions Our studies reveal an unexpected degree of haploidy in CHO DXB11 and CHO cells in general and highlight the chromosomal changes that have occurred among the CHO cell lines sequenced to date. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1391-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Schrøder Kaas
- Mammalian Cell Technology, Global Research Unit, Novo Nordisk A/S, A9.2.36, Novo Nordisk Park, 2760, Måløv, Denmark. .,Network Engineering of Eukaryotic Cell Factories, Technical University of Denmark, Kgs Lyngby, Denmark. .,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Claus Kristensen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Michael J Betenbaugh
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Mikael Rørdam Andersen
- Network Engineering of Eukaryotic Cell Factories, Technical University of Denmark, Kgs Lyngby, Denmark.
| |
Collapse
|
18
|
Construction of a chimeric secretory IgA and its neutralization activity against avian influenza virus H5N1. J Immunol Res 2014; 2014:394127. [PMID: 24741594 PMCID: PMC3987799 DOI: 10.1155/2014/394127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH) and Light chain (VL) genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.
Collapse
|
19
|
Vishwanathan N, Le H, Jacob NM, Tsao YS, Ng SW, Loo B, Liu Z, Kantardjieff A, Hu WS. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnol Bioeng 2013; 111:518-28. [DOI: 10.1002/bit.25117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/16/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue S.E. Minneapolis Minnesota 55455-0132
| | - Huong Le
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue S.E. Minneapolis Minnesota 55455-0132
| | - Nitya M. Jacob
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue S.E. Minneapolis Minnesota 55455-0132
| | | | - Sze-Wai Ng
- Bioprocessing Technology Institute; Singapore Singapore
| | - Bernard Loo
- Bioprocessing Technology Institute; Singapore Singapore
| | - Zhong Liu
- Bioprocess Development; Merck & Co.; Union New Jersey
| | - Anne Kantardjieff
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue S.E. Minneapolis Minnesota 55455-0132
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science; University of Minnesota; 421 Washington Avenue S.E. Minneapolis Minnesota 55455-0132
| |
Collapse
|
20
|
|
21
|
Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 2013; 6:579-603. [PMID: 24276168 PMCID: PMC3817724 DOI: 10.3390/ph6050579] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.
Collapse
|
22
|
|
23
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
24
|
Keen MJ, Rapson NT. Development of a serum-free culture medium for the large scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology 2012; 17:153-63. [PMID: 22358555 DOI: 10.1007/bf00749653] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1994] [Accepted: 02/02/1995] [Indexed: 11/24/2022] Open
Abstract
A serum-free medium, WCM5, has been developed for the large scale propagation of CHO (Chinese hamster ovary) cells which express recombinant protein using dihydrofolate reductase as a selectable marker. WCM5 was prepared by supplementing Iscoves medium without lecithin, albumin or transferrin with a number of components which were shown to benefit growth. WCM5 medium contained 5 mg l(-1) human recombinant insulin (Nucellin) but was otherwise protein-free. CHO 3D11(*) cells which had been engineered to express a humanised antibody, CAMPATH(*)-1H, were routinely grown using serum-containing medium. From a seeding density of 10(5) cells ml(-1), cells grown in static culture with serum reached a maximal cell density of 6.5×10(5) cells ml(-1) after 6 days in culture and produced a maximal antibody concentration of 69 mg l(-1) after 11 days in culture. CHO 3D11(*) cells grown with serum were washed in serum-free medium then cultured in WCM5 medium. Following a period of adaptation the cell growth and product yield was superior to that achieved with serum-containing medium. CHO cells producing CAMPATH-1H grown in an 8000 l stirred bioreactor seeded with 2×10(5) cells ml(-1) reached a maximal viable cell density of 2.16×10(6) cells ml(-1) after 108 h in culture and a maximal antibody concentration of 131.1 mg l(-1) after 122 h in culture.
Collapse
Affiliation(s)
- M J Keen
- Biology Research Division, Wellcome Research Laboratories, Langley Court, Beckenham, Kent, UK
| | | |
Collapse
|
25
|
Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm 2011; 78:184-8. [DOI: 10.1016/j.ejpb.2011.01.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/11/2011] [Indexed: 11/20/2022]
|
26
|
High levels of human recombinant cyclooxygenase-1 expression in mammalian cells using a novel gene amplification method. Protein Expr Purif 2011; 80:41-6. [PMID: 21645621 DOI: 10.1016/j.pep.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 12/17/2022]
Abstract
We report the expression of a high level of human cyclooxygenase-1 (hCOX-1) in mammalian cells using a novel gene amplification method known as the IR/MAR gene amplification system. IR/MAR-plasmids contain a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) and amplify autonomously without a specific induction process. In this study, the IR/MAR-plasmid pΔBN.AR1 was cotransfected with pCAG-COX1, which expresses hCOX-1, into human HEK293T cells, and G418 and blasticidin S double-resistant cells were obtained in about 1month. Real-time PCR and Western blotting revealed that the expressions of hCOX-1 mRNA and protein in both polyclonal and monoclonal cells were remarkably higher than those in only pCAG-COX1-transfected control cells. Southern blotting demonstrated the amplification of the hCOX-1 gene, and the copy number of clone #43 obtained by the cotransfection of pΔBN.AR1 and pCAG-COX1 was more than 20 copies per cell, though that of clone #14 obtained without using the IR/MAR plasmid pΔBN.AR1 was only two copies. These results indicate that a high level of hCOX-1 expression was achieved as a result of hCOX-1 gene amplification. Furthermore, the crude extract from clone #43 showed a strong COX-1 activity, and the activity was inhibited by the representative COX-1 inhibitor indomethacin, with an IC(50) value of 36nM. These results demonstrate that the IR/MAR gene amplification system is a simple but useful method for generating highly productive mammalian cells.
Collapse
|
27
|
Van Blokland HJM, Hoeksema F, Siep M, Otte AP, Verhees JA. Methods to create a stringent selection system for mammalian cell lines. Cytotechnology 2011; 63:371-84. [PMID: 21509612 PMCID: PMC3140837 DOI: 10.1007/s10616-011-9354-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
The efficient establishment of high protein producing recombinant mammalian cell lines is facilitated by the use of a stringent selection system. Here, we describe two methods to create a stringent selection system based on the Zeocin resistance marker. First, we cloned increasingly longer stretches of DNA, encoding a range of 8–131 amino acids immediately upstream of the Zeocin selection marker gene. The DNA stretches were separated from the open reading frame of the selection marker gene by a stopcodon. The idea behind this was that the translation machinery will first translate the small peptide, stop and then restart at the AUG of the Zeocin marker. This process, however, will become less efficient with increasingly longer stretches of DNA upstream of the Zeocin marker that has to be translated first. This would result in lower levels of the Zeocin selection marker protein and thus a higher selection stringency of the system. Secondly, we performed a genetic screen to identify PCR induced mutations in the Zeocin selection protein that functionally impair the selection marker protein. Both the insertion of increasingly longer peptides and several Zeocin selection protein mutants resulted in a decreasing number of stably transfected colonies that concomitantly displayed higher protein expression levels. When the Zeocin mutants were combined with very short small peptides (8–14 amino acids long), this created a flexible, high stringency selection system. The system allows the rapid establishment of few, but high protein producing mammalian cell lines.
Collapse
Affiliation(s)
- H. J. M. Van Blokland
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - F. Hoeksema
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Siep
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - A. P. Otte
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J. A. Verhees
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
28
|
Ng SK, Lin W, Sachdeva R, Wang DI, Yap MG. Vector fragmentation: Characterizing vector integrity in transfected clones by Southern blotting. Biotechnol Prog 2009; 26:11-20. [DOI: 10.1002/btpr.281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 2009; 102:1182-96. [DOI: 10.1002/bit.22158] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Liu J, Ku SCY, Lee J, Young TM, Pe'ery T, Mathews MB, Chao SH. The 3'UTR of HIC mRNA improves the production of recombinant proteins in Chinese hamster ovary cells. J Biotechnol 2009; 139:152-5. [PMID: 19041912 DOI: 10.1016/j.jbiotec.2008.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is an important transcriptional regulator which controls 70-80% of RNA polymerase II transcription. It has been reported that the human I-mfa (inhibitor of MyoD family a) domain-containing protein (HIC) interacts with P-TEFb and that expression of HIC cDNA stimulates P-TEFb-dependent transcription. Interestingly, our recent study shows that transcriptional stimulation by HIC is predominately due to the 3' untranslated region (3'UTR) of HIC mRNA rather than its coding region. In this report, we investigate the effects of HIC 3'UTR on recombinant protein expression in mammalian cells. In transient transfections, overexpression of HIC 3'UTR stimulates transgene expression in several mammalian cell lines and significantly increases the production of human erythropoietin and interferon-gamma in Chinese hamster ovary (CHO) cells. This is the first report that demonstrates the improvement of expression of biopharmaceutical proteins by overexpressing a non-coding 3'UTR in CHO cells.
Collapse
Affiliation(s)
- Jaron Liu
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Engineering Mammalian Cells for Recombinant Monoclonal Antibody Production. CELL ENGINEERING 2009. [DOI: 10.1007/978-90-481-2245-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Construction, purification, and characterization of anti-BAFF scFv-Fc fusion antibody expressed in CHO/dhfr- cells. Appl Biochem Biotechnol 2008; 157:562-74. [PMID: 19099209 DOI: 10.1007/s12010-008-8434-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Elevated levels of B-cell-activating factor of the tumor necrosis factor family (BAFF) have been implicated in the pathogenesis of autoimmune diseases in human. In this study, we have constructed a vector for the expression of a novel compact antibody composed of anti-BAFF single-chain antibody fragment (scFv) and the Fc region (the hinge region, CH2, and CH3 domains) of human IgG1 in Chinese hamster ovary cells. The scFv-Fc fusion protein, showing spontaneous Fc fragment-mediated homodimerization via disulfide bridges, was affinity-purified on protein A Sepharose from culture supernatant. The scFv-Fc antibody was demonstrated to retain high binding affinity to antigen and prolonged clearance time in blood and to possess some human IgG crystallizable fragment effector functions such as protein A binding and antibody-dependent cellular cytotoxicity. These results suggest that this recombinant antibody may have therapeutic applications in the therapy of autoimmune disorders mediated by BAFF.
Collapse
|
33
|
Chen S, Gray D, Ma J, Subramanian S. Production of recombinant proteins in mammalian cells. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Chapter 5:Unit5.10. [PMID: 18429176 DOI: 10.1002/0471140864.ps0510s12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The best strategy for consistent production of larger quantities of pure protein is stable expression. Popular hosts for stable expression are Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK-21) cells, myeloma cells, and the transformed kidney cell line 293. Protocols for stable production in CHO cells are described in this unit. Typical methods for transfection using commercially available plasmid expression vectors are described, along with methods to select for stable expression and methods for amplifying the expression level in the transfected cell. Following this, procedures are presented for efficient cell growth to obtain significant amounts of protein product. Support protocols describe freezing of cells, determination of growth rates, determination of specific productivity of cells, preparing samples for assay, and setting up a 10-day shaker-flask growth curve.
Collapse
Affiliation(s)
- S Chen
- Chiron Corporation, Emeryville, California, USA
| | | | | | | |
Collapse
|
34
|
Colin C, Demasi MA, Degaki TL, Bustos-Valenzuela JC, Figueira RCS, Montor WR, Cruz LO, Lojudice FH, Muras AG, Pereira TM, Winnischofer SMB, Hasegawa APG, Carreira AC, Verbisck NV, Corrêa RG, Garay-Malpartida HM, Mares-Guia TR, Corrêa-Giannella ML, Granjeiro JM, Sogayar MC. NUCEL (Cell and Molecular Therapy Center): A Multidisciplinary Center for Translational Research in Brazil. Mol Biotechnol 2008; 39:89-95. [DOI: 10.1007/s12033-008-9052-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, Ghayur T. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007; 25:1290-7. [PMID: 17934452 DOI: 10.1038/nbt1345] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/24/2007] [Indexed: 11/09/2022]
Abstract
For complex diseases in which multiple mediators contribute to overall disease pathogenesis by distinct or redundant mechanisms, simultaneous blockade of multiple targets may yield better therapeutic efficacy than inhibition of a single target. However, developing two separate monoclonal antibodies for clinical use as combination therapy is impractical, owing to regulatory hurdles and cost. Multi-specific, antibody-based molecules have been investigated; however, their therapeutic use has been hampered by poor pharmacokinetics, stability and manufacturing feasibility. Here, we describe a generally applicable model of a dual-specific, tetravalent immunoglobulin G (IgG)-like molecule--termed dual-variable-domain immunoglobulin (DVD-Ig)--that can be engineered from any two monoclonal antibodies while preserving activities of the parental antibodies. This molecule can be efficiently produced from mammalian cells and exhibits good physicochemical and pharmacokinetic properties. Preclinical studies of a DVD-Ig protein in an animal disease model demonstrate its potential for therapeutic application in human diseases.
Collapse
Affiliation(s)
- Chengbin Wu
- Department of Biologics, Abbott Bioresearch Center, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lattenmayer C, Trummer E, Schriebl K, Vorauer-Uhl K, Mueller D, Katinger H, Kunert R. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J Biotechnol 2007; 128:716-25. [PMID: 17324483 DOI: 10.1016/j.jbiotec.2006.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 11/25/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
We have generated a recombinant CHO cell line expressing the fusion protein EpoFc. After selection and screening, protein expression, gene and mRNA copy numbers were analysed in order to gain more information on the influence of genetic parameters on the productivity and stability of production cells. Results from semi-quantitative blot methods were compared to quantitative PCR (qPCR) analyses, whose advantage mainly lies in their higher sensitivity, and the cheaper and faster methodology. We developed stable and high producing clones with low gene copy numbers, in contrast to other cell lines where multiple steps of methotrexate amplification have lead to hundreds of copies of inserts with the risk of karyotypic instabilities and decreased growth rates that overcome the benefits of increased productivities. When comparing genetic parameters to productivity, a good correlation of mRNA levels with specific productivity was observed, whereas high gene copy numbers were not always accompanied by high protein expressions. Based on our data derived from a typical example of a cell line development process, genetic parameters are useful tools for the selection of scalable production clones. Nevertheless, a wider range of cell lines has to be investigated in order to implement genetic analyses into a screening process.
Collapse
Affiliation(s)
- Christine Lattenmayer
- Austrian Center of Biopharmaceutical Technology, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chatellard P, Pankiewicz R, Meier E, Durrer L, Sauvage C, Imhof MO. The IE2 promoter/enhancer region from mouse CMV provides high levels of therapeutic protein expression in mammalian cells. Biotechnol Bioeng 2007; 96:106-17. [PMID: 16937403 DOI: 10.1002/bit.21172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein expression in mammalian cells is key for the production and manufacturing of bio-therapeutics with human-like properties and activities. As a molecular basis for reaching high protein expression levels, efficient promoter/enhancer systems are a prerequisite. Here we identify a novel enhancer from the mouse cytomegalovirus (CMV) immediate early 2 (IE2) region as a strong expression-promoting element. We further demonstrate its activity in bi-directional promoter architecture and apply it to generate production clones for IL-18BP, a protein with therapeutic indications in autoimmune diseases. These data show that the IE region from mouse CMV, and the IE2 enhancer/promoter in particular, have a broad potential for application in novel gene expression systems for research, development, and manufacturing of protein drugs.
Collapse
Affiliation(s)
- Philippe Chatellard
- Cell Sciences, Laboratoires Serono SA, CH-1809 Fenil-sur-Corsier, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chinese hamster ovary (CHO) cells are a prevalent tool in biological research and are among the most widely used host cell lines for production of recombinant therapeutic proteins. While research in other organisms has been revolutionized through the development of DNA sequence-based tools, the lack of comparable genomic resources for the Chinese hamster has impeded similar work in CHO cell lines. A comparative genomics approach, based upon the completely sequenced mouse genome, can facilitate genomic work in this important organism. Using chromosome synteny to define regions of conserved linkage between Chinese hamster and mouse chromosomes, a working scaffold for the Chinese hamster genome has been developed. Mapping CHO and Chinese hamster sequences to the mouse genome creates direct access to relevant information in public databases. Additionally, mapping gene expression data onto a chromosome scaffold affords the ability to interpret information in a genomic context, potentially revealing important structural and regulatory features in the Chinese hamster genome. Further development of this genomic scaffold will provide opportunities to use biomolecular tools for research in CHO cell lines today and will be an asset to future efforts to sequence the Chinese hamster genome.
Collapse
Affiliation(s)
- Katie F Wlaschin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | |
Collapse
|
39
|
Lattenmayer C, Loeschel M, Steinfellner W, Trummer E, Mueller D, Schriebl K, Vorauer-Uhl K, Katinger H, Kunert R. Identification of transgene integration loci of different highly expressing recombinant CHO cell lines by FISH. Cytotechnology 2006; 51:171-82. [PMID: 19002887 DOI: 10.1007/s10616-006-9029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022] Open
Abstract
Recombinant CHO cell lines have integrated the expression vectors in various parts of the genome leading to different levels of gene amplification, productivity and stability of protein expression. Identification of insertion sites where gene amplification is possible and the transcription rate is high may lead to systems of site-directed integration and will significantly reduce the process for the generation of stably and highly expressing recombinant cell lines. We have investigated a broad range of recombinant cell lines by FISH analysis and Giemsa-Trypsin banding and analysed their integration loci with regard to the extent of methotrexate pressure, transfection methods, promoters and protein productivities. To summarise, we found that the majority of our high producing recombinant CHO cell lines had integrated the expression construct on a larger chromosome of the genome. Furthermore, except from two cell lines, the exogene was integrated at a single site. The dhfr selection marker was co-localised to the target gene.
Collapse
Affiliation(s)
- Christine Lattenmayer
- Austrian Center of Biopharmaceutical Technology, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 2006; 340:1069-77. [PMID: 16403443 DOI: 10.1016/j.bbrc.2005.12.111] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
The dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cell line DG44 is the dominant mammalian host for recombinant protein manufacturing, in large part because of the availability of a well-characterized genetic selection and amplification system. However, this cell line has not been studied at the cytogenetic level. Here, the first detailed karyotype analysis of DG44 and several recombinant derivative cell lines is described. In contrast to the 22 chromosomes in diploid Chinese hamster cells, DG44 has 20 chromosomes, only seven of which are normal. In addition, four Z group chromosomes, seven derivative chromosomes, and 2 marker chromosomes were identified. For all but one of the 16 DG44-derived recombinant cell lines analyzed, a single integration site was detected by fluorescence in situ hybridization regardless of the gene delivery method (calcium phosphate-DNA coprecipitation or microinjection), the topology of the DNA (circular or linear), or the integrated plasmid copy number (between 1 and 51). Chromosomal aberrations, observed in more than half of the cell lines studied, were mostly unbalanced with examples of aneuploidy, deletions, and complex rearrangements. The results demonstrate that chromosomal aberrations are frequently associated with the establishment of recombinant CHO DG44 cell lines. Noteworthy, there was no direct correlation between the stability of the genome and the stability of recombinant protein expression.
Collapse
Affiliation(s)
- M Derouazi
- Laboratory of Cellular Biotechnology (LBTC), Institute of Biological Engineering and Biotechnology (IGBB), Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang VC, Naik SS, Song H, Dombkowski AA, Crippen G, Liang JF. Construction and characterization of a t-PA mutant for use in ATTEMPTS: A drug delivery system for achieving targeted thrombolysis. J Control Release 2005; 110:164-76. [PMID: 16260060 DOI: 10.1016/j.jconrel.2005.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/16/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
To resolve the bleeding risk associated with thrombolytic therapy, we have designed an approach, termed ATTEMPTS (Antibody Targeted Triggered Electrically Modified Prodrug Type Strategy), to deliver t-PA to the clot site in an inactive form and then trigger its conversion to the active form, so that it would selectively activate the clot bound plasminogen while alleviating the bleeding risk. This delivery system was composed of a large protein complex, consisting of two components: (i) a heparin-modified, negatively charged fibrin-targeting antibody; and (ii) a cationic peptide-modified, positively charged t-PA. Both in vitro and in vivo studies have confirmed the feasibility of this targeted drug delivery approach. A site-specific thrombolysis was observed in animals, without concomitant depletion of the coagulation factors -- the phenomenon in conventional thrombolytic therapy that contributes to the bleeding risk. Despite promise, the chemical conjugation method employed previously in the preparation of the cationic peptide-modified t-PA also revealed several major shortcomings. The primary drawback was that the number of the cationic peptides and the location at which these peptides were attached to a t-PA molecule could not be regulated by using the chemical conjugation method. As a consequence, the resultant modified t-PA possessed a wide range of heparin-binding strength, rendering the inhibition of t-PA activity by heparin binding ineffective. In this paper, we present a new strategy in producing the desired modified t-PA, utilizing the genetic engineering approach. A computer simulation-guided rational design strategy was adopted to identify the most desirable site in t-PA (i.e. the 37-loop) for incorporation of the heparin-binding peptide sequence. By altering the amino acid composition via mutation at three locations, i.e. Ser(300) to Cys, Gly(302) to Arg, and Glu(303) to Arg, a highly cationic nanomer sequence consisting of (297)KHRRCPRRR(304) and possessing a well-demonstrated heparin-binding domain was established within the 37-loop. To ensure the binding of heparin to this specifically modified domain, a cysteine residue (i.e. Cys(300)) was created to allow for site-specific conjugation of an additional heparin-binding peptide (i.e. the LMWP peptide previously developed in our laboratory) to this domain via the chemical conjugation method. In vitro fibrinolysis assays showed that both the t-PA mutant and the LMWP-attached t-PA mutant exhibited a fibrinolytic potency similar to that of the wild type t-PA. Inhibition studies using small chromogenic substrates demonstrated that the activity of mutant tPA-LMWP could be significantly inhibited by heparin binding. In conclusion, using computer simulation and molecular biology approaches, a mutated t-PA that meets the needs of the ATTEMPTS system, in providing a safe thrombolytic therapy, could be readily prepared.
Collapse
Affiliation(s)
- Victor C Yang
- Cheung Kong Scholar, School of Chemical Engineering, Tianjin University, China.
| | | | | | | | | | | |
Collapse
|
42
|
Griffiths JB, Electricwala A. Production of tissue plasminogen activators from animal cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 34:147-66. [PMID: 3113182 DOI: 10.1007/bfb0000678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Park KS, Seol W, Yang HY, Lee SI, Kim SK, Kwon RJ, Kim EJ, Roh YH, Seong BL, Kim JS. Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells. Biotechnol Prog 2005; 21:664-70. [PMID: 15932240 DOI: 10.1021/bp049658x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Randomized ZFP-TF libraries could induce a specific phenotype without detailed knowledge about the phenotype of interest because, theoretically, the libraries could modulate any gene in the target organism. We have developed a novel method for enhancing the efficiency of recombinant protein production in mammalian and microbial cells using combinatorial libraries of zinc finger protein transcription factors. To this end, we constructed tens of thousands of zinc finger proteins (ZFPs) with distinct DNA-binding specificities and fused these ZFPs to either a transcriptional activation or repression domain to make transcriptional activators or repressors, respectively. Expression vectors that encode these artificial transcription factors were delivered into Saccharomyces cerevisiae or HEK 293 cells along with reporter plasmids that code for human growth hormone (hGH) or SEAP (secreted alkaline phosphatase) (for yeast or HEK, respectively). Expression of the reporter genes was driven by either the cytomegalovirus (CMV) or SV40 virus promoters. After transfection, we screened the cells for increased synthesis of the reporter proteins. From these cells, we then isolated several ZFP-transcription factors (ZFP-TFs) that significantly increased hGH or SEAP synthesis and subjected these regulatory proteins to further characterization. Our results show that randomized ZFP-TF libraries are useful tools for improving the yield of heterologous recombinant protein both in yeast and mammalian cells.
Collapse
Affiliation(s)
- Kyung-Soon Park
- ToolGen, Inc., Daedeok Biocommunity, 461-71, Jeonmin-dong, Yuseong-gu, Daejeon, 305-390, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hacker DL, Derow E, Wurm FM. The CELO adenovirus Gam1 protein enhances transient and stable recombinant protein expression in Chinese hamster ovary cells. J Biotechnol 2005; 117:21-9. [PMID: 15831244 DOI: 10.1016/j.jbiotec.2005.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/21/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
The Gam1 protein of the avian CELO adenovirus activates transcription through inhibition of histone deacetylase 1 (HDAC1). We investigated the effect of Gam1 on both transient and stable transgene expression in Chinese hamster ovary (CHO) cells, one of the most commonly used mammalian hosts for the large-scale production of recombinant proteins. Transient expression of Gam1 increased reporter protein levels up to 4-fold in suspension cultures of CHO DG44 cells co-transfected with a reporter gene and up to 20-fold in recombinant CHO DG44-derived cell lines. The highest levels of activation were observed when the transgene was under the control of the human cytomegalovirus (HCMV) immediate early promoter/enhancer. Increases in recombinant protein expression in the presence of Gam1 were not accompanied by an enhancement of cell growth or viability. We conclude that Gam1 may serve as a useful genetic tool for increasing recombinant protein expression in CHO DG44 cells.
Collapse
Affiliation(s)
- David L Hacker
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Cellular Biotechnology, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
45
|
Wlaschin KF, Nissom PM, Gatti MDL, Ong PF, Arleen S, Tan KS, Rink A, Cham B, Wong K, Yap M, Hu WS. EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol Bioeng 2005; 91:592-606. [PMID: 16003777 DOI: 10.1002/bit.20511] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are one of the most important cell lines in biological research, and are the most widely used host for industrial production of recombinant therapeutic proteins. Despite their extensive applications, little sequence information is available for molecular based research. To facilitate gene discovery and genetic engineering, two cDNA libraries were constructed from three CHO cell lines grown under various conditions. The average insert size for both libraries is approximately 800-850 bp, and each library has comparable redundancy levels of 36%-38% for the sequences isolated. Random sequencing of 4,608 ESTs yielded 2,602 unique assemblies, 76% of which were annotated as orthologs of sequences in the GenBank database. A high abundance of mitochondrial genome transcripts facilitated the assembly of the complete mitochondrial genome by PCR walking. Comparative analysis of sequences from both mitochondrial and nuclear genomes with orthologous genes from other species shows that CHO sequences are generally most similar to mouse; however, examples with highest similarity to rat or human are common. A cDNA microarray, including all 4,608 ESTs, was constructed. The microarray results reveal a high level of consistency between transcript abundance in the libraries and fluorescence intensities. Inclusion of redundant clones in the microarray, additionally, allows small changes in abundant mRNAs to be discerned with a high degree of confidence. The information and tools generated provide access to genomic technology for this important cell line.
Collapse
Affiliation(s)
- Katie Fraass Wlaschin
- University of Minnesota Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen L, Xie Z, Teng Y, Wang M, Shi M, Qian L, Hu M, Feng J, Yang X, Shen B, Guo N. Highly efficient selection of the stable clones expressing antibody–IL-2 fusion protein by a dicistronic expression vector containing a mutant neo gene. J Immunol Methods 2004; 295:49-56. [PMID: 15627610 DOI: 10.1016/j.jim.2004.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 04/23/2004] [Accepted: 08/19/2004] [Indexed: 11/22/2022]
Abstract
To increase the selection efficiency and productivity of stable clones expressing recombinant antibody-IL-2 fusion protein, a dicistronic expression vector containing the anti-erbB2 scFv-Fc-IL-2 fusion gene followed by a weakened neo gene, was constructed to allow for the concurrent translation of the recombinant protein and mutated neomycin phosphotransferase from a single mRNA. The presence of the mutant enzyme in the transfectomas resulted in a decreased resistance of cells in the presence of an elevated level of G418 and retarded cell growth. The transfectomas containing the mutant enzyme expressed considerably higher levels of the fusion protein than those containing the normal enzyme. Furthermore, these positive clones had an almost identical level of recombinant gene expression, which was very stable even when the concentration of G418 was significantly increased. Thus, the selection efficiency of strongly positive producers was remarkably increased. Our results demonstrate that the dicistronic expression vector is useful for the selection of highly expressing clones. Combined with an amplification system, this vector may have potential usage for the expression of recombinant antibody and the yield may be further improved by this expression system.
Collapse
Affiliation(s)
- Liyong Chen
- Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC. Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 2004; 88:474-88. [PMID: 15459912 DOI: 10.1002/bit.20272] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NS0) cells. Four homogeneous NS0 cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab datasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production.
Collapse
Affiliation(s)
- C M Smales
- Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 2003; 81:631-9. [PMID: 12529877 DOI: 10.1002/bit.10517] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most important criteria for successful generation of a therapeutic protein from a recombinant cell is to obtain a cell line that maintains stability of production. If this is not achieved it can generate problems for process yields, effective use of time and money, and for regulatory approval of products. However, selection of a cell line that sustains stability of production over the required time period may be difficult to achieve during development of a therapeutic protein. There are several studies in the literature that have reported on the instability of protein production from recombinant cell lines. The causes of instability of production are varied and, in many cases, the exact molecular mechanisms are unknown. The production of proteins by cells is modulated by molecular events at levels ranging from transcription, posttranscriptional processing, translation, posttranslational processing, to secretion. There is potential for regulation of stability of protein production at many or all of these stages. In this study we review published information on stability of protein production for three industrially important cell lines: hybridoma, Chinese hamster ovary (CHO), and nonsecreting (NS0) myeloma cell lines. We highlight the most likely molecular loci at which instability may be engendered and indicate other areas of protein production that may affect stability from mammalian cells. We also outline approaches that could help to overcome the problems associated with unpredictable expression levels and maximized production, and indicate the consequences these might have for stability of production.
Collapse
Affiliation(s)
- Louise M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
49
|
Wurm FM, Jordan M. Gene transfer and gene amplification in mammalian cells. GENE TRANSFER AND EXPRESSION IN MAMMALIAN CELLS 2003. [DOI: 10.1016/s0167-7306(03)38019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Bailey CG, Tait AS, Sunstrom NA. High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol Bioeng 2002; 80:670-6. [PMID: 12378608 DOI: 10.1002/bit.10424] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transfected mammalian cells can be used for the production of fully processed recombinant proteins for medical and industrial purposes. However, the isolation of high-producing clones is traditionally time-consuming. Therefore, we developed a high-throughput screening method to reduce the time and effort required to isolate high-producing cells. This involved the construction of an expression vector containing the amplifiable gene metallothionein (MT), fused in-frame to green fluorescent protein (GFP). The fusion gene (MTGFP) confers metal resistance similar to that of the wild-type metallothionein and expression can be monitored using either flow cytometry or a fluorometer to measure green fluorescence. Expression of MTGFP acted as a dominant selectable marker allowing rapid and more efficient selection of clones at defined metal concentrations than with the antibiotic G418. Cells harboring MTGFP responded to increasing metal concentrations with a corresponding increase in fluorescence. There was also a corresponding increase in recombinant protein production, indicating that MTGFP could be used as a selectable and amplifiable gene for the coexpression of foreign genes. Using our expression vector encoding MTGFP, we demonstrate a high-throughput clonal selection protocol for the rapid isolation of high-producing clones from transfected CHO cells. We were able to isolate cell lines reaching specific productivities of >10 microg hGH/10(6) cells/day within 4 weeks of transfection. The advantage of this method is that it can be easily adapted for automated procedures using robotic handling systems.
Collapse
Affiliation(s)
- Charles G Bailey
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | | | | |
Collapse
|