1
|
Venkatesan G, Kumar A, Manimuthu P, Balamurugan V, Bhanuprakash V, Singh RK. Sequence analysis of haemagglutinin gene of camelpox viruses shows deletion leading to frameshift: Circulation of diverse clusters among camelpox viruses. Transbound Emerg Dis 2018; 65:1920-1934. [PMID: 30105893 DOI: 10.1111/tbed.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/09/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
Orthopoxviruses (OPVs) have broad host range infecting a variety of species along with gene-specific determinants. Several genes including haemagglutinin (HA) are used for differentiation of OPVs. Among poxviruses, OPVs are sole members encoding HA protein as part of extracellular enveloped virion membrane. Camelpox virus (CMLV) causes an important contagious disease affecting mainly young camels, endemic to Indian subcontinent, Africa and the Middle East. This study describes the sequence features and phylogenetic analysis of HA gene (homologue of VACV A56R) of Indian CMLV isolates. Comparative analysis of CMLV HA gene revealed conserved nature within CMLVs but considerable variability was observed between various species of OPVs. Most Indian CMLV isolates showed 99.5%-100% and 96.3%-100% identity, at nucleotide (nt) and amino acid (aa) levels respectively, among themselves and with CMLV-M96 strain. Importantly, Indian CMLV strains along with CMLV-M96 showed deletion of seven nucleotides resulting in frameshift mutation at C-terminus of HA protein. Phylogenetic analysis displayed distinct clustering among CMLVs which might point to the circulation of diverse CMLV strains in nature. Despite different host specificity of OPVs, comparative sequence analysis of HA protein showed highly conserved N-terminal Ig V-set functional domain with tandem repeats. Understanding of molecular diversity of CMLVs and structural domains of HA protein will help in the elucidation of molecular mechanisms for immune evasion and design of novel antivirals for OPVs.
Collapse
Affiliation(s)
- Gnanavel Venkatesan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Prabhu Manimuthu
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Vinayagamurthy Balamurugan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Veerakyathappa Bhanuprakash
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-Indian Veterinary Research Institute, Bengaluru, Karnataka, India
| | - Raj Kumar Singh
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Lorenzo MM, Sánchez-Puig JM, Blasco R. Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5. J Gen Virol 2012; 93:733-743. [PMID: 22238237 DOI: 10.1099/vir.0.039016-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer envelope of vaccinia virus extracellular virions is derived from intracellular membranes that, at late times in infection, are enriched in several virus-encoded proteins. Although palmitoylation is common in vaccinia virus envelope proteins, little is known about the role of palmitoylation in the biogenesis of the enveloped virus. We have studied the palmitoylation of B5, a 42 kDa type I transmembrane glycoprotein comprising a large ectodomain and a short (17 aa) cytoplasmic tail. Mutation of two cysteine residues located in the cytoplasmic tail in close proximity to the transmembrane domain abrogated palmitoylation of the protein. Virus mutants expressing non-palmitoylated versions of B5 and/or lacking most of the cytoplasmic tail were isolated and characterized. Cell-to-cell virus transmission and extracellular virus formation were only slightly affected by those mutations. Notably, B5 versions lacking palmitate showed decreased interactions with proteins A33 and F13, but were still incorporated into the virus envelope. Expression of mutated B5 by transfection into uninfected cells showed that both the cytoplasmic tail and palmitate have a role in the intracellular transport of B5. These results indicate that the C-terminal portion of protein B5, while involved in protein transport and in protein-protein interactions, is broadly dispensable for the formation and egress of infectious extracellular virus and for virus transmission.
Collapse
Affiliation(s)
- María M Lorenzo
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| | - Juana M Sánchez-Puig
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| |
Collapse
|
3
|
DeHaven BC, Gupta K, Isaacs SN. The vaccinia virus A56 protein: a multifunctional transmembrane glycoprotein that anchors two secreted viral proteins. J Gen Virol 2011; 92:1971-1980. [PMID: 21715594 DOI: 10.1099/vir.0.030460-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The vaccinia virus A56 protein was one of the earliest-described poxvirus proteins with an identifiable activity. While originally characterized as a haemagglutinin protein, A56 has other functions as well. The A56 protein is capable of binding two viral proteins, a serine protease inhibitor (K2) and the vaccinia virus complement control protein (VCP), and anchoring them to the surface of infected cells. This is important; while both proteins have biologically relevant functions at the cell surface, neither one can locate there on its own. The A56-K2 complex reduces the amount of virus superinfecting an infected cell and also prevents the formation of syncytia by infected cells; the A56-VCP complex can protect infected cells from complement attack. Deletion of the A56R gene results in varying effects on vaccinia virus virulence. In addition, since the gene encoding the A56 protein is non-essential, it can be used as an insertion point for foreign genes and has been deleted in some viruses that are in clinical development as oncolytic agents.
Collapse
Affiliation(s)
- Brian C DeHaven
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry & Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stuart N Isaacs
- Infectious Diseases Section, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Olson VA, Karem KL, Smith SK, Hughes CM, Damon IK. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships. J Gen Virol 2009; 90:792-798. [PMID: 19264626 DOI: 10.1099/vir.0.008169-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.
Collapse
Affiliation(s)
- Victoria A Olson
- Poxvirus Team, Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Kevin L Karem
- Poxvirus Team, Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Scott K Smith
- Poxvirus Team, Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Christine M Hughes
- Poxvirus Team, Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | - Inger K Damon
- Poxvirus Team, Poxvirus and Rabies Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| |
Collapse
|
5
|
Smith GL, Vanderplasschen A, Law M. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 2002; 83:2915-2931. [PMID: 12466468 DOI: 10.1099/0022-1317-83-12-2915] [Citation(s) in RCA: 404] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus produces four different types of virion from each infected cell called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). These virions have different abundance, structure, location and roles in the virus life-cycle. Here, the formation and function of these virions are considered with emphasis on the EEV form and its precursors, IEV and CEV. IMV is the most abundant form of virus and is retained in cells until lysis; it is a robust, stable virion and is well suited to transmit infection between hosts. IEV is formed by wrapping of IMV with intracellular membranes, and is an intermediate between IMV and CEV/EEV that enables efficient virus dissemination to the cell surface on microtubules. CEV induces the formation of actin tails that drive CEV particles away from the cell and is important for cell-to-cell spread. Lastly, EEV mediates the long-range dissemination of virus in cell culture and, probably, in vivo. Seven virus-encoded proteins have been identified that are components of IEV, and five of them are present in CEV or EEV. The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. The production of several different virus particles in the VV replication cycle represents a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Alain Vanderplasschen
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Mansun Law
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
6
|
Mathew EC, Sanderson CM, Hollinshead R, Smith GL. A mutational analysis of the vaccinia virus B5R protein. J Gen Virol 2001; 82:1199-1213. [PMID: 11297695 DOI: 10.1099/0022-1317-82-5-1199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mutational analysis of the vaccinia virus (VV) B5R protein is presented. This protein is related to the regulators of complement activation (RCA) superfamily, has four short consensus repeats (SCRs) that are typical of this superfamily and is present on extracellular enveloped virus (EEV) particles. Here we have constructed VV mutants in which the cytoplasmic tail (CT) of the B5R protein is progressively truncated, and domains of the B5R protein [the SCR (short consensus repeat) domains, the transmembrane anchor region or the CT] are substituted by corresponding domains from the VV haemagglutinin (HA), another EEV protein. Analysis of these mutant viruses showed that loss of the B5R CT did not affect the formation of intracellular enveloped virus (IEV), actin tails, EEV or virus plaque size. However, if the SCR domains of the B5R protein were replaced by the corresponding region of the HA, the virus plaque size was diminished, the formation of actin tails was decreased severely and the titre of infectious EEV released from cells was reduced approximately 25-fold compared to wild-type virus and 5-fold compared to a virus lacking the entire B5R gene. Thus the linkage of HA to the B5R transmembrane and CT is deleterious for the formation and release of EEV and for cell-to-cell virus spread. In contrast, deletion or substitution of the B5R CT did not affect virus replication, although the amount of cell surface B5R was reduced compared to control.
Collapse
Affiliation(s)
- Elizabeth C Mathew
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| | - Christopher M Sanderson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| | - Ruth Hollinshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| | - Geoffrey L Smith
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| |
Collapse
|
7
|
Duus KM, Grose C. Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J Virol 1996; 70:8961-71. [PMID: 8971025 PMCID: PMC190993 DOI: 10.1128/jvi.70.12.8961-8971.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) is an extremely cell-associated alphaherpesvirus; VZV infection is spread almost exclusively via cell membrane fusion. The envelope glycoprotein H (gH) is highly conserved among the herpesviruses. A virus-encoded chaperone, glycoprotein L (gL), associates with gH, and the gH:gL complex is required for gH maturation and membrane expression. We recently demonstrated that in the VZV system, the gH:gL complex facilitated cell membrane fusion and extensive polykaryon formation in transfected cells (K. M. Duus, C. Hatfield, and C. Grose, Virology 210:429-440, 1995). To further define the functions of the unusual VZV gL chaperone protein, we have performed a series of mutagenesis experiments with both gH and gL and analyzed the mutants by laser scanning confocal microscopy in a transfection-based fusion assay. We established the fact that immature gH exited the endoplasmic reticulum (ER) when coexpressed with either gE or gI and appeared on the cell surface in a patch pattern. A similar effect was observed on the cell surface with gH with a cytoplasmic tail mutagenized to closely resemble the vaccinia virus hemagglutinin cytoplasmic tail. Site-directed mutagenesis of the five gL cysteine residues demonstrated that four of five cysteines participated in the gL chaperone function required for proper maturation of gH. On the other hand, the same gL mutants facilitated transport of immature gH to the cell surface, where patching occurred. Studies of gL processing demonstrated that maturation did not require transport beyond the medial-Golgi; furthermore, gL was not detected in the outer cell membrane, nor was it secreted into the medium. Colocalization studies with 3,3'-dihexyloxa-cabocyanine iodide and N-(e-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-erythro-sphingosine confirmed that gL was found primarily in the ER and cis/medial-Golgi when expressed alone. When all of these data were considered, they suggested a posttranslational gH:gL regulation model whereby the gL chaperone modulated gH expression via retrograde flow from the Golgi to the ER. In this schema, mature gL returns to the ER, where it escorts immature gH from the ER to the Golgi; thereafter, mature gH is transported from the trans-Golgi to the outer cell membrane, where it acts as a major fusogen.
Collapse
Affiliation(s)
- K M Duus
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
8
|
Gong SC, Lai CF, Esteban M. Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology 1990; 178:81-91. [PMID: 2389560 DOI: 10.1016/0042-6822(90)90381-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism by which the large-size poxviruses enter animal cells is not known. In this investigation we show that acid pH treatment of wild-type vaccinia virus-infected cells triggers strong fusion of cells in culture, with an optimum at pH 4.8. We have identified the virus-induced fusion protein as a 14-kDa envelope protein, based on the ability of a 14-kDa specific monoclonal antibody (mAbC3) to block vaccinia virus-induced fusion-from-within and fusion-from-without. We provide genetic evidence for a role of the 14-kDa protein in cell fusion, since insertion of the 14-kDa encoding gene into the genome of nonfusogenic mutant viruses generates heterozygous viruses that now acquire acid pH-dependent fusion activity. DNA sequence analyses of the 14-kDa encoding gene of the mutant viruses, 65-16 and 101-14, reveal N-terminal deletions of 46 and 10 amino acids, respectively. These deletions remove a small hydrophobic region at the N-terminus of the 14-kDa protein and prevent fusion. Our findings demonstrate that vaccinia virus can induce strong fusion of cells in culture at acid pH implying some entry of the virus by endocytosis, that the 14-kDa virus envelope protein is the fusogenic protein, and that the N-terminal proximal region is involved in fusion.
Collapse
Affiliation(s)
- S C Gong
- Department of Biochemistry, SUNY Health Science Center, Brooklyn 11203
| | | | | |
Collapse
|
9
|
Oie M, Shida H, Ichihashi Y. The function of the vaccinia hemagglutinin in the proteolytic activation of infectivity. Virology 1990; 176:494-504. [PMID: 2345962 DOI: 10.1016/0042-6822(90)90019-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vaccinia virus hemagglutinin (HA) has specific affinity for the structural protein, VP37K. The nature of this affinity and its relationship to the function of the HA were analyzed using HA mutants. The VP37K reactive site of the HA molecule is located in its transmembrane region, and the vaccinia virus HA associates with the viral particle via the VP37K-HA affinity. The viruses possessing an HA with fusion inhibitor activity were largely of the low infectivity form, whereas the viruses that associated mutant HAs defective in the activity were of the high infectivity form. D1 mutant virus does not produce HA. When it was incubated with the HA of the IHD-J strain, the HA associated with the virus particle. The HA-loaded D1 mutant virus acquired a high affinity not only for chick erythrocytes but also for KB and Vero cells. At the same time, the infectivity for Vero cells was decreased. The original high infectivity was recovered by treatment with trypsin. The virion-associated vaccinia HA has two functions; the HA protects the infectivity of the virus by the fusion inhibitor activity and exhibits affinity against host cells. Vaccinia virus first adsorbs to the cell via HA, and then proteolysis of the HA activates the second adsorption site which seems to be the fusogenic site of the virus. Proteolytic activation represents removal of the fusion inhibitor activity of the HA.
Collapse
Affiliation(s)
- M Oie
- Department of Virology, Faculty of Medicine, Niigata University, Japan
| | | | | |
Collapse
|
10
|
Seki M, Oie M, Ichihashi Y, Shida H. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 1990; 175:372-84. [PMID: 2183466 DOI: 10.1016/0042-6822(90)90422-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccinia virus IHD-J strain induces hemagglutinin (HA) on the surface membrane of infected cells and does not elicit cell-cell fusion (F-). We isolated 21 independent hemadsorption-negative (HAD-) mutant viruses from IHD-J and five HAD+ revertants from one of these mutants. Of the 21 mutants, 19 that synthesized either no or little HA at the cell surface caused cell-cell fusion (F+), whereas none of the five revertants that synthesized HA at the cell surface induced cell-cell fusion. Furthermore, anti-HA monoclonal antibody B2D10 induced extensive polykaryocytosis of IHD-J-infected cells and suppressed the ability of the IHD-J-infected cell extract to inhibit the polykaryocytosis induced by IHD-W. The other 2 of the 21 HAD- mutants, B1 and A2, which induced HAs at the cell surface, showed F- and F+ phenotype, respectively. The HA molecule of mutant B1 had a single amino acid substitution of Lys for Glu-121 in its extracellular domain, whereas that of mutant A2 had a single substitution mutation of Tyr for Cys-103. We conclude that the vaccinia HA is a fusion inhibition protein, that the active sites for the two activities reside separately in its extracellular domain, and that cysteine-103 is important in forming the proper tertiary structure of the protein to exert both activities.
Collapse
Affiliation(s)
- M Seki
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | |
Collapse
|
11
|
Yeo TK, Yeo KT, Olden K. Accumulation of unglycosylated liver secretory glycoproteins in the rough endoplasmic reticulum. Biochem Biophys Res Commun 1989; 160:1421-8. [PMID: 2471524 DOI: 10.1016/s0006-291x(89)80163-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies in this laboratory (1) have shown that tunicamycin-treatment inhibits the secretion of three secretory glycoproteins--alpha 2-macroglobulin, ceruloplasmin, and alpha 1-protease inhibitor in human hepatoma (Hep G2) cell cultures. In the present study, we have investigated (i) their site of accumulation within the endoplasmic reticulum/Golgi pathway, and (ii) the solubility characteristics of these unglycosylated proteins. Using percoll density gradient centrifugation, we found that tunicamycin-treatment markedly inhibited the transport of alpha 2-macroglobulin, ceruloplasmin and alpha 1-protease inhibitor from the rough endoplasmic reticulum. However, there was no detectable changes in their solubility properties as both the glycosylated and unglycosylated species were associated with the 100,000 xg supernatant fraction following disruption of the microsomal fraction (i) with 0.2% Triton X-100 and (ii) by repeated freeze-thaw cycles. Also no evidence of protein aggregation was detected by liquid chromatography of the unglycosylated proteins on Bio-Gel A-1.5 column.
Collapse
Affiliation(s)
- T K Yeo
- Howard University Cancer Center, Department of Oncology, Howard University Medical School, Washington, D.C. 20060
| | | | | |
Collapse
|
12
|
|