1
|
Identification of Ubiquitin-Related Gene-Pair Signatures for Predicting Tumor Microenvironment Infiltration and Drug Sensitivity of Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14143478. [PMID: 35884544 PMCID: PMC9317993 DOI: 10.3390/cancers14143478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung adenocarcinoma (LUAD) has a high mortality and incidence rate. The therapeutic efficacy of LUAD varies with the individual heterogeneity of the tumor microenvironment (TME). It is necessary to explore more biomarkers and targets to improve the prognosis of patients. Ubiquitination pathways are involved in the biological process of regulating the anti-tumor immunity of immune cells and immunosuppression of tumor cells in the TME of patients. In this study, we clarified the characteristics of ubiquitin-related gene pairs (UbRGPs) and identified the relationship between the status of the TME and UbRGPs of patients with LUAD. A prognostic signature based on six UbRGPs was established, which performed well in predicting the immune infiltration and tumor mutation burden (TMB) in the TME and the response of LUAD to immuno-, chemo-, and targeted therapy. In conclusion, the UbRGPs signature is an independent prognostic indicator and has great potential in assisting the clinical therapy for patients with LUAD. Abstract Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer worldwide, and new biomarkers are urgently required to guide more effective individualized therapy for patients. Ubiquitin-related genes (UbRGs) partially participate in the initiation and progression of lung cancer. In this study, we used ubiquitin-related gene pairs (UbRGPs) in tumor tissues to access the function of UbRGs in overall survival, immunocyte infiltration, and tumor mutation burden (TMB) of patients with LUAD from The Cancer Genome Atlas (TCGA) database. In addition, we constructed a prognostic signature based on six UbRGPs and evaluated its performance in an internal (TCGA testing set) and an external validation set (GSE13213). The prognostic signature revealed that risk scores were negatively correlated with the overall survival, immunocyte infiltration, and expression of immune checkpoint inhibitor-related genes and positively correlated with the TMB. Patients in the high-risk group showed higher sensitivity to partially targeted and chemotherapeutic drugs than those in the low-risk group. This study contributes to the understanding of the characteristics of UbRGPs in LUAD and provides guidance for effective immuno-, chemo-, and targeted therapy.
Collapse
|
2
|
Wei LY, Lin W, Leo BF, Kiew LV, Chang CC, Yuan CJ. Development of the Sensing Platform for Protein Tyrosine Kinase Activity. BIOSENSORS-BASEL 2021; 11:bios11070240. [PMID: 34356711 PMCID: PMC8301957 DOI: 10.3390/bios11070240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022]
Abstract
A miniature tyrosinase-based electrochemical sensing platform for label-free detection of protein tyrosine kinase activity was developed in this study. The developed miniature sensing platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a low sample volume (1–2 μL). The developed sensing platform exhibited a high reproducibility for repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of 1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results suggest the potential of the developed miniature sensing platform as an effective tool for detecting different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors to these kinases.
Collapse
Affiliation(s)
- Lan-Yi Wei
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (L.-Y.W.); (W.L.); (L.-V.K.); (C.-C.C.)
| | - Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (L.-Y.W.); (W.L.); (L.-V.K.); (C.-C.C.)
| | - Bey-Fen Leo
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Taiwan-Malaysia Semiconductor and Biomedical Oversea Science and Technology Innovation Center, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (L.-Y.W.); (W.L.); (L.-V.K.); (C.-C.C.)
- Taiwan-Malaysia Semiconductor and Biomedical Oversea Science and Technology Innovation Center, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (L.-Y.W.); (W.L.); (L.-V.K.); (C.-C.C.)
- Taiwan-Malaysia Semiconductor and Biomedical Oversea Science and Technology Innovation Center, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chiun-Jye Yuan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (L.-Y.W.); (W.L.); (L.-V.K.); (C.-C.C.)
- Taiwan-Malaysia Semiconductor and Biomedical Oversea Science and Technology Innovation Center, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Correspondence: ; Tel.: +886-3-573-1735
| |
Collapse
|
3
|
Cell signaling and cytomegalovirus reactivation: what do Src family kinases have to do with it? Biochem Soc Trans 2021; 48:667-675. [PMID: 32311019 PMCID: PMC7200638 DOI: 10.1042/bst20191110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Primary infection with human cytomegalovirus (HCMV) is usually asymptomatic and leads to the establishment of lifelong latent infection. A major site of latency are the CD34+ hematopoietic progenitor cells. Importantly, normal cellular differentiation of CD34+ cells to a macrophage or dendritic cell phenotype is concomitant with viral reactivation. Molecular studies of HCMV latency have shown that the latent viral genome is associated with histone proteins and that specific post-translational modifications of these histones correlates with the transcriptional activity of the genome arguing that expression of key viral genes that dictate latency and reactivation are subject to the rules of the histone code hypothesis postulated for the regulation of eukaryotic gene expression. Finally, many studies now point to a key role for multiple signaling pathways to provide the cue for HCMV reactivation. The challenge now is to understand the complex interplay between cell identity, transcriptional regulation and cell signaling that occurs to promote reactivation and, additionally, how HCMV may further manipulate these events to support reactivation. Understanding how HCMV utilizes these pathways to drive HCMV reactivation will provide new insight into the mechanisms that govern viral and host gene expression and, potentially, illuminate new, host-directed, therapeutic opportunities to support our attempts to control this important medical pathogen of immune-compromised individuals.
Collapse
|
4
|
Zhu X, Zhang Y, Bai Y, Gu X, Chen G, Sun L, Wang Y, Qiao X, Ma Q, Zhu T, Bu J, Xue J, Liu C. HCK can serve as novel prognostic biomarker and therapeutic target for Breast Cancer patients. Int J Med Sci 2020; 17:2773-2789. [PMID: 33162805 PMCID: PMC7645343 DOI: 10.7150/ijms.43161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
The role of HCK expression in the prognosis of breast cancer patients is unclear. Thus, this study aimed to explore the clinical implications of HCK expression in breast cancer. We assessed HCK expression and genetic variations in breast cancer using Oncomine, GEPIA, UALCAN, and cBioPortal databases. Then, immunochemistry was used to analyze HCK expression in breast cancer specimens, non-cancer tissues and metastatic cancer tissues. Consequently, we evaluated the effect of HCK expression on survival outcomes set as disease-free survival (DFS) and overall survival (OS). Finally, STRING, Coexpedia, and TISIDB database were explored to identify the molecular functions and regulation pathways of HCK. We found that breast cancer tissues have more HCK mRNA transcripts than non-cancer tissues. Patients with HCK expression had significantly shorter DFS and OS. The ratio of HCK expression was higher in cancer tissues than in non-cancer tissues. These results from STRING database, FunRich software, and TISIDB database showed that HCK was involved in mediating multiple biological processes including immune response-regulating signaling pathway, cell growth and maintenance through multiple signaling pathways including epithelial to mesenchymal transition, PI3K/AKT signaling pathway, and focal adhesion. Overall, HCK may be an oncogene in the development of breast cancer and thus may as a novel biomarker and therapeutic target for breast cancer.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/blood
- Breast Neoplasms/diagnosis
- Breast Neoplasms/mortality
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/therapy
- Cell Line, Tumor
- Chemotherapy, Adjuvant/methods
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Focal Adhesions/drug effects
- Focal Adhesions/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Immunochemistry
- Mastectomy
- Middle Aged
- Molecular Targeted Therapy/methods
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Phosphatidylinositol 3-Kinases
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-hck/antagonists & inhibitors
- Proto-Oncogene Proteins c-hck/blood
- Proto-Oncogene Proteins c-hck/genetics
- Risk Assessment/methods
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yang Bai
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yulun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Tong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
5
|
Voisset E, Brenet F, Lopez S, de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers (Basel) 2020; 12:cancers12071996. [PMID: 32708273 PMCID: PMC7409304 DOI: 10.3390/cancers12071996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
Collapse
|
6
|
Matsuura VKSK, Yoshida CA, Komori H, Sakane C, Yamana K, Jiang Q, Komori T. Expression of a Constitutively Active Form of Hck in Chondrocytes Activates Wnt and Hedgehog Signaling Pathways, and Induces Chondrocyte Proliferation in Mice. Int J Mol Sci 2020; 21:E2682. [PMID: 32290615 PMCID: PMC7215647 DOI: 10.3390/ijms21082682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
Runx2 is required for chondrocyte proliferation and maturation. In the search of Runx2 target genes in chondrocytes, we found that Runx2 up-regulated the expression of hematopoietic cell kinase (Hck), which is a member of the Src tyrosine kinase family, in chondrocytes, that Hck expression was high in cartilaginous limb skeletons of wild-type mice but low in those of Runx2-/- mice, and that Runx2 bound the promoter region of Hck. To investigate the functions of Hck in chondrocytes, transgenic mice expressing a constitutively active form of Hck (HckCA) were generated using the Col2a1 promoter/enhancer. The hind limb skeletons were fused, the tibia became a large, round mass, and the growth plate was markedly disorganized. Chondrocyte maturation was delayed until E16.5 but accelerated thereafter. BrdU-labeled, but not terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, chondrocytes were increased. Furthermore, Hck knock-down reduced the proliferation of primary chondrocytes. In microarray and real-time RT-PCR analyses using hind limb RNA from HckCA transgenic mice, the expression of Wnt (Wnt10b, Tcf7, Lef1, Dkk1) and hedgehog (Ihh, Ptch1, and Gli1) signaling pathway genes was upregulated. These findings indicated that Hck, whose expression is regulated by Runx2, is highly expressed in chondrocytes, and that HckCA activates Wnt and hedgehog signaling pathways, and promotes chondrocyte proliferation without increasing apoptosis.
Collapse
Affiliation(s)
- Viviane K. S. Kawata Matsuura
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Carolina Andrea Yoshida
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Hisato Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Chiharu Sakane
- Division of Comparative Medicine, Life Science Support Center, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kei Yamana
- Teijin Institute for Bio-Medical Research, TEIJIN LIMITED, Tokyo 100-8585, Japan
| | - Qing Jiang
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
7
|
Poh AR, Dwyer AR, Eissmann MF, Chand AL, Baloyan D, Boon L, Murrey MW, Whitehead L, O'Brien M, Lowell CA, Putoczki TL, Pixley FJ, O'Donoghue RJJ, Ernst M. Inhibition of the SRC Kinase HCK Impairs STAT3-Dependent Gastric Tumor Growth in Mice. Cancer Immunol Res 2020; 8:428-435. [PMID: 31992566 DOI: 10.1158/2326-6066.cir-19-0623] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/08/2019] [Accepted: 01/24/2020] [Indexed: 01/25/2023]
Abstract
Persistent activation of the latent transcription factor STAT3 is observed in gastric tumor epithelial and immune cells and is associated with a poor patient prognosis. Although targeting STAT3-activating upstream kinases offers therapeutically viable targets with limited specificity, direct inhibition of STAT3 remains challenging. Here we provide functional evidence that myeloid-specific hematopoietic cell kinase (HCK) activity can drive STAT3-dependent epithelial tumor growth in mice and is associated with alternative macrophage activation alongside matrix remodeling and tumor cell invasion. Accordingly, genetic reduction of HCK expression in bone marrow-derived cells or systemic pharmacologic inhibition of HCK activity suppresses alternative macrophage polarization and epithelial STAT3 activation, and impairs tumor growth. These data validate HCK as a molecular target for the treatment of human solid tumors harboring excessive STAT3 activity.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | | | - Michael W Murrey
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Megan O'Brien
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | | | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia, Australia
| | - Robert J J O'Donoghue
- Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia.
| |
Collapse
|
8
|
De Martini W, Rahman R, Ojegba E, Jungwirth E, Macias J, Ackerly F, Fowler M, Cottrell J, Chu T, Chang SL. Kinases: Understanding Their Role in HIV Infection. WORLD JOURNAL OF AIDS 2019; 9:142-160. [PMID: 32257606 PMCID: PMC7118713 DOI: 10.4236/wja.2019.93011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antiviral drugs currently on the market primarily target proteins encoded by specific viruses. The drawback of these drugs is that they lack antiviral mechanisms that account for resistance or viral mutation. Thus, there is a pressing need for researchers to explore and investigate new therapeutic agents with other antiviral strategies. Viruses such as the human immunodeficiency virus (HIV) alter canonical signaling pathways to create a favorable biochemical environment for infectivity. We used Qiagen Ingenuity Pathway Analysis (IPA) software to review the function of several cellular kinases and the resulting perturbed signaling pathways during HIV infection such as NF-κB signaling. These host cellular kinases such as ADK, PKR, MAP3K11 are involved during HIV infection at various stages of the life cycle. Additionally IPA analysis indicated that these modified host cellular kinases are known to have interactions with each other especially AKT1, a serine/threonine kinase involved in multiple pathways. We present a list of cellular host kinases and other proteins that interact with these kinases. This approach to understanding the relationship between HIV infection and kinase activity may introduce new drug targets to arrest HIV infectivity.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Roksana Rahman
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Eduvie Ojegba
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Emily Jungwirth
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jasmine Macias
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Frederick Ackerly
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Mia Fowler
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
- Institute of NeuroImmune Pharmacology, South Orange, NJ, USA
| |
Collapse
|
9
|
Phosphoproteomic analyses of kidneys of Atlantic salmon infected with Aeromonas salmonicida. Sci Rep 2019; 9:2101. [PMID: 30765835 PMCID: PMC6376026 DOI: 10.1038/s41598-019-38890-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
Aeromonas salmonicida (A. salmonicida) is a pathogenic bacterium that causes furunculosis and poses a significant global risk, particularly in economic activities such as Atlantic salmon (Salmo salar) farming. In a previous study, we identified proteins that are significantly upregulated in kidneys of Atlantic salmon challenged with A. salmonicida. Phosphoproteomic analyses were conducted to further clarify the dynamic changes in protein phosphorylation patterns triggered by bacterial infection. To our knowledge, this is the first study to characterize phosphorylation events in proteins from A. salmonicida-infected Atlantic salmon. Overall, we identified over 5635 phosphorylation sites in 3112 proteins, and 1502 up-regulated and 77 down-regulated proteins quantified as a 1.5-fold or greater change relative to control levels. Based on the combined data from proteomic and motif analyses, we hypothesize that five prospective novel kinases (VRK3, GAK, HCK, PKCδ and RSK6) with common functions in inflammatory processes and cellular pathways to regulate apoptosis and the cytoskeleton could serve as potential biomarkers against bacterial propagation in fish. Data from STRING-based functional network analyses indicate that fga is the most central protein. Our collective findings provide new insights into protein phosphorylation patterns, which may serve as effective indicators of A. salmonicida infection in Atlantic salmon.
Collapse
|
10
|
Poh AR, Love CG, Masson F, Preaudet A, Tsui C, Whitehead L, Monard S, Khakham Y, Burstroem L, Lessene G, Sieber O, Lowell C, Putoczki TL, O'Donoghue RJJ, Ernst M. Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression. Cancer Cell 2017; 31:563-575.e5. [PMID: 28399411 PMCID: PMC5479329 DOI: 10.1016/j.ccell.2017.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/08/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Aberrant activation of the SRC family kinase hematopoietic cell kinase (HCK) triggers hematological malignancies as a tumor cell-intrinsic oncogene. Here we find that high HCK levels correlate with reduced survival of colorectal cancer patients. Likewise, increased Hck activity in mice promotes the growth of endogenous colonic malignancies and of human colorectal cancer cell xenografts. Furthermore, tumor-associated macrophages of the corresponding tumors show a pronounced alternatively activated endotype, which occurs independently of mature lymphocytes or of Stat6-dependent Th2 cytokine signaling. Accordingly, pharmacological inhibition or genetic reduction of Hck activity suppresses alternative activation of tumor-associated macrophages and the growth of colon cancer xenografts. Thus, Hck may serve as a promising therapeutic target for solid malignancies.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Christopher G Love
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Frederick Masson
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cary Tsui
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Simon Monard
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yelena Khakham
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lotta Burstroem
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Oliver Sieber
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Colorectal Surgery, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Clifford Lowell
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Tracy L Putoczki
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
11
|
A positive feedback loop between Gli1 and tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma. Oncogenesis 2015; 4:e176. [PMID: 26619401 PMCID: PMC4670963 DOI: 10.1038/oncsis.2015.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is critical during normal development, and the abnormal activation of the Shh pathway is involved in many human cancers. As a target gene of the Shh pathway and as a transcription activator downstream of Shh signaling, Gli1 autoregulates and increases Shh signaling output. Gli1 is one of the key oncogenic factors in Shh-induced tumors such as medulloblastoma. Gli1 is posttranslationally modified, but the nature of the active form of Gli1 was unclear. Here we identified a Src family kinase Hck as a novel activator of Gli1. In Shh-responsive NIH3T3 cells, Hck interacts with Gli1 and phosphorylates multiple tyrosine residues in Gli1. Gli1-mediated target gene activation was significantly enhanced by Hck with both kinase activity-dependent and -independent mechanisms. We provide evidence showing that Hck disrupts the interaction between Gli1 and its inhibitor Sufu. In both NIH3T3 cells and cerebellum granule neuron precursors, the Hck gene is also a direct target of Gli1. Therefore, Gli1 and Hck form a positive feedback loop that amplifies Shh signaling transcription outcomes. In Shh-induced medulloblastoma, Hck is highly expressed and Gli1 is tyrosine phosphorylated, which may enhance the tumorigenic effects of the Gli1 oncogene. RNAi-mediated inhibition of Hck expression significantly repressed medulloblastoma cell growth. In summary, a novel positive feedback loop contributes to maximal Gli1 oncogenic activities in Shh-induced tumors such as medulloblastoma.
Collapse
|
12
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
13
|
Awad R, Sévajol M, Ayala I, Chouquet A, Frachet P, Gans P, Reiser JB, Kleman JP. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif. FEBS Open Bio 2015; 5:99-106. [PMID: 25737835 PMCID: PMC4338372 DOI: 10.1016/j.fob.2015.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling.
Collapse
Key Words
- DOCK, Downstream Of CrK protein family
- EAD, ELMO Autoregulatory Domain
- EID, ELMO Inhibitory Domain
- ELMO
- ELMO, EnguLfment and cell MOtility protein family
- ERM, Ezrin–Radixin–Moesin protein family
- FRET, Förster (Fluorescence) resonance energy transfer
- GEF, Guanine nucleotide Exchange Factor
- GSH, Glutathione (reduced)
- GST, Glutathione S-Transferase
- Hck
- Hck, Hematopoietic cell kinase
- PH, Pleckstrin Homology domain
- Phagocytosis
- Phosphorylation
- Polyproline
- PxP, Polyproline motif
- RBD, Rho-Binding Domain
- SH3
- SH3, Src Homology 3 domain
- TAMs, Tyro3, Axl and Mer receptor tyrosine kinase family
- TEV, Tobacco Etch Virus
Collapse
Affiliation(s)
- Rida Awad
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | | | - Pierre Gans
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
| | | | | |
Collapse
|
14
|
Vérollet C, Gallois A, Dacquin R, Lastrucci C, Pandruvada SNM, Ortega N, Poincloux R, Behar A, Cougoule C, Lowell C, Al Saati T, Jurdic P, Maridonneau-Parini I. Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB J 2013; 27:3608-18. [PMID: 23742809 DOI: 10.1096/fj.13-232736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src(-/-) mice. Since this phenotype was even more severe in src(-/-)hck(-/-) mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck(-/-) mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck(-/-) osteoclast precursors (preosteoclast) but were normal in mature hck(-/-) osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck(-/-) preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck(-/-) mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.
Collapse
Affiliation(s)
- Christel Vérollet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ito T, Smrz D, Jung MY, Bandara G, Desai A, Smrzová S, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5428-37. [PMID: 22529299 PMCID: PMC3358494 DOI: 10.4049/jimmunol.1103366] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Tomonobu Ito
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Daniel Smrz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Mi-Yeon Jung
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Sárka Smrzová
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
16
|
Ozaki T, Kubo N, Nakagawara A. p73-Binding Partners and Their Functional Significance. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:283863. [PMID: 22084676 PMCID: PMC3195385 DOI: 10.1155/2010/283863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/26/2010] [Indexed: 12/21/2022]
Abstract
p73 is one of the tumor-suppressor p53 family of nuclear transcription factor. As expected from the structural similarity between p53 and p73, p73 has a tumor-suppressive function. However, p73 was rarely mutated in human primary tumors. Under normal physiological conditions, p73 is kept at an extremely low level to allow cells normal growth. In response to a certain subset of DNA damages, p73 is induced dramatically and transactivates an overlapping set of p53-target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death. Cells undergo cell cycle arrest and/or apoptotic cell death depending on the type and strength of DNA damages. p73 is regulated largely through the posttranslational modifications such as phosphorylation and acetylation. These chemical modifications are tightly linked to direct protein-protein interactions. In the present paper, the authors describe the functional significance of the protein-protein interactions in the regulation of proapoptotic p73.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | |
Collapse
|
17
|
Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, Uchida N, Suzuki N, Sone A, Najima Y, Ozawa H, Wake A, Taniguchi S, Shultz LD, Ohara O, Ishikawa F. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2010; 2:17ra9. [PMID: 20371479 DOI: 10.1126/scitranslmed.3000349] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human acute myeloid leukemia (AML) originates from rare leukemia stem cells (LSCs). Because these chemotherapy-resistant LSCs are thought to underlie disease relapse, effective therapeutic strategies specifically targeting these cells may be beneficial. Here, we report identification of a primary human LSC gene signature and functional characterization of human LSC-specific molecules in vivo in a mouse xenotransplantation model. In 32 of 61 (53%) patients with AML, either CD32 or CD25 or both were highly expressed in LSCs. CD32- or CD25-positive LSCs could initiate AML and were cell cycle-quiescent and chemotherapy-resistant in vivo. Normal human hematopoietic stem cells depleted of CD32- and CD25-positive cells maintained long-term multilineage hematopoietic reconstitution capacity in vivo, indicating the potential safety of treatments targeting these molecules. In addition to CD32 and CD25, quiescent LSCs within the bone marrow niche also expressed the transcription factor WT1 and the kinase HCK. These molecules are also promising targets for LSC-specific therapy.
Collapse
Affiliation(s)
- Yoriko Saito
- Research Unit for Human Disease Models, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Regulation of p73 by Hck through kinase-dependent and independent mechanisms. BMC Mol Biol 2007; 8:45. [PMID: 17535448 PMCID: PMC1899183 DOI: 10.1186/1471-2199-8-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/30/2007] [Indexed: 11/25/2022] Open
Abstract
Background p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73. Results Exogenously expressed as well as cellular Hck and p73 interact in vivo. In vitro binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP), a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation. Conclusion We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73-dependent transcriptional activation of a target gene, Ipaf, as well as apoptosis.
Collapse
|
19
|
Trible RP, Emert-Sedlak L, Smithgall TE. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 2006; 281:27029-38. [PMID: 16849330 PMCID: PMC2892265 DOI: 10.1074/jbc.m601128200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
Collapse
Affiliation(s)
| | | | - Thomas E. Smithgall
- To whom correspondence should be addressed: Dept. of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261. Tel.: 412-648-9495; Fax: 412-624-1401;
| |
Collapse
|
20
|
Lee S, Lin X, Nam NH, Parang K, Sun G. Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Proc Natl Acad Sci U S A 2003; 100:14707-14712. [PMID: 14657361 PMCID: PMC299771 DOI: 10.1073/pnas.2534493100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Indexed: 11/18/2022] Open
Abstract
Protein tyrosine kinases (PTK) are key enzymes of mammalian signal transduction. For the fidelity of signal transduction, each PTK phosphorylates only one or a few proteins on specific Tyr residues. Substrate specificity is thought to be mediated by PTK-substrate docking interactions and recognition of the phosphorylation site sequence by the kinase active site. However, a substrate-docking site has not been determined on any PTK. C-terminal Src kinase (Csk) is a PTK that specifically phosphorylates Src family kinases on a C-terminal Tyr. In this study, by sequence alignment and site-specific mutagenesis, we located a substrate-docking site on Csk. Mutations in the docking site disabled Csk to phosphorylate, regulate, and complex with Src but only moderately affected its general kinase activity. A peptide mimicking the docking site potently inhibited (IC50 = 21 microM) Csk phosphorylation of Src but only moderately inhibited (IC50 = 422 microM) its general kinase activity. Determination of the substrate-docking site provides the structural basis of substrate specificity in Csk and a model for understanding substrate specificity in other PTKs.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
To elucidate the mechanisms by which Epstein-Barr virus (EBV) latency III gene expression transforms primary B lymphocytes to lymphoblastoid cell lines (LCLs), the associated alterations in cell gene expression were assessed by using 4,146 cellular cDNAs arrayed on nitrocellulose filters and real-time reverse transcription-PCR (RT-PCR). A total of 1,405 of the 4,146 cDNAs were detected using cDNA probes from poly(A)(+) RNA of IB4 LCLs, a non-EBV-infected Burkitt's lymphoma (BL) cell line, BL41, or EBV latency III-converted BL41 cells (BL41EBV). Thirty-eight RNAs were consistently twofold more abundant in the IB4 LCL and BL41EBV than in BL41 by microarray analysis. Ten of these are known to be EBV induced. A total of 23 of 28 newly identified EBV-induced genes were confirmed by real-time RT-PCR. In addition, nine newly identified genes and CD10 were EBV repressed. These EBV-regulated genes encode proteins involved in signal transduction, transcription, protein biosynthesis and degradation, and cell motility, shape, or adhesion. Seven of seven newly identified EBV-induced RNAs were more abundant in newly established LCLs than in resting B lymphocytes. Surveys of eight promoters of newly identified genes implicate NF-kappaB or PU.1 as potentially important mediators of EBV-induced effects through LMP1 or EBNA2, respectively. Thus, examination of the transcriptional effects of EBV infection can elucidate the molecular mechanisms by which EBV latency III alters B lymphocytes.
Collapse
Affiliation(s)
- Kara L Carter
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Howlett CJ, Robbins SM. Membrane-anchored Cbl suppresses Hck protein-tyrosine kinase mediated cellular transformation. Oncogene 2002; 21:1707-16. [PMID: 11896602 DOI: 10.1038/sj.onc.1205228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Revised: 11/27/2001] [Accepted: 12/05/2001] [Indexed: 11/09/2022]
Abstract
The mammalian proto-oncogene Cbl and its cellular homologues in Caenorhabditis elegans (Sli-1) and Drosophila (D-Cbl) are negative regulators of some growth factor receptor signaling pathways. Herein we show that Cbl can negatively regulate another signaling molecule, namely theSrc-family kinase Hck by targeting it for degradation. Hck-mediated cellular transformation of murine fibroblasts is reverted by ectopic expression of a membrane-anchored allele of Cbl as assessed by the cellular morphology, suppression of anchorage independent growth, and an overall reduction in the total tyrosine phosphorylation levels within the cells. The expression of Cbl at the plasma membrane targets both Hck and itself for ubiquitination and degradation, requiring an intact RING finger. Pharmacological inhibition of the proteasome prevents the degradation of Hck correlating with an increase in the phosphotyrosine levels within the cells. Activated Hck and membrane-anchored Cbl are present in similar subcellular localizations and co-immunoprecipitate, suggesting that their interaction is required for subsequent ubiquitination and degradation. Interestingly, both constitutively active and kinase-inactive Hck interact with and are targeted for degradation by Cbl. This work illustrates alternate means to regulate Src-family kinases, and suggests that Cbl may be able to suppress many signaling pathways that are activated in various proliferative syndromes including cancer.
Collapse
Affiliation(s)
- Christopher J Howlett
- Department of Oncology, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N-4N1, Canada
| | | |
Collapse
|
23
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
24
|
Scholz G, Hartson SD, Cartledge K, Hall N, Shao J, Dunn AR, Matts RL. p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Mol Cell Biol 2000; 20:6984-95. [PMID: 10958693 PMCID: PMC88773 DOI: 10.1128/mcb.20.18.6984-6995.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies have previously revealed that Cdc37p is required for the catalytic competence of v-Src in yeast. We have reasoned that temperature-sensitive mutants of Src family kinases might be more sensitive to the cellular level of p50(Cdc37), the mammalian homolog of Cdc37p, than their wild-type counterpart, thus potentially providing a unique opportunity to elucidate the involvement of p50(Cdc37) in the folding and stabilization of Src family kinases. A temperature-sensitive mutant of a constitutively active form of Hck (i.e., tsHck499F) was created by mutating two amino acids within the kinase domain of Hck499F. Significantly, overexpression of p50(Cdc37) rescues the catalytic activity of tsHck499F at 33 degrees C, while partially buffering it against inactivation at higher temperatures (e.g., 37 and 39 degrees C). Hsp90 function is required for tsHck499F activity and its stabilization by p50(Cdc37), but overexpression of Hsp90 is not sufficient to stabilize tsHck499F. Overexpression of p50(Cdc37) promotes the association of tsHck499F with Hsp90, suggesting that the cellular level of p50(Cdc37) might be the rate-limiting step in the association of tsHck499F with Hsp90. A truncation mutant of p50(Cdc37) that cannot bind Hsp90 still has a limited capacity to rescue the catalytic activity of tsHck499F and promote its association with Hsp90. This is a particularly important observation, since it argues that rather than solely acting as a passive adapter protein to tether tsHck499F to Hsp90, p50(Cdc37) may also act allosterically to enhance the association of tsHck499F with Hsp90. The findings presented here might also have implications for our understanding of the evolution of protein kinases and tumor development.
Collapse
Affiliation(s)
- G Scholz
- Molecular Biology Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Zilber MT, Gregory S, Mallone R, Deaglio S, Malavasi F, Charron D, Gelin C. CD38 expressed on human monocytes: a coaccessory molecule in the superantigen-induced proliferation. Proc Natl Acad Sci U S A 2000; 97:2840-5. [PMID: 10706632 PMCID: PMC16017 DOI: 10.1073/pnas.050583197] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work analyzes the hypothesis that human CD38 may cooperate with MHC Class II by acting as coreceptor in a superantigen-induced activation. The initial evidence is that CD38 ligation by specific monoclonal antibodies inhibits superantigen-induced T lymphocyte proliferation. Inhibitory effects become apparent after engagement of CD38 expressed by monocytes, whereas ligation of CD38 expressed by T lymphocytes does not apparently affect activation. The inhibition requires a cell-to-cell interaction, followed by the relevant transmembrane signaling that is reproduced by CD38 ligation. Indeed, CD38 ligation on monocytes induces tyrosine phosphorylation of several intracellular proteins including the protooncogene product c-cbl and the fgr and hck tyrosine kinases. The receptorial nature of the CD38-mediated events is confirmed by the observation of an intracellular calcium flux in monocytes secondary to CD38 ligation. These effects are additive with the similar events elicited by MHC Class II ligation, a likely indication that CD38 and MHC Class II share a common activation pathway. This conclusion is strengthened by results of comodulation experiments, indicating that CD38 and MHC Class II display lateral associations on monocytes. These results attribute to CD38 expressed by monocytes a role in the transduction of signal(s) involved in superantigen-induced activation, operating in synergy with MHC Class II.
Collapse
Affiliation(s)
- M T Zilber
- Institut National de la Santé et de la Recherche Médicale U396, Institut d'Hématologie, Hôpital Saint-Louis, 75010 Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Hauck CR, Meyer TF, Lang F, Gulbins E. CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway. EMBO J 1998; 17:443-54. [PMID: 9430636 PMCID: PMC1170395 DOI: 10.1093/emboj/17.2.443] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interaction of Neisseria gonorrhoeae with human phagocytes is a hallmark of gonococcal infections. Recently, CD66 molecules have been characterized as receptors for Opa52-expressing gonococci on human neutrophils. Here we show that Opa52-expressing gonococci or Escherichia coli or F(ab) fragments directed against CD66, respectively, activate a signalling cascade from CD66 via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-terminal kinase. The induced signal is distinct from Fcgamma-receptor-mediated signalling and is specific for Opa52, since piliated Opa- gonococci, commensal Neisseria cinerea or E.coli do not stimulate this signalling pathway. Inhibition of Src-like kinases or Rac1 prevents the uptake of Opa52 bacteria, demonstrating the crucial role of this signalling cascade for the opsonin-independent, Opa52/CD66-mediated phagocytosis of pathogenic Neisseria.
Collapse
Affiliation(s)
- C R Hauck
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
27
|
Möhn H, Le Cabec V, Fischer S, Maridonneau-Parini I. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem J 1995; 309 ( Pt 2):657-65. [PMID: 7626033 PMCID: PMC1135781 DOI: 10.1042/bj3090657] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.
Collapse
Affiliation(s)
- H Möhn
- LPTF, Centre National de la Recherche Scientifique, UPR 8221, Toulouse, France
| | | | | | | |
Collapse
|
28
|
Robbins SM, Quintrell NA, Bishop JM. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol 1995; 15:3507-15. [PMID: 7791757 PMCID: PMC230587 DOI: 10.1128/mcb.15.7.3507] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human proto-oncogene HCK encodes two versions of a protein-tyrosine kinase, with molecular weights of 59,000 (p59hck) and 61,000 (p61hck). The two proteins arise from a single mRNA by alternative initiations of translation. In this study, we explored the functions of these proteins by determining their locations within cells and by characterizing lipid modifications required for the proteins to reach those locations. We found that p59hck is entirely associated with cellular membranes, including the organelles known as caveolae; in contrast, only a portion of p61hck is situated on membranes, and none is detectable in preparations of caveolae. These distinctions can be attributed to differential modification of the two HCK proteins with fatty acids. Both proteins are at least in part myristoylated, p59hck more so than p61hck. In addition, however, p59hck is palmitoylated on cysteine 3 in the protein. Palmitoylation of the protein requires prior myristoylation and, in turn, is required for targeting to caveolae. These findings are in accord with recent reports for other members of the SRC family of protein-tyrosine kinases. Taken together, the results suggest that HCK and several of its relatives may participate in the functions of caveolae, which apparently include the transduction of signals across the plasma membrane to the interior of the cell.
Collapse
Affiliation(s)
- S M Robbins
- Department of Microbiology, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
29
|
Abstract
We have isolated a novel nonreceptor tyrosine kinase, Srm, that maps to the distal end of chromosome 2. It has SH2, SH2', and SH3 domains and a tyrosine residue for autophosphorylation in the kinase domain but lacks an N-terminal glycine for myristylation and a C-terminal tyrosine which, when phosphorylated, suppresses kinase activity. These are structural features of the recently identified Tec family of nonreceptor tyrosine kinases. The Srm N-terminal unique domain, however, lacks the structural characteristics of the Tec family kinases, and the sequence similarity is highest to Src in the SH region. The expression of two transcripts is rather ubiquitous and changes according to tissue and developmental stage. Mutant mice were generated by gene targeting in embryonic stem cells but displayed no apparent phenotype as in mutant mice expressing Src family kinases. These results suggest that Srm constitutes a new family of nonreceptor tyrosine kinases that may be redundant in function.
Collapse
|
30
|
Kohmura N, Yagi T, Tomooka Y, Oyanagi M, Kominami R, Takeda N, Chiba J, Ikawa Y, Aizawa S. A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption. Mol Cell Biol 1994; 14:6915-25. [PMID: 7935409 PMCID: PMC359222 DOI: 10.1128/mcb.14.10.6915-6925.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have isolated a novel nonreceptor tyrosine kinase, Srm, that maps to the distal end of chromosome 2. It has SH2, SH2', and SH3 domains and a tyrosine residue for autophosphorylation in the kinase domain but lacks an N-terminal glycine for myristylation and a C-terminal tyrosine which, when phosphorylated, suppresses kinase activity. These are structural features of the recently identified Tec family of nonreceptor tyrosine kinases. The Srm N-terminal unique domain, however, lacks the structural characteristics of the Tec family kinases, and the sequence similarity is highest to Src in the SH region. The expression of two transcripts is rather ubiquitous and changes according to tissue and developmental stage. Mutant mice were generated by gene targeting in embryonic stem cells but displayed no apparent phenotype as in mutant mice expressing Src family kinases. These results suggest that Srm constitutes a new family of nonreceptor tyrosine kinases that may be redundant in function.
Collapse
Affiliation(s)
- N Kohmura
- Laboratory of Molecular Oncology, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang AV, Scholl PR, Geha RS. Physical and functional association of the high affinity immunoglobulin G receptor (Fc gamma RI) with the kinases Hck and Lyn. J Exp Med 1994; 180:1165-70. [PMID: 8064233 PMCID: PMC2191633 DOI: 10.1084/jem.180.3.1165] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The high affinity immunoglobulin G (IgG) receptor Fc gamma RI (CD64) is expressed constitutively on monocytes and macrophages, and is inducible on neutrophils. Fc gamma RI has recently been shown to be associated with the signal transducing gamma subunit of the high-affinity IgE receptor (Fc epsilon RI gamma). Induction of cytoplasmic protein tyrosine phosphorylation by Fc gamma RI cross-linking is known to be important in mediating Fc gamma RI-coupled effector functions. Recently, syk has been implicated in this role. We now report that the src-type kinases hck and lyn are physically and functionally associated with Fc gamma RI. Hck and lyn coimmunoprecipitated with Fc gamma RI from detergent lysates of normal human monocytes and of the monocytic line THP-1. Hck and lyn showed rapidly increased phosphorylation and increased exogenous substrate kinase activity after cross-linking of Fc gamma RI. These results demonstrate both physical and functional association of the Fc gamma RI/Fc epsilon RI gamma receptor complex with hck and lyn, and suggest a potential signal transducing role for these kinases in monocyte/macrophage activation.
Collapse
Affiliation(s)
- A V Wang
- Division of Immunology, Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
32
|
Hatakeyama S, Iwabuchi K, Ogasawara K, Good RA, Onoé K. The murine c-fgr gene product associated with Ly6C and p70 integral membrane protein is expressed in cells of a monocyte/macrophage lineage. Proc Natl Acad Sci U S A 1994; 91:3458-62. [PMID: 8159769 PMCID: PMC43596 DOI: 10.1073/pnas.91.8.3458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The c-fgr gene is a member of the Src family of protooncogene tyrosine kinases. A monoclonal antibody (2H2) that recognizes the specific region of the N-terminal domain of the murine c-fgr gene product (Fgr) has been established. With an immune complex kinase assay in a monocytic leukemia cell line, 2H2 monoclonal antibody was shown to precipitate a 59-kDa protein that corresponds in molecular mass to murine Fgr. Fgr was expressed highly in lymph nodes, slightly in spleen and peripheral blood leukocytes, and barely in the thymus and was not detected in bone marrow. In the presence of a mild detergent, Fgr was coimmunoprecipitated with a 70-kDa protein (p70) or with p70 plus several other molecules that were expressed on the cell-surface membrane of macrophage tumor cell lines PU5-1.8 and J774.1, respectively. By contrast, Fgr was not coimmunoprecipitated with a low-affinity receptor for the Fc portion of IgG that is associated with human Fgr. The molecule was also coimmunoprecipitated with the Ly6C molecule from a macrophage cell line (J774.1) that showed protein-tyrosine kinase activity. Peptide mapping revealed that this kinase activity was derived from Fgr. The similarity of relationship between this intramembrane p70 and/or Ly6C and cytoplasmic Fgr to relationships previously reported between T-cell antigen receptor complex, including CD4 and CD8 coreceptors, and Lck or Fyn in T cells and between surface IgM and Lyn or Blk in B cells, suggests that the Fgr and p70 or Ly6C are, indeed, associated with each other and in the murine system may be responsible for recognition of extracellular substances (either cellular or noncellular) and for signal transduction in cells of monocyte/macrophage lineage.
Collapse
Affiliation(s)
- S Hatakeyama
- Section of Pathology, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
33
|
English BK, Ihle JN, Myracle A, Yi T. Hck tyrosine kinase activity modulates tumor necrosis factor production by murine macrophages. J Exp Med 1993; 178:1017-22. [PMID: 8350043 PMCID: PMC2191180 DOI: 10.1084/jem.178.3.1017] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The hematopoietic cell kinase (hck) is a member of the src family of tyrosine kinases, and is primarily expressed in myeloid cells. Hck expression increases with terminal differentiation in both monocyte/macrophages and granulocytes and is further augmented during macrophage activation. Recent evidence has implicated src-related tyrosine kinases in critical signaling pathways in other hematopoietic lineages. Herein we demonstrate that manipulation of the level of hck expression in the murine macrophage cell line BAC1.2F5 alters the responsiveness of these cells to activation by bacterial lipopolysaccharide (LPS) but does not affect survival or proliferation. Overexpression of an activated mutant of hck in BAC1.2F5 cells augments tumor necrosis factor (TNF) production in response to LPS, whereas inhibition of endogenous hck expression, by antisense oligonucleotides, interferes with LPS-mediated TNF synthesis. Together, these observations suggest that hck is an important component of the signal transduction pathways in activated macrophages.
Collapse
Affiliation(s)
- B K English
- Department of Pediatrics, University of Tennessee, Memphis 38103
| | | | | | | |
Collapse
|
34
|
Torigoe T, Saragovi HU, Reed JC. Interleukin 2 regulates the activity of the lyn protein-tyrosine kinase in a B-cell line. Proc Natl Acad Sci U S A 1992; 89:2674-8. [PMID: 1557373 PMCID: PMC48724 DOI: 10.1073/pnas.89.7.2674] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recently, interleukin 2 (IL-2) has been shown to induce increased activity of the p56lck protein-tyrosine kinase (PTK) in T-cell and natural killer cell lines, and evidence for a direct interaction between the p75 subunit of the IL-2 receptor (IL-2R) and this src-family kinase has been reported. Though these findings suggest a central role for lck in IL-2 signal transduction, one problem with this idea is that not all IL-2-responsive cells express the lck gene. For this reason, we examined the effects of IL-2 on the activity of src-like kinases in a pro-B cell line, F7, that lacks p56lck but that displays high-affinity IL-2Rs and vigorously proliferates in response to this lymphokine. Of the eight known src-family PTKs, F7 cells were shown to contain only p53/56lyn, p59fyn, and a small amount of p62yes. Stimulation of resting F7 cells with IL-2 induced a rapid (detectable within 1 min and maximal at 15 min) and concentration-dependent increase in the specific activity of p53/56lyn kinase, as assessed by in vitro kinase assays. This effect of IL-2 on p53/56lyn kinase was specific, since no IL-2-inducible changes were detected in the activities of the p59fyn and p62yes kinases. Furthermore, by using a monoclonal antibody specific for the approximately 75-kDa beta subunit of the IL-2R (referred to as p75/IL-2R beta), evidence for physical association between the lyn kinase and the IL-2R complex was obtained, in that a small proportion of the p53/56lyn kinase in F7 cells, but no detectable p59fyn kinase, was coimmunoprecipitated with p75/IL-2R beta. When combined with the recent evidence that IL-2 regulates p56lck in T cells, these results indicate that some flexibility exists in the ability of various src-like PTKs to participate in IL-2 signal transduction mechanisms and raise the possibility that lineage-specific (T-versus B-cell) responses to IL-2 may be determined at least in part by the repertoire of src-like PTKs expressed in the cell.
Collapse
Affiliation(s)
- T Torigoe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6082
| | | | | |
Collapse
|
35
|
Uings IJ, Thompson NT, Randall RW, Spacey GD, Bonser RW, Hudson AT, Garland LG. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J 1992; 281 ( Pt 3):597-600. [PMID: 1371383 PMCID: PMC1130730 DOI: 10.1042/bj2810597] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tyrosine kinase inhibitors ST271, ST638 and erbstatin inhibited phospholipase D (PLD) activity in human neutrophils stimulated by fMet-Leu-Phe, platelet-activating factor and leukotriene B4. These compounds did not inhibit phorbol ester-stimulated PLD, indicating that they do not inhibit PLD per se, but probably act at a site between the receptor and the phospholipase. In contrast, the protein kinase C inhibitor Ro-31-8220 inhibited phorbol 12,13-dibutyrate- but not fMet-Leu-Phe-stimulated PLD activity, arguing against the involvement of protein kinase C in the receptor-mediated activation of PLD. ST271 did not inhibit Ins(1,4,5)P3 generation, but did inhibit protein tyrosine phosphorylation stimulated by fMet-Leu-Phe. The phosphotyrosine phosphatase inhibitor pervanadate increased tyrosine phosphorylation and stimulated PLD. These results suggest that tyrosine kinase activity is involved in receptor coupling to PLD but not to PtdIns(4,5)P2-specific phospholipase C in the human neutrophil.
Collapse
Affiliation(s)
- I J Uings
- Cell Signalling Group, Biochemical Sciences, Wellcome Research Laboratories, Kent, U.K
| | | | | | | | | | | | | |
Collapse
|
36
|
Holtrich U, Bräuninger A, Strebhardt K, Rübsamen-Waigmann H. Two additional protein-tyrosine kinases expressed in human lung: fourth member of the fibroblast growth factor receptor family and an intracellular protein-tyrosine kinase. Proc Natl Acad Sci U S A 1991; 88:10411-5. [PMID: 1720539 PMCID: PMC52938 DOI: 10.1073/pnas.88.23.10411] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression of protein-tyrosine kinases (PTKs; ATP:protein-tyrosine O-phosphotransferase, EC 2.7.1.112) was studied in normal human lung and various tumors by PCR followed by molecular cloning and sequence analysis. Six known PTKs (YES, FGR, LYN, HCK, PDGFB-R, and CSF1-R), as well as two additional members of this enzyme family, were detected in lung. One of the newly discovered sequences appears to represent a group of cytosolic PTKs. The cDNA sequence of the second unknown PTK revealed that it is a fourth member of the fibroblast growth factor receptor family. It was therefore called TKF (tyrosine kinase related to fibroblast growth factor receptor). Among a wide variety of cells and tissues tested, including human lymphocytes and macrophages, TKF was only found expressed in lung. Apart from normal lung, TKF expression could be demonstrated in some tumors of lung origin, but also in malignancies not derived from lung tissues. As fibroblast growth factors are generally involved in a variety of functions such as mitogenesis, angiogenesis, and wound healing, the specific expression of a receptor-related gene in lung only may point to yet another special function of this group of proteins.
Collapse
Affiliation(s)
- U Holtrich
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt, Federal Republic of Germany
| | | | | | | |
Collapse
|
37
|
Magram J, Bishop JM. Dominant male sterility in mice caused by insertion of a transgene. Proc Natl Acad Sci U S A 1991; 88:10327-31. [PMID: 1946451 PMCID: PMC52921 DOI: 10.1073/pnas.88.22.10327] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While examining a series of transgenic mouse lines carrying the HCK protooncogene, we encountered one line in which males hemizygous for the transgene were sterile. The sterile males mated normally but failed to impregnate females. Light and electron microscopy revealed that spermatogenesis proceeds normally until nuclear condensation, which occurs but gives rise to a variety of abnormally shaped nuclei. Expression of the transgene was not detectable. Thus, the insertion itself probably caused the abnormal phenotype by disrupting a gene (or genes) important in spermatogenesis. The mutation is genetically dominant, causing an abnormal phenotype even though the sterile mice carry an ostensibly normal counterpart of the disrupted locus. The mutant phenotype is completely penetrant only in some genetic backgrounds, suggesting a modifying influence from a second locus. Junctions between the inserted transgene and adjoining cellular DNA were cloned, allowing us to confirm the heterozygous nature of the genetic disruption and to detect and associated deletion. We have designated the mutation Lvs (lacking vigorous sperm) and presume that it may define a previously undescribed locus important in spermatogenesis.
Collapse
Affiliation(s)
- J Magram
- G. W. Hooper Foundation, University of California, San Francisco 94143-0552
| | | |
Collapse
|
38
|
Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol 1991. [PMID: 1875927 DOI: 10.1128/mcb.11.9.4363] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian hck, a member of the src family of tyrosine kinases, is expressed predominantly in cells of the myeloid and B-lymphoid lineages. Using mutational analysis, we have investigated the molecular basis of two immunoreactive forms of murine hck of 56 and 59 kDa found in numerous hemopoietic cell types. Our results indicate that translation of murine p59hck initiates from a CTG codon located 21 codons 5' of an ATG that is utilized to generate p56hck. We provide evidence that two human hck isoforms are generated by the same mechanism. Subcellular fractionation studies reveal that while p59hck and p56hck are associated with membranes of various murine B-lymphoid and myeloid cell lines, p59hck alone is also located in the cytosol. In contrast to membrane-associated p59hck, which is metabolically labeled with [3H]myristic acid and exhibits amphiphilic properties in Triton X-114 detergent, cytosolic p59hck is hydrophilic, suggesting that it is not acylated. Possible mechanisms are proposed to account for these observations.
Collapse
|
39
|
Lock P, Ralph S, Stanley E, Boulet I, Ramsay R, Dunn AR. Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol 1991; 11:4363-70. [PMID: 1875927 PMCID: PMC361298 DOI: 10.1128/mcb.11.9.4363-4370.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian hck, a member of the src family of tyrosine kinases, is expressed predominantly in cells of the myeloid and B-lymphoid lineages. Using mutational analysis, we have investigated the molecular basis of two immunoreactive forms of murine hck of 56 and 59 kDa found in numerous hemopoietic cell types. Our results indicate that translation of murine p59hck initiates from a CTG codon located 21 codons 5' of an ATG that is utilized to generate p56hck. We provide evidence that two human hck isoforms are generated by the same mechanism. Subcellular fractionation studies reveal that while p59hck and p56hck are associated with membranes of various murine B-lymphoid and myeloid cell lines, p59hck alone is also located in the cytosol. In contrast to membrane-associated p59hck, which is metabolically labeled with [3H]myristic acid and exhibits amphiphilic properties in Triton X-114 detergent, cytosolic p59hck is hydrophilic, suggesting that it is not acylated. Possible mechanisms are proposed to account for these observations.
Collapse
Affiliation(s)
- P Lock
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A 1991; 88:7844-8. [PMID: 1715582 PMCID: PMC52400 DOI: 10.1073/pnas.88.17.7844] [Citation(s) in RCA: 313] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of platelets with thrombin and other agonists causes a rapid increase in the phosphorylation of multiple proteins on tyrosine. To identify candidate protein-tyrosine kinases (PTKs; EC 2.7.1.112) that may be responsible for these phosphorylation events, we analyzed the expression of seven Src-family PTKs and examined the association of these kinases with known platelet membrane glycoproteins. Five Src-related PTKs were detected in platelets: pp60SRC, pp60FYN, pp62YES, pp61HCK, and two LYN products of Mr 54,000 and 58,000. The Fgr and Lck PTKs were not detected. Although strict comparative quantification of protein levels was not possible, pp60SRC was detected at higher levels than any of the other kinases. In addition, glycoprotein IV (GPIV, CD36), one of the major platelet membrane glycoproteins, was associated in a complex with the Fyn, Yes, and Lyn proteins in platelet lysates. Similar complexes were also found in two GPIV-expressing cell lines, C32 melanoma cells and HEL cells. Since PTKs appear to be involved in stimulus-response coupling at the plasma membrane, these results suggest that ligand interaction with GPIV may activate signaling pathways that are triggered by tyrosine phosphorylation.
Collapse
Affiliation(s)
- M M Huang
- Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
41
|
Abstract
Two lyn proteins of 56 and 53 kDa have been observed in immunoprecipitates from a variety of murine and human cell lines and tissues. We report the cloning and nucleotide sequence of two distinct murine lyn cDNAs isolated from an FDC-P1 cDNA library. One of the cDNAs, designated lyn11, encodes a protein of 56 kDa which shares 96% similarity with human lyn. The other cDNA, designated lyn12, encodes a protein of 53 kDa. The proteins differ in the presence or absence of a 21-amino-acid sequence located 24 amino acids C terminal of the translational initiation codon. Using RNase protection analysis, we have identified mRNAs corresponding to both cDNAs in murine cell lines and tissues. Sequence analysis of murine genomic clones suggests that the distinct mRNAs are alternatively spliced transcripts derived from a single gene. Expression of both cDNAs in COS cells leads to the production of lyn proteins with the same molecular weight as the two forms of lyn proteins immunoprecipitated from extracts of FDC-P1 cells and mouse spleen. Subcellular fractionation studies and Western immunoblotting analysis suggest that both isoforms of lyn are membrane associated. The association of both lyn isoforms with the membrane fraction supports the notion that lyn, like other src-related kinases, may interact with the intracellular domain of cell surface receptors.
Collapse
|
42
|
Stanley E, Ralph S, McEwen S, Boulet I, Holtzman DA, Lock P, Dunn AR. Alternatively spliced murine lyn mRNAs encode distinct proteins. Mol Cell Biol 1991; 11:3399-406. [PMID: 1710766 PMCID: PMC361064 DOI: 10.1128/mcb.11.7.3399-3406.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two lyn proteins of 56 and 53 kDa have been observed in immunoprecipitates from a variety of murine and human cell lines and tissues. We report the cloning and nucleotide sequence of two distinct murine lyn cDNAs isolated from an FDC-P1 cDNA library. One of the cDNAs, designated lyn11, encodes a protein of 56 kDa which shares 96% similarity with human lyn. The other cDNA, designated lyn12, encodes a protein of 53 kDa. The proteins differ in the presence or absence of a 21-amino-acid sequence located 24 amino acids C terminal of the translational initiation codon. Using RNase protection analysis, we have identified mRNAs corresponding to both cDNAs in murine cell lines and tissues. Sequence analysis of murine genomic clones suggests that the distinct mRNAs are alternatively spliced transcripts derived from a single gene. Expression of both cDNAs in COS cells leads to the production of lyn proteins with the same molecular weight as the two forms of lyn proteins immunoprecipitated from extracts of FDC-P1 cells and mouse spleen. Subcellular fractionation studies and Western immunoblotting analysis suggest that both isoforms of lyn are membrane associated. The association of both lyn isoforms with the membrane fraction supports the notion that lyn, like other src-related kinases, may interact with the intracellular domain of cell surface receptors.
Collapse
Affiliation(s)
- E Stanley
- Melbourne Tumour Biology Branch, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Hematopoietic cells express two forms of lyn kinase differing by 21 amino acids in the amino terminus. Mol Cell Biol 1991. [PMID: 2017160 DOI: 10.1128/mcb.11.5.2391] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cDNAs for the murine lyn protein tyrosine kinase gene were cloned from mouse bone marrow-derived monocytic cells. Comparison of the human and murine genes demonstrated a 94% homology in peptide sequence. Comparable to the human gene, murine lyn was found to be expressed in myeloid and B-lymphoid lineage cells. During the cloning, two types of cDNAs were obtained that differed by the presence (lynA) or absence (lynB) of 63 bp within the amino-terminal coding region of the gene. The genomic structure of the murine lyn gene demonstrates that the two types of lyn transcripts are derived from alternative splicing utilizing an internal splice donor site. Transcripts for both forms were found to be expressed in myeloid cells. lyn-specific antisera detected comparable levels of proteins of 56 and 53 kDa in hematopoietic cells. these 56- and 53-kDa proteins comigrated with proteins produced by in vitro translation or in vivo expression of the lynA and lynB cDNAs, respectively. The two forms had comparable in vitro kinase activities in immunoprecipitates and showed similar peptide patterns, with partial V8 digestion of the in vitro-phosphorylated proteins. The potential significance of the two lyn proteins is discussed.
Collapse
|
44
|
Yi TL, Bolen JB, Ihle JN. Hematopoietic cells express two forms of lyn kinase differing by 21 amino acids in the amino terminus. Mol Cell Biol 1991; 11:2391-8. [PMID: 2017160 PMCID: PMC359994 DOI: 10.1128/mcb.11.5.2391-2398.1991] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
cDNAs for the murine lyn protein tyrosine kinase gene were cloned from mouse bone marrow-derived monocytic cells. Comparison of the human and murine genes demonstrated a 94% homology in peptide sequence. Comparable to the human gene, murine lyn was found to be expressed in myeloid and B-lymphoid lineage cells. During the cloning, two types of cDNAs were obtained that differed by the presence (lynA) or absence (lynB) of 63 bp within the amino-terminal coding region of the gene. The genomic structure of the murine lyn gene demonstrates that the two types of lyn transcripts are derived from alternative splicing utilizing an internal splice donor site. Transcripts for both forms were found to be expressed in myeloid cells. lyn-specific antisera detected comparable levels of proteins of 56 and 53 kDa in hematopoietic cells. these 56- and 53-kDa proteins comigrated with proteins produced by in vitro translation or in vivo expression of the lynA and lynB cDNAs, respectively. The two forms had comparable in vitro kinase activities in immunoprecipitates and showed similar peptide patterns, with partial V8 digestion of the in vitro-phosphorylated proteins. The potential significance of the two lyn proteins is discussed.
Collapse
Affiliation(s)
- T L Yi
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
45
|
Carter RH, Park DJ, Rhee SG, Fearon DT. Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes. Proc Natl Acad Sci U S A 1991; 88:2745-9. [PMID: 2011584 PMCID: PMC51315 DOI: 10.1073/pnas.88.7.2745] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ligation of membrane IgM on B lymphocytes causes activation of a protein-tyrosine kinase(s) (PTK) and of phospholipase C (PLC). To determine whether these are elements of a common signal-transduction pathway, the effect of three PTK inhibitors on the rise in intracellular free Ca2+ concentration [( Ca2+]i) in human B-lymphoblastoid cell lines was assessed. Tyrphostin completely suppressed the increase in [Ca2+]i and the generation of inositol phosphates induced by ligation of membrane immunoglobulin (mIg) M. Herbimycin and genistein reduced by 30% and 50%, respectively, the rise in [Ca2+]i caused by optimal ligation of mIgM, and they abolished it in cells activated by suboptimal ligation of mIgM. Tyrphostin had no effect on the capacity of aluminum fluoride to increase [Ca2+]i. To determine whether a function of PTK is the phosphorylation of PLC, immunoprecipitates obtained with anti-phosphotyrosine from detergent lysates of B-lymphoblastoid cells were assayed for PLC activity. Ligation of mIgM increased immunoprecipitable PLC activity 2-fold by 90 sec and 4-fold by 30 min. Specific immunoprecipitation and Western blot analysis identified tyrosine phosphorylation of the gamma 1 isoform of PLC after 60 sec of stimulation. Activation of PLC in B cells by mIgM requires PTK function and is associated with tyrosine phosphorylation of PLC-gamma 1, suggesting a mechanism of PLC activation similar to that described for certain receptor PTKs.
Collapse
Affiliation(s)
- R H Carter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|
46
|
Sugawara K, Sugawara I, Sukegawa J, Akatsuka T, Yamamoto T, Morita M, Mori S, Toyoshima K. Distribution of c-yes-1 gene product in various cells and tissues. Br J Cancer 1991; 63:508-13. [PMID: 2021534 PMCID: PMC1972359 DOI: 10.1038/bjc.1991.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The distribution and degree of expression of c-yes-1 gene product in a variety of cell lines, human foetal tissues, and adult normal and malignant tissues were examined using immunohistochemical techniques. A murine monoclonal antibody 1B7 raised against a fusion protein consisting of 64 amino acid residues from the N-terminus of the c-yes-1 gene product and bacterial phosphate-binding protein (PBP) was used. At the ultrastructural level, the c-yes-1 gene product recognised by 1B7 was localised in the cytoplasm. Moderate to strong expression of the c-yes-1 gene product was observed in HT10-80 (fibrosarcoma). IN-1 (malignant lymphoma), Marcus (glioblastoma), TIG-1-20 (foetal skin fibroblast), proximal tubules of foetal and adult kidney, one of four breast cancers, one of four colorectal cancers, 14 of 33 head and neck cancers, 13 of 24 renal cancers, three of 19 lung cancers and one of seven stomach cancers. These results were further confirmed by Western blotting. Histological types showing moderate to strong expression of the c-yes-1 gene product were renal cell carcinoma (13/24) and squamous cell carcinoma (15/38). The fact that the c-yes-1 gene product is expressed preferentially in renal cell carcinoma and squamous cell carcinoma may indicate that it plays an important role.
Collapse
Affiliation(s)
- K Sugawara
- Department of Pathology, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Partanen J, Mäkelä TP, Alitalo R, Lehväslaiho H, Alitalo K. Putative tyrosine kinases expressed in K-562 human leukemia cells. Proc Natl Acad Sci U S A 1990; 87:8913-7. [PMID: 2247464 PMCID: PMC55070 DOI: 10.1073/pnas.87.22.8913] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. We analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets.
Collapse
Affiliation(s)
- J Partanen
- Department of Virology and Pathology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
48
|
Functional analysis and nucleotide sequence of the promoter region of the murine hck gene. Mol Cell Biol 1990. [PMID: 2388619 DOI: 10.1128/mcb.10.9.4603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and function of the promoter region and exon 1 of the murine hck gene have been characterized in detail. RNase protection analysis has established that hck transcripts initiate from heterogeneous start sites located within the hck gene. Fusion gene constructs containing hck 5'-flanking sequences and the bacterial Neor gene have been introduced into the hematopoietic cell lines FDC-P1 and WEHI-265 by using a self-inactivating retroviral vector. The transcriptional start sites of the fusion gene are essentially identical to those of the endogenous hck gene. Analysis of infected WEHI-265 cell lines treated with bacterial lipopolysaccharide (LPS) reveals a 3- to 5-fold elevation in the levels of endogenous hck mRNA and a 1.4- to 2.6-fold increase in the level of Neor fusion gene transcripts, indicating that hck 5'-flanking sequences are capable of conferring LPS responsiveness on the Neor gene. The 5'-flanking region of the hck gene contains sequences similar to an element which is thought to be involved in the LPS responsiveness of the class II major histocompatibility gene A alpha k. A subset of these sequences are also found in the 5'-flanking regions of other LPS-responsive genes. Moreover, this motif is related to the consensus binding sequence of NF-kappa B, a transcription factor which is known to be regulated by LPS.
Collapse
|
49
|
Lock P, Stanley E, Holtzman DA, Dunn AR. Functional analysis and nucleotide sequence of the promoter region of the murine hck gene. Mol Cell Biol 1990; 10:4603-11. [PMID: 2388619 PMCID: PMC361049 DOI: 10.1128/mcb.10.9.4603-4611.1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the promoter region and exon 1 of the murine hck gene have been characterized in detail. RNase protection analysis has established that hck transcripts initiate from heterogeneous start sites located within the hck gene. Fusion gene constructs containing hck 5'-flanking sequences and the bacterial Neor gene have been introduced into the hematopoietic cell lines FDC-P1 and WEHI-265 by using a self-inactivating retroviral vector. The transcriptional start sites of the fusion gene are essentially identical to those of the endogenous hck gene. Analysis of infected WEHI-265 cell lines treated with bacterial lipopolysaccharide (LPS) reveals a 3- to 5-fold elevation in the levels of endogenous hck mRNA and a 1.4- to 2.6-fold increase in the level of Neor fusion gene transcripts, indicating that hck 5'-flanking sequences are capable of conferring LPS responsiveness on the Neor gene. The 5'-flanking region of the hck gene contains sequences similar to an element which is thought to be involved in the LPS responsiveness of the class II major histocompatibility gene A alpha k. A subset of these sequences are also found in the 5'-flanking regions of other LPS-responsive genes. Moreover, this motif is related to the consensus binding sequence of NF-kappa B, a transcription factor which is known to be regulated by LPS.
Collapse
Affiliation(s)
- P Lock
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Transformation of chicken embryo fibroblast cells by avian retroviruses containing the human Fyn gene and its mutated genes. Mol Cell Biol 1990. [PMID: 2188108 DOI: 10.1128/mcb.10.6.3095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transforming activity of the human fyn protein, p59fyn, which is a kinase of the src family, was investigated by testing the effect of recombinant avian retrovirus (Fyn virus) expressing p59fyn on chickens or cultured chicken embryo fibroblast (CEF) cells. The Fyn virus did not induce transformed foci. After several passages of the virus stock on CEF cells, however, a few foci were detected in the presence of dimethyl sulfoxide. Chickens inoculated with Fyn virus at the stage of 12-day-old embryos developed fibrosarcomas 3 to 6 weeks after hatching. The viruses obtained from these foci and from one of the tumor tissues showed high transforming activity in the presence of dimethyl sulfoxide, suggesting that these viruses carry spontaneous mutations of the fyn gene. Four fyn genes from CEF DNAs infected with transforming viruses were molecularly cloned, and their products were confirmed to possess transforming activity. DNA sequence analysis of the fyn genes showed that two of the four mutants have Thr instead of Ile at position 338 in the kinase domain. The other two mutants carry deletions of 78 and 108 base pairs, respectively, which result in complete loss of region C of SH2. The overall level of proteins containing phosphotyrosine was significantly higher in transformed cells than in normal CEF cells. Our data indicate that when expressed at high levels in a retrovirus, normal p59fyn cannot cause cellular transformation, but that mutant p59fyn with either a single amino acid substitution in the kinase domain or a deletion including region C produces a transforming protein, perhaps due to enhanced tyrosine kinase activity. This is the first observation that deletion of region C can unmask the potential transforming activity of a src family kinase.
Collapse
|