1
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell 2017; 171:1301-1315.e14. [PMID: 29195074 PMCID: PMC5720393 DOI: 10.1016/j.cell.2017.11.013] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.
Collapse
Affiliation(s)
- Roderik M Kortlever
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Lamorna Brown Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Plasmacytomagenesis in Eμ-v-abl transgenic mice is accelerated when apoptosis is restrained. Blood 2014; 124:1099-109. [PMID: 24986687 DOI: 10.1182/blood-2014-04-570770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mice susceptible to plasma cell tumors provide a useful model for human multiple myeloma. We previously showed that mice expressing an Eµ-v-abl oncogene solely develop plasmacytomas. Here we show that loss of the proapoptotic BH3-only protein Bim or, to a lesser extent, overexpression of antiapoptotic Bcl-2 or Mcl-1, significantly accelerated the development of plasmacytomas and increased their incidence. Disease was preceded by an increased abundance of plasma cells, presumably reflecting their enhanced survival capacity in vivo. Plasmacytomas of each genotype expressed high levels of v-abl and frequently harbored a rearranged c-myc gene, probably as a result of chromosome translocation. As in human multiple myelomas, elevated expression of cyclin D genes was common, and p53 deregulation was rare. Our results for plasmacytomas highlight the significance of antiapoptotic changes in multiple myeloma, which include elevated expression of Mcl-1 and, less frequently, Bcl-2, and suggest that closer attention to defects in Bim expression is warranted.
Collapse
|
4
|
Hu Y, Zheng M, Gali R, Tian Z, Topal Görgün G, Munshi NC, Mitsiades CS, Anderson KC. A novel rapid-onset high-penetrance plasmacytoma mouse model driven by deregulation of cMYC cooperating with KRAS12V in BALB/c mice. Blood Cancer J 2013; 3:e156. [PMID: 24185503 PMCID: PMC3880436 DOI: 10.1038/bcj.2013.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022] Open
Abstract
Our goal is to develop a rapid and scalable system for functionally evaluating deregulated genes in multiple myeloma (MM). Here, we forcibly expressed human cMYC and KRAS12V in mouse T2 B cells (IgM(+)B220(+)CD38(+)IgD(+)) using retroviral transduction and transplanted these cells into lethally irradiated recipient mice. Recipients developed plasmacytomas with short onset (70 days) and high penetrance, whereas neither cMYC nor KRAS12V alone induced disease in recipient mice. Tumor cell morphology and cell surface biomarkers (CD138(+)B220(-)IgM(-)GFP(+)) indicate a plasma cell neoplasm. Gene set enrichment analysis further confirms that the tumor cells have a plasma cell gene expression signature. Plasmacytoma cells infiltrated multiple loci in the bone marrow, spleen and liver; secreted immunoglobulins; and caused glomerular damage. Our findings therefore demonstrate that deregulated expression of cMYC with KRAS12V in T2 B cells rapidly generates a plasma cell disease in mice, suggesting utility of this model both to elucidate molecular pathogenesis and to validate novel targeted therapies.
Collapse
Affiliation(s)
- Y Hu
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wiener F, Schmälter AK, Mowat MRA, Mai S. Duplication of Subcytoband 11E2 of Chromosome 11 Is Regularly Associated with Accelerated Tumor Development in v-abl/myc-Induced Mouse Plasmacytomas. Genes Cancer 2011; 1:847-58. [PMID: 21779468 DOI: 10.1177/1947601910382897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 11/16/2022] Open
Abstract
Chromosome 11 aberrations constitute the second most frequent chromosomal aberration in mouse plasmacytomas (PCTs) in which both the myc and abl oncogenes are constitutively expressed. In these tumors, previous G-banding studies had revealed numerical aberrations including duplication of the entire chromosome 11 or segments of telomeric bands D and E. The trisomy of chromosome 11 was always associated with accelerated pristane + v-abl/myc-induced PCT development. In the present study, PCT development was studied in a unique BALB/c congenic mouse strain, (T38HxBALB/c) F1, carrying a reciprocal translocation between chromosomes X and 11. After v-abl/myc induction, PCTs in this strain had acquired a nonrandom duplication of subcytoband 11E2. This duplication was always associated with accelerated PCT development. Corresponding synteny regions in the human and rat are changed in many tumors and involved in duplication, amplification, or translocation events. Thus, together with these synteny data, our findings strongly suggest a causal involvement of 11E2 in the acceleration of v-abl/myc-induced PCTs.
Collapse
Affiliation(s)
- Francis Wiener
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
6
|
Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood 2009; 113:2478-87. [PMID: 19147787 DOI: 10.1182/blood-2008-05-156943] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
B-cell lymphoma is the most common immune system malignancy. TCL1 transgenic mice (TCL1-tg), in which TCL1 is ectopically expressed in mature lymphocytes, develop multiple B- and T-cell leukemia and lymphoma subtypes, supporting an oncogenic role for TCL1 that probably involves AKT and MAPK-ERK signaling pathway augmentation. Additional, largely unknown genetic and epigenetic alterations cooperate with TCL1 during lymphoma progression. We examined DNA methylation patterns in TCL1-tg B-cell tumors to discover tumor-associated epigenetic changes, and identified hypermethylation of sprouty2 (Spry2). Sprouty proteins are context-dependent negative or positive regulators of MAPK-ERK pathway signaling, but their role(s) in B-cell physiology or pathology are unknown. Here we show that repression of Spry2 expression in TCL1-tg mouse and human B-cell lymphomas and cell lines is associated with dense DNA hypermethylation and was reversed by inhibition of DNA methylation. Spry2 expression was induced in normal splenic B cells by CD40/B-cell receptor costimulation and regulated a negative feedback loop that repressed MAPK-ERK signaling and decreased B-cell viability. Conversely, loss of Spry2 function hyperactivated MAPK-ERK signaling and caused increased B-cell proliferation. Combined, these results implicate epigenetic silencing of Spry2 expression in B lymphoma progression and suggest it as a companion lesion to ectopic TCL1 expression in enhancing MAPK-ERK pathway signaling.
Collapse
|
7
|
Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999; 81:1116-21. [PMID: 10584870 PMCID: PMC2374318 DOI: 10.1038/sj.bjc.6690817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hyper-activation of mitogen-activated protein kinase (MAPK) has recently been reported in several human cancers and activation of MAPK in those cancers may be associated with carcinogenesis through aberrant cell proliferation. To understand the roles of the MAPK pathway in colorectal tumorigenesis, we examined the status of extracellular signal-regulated protein kinases (ERK1/2) in 21 colorectal tumour specimens and compared it with that of paired normals. The specific MAPK activities were two- to tenfold lower in 71% (15 out of 21 cases) of colorectal tumours compared to those in paired normals. The individual MAPK kinase (MEK) correlated with MAPK activities (P = 0.006). Reduction of the MAPK and MEK activities in colorectal tumours was also observed in adenomas. These results suggested that down-regulation of the MAPK cascade may be caused by early genetic event(s) and that it may be related to the loss of normal growth control. Although MAPK activities were down-regulated both in adenomas and carcinomas, activities of the MAPKs in carcinomas were higher than those of paired adenomas. These results suggested that MAPK activities may be increased in the adenoma-to-carcinoma sequence and that it may play a role in the tumour progression. Observation of the differential regulation of MAPK activities in colorectal tumorigeneis suggested roles for the MAPK pathway in both positive and negative controls of cell growth.
Collapse
Affiliation(s)
- K S Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Adams JM, Harris AW, Strasser A, Ogilvy S, Cory S. Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene 1999; 18:5268-77. [PMID: 10498879 DOI: 10.1038/sj.onc.1202997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathways to lymphoid neoplasia have been explored in a number of transgenic models. Because B lymphoid malignancies often involve translocation of an oncogene (e.g. myc, bcl-2, cyclin D1) to an immunoglobulin locus, resulting in its deregulated expression, the consequences of oncogene overexpression in lymphocytes can be evaluated with transgenes driven by an immunoglobulin regulatory element, such as an enhancer from the IgH locus. Mice bearing such transgenes have provided insight into the preneoplastic state, including alterations in the control of cellular proliferation, differentiation or apoptosis. They have also allowed studies on oncogene cooperation in vivo and the modulating effect of genetic background. Briefly reviewed here are the models studied in the authors' laboratories. Mice bearing myc and bcl-2 transgenes have received most attention but others studied include abl, ras, cyclin D1 and bmi-1 oncogenes. Also discussed is a new transgenic vector that should facilitate transgenic approaches to non-lymphoid leukemias. The vector bears elements from the promoter region of the vav gene, which is expressed almost exclusively in hematopoietic cells. It has proven capable of driving transgene expression throughout the hematopoietic compartment, including progenitor cells and their precursors. This novel vector should aid studies on many aspects of hematopoiesis, including the modeling of leukemogenesis.
Collapse
Affiliation(s)
- J M Adams
- The Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
9
|
Facchini LM, Chen S, Marhin WW, Lear JN, Penn LZ. The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol 1997; 17:100-14. [PMID: 8972190 PMCID: PMC231734 DOI: 10.1128/mcb.17.1.100] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence supports an important biological role for Myc in the downregulation of specific gene transcription. Recent studies suggest that c-Myc may suppress promoter activity through proteins of the basal transcription machinery. We have previously reported that Myc protein, in combination with additional cellular factors, suppresses transcription initiation from the c-myc promoter. To characterize the cis components of this Myc negative autoregulation pathway, fragments of the human c-myc promoter were inserted upstream of luciferase reporter genes and assayed for responsiveness to inducible MycER activation in Rat-1 fibroblasts. We found four- to fivefold suppression of a c-myc P2 minimal promoter fragment upon induction of wild-type MycER protein activity, while induction of a mutant MycER protein lacking amino acids 106 to 143 required for Myc autosuppression failed to elicit this response. This assay is physiologically significant, as it reflects Myc autosuppression of the endogenous c-myc gene with regard to kinetics, dose dependency, cell type specificity, and c-Myc functional domains. Analysis of mutations within the P2 minimal promoter indicated that the cis components of Myc autosuppression could not be ascribed to any known protein-binding motifs. In addition, to address the trans factors required for Myc negative autoregulation, we expressed MycEG and MaxEG leucine zipper dimerization mutants in Rat-1 cells and found that Myc-Max heterodimerization is obligatory for Myc autosuppression. Two models for the Myc autosuppression mechanism are discussed.
Collapse
Affiliation(s)
- L M Facchini
- Department of Microbiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
10
|
Zhang QK, Boast S, de los Santos K, Begemann M, Goff SP. Transforming activity of retroviral genomes encoding Gag-Axl fusion proteins. J Virol 1996; 70:8089-97. [PMID: 8892934 PMCID: PMC190883 DOI: 10.1128/jvi.70.11.8089-8097.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Retroviral genomes encoding a portion of the Moloney murine leukemia virus Gag protein fused to portions of the murine axl cDNA were constructed so as to mimic naturally occurring transforming viruses. Virus MA1 retained 5 amino acids of the extracellular domain and the complete transmembrane and intracellular domains of Axl; virus MA2 retained only the intracellular Axl sequences beginning 33 amino acids downstream of the transmembrane region. Although both viruses could transform NIH 3T3 cells, they induced different morphological changes. MA1 transformants became elongated and assumed a cross-hatched pattern, while MA2 transformants were round and very refractile and grew to high density. Gag-Axl and Glyco-Gag-Axl proteins were detected in both types of transformed cells and were predominantly localized to the cytoplasmic compartment. When cell-free v-axl virus supernatants were introduced into wild-type BALB/c neonates, Rag-2-deficient mice, or c-myc transgenic mice, they did not cause tumors in a 3-month period. However, MA2-transformed NIH 3T3 cells, but not MA1 or control cells, could establish sarcomas by subcutaneous or intraperitoneal injection into BALB/c neonates. These results show that the transforming potential of the axl gene can be activated by truncation of the extracellular domain of the receptor and fusion of the remaining sequence to the gag gene.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Carcinogenicity Tests
- DNA, Viral
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/metabolism
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Phosphorylation
- Proto-Oncogene Proteins
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retroviridae
- Subcellular Fractions/metabolism
- Transformation, Genetic
- Tyrosine/metabolism
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Q K Zhang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
11
|
Swat W, Shinkai Y, Cheng HL, Davidson L, Alt FW. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc Natl Acad Sci U S A 1996; 93:4683-7. [PMID: 8643464 PMCID: PMC39339 DOI: 10.1073/pnas.93.10.4683] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe a novel approach to assay the ability of particular gene products to signal transitions in lymphocyte differentiation in vivo. The method involves transfection of test expression constructs into RAG-1-deficient embryonic stem cells, which are subsequently assayed by the RAG-2-deficient blastocyst complementation approach. We have used this method to demonstrate that expression of activated Ras in CD4-8- (double negative, DN) prothymocytes in vivo induces their differentiation into small CD4+8+ (double positive, DP) cortical thymocytes with accompanying expansion to normal thymocyte numbers. However, activated Ras expression in DP cells does not cause proliferation or maturation to CD4+8- or CD4-8+ (single positive) thymocytes. Therefore, signaling through Ras is sufficient for promoting differentiation of DN to DP cells, but further differentiation requires the activity of additional signaling pathways.
Collapse
Affiliation(s)
- W Swat
- Howard Hughes Medical Institute, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Transgenic mouse lines carrying the N-myc oncogene deregulated by the immunoglobulin heavy-chain enhancer spontaneously develop B-lymphoid tumors (R. Dildrop, A. Ma, K. Zimmerman, E. Hsu, A. Tesfaye, R. DePinho, and F. W. Alt, EMBO J. 8:1121-1128, 1989; H. Rosenbaum, E. Webb, J. M. Adams, S. Cory, and A. W. Harris, EMBO J. 8:749-755). Permanent cell lines derived from these tumors (E mu-N-myc cell lines) express extremely high levels of the N-myc transgene but little or no detectable endogenous N-myc or c-myc. We have employed nuclear run-on assays to show that down-regulation of endogenous N- and c-myc expression occurs at the transcriptional level. To determine whether the lack of endogenous myc gene transcription is a direct effect of high-level N-myc transgene expression, we have generated Abelson murine leukemia virus (A-MuLV)-transformed cell lines from prelymphomatous E mu-N-myc mice (A-MuLV/E mu-N-myc cell lines). Although these A-MuLV/E mu-N-myc lines express very high levels of the N-myc transgene, they continue to transcribe the endogenous c-myc gene. These findings demonstrate that high-level N-myc gene expression alone does not necessarily lead to down-regulation of endogenous myc gene expression and suggest that events associated with transformation by N-myc may be critical to this process.
Collapse
|
13
|
Abstract
Transgenic mouse lines carrying the N-myc oncogene deregulated by the immunoglobulin heavy-chain enhancer spontaneously develop B-lymphoid tumors (R. Dildrop, A. Ma, K. Zimmerman, E. Hsu, A. Tesfaye, R. DePinho, and F. W. Alt, EMBO J. 8:1121-1128, 1989; H. Rosenbaum, E. Webb, J. M. Adams, S. Cory, and A. W. Harris, EMBO J. 8:749-755). Permanent cell lines derived from these tumors (E mu-N-myc cell lines) express extremely high levels of the N-myc transgene but little or no detectable endogenous N-myc or c-myc. We have employed nuclear run-on assays to show that down-regulation of endogenous N- and c-myc expression occurs at the transcriptional level. To determine whether the lack of endogenous myc gene transcription is a direct effect of high-level N-myc transgene expression, we have generated Abelson murine leukemia virus (A-MuLV)-transformed cell lines from prelymphomatous E mu-N-myc mice (A-MuLV/E mu-N-myc cell lines). Although these A-MuLV/E mu-N-myc lines express very high levels of the N-myc transgene, they continue to transcribe the endogenous c-myc gene. These findings demonstrate that high-level N-myc gene expression alone does not necessarily lead to down-regulation of endogenous myc gene expression and suggest that events associated with transformation by N-myc may be critical to this process.
Collapse
|
14
|
Abstract
Lymphoid cells transformed by temperature-sensitive Abelson virus die at the nonpermissive temperature. This property was exploited to show that bcr/abl and v-src but not myc and ras can replace the transforming signal of v-abl, a result suggesting that the former but not the latter oncogenes transform lymphoid cells via a similar pathway.
Collapse
|
15
|
Engelman A, Rosenberg N. bcr/abl and src but not myc and ras replace v-abl in lymphoid transformation. Mol Cell Biol 1990; 10:4365-9. [PMID: 2164639 PMCID: PMC360988 DOI: 10.1128/mcb.10.8.4365-4369.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lymphoid cells transformed by temperature-sensitive Abelson virus die at the nonpermissive temperature. This property was exploited to show that bcr/abl and v-src but not myc and ras can replace the transforming signal of v-abl, a result suggesting that the former but not the latter oncogenes transform lymphoid cells via a similar pathway.
Collapse
Affiliation(s)
- A Engelman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
16
|
Pfeifer AM, Mark GE, Malan-Shibley L, Graziano S, Amstad P, Harris CC. Cooperation of c-raf-1 and c-myc protooncogenes in the neoplastic transformation of simian virus 40 large tumor antigen-immortalized human bronchial epithelial cells. Proc Natl Acad Sci U S A 1989; 86:10075-9. [PMID: 2557616 PMCID: PMC298647 DOI: 10.1073/pnas.86.24.10075] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Overexpression of c-raf-1 and the myc family of protooncogenes is primarily associated with small cell carcinoma, which accounts for approximately 25% of human lung cancer. To determine the functional significance of the c-raf-1 and/or c-myc gene expression in lung carcinogenesis and to delineate the relationship between protooncogene expression and tumor phenotype, we introduced both protooncogenes, alone or in combination, into human bronchial epithelial cells. Two retroviral recombinants, pZip-raf and pZip-myc, containing the complete coding sequences of the human c-raf-1 and murine c-myc genes, respectively, were constructed and transfected into simian virus 40 large tumor antigen-immortalized bronchial epithelial cells (BEAS-2B); this was followed by selection for G418 resistance. BEAS-2B cells expressing both the transfected c-raf-1 and c-myc sequences formed large cell carcinomas in athymic nude mice with a latency of 4-21 weeks, whereas either pZip-raf- or pZip-myc-transfected cells were nontumorigenic after 12 months. Cell lines established from tumors (designated RMT) revealed the presence of the cotransfected c-raf-1 and c-myc sequences and expressed morphological, chromosomal, and isoenzyme markers, which identified BEAS-2B cells as the progenitor line of the tumors. A significant increase in the mRNA levels of neuron-specific enolase was detected in BEAS-2B cells containing both the c-raf-1 and c-myc genes and derived tumor cell lines. The data demonstrate that the concomitant expression of the c-raf and c-myc protooncogenes causes neoplastic transformation of human bronchial epithelial cells resulting in large cell carcinomas with certain neuroendocrine markers. The presented model system should be useful in studies of molecular events involved in multistage lung carcinogenesis.
Collapse
Affiliation(s)
- A M Pfeifer
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|