1
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
2
|
Shelansky R, Abrahamsson S, Brown CR, Doody M, Lenstra TL, Larson DR, Boeger H. Single gene analysis in yeast suggests nonequilibrium regulatory dynamics for transcription. Nat Commun 2024; 15:6226. [PMID: 39043639 PMCID: PMC11266658 DOI: 10.1038/s41467-024-50419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
Fluctuations in the initiation rate of transcription, the first step in gene expression, ensue from the stochastic behavior of the molecular process that controls transcription. In steady state, the regulatory process is often assumed to operate reversibly, i.e., in equilibrium. However, reversibility imposes fundamental limits to information processing. For instance, the assumption of equilibrium is difficult to square with the precision with which the regulatory process executes its task in eukaryotes. Here we provide evidence - from microscopic analyses of the transcription dynamics at a single gene copy of yeast - that the regulatory process for transcription is cyclic and irreversible (out of equilibrium). The necessary coupling to reservoirs of free energy occurs via sequence-specific transcriptional activators and the recruitment, in part, of ATP-dependent chromatin remodelers. Our findings may help explain how eukaryotic cells reconcile the dual but opposing requirements for fast regulatory kinetics and high regulatory specificity.
Collapse
Affiliation(s)
- Robert Shelansky
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Sara Abrahamsson
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, USA
| | - Christopher R Brown
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
- Korro Bio, Cambridge, MA, USA
| | - Michael Doody
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hinrich Boeger
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
3
|
Gross AS, Ghillebert R, Schuetter M, Reinartz E, Rowland A, Bishop BC, Stumpe M, Dengjel J, Graef M. A metabolite sensor subunit of the Atg1/ULK complex regulates selective autophagy. Nat Cell Biol 2024; 26:366-377. [PMID: 38316984 PMCID: PMC10940145 DOI: 10.1038/s41556-024-01348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.
Collapse
Affiliation(s)
- A S Gross
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Vienna Biocenter, Vienna, Austria
| | - R Ghillebert
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - M Schuetter
- Max Planck Research Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - E Reinartz
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - A Rowland
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - B C Bishop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - M Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - J Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - M Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Wangsanut T, Arnold SJY, Jilani SZ, Marzec S, Monsour RC, Rolfes RJ. Grf10 regulates the response to copper, iron, and phosphate in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad070. [PMID: 36966423 PMCID: PMC10234403 DOI: 10.1093/g3journal/jkad070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
The pathogenic yeast, Candida albicans, and other microbes must be able to handle drastic changes in nutrient availability within the human host. Copper, iron, and phosphate are essential micronutrients for microbes that are sequestered by the human host as nutritional immunity; yet high copper levels are employed by macrophages to induce toxic oxidative stress. Grf10 is a transcription factor important for regulating genes involved in morphogenesis (filamentation, chlamydospore formation) and metabolism (adenylate biosynthesis, 1-carbon metabolism). The grf10Δ mutant exhibited resistance to excess copper in a gene dosage-dependent manner but grew the same as the wild type in response to other metals (calcium, cobalt, iron, manganese, and zinc). Point mutations in the conserved residues D302 and E305, within a protein interaction region, conferred resistance to high copper and induced hyphal formation similar to strains with the null allele. The grf10Δ mutant misregulated genes involved with copper, iron, and phosphate uptake in YPD medium and mounted a normal transcriptional response to high copper. The mutant accumulated lower levels of magnesium and phosphorus, suggesting that copper resistance is linked to phosphate metabolism. Our results highlight new roles for Grf10 in copper and phosphate homeostasis in C. albicans and underscore the fundamental role of Grf10 in connecting these with cell survival.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvia J Y Arnold
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Safia Z Jilani
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
- Center for Sustainable Nanotechnology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Marzec
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Robert C Monsour
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
5
|
He BZ, Zhou X, O'Shea EK. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. eLife 2017; 6:25157. [PMID: 28485712 PMCID: PMC5446240 DOI: 10.7554/elife.25157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/29/2017] [Indexed: 01/23/2023] Open
Abstract
Although combinatorial regulation is a common feature in gene regulatory networks, how it evolves and affects network structure and function is not well understood. In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are required for gene induction and survival during phosphate starvation. In the related human commensal C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate starvation and is only partially required for inducing PHO genes. Phylogenetic survey suggests that reduced dependence on Pho2 evolved in C. glabrata and closely related species. In S. cerevisiae, less Pho2-dependent Pho4 orthologs induce more genes. In C. glabrata, its Pho4 binds to more locations and induces three times as many genes as Pho4 in S. cerevisiae does. Our work shows how evolution of combinatorial regulation allows for rapid expansion of a gene regulatory network’s targets, possibly extending its physiological functions. The diversity of life on Earth has intrigued generations of scientists and nature lovers alike. Research over recent decades has revealed that much of the diversity we can see did not require the invention of new genes. Instead, living forms diversified mostly by using old genes in new ways – for example, by changing when or where an existing gene became active. This kind of change is referred to as “regulatory evolution”. A class of proteins called transcription factors are hot spots in regulatory evolution. These proteins recognize specific sequences of DNA to control the activity of other genes, and so represent the “readers” of the genetic information. Small changes to how a transcription factor is regulated, or the genes it targets, can lead to dramatic changes in an organism. Before we can understand how life on Earth evolved to be so diverse, scientists must first answer how transcription factors evolve and what consequences this has on their target genes. So far, most studies of regulatory evolution have focused on networks of transcription factors and genes that control how an organism develops. He et al. have now studied a regulatory network that is behind a different process, namely how an organism responds to stress or starvation. These two types of regulatory networks are structured differently and work in different ways. These differences made He et al. wonder if the networks evolved differently too. The chemical phosphate is an essential nutrient for all living things, and He et al. compared how two different species of yeast responded to a lack of phosphate. The key difference was how much a major transcription factor known as Pho4 depended on a so-called co-activator protein named Pho2 to carry out its role. Baker’s yeast (Saccharomyces cerevisiae), which is commonly used in laboratory experiments, requires both Pho4 and Pho2 to activate about 20 genes when inorganic phosphate is not available in its environment. However, in a related yeast species called Candida glabrata, Pho4 has evolved to depend less on Pho2. He et al. went on to show that, as well as being less dependent on Pho2, Pho4 in C. glabrata activates more than three times as many genes as Pho4 in S. cerevisiae does in the absence of phosphate. These additional gene targets for Pho4 in C. glabrata are predicted to extend the network’s activities, and allow it to regulate new process including the yeast’s responses to other types of stress and the building of the yeast’s cell wall. Together these findings show a new way that regulatory networks can evolve, that is, by reducing its dependence on the co-activator, a transcription factor can expand the number of genes it targets. This has not been seen for regulatory networks related to development, suggesting that different networks can indeed evolve in different ways. Lastly, because disease-causing microbes are often stressed inside their hosts and C. glabrata sometimes infects humans, understanding how this yeast’s response to stress has evolved may lead to new ways to prevent and treat this infection.
Collapse
Affiliation(s)
- Bin Z He
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Xu Zhou
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
6
|
From Structural Variation of Gene Molecules to Chromatin Dynamics and Transcriptional Bursting. Genes (Basel) 2015; 6:469-83. [PMID: 26136240 PMCID: PMC4584311 DOI: 10.3390/genes6030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022] Open
Abstract
Transcriptional activation of eukaryotic genes is accompanied, in general, by a change in the sensitivity of promoter chromatin to endonucleases. The structural basis of this alteration has remained elusive for decades; but the change has been viewed as a transformation of one structure into another, from "closed" to "open" chromatin. In contradistinction to this static and deterministic view of the problem, a dynamical and probabilistic theory of promoter chromatin has emerged as its solution. This theory, which we review here, explains observed variation in promoter chromatin structure at the level of single gene molecules and provides a molecular basis for random bursting in transcription-the conjecture that promoters stochastically transition between transcriptionally conducive and inconducive states. The mechanism of transcriptional regulation may be understood only in probabilistic terms.
Collapse
|
7
|
Abstract
In budding yeast, Saccharomyces cerevisiae, the phosphate signalling and response pathway, known as PHO pathway, monitors phosphate cytoplasmic levels by controlling genes involved in scavenging, uptake and utilization of phosphate. Recent attempts to understand the phosphate starvation response in other ascomycetes have suggested the existence of both common and novel components of the budding yeast PHO pathway in these ascomycetes. In this review, we discuss the components of PHO pathway, their roles in maintaining phosphate homeostasis in yeast and their conservation across ascomycetes. The role of high-affinity transporter, Pho84, in sensing and signalling of phosphate has also been discussed.
Collapse
Affiliation(s)
- Parul Tomar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | |
Collapse
|
8
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
9
|
Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol 2013; 11:e1001621. [PMID: 23940458 PMCID: PMC3735467 DOI: 10.1371/journal.pbio.1001621] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/24/2013] [Indexed: 01/16/2023] Open
Abstract
Electron microscopy of single gene molecules and mathematical modeling shows that a promoter stochastically transitions between transcriptionally favorable and unfavorable nucleosome configurations, providing a mechanism for transcriptional bursting. The number of mRNA and protein molecules expressed from a single gene molecule fluctuates over time. These fluctuations have been attributed, in part, to the random transitioning of promoters between transcriptionally active and inactive states, causing transcription to occur in bursts. However, the molecular basis of transcriptional bursting remains poorly understood. By electron microscopy of single PHO5 gene molecules from yeast, we show that the “activated” promoter assumes alternative nucleosome configurations at steady state, including the maximally repressive, fully nucleosomal, and the maximally non-repressive, nucleosome-free, configuration. We demonstrate that the observed probabilities of promoter nucleosome configurations are obtained from a simple, intrinsically stochastic process of nucleosome assembly, disassembly, and position-specific sliding; and we show that gene expression and promoter nucleosome configuration can be mechanistically coupled, relating promoter nucleosome dynamics and gene expression fluctuations. Together, our findings suggest a structural basis for transcriptional bursting, and offer new insights into the mechanism of transcriptional regulation and the kinetics of promoter nucleosome transitions. In eukaryotes, such as plants, fungi, and animals, the DNA is wrapped around basic protein cores called nucleosomes at more or less regular intervals. This wrapping discourages transcription, the first step in gene expression. By isolating PHO5 gene molecules from yeast cells and analyzing their structure by electron microscopy, we provide evidence that the “nucleosomes” completely unwrap and then re-wrap in an intrinsically stochastic manner. Only nucleosomes that wrap the regulatory sequences of the gene (promoter) were observed to unspool; no such unspooling was found across the body of the gene. Random unwrapping and re-wrapping generates an ensemble of alternative promoter nucleosome configurations, some conducive to transcription, others not. Mounting evidence suggests that transcription occurs in bursts, where transcripts are released in close succession, interrupted by intervals of transcriptional inactivity; this may lead to significant stochastic fluctuations in gene expression. Although the mechanism of this behavior is not understood, our findings now provide a structural basis for it, suggesting that spooling and unspooling of promoter DNA from the nucleosomes determines the fundamental frequency of transcriptional bursting.
Collapse
|
10
|
Parikh RY, Kim HD. The effect of an intervening promoter nucleosome on gene expression. PLoS One 2013; 8:e63072. [PMID: 23700413 PMCID: PMC3659125 DOI: 10.1371/journal.pone.0063072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
Nucleosomes, which are the basic packaging units of chromatin, are stably positioned in promoters upstream of most stress-inducible genes. These promoter nucleosomes are generally thought to repress gene expression due to exclusion; they prevent transcription factors from accessing their target sites on the DNA. However, the role of promoter nucleosomes that do not directly occlude transcription factor binding sites is not obvious. Here, we varied the stability of a non-occluding nucleosome positioned between a transcription factor binding site and the TATA box region in an inducible yeast promoter and measured downstream gene expression level. We found that gene expression level depends on the occupancy of the non-occluding nucleosome in a non-monotonic manner. We postulated that a non-occluding nucleosome can serve both as a vehicle of and a barrier to chromatin remodeling activity and built a quantitative, nonequilibrium model to explain the observed nontrivial effect of the intervening nucleosome. Our work sheds light on the dual role of nucleosome as a repressor and an activator and expands the standard model of gene expression to include irreversible promoter chromatin transitions.
Collapse
Affiliation(s)
- Rasesh Y. Parikh
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Carter-O'Connell I, Peel MT, Wykoff DD, O'Shea EK. Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe. BMC Genomics 2012; 13:697. [PMID: 23231582 PMCID: PMC3556104 DOI: 10.1186/1471-2164-13-697] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Inorganic phosphate is an essential nutrient required by organisms for growth. During phosphate starvation, Saccharomyces cerevisiae activates the phosphate signal transduction (PHO) pathway, leading to expression of the secreted acid phosphatase, PHO5. The fission yeast, Schizosaccharomyces pombe, regulates expression of the ScPHO5 homolog (pho1+) via a non-orthologous PHO pathway involving genetically identified positive (pho7+) and negative (csk1+) regulators. The genes induced by phosphate limitation and the molecular mechanism by which pho7+ and csk1+ function are unknown. Here we use a combination of molecular biology, expression microarrays, and chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to characterize the role of pho7+ and csk1+ in the PHO response. Results We define the set of genes that comprise the initial response to phosphate starvation in S. pombe. We identify a conserved PHO response that contains the ScPHO5 (pho1+), ScPHO84 (SPBC8E4.01c), and ScGIT1 (SPBC1271.09) orthologs. We identify members of the Pho7 regulon and characterize Pho7 binding in response to phosphate-limitation and Csk1 activity. We demonstrate that activation of pho1+ requires Pho7 binding to a UAS in the pho1+ promoter and that Csk1 repression does not regulate Pho7 enrichment. Further, we find that Pho7-dependent activation is not limited to phosphate-starvation, as additional environmental stress response pathways require pho7+ for maximal induction. Conclusions We provide a global analysis of the transcriptional response to phosphate limitation in S. pombe. Our results elucidate the conserved core regulon induced in response to phosphate starvation in this ascomycete distantly related to S. cerevisiae and provide a better understanding of flexibility in environmental stress response networks.
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Howard Hughes Medical Institute, Faculty of Arts and Sciences, Center for Systems Biology, Northwest Labs, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
12
|
Nakaki R, Kang J, Tateno M. A novel ab initio identification system of transcriptional regulation motifs in genome DNA sequences based on direct comparison scheme of signal/noise distributions. Nucleic Acids Res 2012; 40:8835-48. [PMID: 22798493 PMCID: PMC3467046 DOI: 10.1093/nar/gks642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A novel ab initio parameter-tuning-free system to identify transcriptional factor (TF) binding motifs (TFBMs) in genome DNA sequences was developed. It is based on the comparison of two types of frequency distributions with respect to the TFBM candidates in the target DNA sequences and the non-candidates in the background sequence, with the latter generated by utilizing the intergenic sequences. For benchmark tests, we used DNA sequence datasets extracted by ChIP-on-chip and ChIP-seq techniques and identified 65 yeast and four mammalian TFBMs, with the latter including gaps. The accuracy of our system was compared with those of other available programs (i.e. MEME, Weeder, BioProspector, MDscan and DME) and was the best among them, even without tuning of the parameter set for each TFBM and pre-treatment/editing of the target DNA sequences. Moreover, with respect to some TFs for which the identified motifs are inconsistent with those in the references, our results were revealed to be correct, by comparing them with other existing experimental data. Thus, our identification system does not need any other biological information except for gene positions, and is also expected to be applicable to genome DNA sequences to identify unknown TFBMs as well as known ones.
Collapse
Affiliation(s)
- Ryo Nakaki
- Graduate School of Pure Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
13
|
He Y, Swaminathan A, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol Microbiol 2011; 83:395-407. [PMID: 22182244 DOI: 10.1111/j.1365-2958.2011.07941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, and Molecular Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
14
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
15
|
Zhou X, O’Shea EK. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell 2011; 42:826-36. [PMID: 21700227 PMCID: PMC3127084 DOI: 10.1016/j.molcel.2011.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/08/2011] [Accepted: 05/18/2011] [Indexed: 11/15/2022]
Abstract
DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budding yeast transcription factor activated in response to phosphate limitation. We find that nucleosomes significantly restrict Pho4 binding. At nucleosome-depleted sites, competition from another transcription factor, Cbf1, determines Pho4 occupancy, raising the threshold for transcriptional activation in phosphate replete conditions and preventing Pho4 activation of genes outside the phosphate regulon during phosphate starvation. Pho4 binding is not sufficient for transcriptional activation-a cooperative interaction between Pho2 and Pho4 specifies genes that are activated. Combining these experimental observations, we are able to globally predict Pho4 binding and its functionality.
Collapse
Affiliation(s)
- Xu Zhou
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Northwest Labs, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Northwest Labs, 52 Oxford Street, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology
| |
Collapse
|
16
|
Pardo CE, Carr IM, Hoffman CJ, Darst RP, Markham AF, Bonthron DT, Kladde MP. MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects. Nucleic Acids Res 2010; 39:e5. [PMID: 20959287 PMCID: PMC3017589 DOI: 10.1093/nar/gkq716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein-DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein-DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.
Collapse
Affiliation(s)
- Carolina E Pardo
- Department of Biochemistry and Molecular Biology, University of Florida Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, Gainesville, FL 32610-3633, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Fordyce PM, Gerber D, Tran D, Zheng J, Li H, DeRisi JL, Quake SR. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 2010; 28:970-5. [PMID: 20802496 PMCID: PMC2937095 DOI: 10.1038/nbt.1675] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/05/2010] [Indexed: 11/28/2022]
Abstract
Gene expression is regulated in part by protein transcription factors that bind target regulatory DNA sequences. Predicting DNA binding sites and affinities from transcription factor sequence or structure is difficult; therefore, experimental data are required to link transcription factors to target sequences. We present a microfluidics-based approach for de novo discovery and quantitative biophysical characterization of DNA target sequences. We validated our technique by measuring sequence preferences for 28 Saccharomyces cerevisiae transcription factors with a variety of DNA-binding domains, including several that have proven difficult to study by other techniques. For each transcription factor, we measured relative binding affinities to oligonucleotides covering all possible 8-bp DNA sequences to create a comprehensive map of sequence preferences; for four transcription factors, we also determined absolute affinities. We expect that these data and future use of this technique will provide information essential for understanding transcription factor specificity, improving identification of regulatory sites and reconstructing regulatory interactions.
Collapse
Affiliation(s)
- Polly M Fordyce
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Activated transcription in eukaryotes requires the aid of numerous co-factors to overcome the physical barriers chromatin poses to activation, bridge the gap between activators and polymerase, and ensure appropriate regulation. S. cerevisiae has long been a model organism for studying the role of co-activators in the steps leading up to gene activation. Detailed studies on the recruitment of these co-activators have been carried out for more than a dozen promoters. Taking a step back to survey these results, however, suggests that there are few generalizations that could be used to guide future studies of uncharacterized promoters.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
19
|
Kim HD, O'Shea EK. A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 2008; 15:1192-8. [PMID: 18849996 PMCID: PMC2696132 DOI: 10.1038/nsmb.1500] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/23/2008] [Indexed: 12/12/2022]
Abstract
A challenge facing biology is to develop quantitative, predictive models of gene regulation. Eukaryotic promoters contain transcription factor binding sites of differing affinity and accessibility, but we understand little about how these variables combine to generate a fine-tuned, quantitative transcriptional response. Here we used the PHO5 promoter in budding yeast to quantify the relationship between transcription factor input and gene expression output, termed the gene-regulation function (GRF). A model that captures variable interactions between transcription factors, nucleosomes and the promoter faithfully reproduced the observed quantitative changes in the GRF that occur upon altering the affinity of transcription factor binding sites, and implicates nucleosome-modulated accessibility of transcription factor binding sites in increasing the diversity of gene expression profiles. This work establishes a quantitative framework that can be applied to predict GRFs of other eukaryotic genes.
Collapse
Affiliation(s)
- Harold D Kim
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Northwest Laboratories, 52 Oxford Street, Room 445.40, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
20
|
Lam FH, Steger DJ, O'Shea EK. Chromatin decouples promoter threshold from dynamic range. Nature 2008; 453:246-50. [PMID: 18418379 PMCID: PMC2435410 DOI: 10.1038/nature06867] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.
Collapse
Affiliation(s)
- Felix H Lam
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer 307, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
21
|
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 2008; 68:1583-94. [PMID: 18433446 DOI: 10.1111/j.1365-2958.2008.06261.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Université Victor Segalen/Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaur P, Lingner A, Singh B, Böer E, Polajeva J, Steinborn G, Bode R, Gellissen G, Satyanarayana T, Kunze G. APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. Antonie van Leeuwenhoek 2006; 91:45-55. [PMID: 17016743 DOI: 10.1007/s10482-006-9094-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
The extracellular acid phosphatase-encoding Arxula adeninivorans APHO1 gene was isolated using degenerated specific oligonucleotide primers in a PCR screening approach. The gene harbours an ORF of 1449 bp encoding a protein of 483 amino acids with a calculated molecular mass of 52.4 kDa. The sequence includes an N-terminal secretion sequence of 17 amino acids. The deduced amino acid sequence exhibits 54% identity to phytases from Aspergillus awamori, Asp. niger and Asp. ficuum and a more distant relationship to phytases of the yeasts Candida albicans and Debaryomyces hansenii (36-39% identity). The sequence contains the phosphohistidine signature and the conserved active site sequence of acid phosphatases. APHO1 expression is induced under conditions of phosphate limitation. Enzyme isolates from wild and recombinant strains with the APHO1 gene expressed under control of the strong A. adeninivorans-derived TEF1 promoter were characterized. For both proteins, a molecular mass of approx. 350 kDa, corresponding to a hexameric structure, a pH optimum of pH 4.8 and a temperature optimum of 60 degrees C were determined. The preferred substrates include p-nitrophenyl-phosphate, pyridoxal-5-phosphate, 3-indoxyl-phosphate, 1-naphthylphosphate, ADP, glucose-6-phosphate, sodium-pyrophosphate, and phytic acid. Thus the enzyme is a secretory acid phosphatase with phytase activity and not a phytase as suggested by strong homology to such enzymes.
Collapse
Affiliation(s)
- Parvinder Kaur
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
We wish to understand the role of electrostatics in DNA stiffness and bending. The DNA charge collapse model suggests that mutual electrostatic repulsions between neighboring phosphates significantly contribute to DNA stiffness. According to this model, placement of fixed charges near the negatively charged DNA surface should induce bending through asymmetric reduction or enhancement of these inter-phosphate repulsive forces. We have reported previously that charged variants of the elongated basic-leucine zipper (bZIP) domain of Gcn4p bend DNA in a manner consistent with this charge collapse model. To extend this result to a more globular protein, we present an investigation of the dimeric basic-helix–loop–helix (bHLH) domain of Pho4p. The 62 amino acid bHLH domain has been modified to position charged amino acid residues near one face of the DNA double helix. As observed for bZIP charge variants, DNA bending toward appended cations (away from the protein:DNA interface) is observed. However, unlike bZIP proteins, DNA is not bent away from bHLH anionic charges. This finding can be explained by the structure of the more globular bHLH domain which, in contrast to bZIP proteins, makes extensive DNA contacts along the binding face.
Collapse
Affiliation(s)
- Robert J. McDonald
- Medical Scientist Training Program, Mayo Clinic College of MedicineRochester, MN 55905, USA
| | - Jason D. Kahn
- Medical Scientist Training Program, Mayo Clinic College of MedicineRochester, MN 55905, USA
| | - L. James Maher
- Department of Chemistry and Biochemistry, University of MarylandCollege Park, MD 20742-2021, USA
- To whom correspondence should be addressed. Tel: +1 507 284 9041; Fax: +1 507 284 2053;
| |
Collapse
|
24
|
Mouillon JM, Persson BL. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:171-6. [PMID: 16487340 DOI: 10.1111/j.1567-1364.2006.00036.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism involved in the cellular phosphate response of Saccharomyces cerevisiae forms part of the PHO pathway, which upon expression allows a co-ordinated cellular response and adaptation to changes in availability of external phosphate. Although genetic studies and analyses of the S. cerevisiae genome have produced much information on the components of the PHO pathway, little is known about how cells sense the environmental phosphate level and the mechanistic regulation of phosphate acquisition. Recent studies emphasize different levels in phosphate sensing and signalling in response to external phosphate fluctuations. This review integrates all these findings into a model involving rapid and long-term effects of phosphate sensing and signalling in S. cerevisiae. The model describes in particular how yeast cells are able to adjust phosphate acquisition by integrating the status of the intracellular phosphate pools together with the extracellular phosphate concentration.
Collapse
Affiliation(s)
- Jean-Marie Mouillon
- Department of Chemistry and Biomedical Sciences, Kalmar University, Kalmar, Sweden
| | | |
Collapse
|
25
|
Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 2006; 13:256-63. [PMID: 16491089 DOI: 10.1038/nsmb1062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/29/2005] [Indexed: 01/08/2023]
Abstract
Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.
Collapse
Affiliation(s)
- Walter J Jessen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
26
|
Yang C, Zeng E, Li T, Narasimhan G. Clustering genes using gene expression and text literature data. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2006:329-40. [PMID: 16447990 DOI: 10.1109/csb.2005.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Clustering of gene expression data is a standard technique used to identify closely related genes. In this paper, we develop a new clustering algorithm, MSC (Multi-Source Clustering), to perform exploratory analysis using two or more diverse sources of data. In particular, we investigate the problem of improving the clustering by integrating information obtained from gene expression data with knowledge extracted from biomedical text literature. In each iteration of algorithm MSC, an EM-type procedure is employed to bootstrap the model obtained from one data source by starting with the cluster assignments obtained in the previous iteration using the other data sources. Upon convergence, the two individual models are used to construct the final cluster assignment. We compare the results of algorithm MSC for two data sources with the results obtained when the clustering is applied on the two sources of data separately. We also compare it with that obtained using the feature level integration method that performs the clustering after simply concatenating the features obtained from the two data sources. We show that the z-scores of the clustering results from MSC are better than that from the other methods. To evaluate our clusters better, function enrichment results are presented using terms from the Gene Ontology database. Finally, by investigating the success of motif detection programs that use the clusters, we show that our approach integrating gene expression data and text data reveals clusters that are biologically more meaningful than those identified using gene expression data alone.
Collapse
Affiliation(s)
- Chengyong Yang
- Bioinformatics Research Group, School of Computer Science, Florida International University, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
27
|
Andlid TA, Veide J, Sandberg AS. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int J Food Microbiol 2005; 97:157-69. [PMID: 15541802 DOI: 10.1016/j.ijfoodmicro.2004.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/15/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Iron and zinc deficiencies are global problems, frequently leading to severe illness in vulnerable human populations. Addition of phytases can improve the bioavailability of iron and zinc in food. Saccharomyces cerevisiae would be an ideal candidate as a bioavailability improving food additive if it demonstrates significant phytase activity. The purpose of the paper was to study yeast phytase activity to obtain information required to improve strains. All yeasts tested readily degraded extracellular inositol hexaphosphate (phytate; IP6) in media with IP6 as the sole phosphorous source. Phosphate (Pi) addition yielded repression consistent with the PHO system. However, repression of IP6-degrading enzymes was not only dependent on level of Pi, but also on pH and medium composition. In complex medium, containing Pi at a concentration previously suggested to yield full repression of the secretory acid phosphatases (SAPs; e.g., [Mol. Biol. Cell 11 (2000) 4309]), and at relatively high pH, repression of phytate-degrading enzymes was weak. The capacity to degrade phytate, irrespective of Pi addition or not, was highest at the pH most distant from the pH optimum of the SAPs [Microbiol. Res. 151 (1996) 291], suggesting that expression rather than enzyme activity was affected by pH. In synthetic medium, repression was strong and pH-independent (no IP6 degradation within the range tested). The distinct difference between media shows that, in addition to known regulatory role of Pi for the PHO system, additional factors may be involved. Using a deletion strain, we further demonstrate that the main secretory acid phosphatase Pho5p is not essential for intact phytate-degrading capacity and growth without Pi, neither is Pho3p. However, when constitutively overexpressing PHO5 an increased net phytase activity was obtained, in repressing and non-repressing conditions. This proves that, although redundant in a wild type, Pho5p can catalyze hydrolysis of IP6 and that at least one more enzyme is capable of effective hydrolysis of IP6 (sufficient to provide the cell with phosphorous at a rate yielding maximum growth). Finally, a bread dough experiment showed that the typical concentrations of Pi during leavening exceed levels shown to repress phytate degradation by a wild-type S. cerevisiae.
Collapse
Affiliation(s)
- Thomas A Andlid
- Department of Chemistry and Bioscience/Food Science, Chalmers University of Technology Box 5401, SE-402 29 Göteborg, Sweden.
| | | | | |
Collapse
|
28
|
Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J, Goding CR. Precise Nucleosome Positioning and the TATA Box Dictate Requirements for the Histone H4 Tail and the Bromodomain Factor Bdf1. Mol Cell 2004; 15:69-81. [PMID: 15225549 DOI: 10.1016/j.molcel.2004.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/02/2004] [Accepted: 04/28/2004] [Indexed: 11/24/2022]
Abstract
Acetylation of histone tails plays a key role in chromatin dynamics and is associated with the potential for gene expression. We show here that a 2-3 bp mispositioning of the nucleosome covering the TATA box at PHO5 induces a dependency on the acetylatable lysine residues of the histone H4 N-terminal region and on the TFIID-associated bromodomain factor Bdf1. This dependency arises either through fusion of the PHO5 promoter to a lacZ reporter or by mutation of the TATA box in the natural gene. The results suggest that promoters in which the TATA box is either absent or poorly accessible on the surface of a nucleosome may compensate by using Bdf1 bromodomains and acetylated H4 tails to anchor TFIID to the promoter during the initial stages of transcription activation. We propose that nucleosome positioning at the nucleotide level provides a subtle, but highly effective, mechanism for gene regulation.
Collapse
Affiliation(s)
- Carlos Martinez-Campa
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Nørgaard P, Tachibana C, Bruun AW, Winther JR. Gene regulation in response to protein disulphide isomerase deficiency. Yeast 2003; 20:645-52. [PMID: 12734802 DOI: 10.1002/yea.978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have examined the activities of promoters of a number of yeast genes encoding resident endoplasmic reticulum proteins, and found increased expression in a strain with severe protein disulphide isomerase deficiency. Serial deletion in the promoter of the MPD1 gene, which encodes a PDI1-homologue, revealed a cis-acting element responding to deficiency of protein disulphide isomerase activity (designated CERP). The presence of the sequence element is necessary and sufficient for the upregulation in response to disulphide isomerase deficiency, as measured by a minimal promoter containing the CERP element. The sequence (GACACG) does not resemble the unfolded protein response element. It is present in the upstream regions of the MPD1, MPD2, KAR2, PDI1 and ERO1 genes.
Collapse
Affiliation(s)
- Per Nørgaard
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
30
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
31
|
Terrell AR, Wongwisansri S, Pilon JL, Laybourn PJ. Reconstitution of nucleosome positioning, remodeling, histone acetylation, and transcriptional activation on the PHO5 promoter. J Biol Chem 2002; 277:31038-47. [PMID: 12060664 DOI: 10.1074/jbc.m204662200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PHO5 gene promoter is an important model for the study of gene regulation in the context of chromatin. Upon PHO5 activation the chromatin structure is reconfigured, but the mechanism of this transition remains unclear. Using templates reconstituted into chromatin with purified recombinant yeast core histones, we have investigated the mechanism of chromatin structure reconfiguration on the PHO5 promoter, a prerequisite for transcriptional activation. Footprinting analyses show that intrinsic properties of the promoter DNA are sufficient for translational nucleosome positioning, which approximates that seen in vivo. We have found that both Pho4p and Pho2p can bind their cognate sites on chromatin-assembled templates without the aid of histone-modifying or nucleosome-remodeling factors. However, nucleosome remodeling by these transcriptional activators requires an ATP-dependent activity in a yeast nuclear extract fraction. Finally, transcriptional activation on chromatin templates requires acetyl-CoA in addition to these other activities and cofactors. The addition of acetyl-CoA results in significant core histone acetylation. These findings indicate that transcriptional activation requires Pho4p, Pho2p, nucleosome remodeling, and nucleosome acetylation. Furthermore, we find that DNA binding, nucleosome remodeling, and transcriptional activation are separable steps, facilitating biochemical analysis of the PHO5 regulatory mechanism.
Collapse
Affiliation(s)
- Andrea R Terrell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
32
|
Cave JW, Kremer W, Wemmer DE. Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR. Protein Sci 2000; 9:2354-65. [PMID: 11206057 PMCID: PMC2144533 DOI: 10.1110/ps.9.12.2354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Backbone dynamics of the basic/helix-loop-helix domain of Pho4 from Saccharomyces cerevisae have been probed by NMR techniques, in the absence of DNA, nonspecifically bound to DNA and bound to cognate DNA. Alpha proton chemical shift indices and nuclear Overhauser effect patterns were used to elucidate the secondary structure in these states. These secondary structures are compared to the co-crystal complex of Pho4 bound to a cognate DNA sequence (Shimizu T. Toumoto A, Ihara K, Shimizu M, Kyogou Y, Ogawa N, Oshima Y, Hakoshima T, 1997, EMBO J 15: 4689-4697). The dynamic information provides insight into the nature of this DNA binding domain as it progresses from free in solution to a specifically bound DNA complex. Relative to the unbound form, we show that formation of either the nonspecific and cognate DNA bound complexes involves a large change in conformation and backbone dynamics of the basic region. The nonspecific and cognate complexes, however, have nearly identical secondary structure and backbone dynamics. We also present evidence for conformational flexibility at a highly conserved glutamate basic region residue. These results are discussed in relation to the mechanism of sequence specific recognition and binding.
Collapse
Affiliation(s)
- J W Cave
- Department of Chemistry, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
33
|
Liu C, Yang Z, Yang J, Xia Z, Ao S. Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. J Biol Chem 2000; 275:31972-8. [PMID: 10884387 DOI: 10.1074/jbc.m003055200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of yeast Saccharomyces cerevisiae gene PHO5 expression is mediated by transcriptional factors PHO2 and PHO4. PHO4 protein has been reported to be phosphorylated and inactivated by a cyclin-CDK (cyclin-dependent kinase) complex, PHO80-PHO85. We report here that PHO2 can also be phosphorylated. A Ser-230 to Ala mutation in the consensus sequence (SPIK) recognized by cdc2/CDC28-related kinase in PHO2 protein led to complete loss of its ability to activate the transcription of PHO5 gene. Further investigation showed that the Pro-231 to Ser mutation inactivated PHO2 protein as well, whereas the Ser-230 to Asp mutation did not affect PHO2 activity. Since the PHO2 Asp-230 mutant mimics Ser-230-phosphorylated PHO2, we postulate that only phosphorylated PHO2 protein could activate the transcription of PHO5 gene. Two hybrid assays showed that yeast CDC28 could interact with PHO2. CDC28 immunoprecipitate derived from the YPH499 strain grown under low phosphate conditions phosphorylated GST-PHO2 in vitro. A phosphate switch regulates the transcriptional activation activity of PHO2, and mutations of the (SPIK) site affect the transcriptional activation activity of PHO2 and the interaction between PHO2 and PHO4. BIAcore(R) analysis indicated that the negative charge in residue 230 of PHO2 was sufficient to help PHO2 interact with PHO4 in vitro.
Collapse
Affiliation(s)
- C Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Abstract
To cope with low nutrient availability in nature, organisms have evolved inducible systems that enable them to scavenge and efficiently utilize the limiting nutrient. Furthermore, organisms must have the capacity to adjust their rate of metabolism and make specific alterations in metabolic pathways that favor survival when the potential for cell growth and division is reduced. In this article I will focus on the acclimation of Chlamydomonas reinhardtii, a unicellular, eukaryotic green alga to conditions of nitrogen, sulfur and phosphorus deprivation. This organism has a distinguished history as a model for classical genetic analyses, but it has recently been developed for exploitation using an array of molecular and genomic tools. The application of these tools to the analyses of nutrient limitation responses (and other biological processes) is revealing mechanisms that enable Chlamydomonas to survive harsh environmental conditions and establishing relationships between the responses of this morphologically simple, photosynthetic eukaryote and those of both nonphotosynthetic organisms and vascular plants.
Collapse
|
35
|
Munsterkötter M, Barbaric S, Hörz W. Transcriptional regulation of the yeast PHO8 promoter in comparison to the coregulated PHO5 promoter. J Biol Chem 2000; 275:22678-85. [PMID: 10801809 DOI: 10.1074/jbc.m001409200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the PHO8 and PHO5 genes that encode a nonspecific alkaline and acid phosphatase, respectively, is regulated in response to the P(i) concentration in the medium by the same transcription factors. Upon induction by phosphate starvation, both promoters undergo characteristic chromatin remodeling, yet the extent of remodeling at the PHO8 promoter is significantly lower than at PHO5. Despite the coordinate regulation of the two promoters, the PHO8 promoter is almost 10 times weaker than PHO5. Here we show that of two Pho4 binding sites that had been previously mapped at the PHO8 promoter in vitro, only the high affinity one, UASp2, is functional in vivo. Activation of the PHO8 promoter is partially Pho2-dependent. However, unlike at PHO5, Pho4 can bind strongly to its binding site in the absence of Pho2 and remodel chromatin in a Pho2-independent manner. Replacement of the inactive UASp1 element by the UASp1 element from the PHO5 promoter results in more extensive chromatin remodeling and a concomitant 2-fold increase in promoter activity. In contrast, replacement of the high affinity UASp2 site with the corresponding site from PHO5 precludes chromatin remodeling completely and as a consequence promoter activation, despite efficient binding of Pho4 to this site. Deletion of the promoter region normally covered by nucleosomes -3 and -2 results in a 2-fold increase in promoter activity, further supporting a repressive role of these nucleosomes. These data show that there can be strong binding of Pho4 to a UAS element without any chromatin remodeling and promoter activation. The close correlation between promoter activity and the extent of chromatin disruption strongly suggests that the low level of PHO8 induction in comparison with PHO5 is partly due to the inability of Pho4 to achieve complete chromatin remodeling at this promoter.
Collapse
Affiliation(s)
- M Munsterkötter
- Adolf-Butenandt-Institut, Molekularbiologie, Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | |
Collapse
|
36
|
Moffat J, Huang D, Andrews B. Functions of Pho85 cyclin-dependent kinases in budding yeast. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:97-106. [PMID: 10740818 DOI: 10.1007/978-1-4615-4253-7_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pho85 is a multifunctional cyclin-dependent kinase (Cdk) in Saccharomyces cerevisiae that has emerged as an important model for the role of Cdks in both cell cycle control and other processes. Pho85 was originally discovered as a regulator of phosphate metabolism but roles for Pho85 in glycogen biosynthesis, actin regulation and cell cycle progression have since been discovered. Ten genes encoding known or putative Pho85 cyclins (Pcls) have been identified and the Pcls appear to target Pho85 to specific cellular functions and substrates. In this chapter, we review the functions of the various Pcl-Pho85 complexes in budding yeast. We focus on the known biological roles of Pho85 with an emphasis on Pho85 substrates and cyclin-Cdk specificity.
Collapse
Affiliation(s)
- J Moffat
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
37
|
Pinson B, Gabrielsen OS, Daignan-Fornier B. Redox regulation of AMP synthesis in yeast: a role of the Bas1p and Bas2p transcription factors. Mol Microbiol 2000; 36:1460-9. [PMID: 10931295 DOI: 10.1046/j.1365-2958.2000.01966.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of yeast AMP synthesis genes (ADE genes) was severely affected when cells were grown under oxidative stress conditions. To get an insight into the molecular mechanisms of this new transcriptional regulation, the role of the Bas1p and Bas2p transcription factors, known to activate expression of the ADE genes, was investigated. In vitro, DNA-binding of Bas1p was sensitive to oxidation. However, this sensitivity could not account for the regulation of the ADE genes because we showed, using a BAS1-VP16 chimera, that Bas1p DNA-binding activity was not sensitive to oxidation in vivo. Consistently, a triple cysteine mutant of Bas1p (fully resistant to oxidation in vitro) was unable to restore transcription of the ADE genes under oxidative conditions. We then investigated the possibility that Bas2p could be the oxidative stress responsive factor. Interestingly, transcription of the PHO5 gene, which is dependent on Bas2p but not on Bas1p, was found to be severely impaired by oxidative stress. Nevertheless, a Bas2p cysteine-free mutant was not sufficient to confer resistance to oxidative stress. Finally, we found that a Bas1p-Bas2p fusion protein restored ADE gene expression under oxidative conditions, thus suggesting that redox sensitivity of ADE gene expression could be due to an impairment of Bas1p/Bas2p interaction. This hypothesis was further substantiated in a two hybrid experiment showing that Bas1p/Bas2p interaction is affected by oxidative stress.
Collapse
Affiliation(s)
- B Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS UPR9026, Bordeaux, France
| | | | | |
Collapse
|
38
|
Denis V, Boucherie H, Monribot C, Daignan-Fornier B. Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 1998; 30:557-66. [PMID: 9822821 DOI: 10.1046/j.1365-2958.1998.01087.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of extracellular adenine and the role of the transcriptional activator Bas1p on expression of the yeast genome was assessed by two-dimensional (2D) analysis of the yeast proteome. These data combined with LacZ fusions and northern blot analysis allow us to show that synthesis of enzymes for all 10 steps involved in purine de novo synthesis is repressed in the presence of adenine and requires BAS1 and BAS2 for optimal expression. We also show that expression of ADE12 and ADE13, the two genes required for synthesis of AMP from inosine 5'monophosphate (IMP), is co-regulated with the de novo pathway genes. The same combined approach, used to study histidine biosynthesis gene expression, showed that HIS1 and HIS4 expression is co-regulated with purine biosynthesis genes whereas HIS2, HIS3, HIS5 and HIS6 expression is not. This work, together with previously published data, gives the first comprehensive overview of the regulation of purine and histidine pathways in a eukaryotic organism. Finally, the expression of two pyrimidine biosynthesis genes URA1 and URA3 was found to be severely affected by bas1 and bas2 mutations in the absence of adenine, establishing a regulatory link between the two nucleotide biosynthesis pathways.
Collapse
Affiliation(s)
- V Denis
- Institut de Biochimie et Génétique Cellulaires, CNRS UPR9026, 1, rue Camille Saint-Saëns 33077 Bordeaux Cedex France
| | | | | | | |
Collapse
|
39
|
Belenguer P, Pelloquin L, Baldin V, Oustrin ML, Ducommun B. The fission yeast Nim1/Cdr1 kinase: a link between nutritional state and cell cycle control. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:207-14. [PMID: 9552364 DOI: 10.1007/978-1-4615-1809-9_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Close connections appear to exist between extra-cellular signals that regulate cell proliferation and the protein kinases that control the cell cycle machinery. The fission yeast nim1 kinase is an inducer of cdc2 kinase activity acting through the inhibition of wee1 kinase. Nim1 function is required for a correct cellular response to nutritional starvation. In the absence of nim1, starved cells are unable to decrease their size at mitosis, to arrest their cycle in G1 and to enter G0. Here, we review our current knowledge on the role and the regulation of nim1 in connecting cell cycle and nutritional pathways.
Collapse
Affiliation(s)
- P Belenguer
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
40
|
Mendenhall MD. Cyclin-dependent kinase inhibitors of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Curr Top Microbiol Immunol 1998; 227:1-24. [PMID: 9479823 DOI: 10.1007/978-3-642-71941-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M D Mendenhall
- Department of Biochemistry, University of Kentucky, Lexington 40536-0096, USA
| |
Collapse
|
41
|
Abstract
The yeast Saccharomyces cerevisiae has at least six species of acid and alkaline phosphatases with different cellular localizations, as well as inorganic phosphate (Pi) transporters. Most of the genes encoding these enzymes are coordinately repressed and derepressed depending on the Pi concentration in the growth medium. The Pi signals are conveyed to these genes through a regulatory circuit consisting of a set of positive and negative regulatory proteins. This phosphatase system is interested as one of the best systems for studying gene regulation in S. cerevisiae due to the simplicity of phenotype determination in genetic analysis. With this methodological advantage, considerable amounts of genetic and molecular evidence in phosphatase regulation have been accumulated in the past twenty-five years. This article summarizes the current progress of research into this subject.
Collapse
Affiliation(s)
- Y Oshima
- Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka, Japan
| |
Collapse
|
42
|
Magbanua JP, Fujisawa K, Ogawa N, Oshima Y. The homeodomain protein Pho2p binds at an A/T-rich segment flanking the binding site of the basic-helix-loop-helix protein Pho4p in the yeast PHO promoters. Yeast 1997; 13:1299-308. [PMID: 9392074 DOI: 10.1002/(sici)1097-0061(199711)13:14<1299::aid-yea178>3.0.co;2-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the genomic PHO5, PHO81 and PHO84 genes of the PHO regulon requires Pho4p and Pho2p activity, whereas transcription of PHO8 is directed by Pho4p alone. Pho4p binds to two 9-bp motifs, 5'-GCACGTGGG-3' (type 1. e.g. UASp2 of PHO5 and site D of PHO84) and 5'-GCACGTTTT-3' (type 2, e.g. UASp1 of PHO5 and site E of PHO84) in the PHO promoter. Experiments were performed to evaluate the ability of these 9-bp motifs to function as upstream activation sites (UASs) by insertion of various 36-bp fragments bearing the 9-bp motif in a CYC1-lacZ fusion gene. No expression of the lacZ gene was detected with the 36-bp fragment bearing UASp2 of PHO5, whereas similar 36-bp fragments bearing UASp1 of PHO5 and sites D and E of PHO84 showed UAS activity in response to Pi concentration in the medium and to the pho2 mutation. The Pho2p-responsive UASs are flanked by one or two copies of an A/T-rich segment, whereas UASp2 is not. Gel retardation and competition experiments performed using a T7-Pho2p-His chimeric protein showed that Pho2p binds to the 36-bp fragments bearing A/T-rich segment(s) but not appreciably to the 36-bp fragments not bearing such segment(s). Thus, the A/T segments flanking the PHO UASs are Pho2p binding sites and play an important role in PHO regulation.
Collapse
Affiliation(s)
- J P Magbanua
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
43
|
Guetsova ML, Lecoq K, Daignan-Fornier B. The isolation and characterization of Saccharomyces cerevisiae mutants that constitutively express purine biosynthetic genes. Genetics 1997; 147:383-97. [PMID: 9335580 PMCID: PMC1208165 DOI: 10.1093/genetics/147.2.383] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway.
Collapse
Affiliation(s)
- M L Guetsova
- Institut de Génétique et Microbiologie, CNRS URA1354, Université Paris Sud, Orsay, France
| | | | | |
Collapse
|
44
|
Fermiñán E, Domínguez A. The KIPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis: cloning, sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2615-2625. [PMID: 9274015 DOI: 10.1099/00221287-143-8-2615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A secreted phosphate-repressible acid phosphatase from Kluyveromyces lactis has been purified and the N-terminal region and an internal peptide have been sequenced. Using synthetic oligodeoxyribonucleotides based on the sequenced regions, the genomic sequence, KIPHO5, encoding the protein has been isolated. The deduced protein, named KIPho5p, consists of 469 amino acids and has a molecular mass of 52520 Da (in agreement with the data obtained after treatment of the protein with endoglycosidase H). The purified enzyme shows size heterogeneity, with an apparent molecular mass in the range 90-200 kDa due to the carbohydrate content (10 putative glycosylation sites were identified in the sequence). A 16 amino acid sequence at the N-terminus is similar to previously identified signal peptides in other fungal secretory proteins. The putative signal peptide is removed during secretion since it is absent in the mature secreted acid phosphatase. The gene can be induced 400-600-fold by phosphate starvation. Consensus signals corresponding to those described for Saccharomyces cerevisiae PHO4- and PHO2-binding sites are found in the 5' region. Northern blot analysis of total cellular RNA indicates that the KIPHO5 gene codes for a 1.8 kb transcript and that its expression is regulated at the transcriptional level. Chromosomal hybridization indicated that the gene is located on chromosome II. The KIPHO5 gene of K. lactis is able to functionally complement a pho5 mutation of Sacch. cerevisiae. Southern blot experiments, using the KIPHO5 gene as probe, show that some K. lactis reference strains lack repressible acid phosphatase, revealing a different gene organization for this kind of multigene family of proteins as compared to Sacch. cerevisiae.
Collapse
Affiliation(s)
- Encarnación Fermiñán
- Departamento de Microbiología Genética, Universidad de Salamanca, 37071 Salamanca, Spain
| | - Angel Domínguez
- Departamento de Microbiología Genética, Universidad de Salamanca, 37071 Salamanca, Spain
| |
Collapse
|
45
|
Gaudreau L, Schmid A, Blaschke D, Ptashne M, Hörz W. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 1997; 89:55-62. [PMID: 9094714 DOI: 10.1016/s0092-8674(00)80182-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examine transcriptional activation and chromatin remodeling at the PHO5 promoter in yeast by fusion proteins that are thought to act by recruiting the RNA polymerase II holoenzyme to DNA in the absence of a classic activating region. These hybrid proteins (e.g., Gal11+Pho4 or Gal4(58-97)+Pho4 in the presence of a GAL11P allele) efficiently activated transcription and remodeled chromatin. Similar chromatin remodeling was observed at a PHO5 promoter deleted for TATA and thus unable to support transcription. We conclude that recruitment of the holoenzyme or associated proteins suffices for chromatin remodeling. We also show that the SWI/SNF complex is required neither for efficient transcription of the wild-type PHO5 nor the GAL1 promoters, and we observe nearly complete chromatin remodeling at PHO5 in the absence of Snf2.
Collapse
Affiliation(s)
- L Gaudreau
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
46
|
Springer C, Künzler M, Balmelli T, Braus GH. Amino acid and adenine cross-pathway regulation act through the same 5'-TGACTC-3' motif in the yeast HIS7 promoter. J Biol Chem 1996; 271:29637-43. [PMID: 8939895 DOI: 10.1074/jbc.271.47.29637] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The HIS7 gene of Saccharomyces cerevisiae encodes a bifunctional glutamine amidotransferase:cyclase catalyzing two reactions that lead to the formation of biosynthetic intermediates of the amino acid histidine and the purine adenine. The HIS7 gene is activated by GCN4p under environmental conditions of amino acid starvation through two synergistic upstream sites GCRE1 and GCRE2. The BAS1p-BAS2p complex activates the HIS7 gene in response to adenine limitation. For this activation the proximal GCN4p-binding site GCRE2 is required. GCN4p and BAS1p bind to GCRE2 in vitro. Under conditions of simultaneous amino acid starvation and adenine limitation the effects of GCN4p and BAS1/2p are additive and both factors are necessary for maximal HIS7 transcription. These results suggest that GCN4p and BAS1/2p are able to act simultaneously through the same DNA sequence in vivo and use this site independently from each other in a non-exclusive manner.
Collapse
Affiliation(s)
- C Springer
- Institute of Microbiology, Biochemistry & Genetics, Friedrich-Alexander-University, Staudtstrasse 5, D-91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
47
|
Barbarić S, Münsterkötter M, Svaren J, Hörz W. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res 1996; 24:4479-86. [PMID: 8948638 PMCID: PMC146284 DOI: 10.1093/nar/24.22.4479] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two transcription factors, the bHLH protein Pho4 and the homeodomain protein Pho2, are required for transcriptional activation of the PHO5 promoter in Saccharomyces cerevisiae. There are two essential Pho4 binding sites, corresponding to the regulatory elements UASp1 and UASp2 at the PHO5 promoter, but only a single, dispensable Pho2 binding site had previously been identified. We have reinvestigated binding of Pho2 to the PHO5 promoter using purified recombinant protein and have found multiple Pho2 binding sites of different affinities along the promoter. One of the high affinity Pho2 sites largely overlaps the Pho4 binding site at UASp1. Cooperative DNA binding of the two proteins to their overlapping sites, resulting in a high-affinity ternary complex, was demonstrated. Pho2 and Pho4 also bind DNA cooperatively at UASp2 where two Pho2 sites flank the Pho4 site. Finally, Pho2 facilitates binding of Pho4 to a third, cryptic Pho4 binding site which binds Pho4 with lower affinity than UASp1 or UASp2. These results suggest that cooperative DNA binding with Pho4 is integral to the mechanism by which Pho2 regulates transcription of the PHO5 gene.
Collapse
Affiliation(s)
- S Barbarić
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | |
Collapse
|
48
|
Oshima Y, Ogawa N, Harashima S. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review. Gene X 1996; 179:171-7. [PMID: 8955644 DOI: 10.1016/s0378-1119(96)00425-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription of the genes encoding acid and alkaline phosphatases and the inorganic phosphate (Pi) transporter of Saccharomyces cerevisiae are coordinately repressed and derepressed depending on the Pi concentration in the culture medium. This phosphatase system is particularly suited for the study of regulatory mechanisms, because the acid phosphatase activity of each colony on a plate is easily detected by specific staining methods and there is a 500-fold difference between the repressed and derepressed levels of acid phosphatase activity. With these advantages, considerable amounts of genetic and molecular evidence have been accumulated in the past two decades. This article summarizes our current knowledge on this subject.
Collapse
Affiliation(s)
- Y Oshima
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
49
|
Poleg Y, Aramayo R, Kang S, Hall JG, Metzenberg RL. NUC-2, a component of the phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:709-16. [PMID: 8917314 DOI: 10.1007/bf02173977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In response to phosphorus limitation, the fungus Neurospora crassa synthesizes a number of enzymes that function to bring more phosphate into the cell. The NUC-2 protein appears to sense the availability of phosphate and transmits the signal downstream to the regulatory pathway. The nuc-2+ gene has been cloned by its ability to restore growth of a nuc-2 mutant under restrictive conditions of high pH and low phosphate concentration. We mapped the cloned gene to the right arm of linkage group II, consistent with the chromosomal position of the nuc-2 mutation as determined by classical genetic mapping. The nuc-2' open reading frame is interrupted by five introns and codes for a protein of 1066 amino acid residues. Its predicted amino acid sequence has high similarity to that of its homolog in Saccharomyces cerevisiae, PHO81. Both proteins contain six ankyrin repeats, which have been implicated in the cyclin-dependent kinase inhibitory activity of PHO81. The phenotypes of a nuc-2 mutant generated by repeat-induced point mutation and of a strain harboring a UV-induced nuc-2 allele are indistinguishable. Both are unable to grow under the restrictive conditions, a phenotype which is to some degree temperature dependent. The nuc-2+ gene is transcriptionally regulated. A 15-fold increase in the level of the nuc-2+ transcript occurs in response to a decrease in exogenous phosphate concentration.
Collapse
Affiliation(s)
- Y Poleg
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
50
|
Shao D, Creasy CL, Bergman LW. Interaction of Saccharomyces cerevisiae Pho2 with Pho4 increases the accessibility of the activation domain of Pho4. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:358-64. [PMID: 8676879 DOI: 10.1007/bf02172527] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Saccharomyces cerevisiae, expression of acid phosphatase, encoded by the PHO5 gene, requires two positive regulatory factors, Pho4 and Pho2 (also called Bas2 or Grf10). Using GAL4-PHO4 fusions, we demonstrate that a functional interaction between these two proteins is necessary for transcriptional activation to occur. This functional interaction between Pho4 and Pho2 is independent of the presence of the negative regulatory factor, Pho80, which also interacts with Pho4. Interestingly, truncations of Pho4 missing amino acids 252-265, which encompass the basic region of the basic helix-loop-helix (bHLH) DNA binding motif, exhibit high transcriptional activation that is independent of the Pho2 molecule. Single amino acid mutations of highly conserved residues within this area all display this Pho2-independent phenotype. A region near the C-terminus of Pho2 appears to be critical for this interaction with Pho4. A model to account for the requirement for Pho2 in Pho4-dependent transcriptional activation is proposed.
Collapse
Affiliation(s)
- D Shao
- Department of Microbiology and Immunology, Medical College of Pennsylvania, Philadelphia 19102, USA
| | | | | |
Collapse
|