1
|
Zhang Y, Ding G, Gao Y, Li Y, Zhou P, Wu L, Zhou M, Wang J, Tang J. Distribution status and influencing factors of antibiotic resistance genes in the Chaohu Lake, China. PeerJ 2025; 13:e19384. [PMID: 40297464 PMCID: PMC12036580 DOI: 10.7717/peerj.19384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background Chaohu Lake (CL) is one of the most polluted areas in China due to its high content of antibiotics. However, the distribution and influencing factors of antibiotic resistance genes (ARGs) in this lake are still controversial. Methods To solve this problem, we used metagenomic sequencing to investigate the distribution and in-fluencing factors of ARGs in CL. Results Our findings revealed the existence of nine kinds of ARGs, including 45 specific genes. The most abundant types were multidrug, bacitracin, polymyxin, macrolide lincosamide streptogramin, and aminoglycoside. Multiple microorganisms were undeniable ARG reservoirs, although they were not dominant species in the microbiota. Our results also showed that both the microbiota and physiochemical factors played important roles in shaping the distributions of ARGs in CL. Specifically, the levels of PO4-P (0.5927) and total phosphorus (0.4971) had a greater impact than total nitrogen (0.0515), NO3-N (0.0352), NO2-N (-0.1975), and NH3-N (-0.0952). Conclusions These findings provide valuable insights into the distribution and influencing factors of ARGs in lakes.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Environmental Hormones and Reproductive Development, Anhui Province, Fuyang Normal University, Fuyang, China
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Guoao Ding
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Yue Gao
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
- School of Life Sciences, Anhui Medical University, Hefei, AnHui, China
| | - Ying Li
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Peng Zhou
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Li Wu
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Minghui Zhou
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Jingjing Wang
- Key Laboratory of Environmental Hormones and Reproductive Development, Anhui Province, Fuyang Normal University, Fuyang, China
- School of Food and Biological Engineering, Hefei Normal University, Hefei, China
| | - Jun Tang
- Key Laboratory of Environmental Hormones and Reproductive Development, Anhui Province, Fuyang Normal University, Fuyang, China
| |
Collapse
|
2
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
3
|
Sharma N, van Oijen AM, Spenkelink LM, Mueller SH. Insight into Single-Molecule Imaging Techniques for the Study of Prokaryotic Genome Maintenance. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:595-614. [PMID: 39328428 PMCID: PMC11423410 DOI: 10.1021/cbmi.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 09/28/2024]
Abstract
Genome maintenance comprises a group of complex and interrelated processes crucial for preserving and safeguarding genetic information within all organisms. Key aspects of genome maintenance involve DNA replication, transcription, recombination, and repair. Improper regulation of these processes could cause genetic changes, potentially leading to antibiotic resistance in bacterial populations. Due to the complexity of these processes, ensemble averaging studies may not provide the level of detail required to capture the full spectrum of molecular behaviors and dynamics of each individual biomolecule. Therefore, researchers have increasingly turned to single-molecule approaches, as these techniques allow for the direct observation and manipulation of individual biomolecules, and offer a level of detail that is unattainable with traditional ensemble methods. In this review, we provide an overview of recent in vitro and in vivo single-molecule imaging approaches employed to study the complex processes involved in prokaryotic genome maintenance. We will first highlight the principles of imaging techniques such as total internal reflection fluorescence microscopy and atomic force microscopy, primarily used for in vitro studies, and highly inclined and laminated optical sheet and super-resolution microscopy, mainly employed in in vivo studies. We then demonstrate how applying these single-molecule techniques has enabled the direct visualization of biological processes such as replication, transcription, DNA repair, and recombination in real time. Finally, we will showcase the results obtained from super-resolution microscopy approaches, which have provided unprecedented insights into the spatial organization of different biomolecules within bacterial organisms.
Collapse
Affiliation(s)
- Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
5
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
6
|
Zahoor MA, Nawaz Z, Jamil A, Yasmin A, Alagawany M, Othman SI, Allam AA, El-Shall NA. Determining the prevalence and genetic diversity of plasmid-mediated sulfonamide resistance in Escherichia coli from commercial broiler samples. Poult Sci 2024; 103:103258. [PMID: 38070402 PMCID: PMC10755487 DOI: 10.1016/j.psj.2023.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 01/01/2024] Open
Abstract
Sulfonamides are commonly used antibacterials in commercial poultry, contributing toward the development of multidrug-resistant (MDR) phenotypes among Escherichia coli and that has emerged as global concern. The current study aimed to assess the sulfonamide resistance among isolated E. coli strains among commercial broilers. The bacterial strains were identified from fecal samples (n = 100) using selective media, followed by initial identification based on biochemical profiles. The susceptibility was determined by measuring the minimum inhibitory concentration (MIC) against sulfamethoxazole. The study also evaluated mobile genetic elements (MGEs), the mediators of antibiotic resistance, by amplification of plasmid DNA using specific primer PCR. Additionally, the isolates were subjected to multilocus sequence typing (MLST) analysis to investigate the genetic diversity among E. coli carrying sulfonamide resistance genes. The results revealed that 58% (58/100) E. coli strains were resistant to sulfonamides, with 36.20% (21/58) of the strains exhibiting an MIC breakpoint ≥512 µg/mL. PCR analysis showed that 42.85% (9/21) of the strains harbored the sul-1 gene, while 38.09% (8/21) carried the sul-2 gene, and 19.04% (4/21) had both genes. No isolate showed the presence of the sul-3 gene. Furthermore, class 1 and class 2 integrons were identified among 80.95% (17/21) and 19.04% (4/21) of the strains, respectively. MLST analysis confirmed that the strains belonged to sequence types (STs) including ST1638, ST155, ST48, ST350, ST23, ST156, and ST746. These findings underscore the diversity among E. coli strains in commercial poultry, which poses a significant risk.
Collapse
Affiliation(s)
- Muhammad Asif Zahoor
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zeeshan Nawaz
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Arslan Jamil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aysha Yasmin
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt; Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt.
| |
Collapse
|
7
|
Balbuena-Alonso MG, Camps M, Cortés-Cortés G, Carreón-León EA, Lozano-Zarain P, Rocha-Gracia RDC. Strain belonging to an emerging, virulent sublineage of ST131 Escherichia coli isolated in fresh spinach, suggesting that ST131 may be transmissible through agricultural products. Front Cell Infect Microbiol 2023; 13:1237725. [PMID: 37876872 PMCID: PMC10591226 DOI: 10.3389/fcimb.2023.1237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.
Collapse
Affiliation(s)
- Maria G. Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Manel Camps
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Eder A. Carreón-León
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
8
|
K S, Vasanthrao R, Chattopadhyay I. Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Folia Microbiol (Praha) 2023; 68:657-675. [PMID: 37589876 DOI: 10.1007/s12223-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
Collapse
Affiliation(s)
- Suganya K
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ramavath Vasanthrao
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
9
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
10
|
van Duijkeren E, Rantala M, Bouchard D, Busani L, Catry B, Kaspar H, Pomba C, Moreno MA, Nilsson O, Ružauskas M, Sanders P, Teale C, Wester AL, Ignate K, Jukes H, Kunsagi Z, Schwarz C. The use of aminopenicillins in animals within the EU, emergence of resistance in bacteria of animal and human origin and its possible impact on animal and human health. J Antimicrob Chemother 2023:7179861. [PMID: 37229552 DOI: 10.1093/jac/dkad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Aminopenicillins have been widely used for decades for the treatment of various infections in animals and humans in European countries. Following this extensive use, acquired resistance has emerged among human and animal pathogens and commensal bacteria. Aminopenicillins are important first-line treatment options in both humans and animals, but are also among limited therapies for infections with enterococci and Listeria spp. in humans in some settings. Therefore, there is a need to assess the impact of the use of these antimicrobials in animals on public and animal health. The most important mechanisms of resistance to aminopenicillins are the β-lactamase enzymes. Similar resistance genes have been detected in bacteria of human and animal origin, and molecular studies suggest that transmission of resistant bacteria or resistance genes occurs between animals and humans. Due to the complexity of epidemiology and the near ubiquity of many aminopenicillin resistance determinants, the direction of transfer is difficult to ascertain, except for major zoonotic pathogens. It is therefore challenging to estimate to what extent the use of aminopenicillins in animals could create negative health consequences to humans at the population level. Based on the extent of use of aminopenicillins in humans, it seems probable that the major resistance selection pressure in human pathogens in European countries is due to human consumption. It is evident that veterinary use of these antimicrobials increases the selection pressure towards resistance in animals and loss of efficacy will at minimum jeopardize animal health and welfare.
Collapse
Affiliation(s)
- Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Merja Rantala
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Damien Bouchard
- French Agency for Food, Environmental, and Occupational Health and Safety, National Agency for Veterinary Medicinal Products, Fougères, France
| | - Luca Busani
- Instituto Superiore di Sanita, Center for Gender-Specific Medicine, Rome, Italy
| | - Boudewijn Catry
- Sciensano, Department of Epidemiology and Public Health, Brussels, Belgium
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
| | - Constança Pomba
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel A Moreno
- Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Oskar Nilsson
- National Veterinary Institute, SVA, Department of Animal Health and Antimicrobial Strategies, Uppsala, Sweden
| | - Modestas Ružauskas
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Pascal Sanders
- French Agency for Food, Environmental, and Occupational Health and Safety, Strategy and Programme Department, Maisons-Alfort, France
| | | | | | | | - Helen Jukes
- European Medicines Agency, Amsterdam, The Netherlands
| | | | - Christine Schwarz
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
- Federal Office of Consumer Protection and Food Safety, Veterinary Drugs, Berlin, Germany
| |
Collapse
|
11
|
Shen Y, Zhang R, Shao D, Yang L, Lu J, Liu C, Wang X, Jiang J, Wang B, Wu C, Parkhill J, Wang Y, Walsh TR, Gao GF, Shen Z. Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1168-1179. [PMID: 36481457 DOI: 10.1016/j.gpb.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), which implies that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans, mcr-1 is now associated with more stable genetic structures as well as the widespread IncI2 plasmid exhibits increased coexistence with other clinically important ARGs, and is increasingly associated with ExPEC strains, thus posing a potential public health threat.
Collapse
Affiliation(s)
- Yingbo Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dongyan Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiayue Lu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Congcong Liu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xueyang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyao Jiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Boxuan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Timothy R Walsh
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China.
| |
Collapse
|
12
|
Lopes ES, Parente CET, Picão RC, Seldin L. Irrigation Ponds as Sources of Antimicrobial-Resistant Bacteria in Agricultural Areas with Intensive Use of Poultry Litter. Antibiotics (Basel) 2022; 11:1650. [PMID: 36421294 PMCID: PMC9686582 DOI: 10.3390/antibiotics11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and β-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.
Collapse
Affiliation(s)
- Eliene S. Lopes
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Cláudio E. T. Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Renata C. Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
13
|
Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens 2022; 11:pathogens11101215. [PMID: 36297273 PMCID: PMC9612330 DOI: 10.3390/pathogens11101215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Otitis externa is among the most prevalent diseases in dogs. If the underlying cause is not addressed, bacterial reinfection becomes frequent, necessitating antibiotic administration for an extended period of time. Prolonged treatment promotes the emergence of antibiotic-resistant bacteria and increases the risk of their transmission from animals to humans. This study aimed to analyze the antibiotic resistance pattern of the emerging pathogen Proteus mirabilis to identify bacterial virulence and antibiotic selection. Samples were collected from randomly encountered dogs with chronic otitis externa. Thirty-two strains of P. mirabilis were isolated and identified, using MALDI-TOF. The Kirby-Bauer disk diffusion method was used to assess the antibiotic susceptibility of P. mirabilis to 11 antibiotics. The isolates (n = 32) were most resistant to cefazolin (75%), trimethoprim–sulfamethoxazole (72%), chloramphenicol (72%), amoxicillin–clavulanate (63%), ampicillin (59%), cefepime (56%), ciprofloxacin (53%), aztreonam (50%), ceftazidime avibactam (50%), gentamicin (22%), and amikacin (16%). Moreover, 75% of isolates were found to be multidrug-resistant bacteria. P. mirabilis was found to have a high resistance-pattern ratio. Although the exact cause is unknown, continuous antibiotic use is thought to be a major factor. We concluded that antibiotic use must be prudent and selective to prevent antibiotic resistance.
Collapse
|
14
|
Sheikh BA, Bhat BA, Mir MA. Antimicrobial resistance: new insights and therapeutic implications. Appl Microbiol Biotechnol 2022; 106:6427-6440. [PMID: 36121484 DOI: 10.1007/s00253-022-12175-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance has not been a new phenomenon. Still, the number of resistant organisms, the geographic areas affected by emerging drug resistance, and the magnitude of resistance in a single organism are enormous and mounting. Disease and disease-causing agents formerly thought to be contained by antibiotics are now returning in new forms resistant to existing therapies. Antimicrobial resistance is one of the most severe and complicated health issues globally, driven by interrelated dynamics in humans, animals, and environmental health sectors. Coupled with various epidemiological factors and a limited pipeline for new antimicrobials, all these misappropriations allow the transmission of drug-resistant organisms. The problem is likely to worsen soon. Antimicrobial resistance in general and antibiotic resistance in particular is a shared global problem. Actions taken by any single country can adversely or positively affect the other country. Targeted coordination and prevention strategies are critical in stopping the spread of antibiotic-resistant organisms and hence its overall management. This article has provided in-depth knowledge about various methods that can help mitigate the emergence and spread of antimicrobial resistance globally. KEY POINTS: • Overview of antimicrobial resistance as a global challenge and explain various reasons for its rapid progression. • Brief about the intrinsic and acquired resistance to antimicrobials and development of antibiotic resistance in bacteria. • Systematically organized information is provided on different strategies for tackling antimicrobial resistance for the welfare of human health.
Collapse
Affiliation(s)
- Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
15
|
New MraY AA Inhibitors with an Aminoribosyl Uridine Structure and an Oxadiazole. Antibiotics (Basel) 2022; 11:antibiotics11091189. [PMID: 36139968 PMCID: PMC9495235 DOI: 10.3390/antibiotics11091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.
Collapse
|
16
|
Pungpian C, Angkititrakul S, Chuanchuen R. Genomic characterization of antimicrobial resistance in mcr-carrying ESBL-producing Escherichia coli from pigs and humans. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35766988 DOI: 10.1099/mic.0.001204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome sequencing (WGS) was conducted to characterize mcr-carrying extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n=7). These E. coli isolates originated from two pigs (TH2 and TH3) and two humans (TH8 and TH9) from Thailand, and three pigs from Lao PDR (LA1, LA2 and LA3). Four E. coli sequence types/serotypes - ST6833/H20 (TH2 and TH3), ST48/O160:H40 (TH8 and TH9), ST5708/H45 (LA1) and ST10562/O148:H30 (LA2 and LA3) - were identified. The plasmid replicon type IncF was identified in all isolates. The point mutations Ser31Thr in PmrA and His2Arg in PmrB were found concurrently in all isolates (colistin MIC=4-8 µg ml-1). LA1 contained up to five point mutations in PmrB, and the colistin MIC was not significantly different from that for the other isolates. All mcr-1.1 was located in the ISApl1-mcr-1-pap2 element, while all mcr-3.1 was located in the TnAs2-mcr-3.1-dgkA-ISKpn40 element. The mcr-3.1 and bla CTX-M-55 genes were co-localized on the same plasmid, which concurrently contained cml, qnrS1 and tmrB. The bla CTX-M-55 and mcr-3.1 genes were located on conjugative plasmids and could be transferred horizontally under selective pressure from ampicillin or colistin. In conclusion, comprehensive insights into the genomic information of ESBL-producing E. coli harbouring mcr were obtained. As mcr-carrying ESBL-producing E. coli were detected in pigs and humans, a holistic and multisectoral One Health approach is required to contain antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Chanika Pungpian
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sunpetch Angkititrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
18
|
A Sub-Micromolar MraY AA Inhibitor with an Aminoribosyl Uridine Structure and a ( S, S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061769. [PMID: 35335131 PMCID: PMC8954382 DOI: 10.3390/molecules27061769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
New inhibitors of the bacterial tranferase MraY are described. Their structure is based on an aminoribosyl uridine scaffold, which is known to be important for the biological activity of natural MraY inhibitors. A decyl alkyl chain was introduced onto this scaffold through various linkers. The synthesized compounds were tested against the MraYAA transferase activity, and the most active compound with an original (S,S)-tartaric diamide linker inhibits MraY activity with an IC50 equal to 0.37 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative strains; however, the compounds showed no antibacterial activity. Docking and molecular dynamics studies revealed that this new linker established two stabilizing key interactions with N190 and H325, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin.
Collapse
|
19
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
20
|
Yang L, Shen Y, Jiang J, Wang X, Shao D, Lam MMC, Holt KE, Shao B, Wu C, Shen J, Walsh TR, Schwarz S, Wang Y, Shen Z. Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. NATURE FOOD 2022; 3:197-205. [PMID: 37117646 DOI: 10.1038/s43016-022-00470-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 02/03/2022] [Indexed: 04/30/2023]
Abstract
Antimicrobial use in livestock production is linked to the emergence and spread of antimicrobial resistance (AMR), but large-scale studies on AMR changes in livestock isolates remain scarce. Here we applied whole-genome sequence analysis to 982 animal-derived Escherichia coli samples collected in China from the 1970s to 2019, finding that the number of AMR genes (ARGs) per isolate doubled-including those conferring resistance to critically important agents for both veterinary (florfenicol and norfloxacin) and human medicine (colistin, cephalosporins and meropenem). Plasmids of incompatibility groups IncC, IncHI2, IncK, IncI and IncX increased distinctly in the past 50 years, acting as highly effective vehicles for ARG spread. Using antimicrobials of the same class, or even unrelated classes, may co-select for mobile genetic elements carrying multiple co-existing ARGs. Prohibiting or strictly curtailing antimicrobial use in livestock is therefore urgently needed to reduce the growing threat from AMR.
Collapse
Affiliation(s)
- Lu Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Municipal Centre for Disease Control and Prevention, Beijing, China
| | - Yingbo Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junyao Jiang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueyang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongyan Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Bing Shao
- Beijing Municipal Centre for Disease Control and Prevention, Beijing, China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Ineos-Oxford Institute of Antimicrobial Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Zhangqi Shen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
21
|
ALTINIŞIK F, ATAŞ B, AVCI FG. Evaluation of silibinin as an efflux pump inhibitor in Bacillus subtilis. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.865031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Sun C, Wang Y, Ma S, Zhang S, Liu D, Wang Y, Wu C. Surveillance of antimicrobial resistance in Escherichia coli and enterococci from food products at retail in Beijing, China. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Tang H, Porras G, Brown MM, Chassagne F, Lyles JT, Bacsa J, Horswill AR, Quave CL. Triterpenoid acids isolated from Schinus terebinthifolia fruits reduce Staphylococcus aureus virulence and abate dermonecrosis. Sci Rep 2020; 10:8046. [PMID: 32415287 PMCID: PMC7229044 DOI: 10.1038/s41598-020-65080-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus relies on quorum sensing to exert virulence to establish and maintain infection. Prior research demonstrated the potent quorum sensing inhibition effects of "430D-F5", a refined extract derived from the fruits of Schinus terebinthifolia, a medicinal plant used for the traditional treatment of skin and soft tissue infections. We report the isolation and identification of three compounds from 430D-F5 that reduce virulence and abate dermonecrosis: 3-oxo-olean-12-en-28-oic acid (1), 3-oxotirucalla-7,24Z-dien-26-oic acid (2) and 3α-hydroxytirucalla-7,24 Z-dien-27-oic acid (3). Each compound inhibits all S. aureus accessory gene regulator (agr) alleles (IC50 2-70 μM). Dose-dependent responses were also observed in agr-regulated reporters for leucocidin A (lukA, IC50 0.4-25 μM) and glycerol ester hydrolase or lipase (gehB, IC50 1.5-25 μM). Surprisingly, dose-dependent activity against the nuclease reporter (nuc), which is under the control of the sae two-component system, was also observed (IC50 0.4-12.5 μM). Compounds 1-3 exhibited little to no effect on the agr-independent mgrA P2 reporter (a constitutive promoter from the mgrA two-component system) and the esxA reporter (under control of mgrA). Compounds 1-3 inhibited δ-toxin production in vitro and reduced dermonecrosis in a murine in vivo model. This is the first report of triterpenoid acids with potent anti-virulence effects against S. aureus.
Collapse
Affiliation(s)
- Huaqiao Tang
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 30322, Atlanta, Georgia, USA
- Department of Pharmacy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gina Porras
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 30322, Atlanta, Georgia, USA
| | - Morgan M Brown
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Francois Chassagne
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 30322, Atlanta, Georgia, USA
| | - James T Lyles
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 30322, Atlanta, Georgia, USA
| | - John Bacsa
- X-ray Crystallography Center, Emory University College of Arts and Sciences, Atlanta, GA, 30322, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 30322, Atlanta, Georgia, USA.
- Department of Dermatology, Emory University School of Medicine, Atlanta, 30322, GA, USA.
| |
Collapse
|
24
|
Chávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La resistencia a los antimicrobianos es uno de los más grandes retos de la medicina moderna. Durante la última década, un grupo de seis bacterias han probado no sólo su capacidad para relativamente “escapar” de los efectos de casi cualquier antimicrobiano, sino también por ser la causa principal de las infecciones hospitalarias. Estos organismos en conjunto se les conoce como ESKAPE, siglas que derivan de la primera letra de la categoría taxonómica género, o sea, del nombre científico de cada una de estas bacterias (Enterococcus spp, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp.). La presente revisión tiene como objetivo describir los principales mecanismos de resistencia asociados a este grupo de bacterias y el impacto que han tenido en el desarrollo de nuevas estrategias antimicrobianas.
Collapse
|
25
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
26
|
Masri A, Anwar A, Khan NA, Siddiqui R. The Use of Nanomedicine for Targeted Therapy against Bacterial Infections. Antibiotics (Basel) 2019; 8:E260. [PMID: 31835647 PMCID: PMC6963790 DOI: 10.3390/antibiotics8040260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023] Open
Abstract
The emergence of drug resistance combined with limited success in the discovery of newer and effective antimicrobial chemotherapeutics poses a significant challenge to human and animal health. Nanoparticles may be an approach for effective drug development and delivery against infections caused by multi-drug resistant bacteria. Here we discuss nanoparticles therapeutics and nano-drug delivery against bacterial infections. The therapeutic efficacy of numerous kinds of nanoparticles including nanoantibiotics conjugates, small molecules capped nanoparticles, polymers stabilized nanoparticles, and biomolecules functionalized nanoparticles has been discussed. Moreover, nanoparticles-based drug delivery systems against bacterial infections have been described. Furthermore, the fundamental limitation of biocompatibility and biosafety of nanoparticles is also conferred. Finally, we propose potential future strategies of nanomaterials as antibacterials.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| |
Collapse
|
27
|
Jukič M, Hrast M, Patin D, Ogorevc E, Barreteau H, Gobec S. Virtual screening approach and biochemical evaluation on MurB. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
García-Meniño I, Díaz-Jiménez D, García V, de Toro M, Flament-Simon SC, Blanco J, Mora A. Genomic Characterization of Prevalent mcr-1, mcr-4, and mcr-5 Escherichia coli Within Swine Enteric Colibacillosis in Spain. Front Microbiol 2019; 10:2469. [PMID: 31736909 PMCID: PMC6838222 DOI: 10.3389/fmicb.2019.02469] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd-4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, bla CTX-M- 14, bla CTX-M- 32 and bla SHV- 12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolates.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Saskia C Flament-Simon
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
29
|
Haque M, Rahman NAA, McKimm J, Sartelli M, Kibria GM, Islam MZ, Binti Lutfi SNN, Binti Othman NSA, Binti Abdullah SL. Antibiotic Use: A Cross-Sectional Study Evaluating the Understanding, Usage and Perspectives of Medical Students and Pathfinders of a Public Defence University in Malaysia. Antibiotics (Basel) 2019; 8:E154. [PMID: 31546812 PMCID: PMC6784178 DOI: 10.3390/antibiotics8030154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Antimicrobial prescribing behaviors are often influenced by the local culture and prescribing appropriateness of medical doctors and other health care professionals. Globally, antimicrobial utilization practices have a profound impact on antimicrobial resistance and are a tremendous public health concern. The aim of this survey was to explore the knowledge and attitudes of medical students from the National Defence University of Malaysia regarding antimicrobial usage and antimicrobial resistance. Research design and methods: This was a cross-sectional study. The study population consisted of undergraduate medical students in each year group from the National Defence University of Malaysia. Students receive limited formal training on the use of antibiotics in their curriculum, and most of this learning is opportunistic whilst on clinical placement. Universal sampling was used as the study population was small. Data were collected utilizing a previously validated instrument regarding antibiotic use. Simple descriptive statistics were used to generate frequencies and percentages with SPSS V21. This research was approved by the Centre for Research and Innovation Management, National Defence University of Malaysia. Results: 206 questionnaires were distributed with a response rate of 99.03%, 54% (110) male, and 46% (94) female. Out of the respondents, 65% (132) had used antibiotics in the last year. Respondents displayed a moderate level of knowledge about antibiotics. Conclusions: This study revealed that the older the student was, or when the year of study and total knowledge score was higher, the students were less likely to stop antimicrobials when they felt better or use leftover antibiotics without consulting a doctor. Therefore, the nearer the students were to graduation, the better their knowledge and skills were, and this translated into their own behaviors regarding use of antimicrobials. This finding has clear implications for curriculum design and the inclusion of formal teaching throughout the medical program on antimicrobial use and antimicrobial resistance (AMR). However, more research is needed on this topic, including the prescribing habits and antibiotic use of practicing doctors.
Collapse
Affiliation(s)
- Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia.
| | - Nor Azlina A Rahman
- Department of Basic Health, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan 25200, Malaysia.
| | - Judy McKimm
- School of Medicine, Swansea University, Swansea, Wales SA2 8PP, UK.
| | - Massimo Sartelli
- Department of Surgery, Macerata Hospital, University of Macerata, Via Giovanni Mario Crescimbeni, 28, 62100 Macerata MC, Italy.
| | - Golam Mohammad Kibria
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia.
| | - Md Zakirul Islam
- Eastern Medical College, Comilla, Kabila, Dhaka-Chittagong Highway, Burichang 3520, Bangladesh.
| | - Siti Nur Najihah Binti Lutfi
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia.
| | - Nur Syamirah Aishah Binti Othman
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia.
| | - Shahidah Leong Binti Abdullah
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
30
|
Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. Int J Mol Sci 2019; 20:ijms20143549. [PMID: 31331112 PMCID: PMC6678755 DOI: 10.3390/ijms20143549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
The extracts of two mangrove species, Bruguiera cylindrica and Laguncularia racemosa, have been analyzed at sub-lethal concentrations for their potential to modulate biofilm cycles (i.e., adhesion, maturation, and detachment) on a bacterium, yeast, and filamentous fungus. Methanolic leaf extracts were also characterized, and MS/MS analysis has been used to identify the major compounds. In this study, we showed the following. (i) Adhesion was reduced up to 85.4% in all the models except for E. coli, where adhesion was promoted up to 5.10-fold. (ii) Both the sum and ratio of extracellular polysaccharides and proteins in mature biofilm were increased up to 2.5-fold and 2.6-fold in comparison to the negative control, respectively. Additionally, a shift toward a major production of exopolysaccharides was found coupled with a major production of both intracellular and extracellular reactive oxygen species. (iii) Lastly, detachment was generally promoted. In general, the L. racemosa extract had a higher bioactivity at lower concentrations than the B. cylindrica extract. Overall, our data showed a reduction in cells/conidia adhesion under B. cylindrica and L. racemosa exposure, followed by an increase of exopolysaccharides during biofilm maturation and a variable effect on biofilm dispersal. In conclusion, extracts either inhibited or enhanced biofilm development, and this effect depended on both the microbial taxon and biofilm formation step.
Collapse
|
31
|
Apostolakos I, Mughini-Gras L, Fasolato L, Piccirillo A. Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS One 2019; 14:e0217174. [PMID: 31100096 PMCID: PMC6524947 DOI: 10.1371/journal.pone.0217174] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/07/2019] [Indexed: 01/29/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)- and plasmid mediated AmpC-type cephalosporinase (pAmpC)-producing Escherichia coli (ESBL/pAmpC E. coli) in food-producing animals is a major public health concern. This study aimed at quantifying ESBL/pAmpC-E. coli occurrence and transfer in Italy’s broiler production pyramid. Three production chains of an integrated broiler company were investigated. Cloacal swabs were taken from parent stock chickens and offspring broiler flocks in four fattening farms per chain. Carcasses from sampled broiler flocks were collected at slaughterhouse. Samples were processed on selective media, and E. coli colonies were screened for ESBL/pAmpC production. ESBL/pAmpC genes and E. coli phylogroups were determined by PCR and sequencing. Average pairwise overlap of ESBL/pAmpC E. coli gene and phylogroup occurrences between subsequent production stages was estimated using the proportional similarity index, modelling uncertainty in a Monte Carlo simulation setting. In total, 820 samples were processed, from which 513 ESBL/pAmpC E. coli isolates were obtained. We found a high prevalence (92.5%, 95%CI 72.1–98.3%) in day-old parent stock chicks, in which blaCMY-2 predominated; prevalence then dropped to 20% (12.9–29.6%) at laying phase. In fattening broilers, prevalence was 69.2% (53.6–81.3%) at the start of production, 54.2% (38.9–68.6%) at slaughter time, and 61.3% (48.1–72.9%) in carcasses. Significantly decreasing and increasing trends for respectively blaCMY-2 and blaCTX-M-1 gene occurrences were found across subsequent production stages. ESBL/pAmpC E. coli genetic background appeared complex and bla-gene/phylogroup associations indicated clonal and horizontal transmission. Modelling revealed that the average transfer of ESBL/pAmpC E. coli genes between subsequent production stages was 47.7% (42.3–53.4%). We concluded that ESBL/pAmpC E. coli in the broiler production pyramid is prevalent, with substantial transfer between subsequent production levels.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (PD), Italy
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (PD), Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (PD), Italy
| |
Collapse
|
32
|
A rapid method for post-antibiotic bacterial susceptibility testing. PLoS One 2019; 14:e0210534. [PMID: 30629681 PMCID: PMC6328127 DOI: 10.1371/journal.pone.0210534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/26/2018] [Indexed: 11/19/2022] Open
Abstract
Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques.
Collapse
|
33
|
Abstract
Multiple drug resistance (MDR) to widening range of antibiotics emerging in increasing variety of pathogenic bacteria is a serious threat to the health of mankind nowadays. This is partially due to an uncontrolled usage of antibiotics not only in clinical practice, but also in various branches of agriculture. MDR is affected by two mechanisms: (1) accumulation of resistance genes as a result of intensive selection caused by antibiotics, and (2) active horizontal transfer of resistance genes. To unveil the reasons of bacterial multiresistance to antibiotics, it is necessary to understand the mechanisms of antibiotics action as well as the ways how either resistance to certain antibiotics emerge or resistance genes accumulate and transfer among bacterial strains. Current review is devoted to all these problems.
Collapse
|
34
|
Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0026-2017. [PMID: 30003866 PMCID: PMC11633601 DOI: 10.1128/microbiolspec.arba-0026-2017] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
Affiliation(s)
- Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Yves Madec
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Agnese Lupo
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Kieffer
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|