1
|
Lokhande SR, Adole VA, Rajesh R, Mali SN, Sadgir NV, Islam MS, Almutairi TM, Cruz JN, Patil MP, Jagdale BS. Synthesis, antifungal activity, molecular docking and DFT analysis of new (E)-4-(4-aryl)-2-(2-(1-(2,4-dimethoxyphenyl)ethylidene)hydrazineyl)thiazoles: An integrated experimental and theoretical study. J Mol Struct 2025; 1333:141761. [DOI: 10.1016/j.molstruc.2025.141761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
2
|
Cowen A, Yiu B, Fallah S, Meyer KJ, Puumala E, Lee Y, Zubyk HL, Robbins N, Nodwell JR, MacAlpine J, Cowen LE. Characterizing antimicrobial activity of environmental Streptomyces spp. and oral bacterial and fungal isolates from Canis familiaris and Felis catus. mSphere 2025; 10:e0009825. [PMID: 40227049 DOI: 10.1128/msphere.00098-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Antimicrobials are a pillar of modern medicine, yet our limited arsenal of antibiotics and antifungals is currently threatened by widespread drug resistance. Ongoing efforts are focused on developing strategies to identify compounds that enhance the efficacy of current antimicrobials and develop novel, resistance-evasive therapeutic strategies. In this study, we characterized microbial isolates from two distinct environments to identify those that exhibit antimicrobial activity alone and in combination with current antimicrobials: (i) oral isolates from domesticated animals and (ii) environmental Streptomyces spp. First, conditioned media prepared from bacterial and fungal oral isolates that were collected from Canis familiaris and Felis catus were screened for antibacterial and antifungal activity. Three supernatants from bacterial isolates exhibited antifungal activity against the human fungal pathogen Candida albicans in the presence of subinhibitory concentrations of fluconazole, the most widely deployed antifungal. Additionally, two bacterial isolates displayed antibacterial activity against Escherichia coli alone and in combination with the antibacterial ampicillin. Furthermore, 32 environmental isolates of confirmed and predicted Streptomyces spp. were screened for activity against C. albicans and E. coli. Cell-free media harvested from isolates WAC5038 and WAC5287 exhibited antifungal activity against Candida spp., while only the WAC5038-conditioned medium displayed antibacterial activity. Bioactivity-guided fractionation, coupled with UV/Vis absorbance spectra, suggested that the bioactive compound in WAC5287 has a similar absorbance spectrum to the antifungal class of polyenes, while the bioactive component of WAC5038 remains unknown. Overall, this work highlights a strategy to collect and screen environmental isolates for the identification of novel antimicrobials. IMPORTANCE The emergence and spread of antimicrobial resistance presents a global health challenge. As such, researchers are focused on developing pipelines to discover novel antimicrobials. In this study, we screened two distinct collections of microbes for antimicrobial activity. First, we collected bacterial and fungal isolates from the oral cavities of domesticated dogs and cats and identified these isolates using 16S (bacteria) and ITS (fungi) sequencing. Follow-up analyses confirmed that some conditioned media from bacterial isolates had antibacterial activity against Escherichia coli and antifungal activity against Candida albicans both alone and in combination with the current antimicrobial drugs. Additionally, screening 32 predicted or confirmed Streptomyces environmental isolates for antifungal and antibacterial activity identified two isolates with antifungal activity (WAC5038 and WAC5287), with only one isolate demonstrating antibacterial activity (WAC5038). Overall, this study provides a framework to identify and characterize environmental microbes with antimicrobial activity.
Collapse
Affiliation(s)
- Audrey Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kirsten J Meyer
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Haley L Zubyk
- David Braley Centre for Antibiotic Discovery, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Kulkarni NA, Nanjappa SG. Fungal immunization potentiates CD4 + T cell-independent cDC2 responses for cross-presentation. Front Immunol 2025; 16:1602174. [PMID: 40491915 PMCID: PMC12146322 DOI: 10.3389/fimmu.2025.1602174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
The incidence rates of fungal infections are increasing, especially in immunocompromised individuals without an FDA-approved vaccine. Accumulating evidence suggests that T cells are instrumental in providing fungal immunity. An apt stimulation and responses of dendritic cells are pivotal in inducing T-cell responses and vaccine success. Using a mouse model of fungal vaccination, we explored the dynamics, kinetics, activation, and antigen presentation of dendritic cell subsets to unravel the features of dendritic cell responses in the absence of CD4+ T cell help. The subcutaneous fungal vaccination induced more robust cDC2 responses than the cDC1 subset in draining lymph nodes. A single immunization with Blastomyces yeasts bolstered DC responses that peaked around day 5 before reverting to basal levels by day 15. The migratory cDC2 was the dominant DC subset, with higher numbers than all other DC subsets combined. Fungal vaccination augmented costimulatory molecules CD80 and CD86 without altering the levels of MHC molecules. Despite the higher fungal antigen uptake with migratory cDC2, the mean cross-presentation ability of all DC subsets was similar. Counterintuitively, deleting CD4+ T cells enhanced the DC responses, and CD4+ T cells were dispensable for conventional cross-presenting cDC1 responses. Collectively, our study shows that fungal vaccination selectively augmented cDC2 responses, and CD4+ T cells were dispensable for DC activation, antigen uptake, expression of costimulatory molecules, and cross-presentation. Our study provides novel insights into DC responses to an effective fungal vaccine for designing efficacious vaccines tailored for immunocompromised hosts.
Collapse
Affiliation(s)
- Nitish A. Kulkarni
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Kowalewski ME, Zagler S, Redinbo MR. Structural Insights into Selectively Targeting Candida albicans Hsp90. Biochemistry 2025. [PMID: 40397669 DOI: 10.1021/acs.biochem.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The threat of drug-resistant pathogens continues to rise and underscores the need for new antimicrobial and antifungal strategies. Diverse chemical scaffolds have been shown with high affinity to bind the human heat-shock protein Hsp90. Orthologous proteins are present in microbial pathogens and have been shown to be particularly abundant in these organisms, suggesting they may serve as therapeutic targets. Here, we examine the potency and selectivity of human Hsp90 ligands for their capacity to bind to the nucleotide binding domain of Hsp90 from the pathogenic fungi, Candida albicans. Using a series of biochemical, structural, and fragment and in silico screening investigations, we define key chemical features that lead to effective C. albicans Hsp90 (CaHsp90) binding. We support these studies with crystal structures of five diverse human Hsp90 ligands in complex with CaHsp90, as well as the structure of this protein with a nonhydrolyzable ATP analog. We demonstrate the structural basis for the selectivity of the human Hsp90 inhibitor TAS116 for CaHsp90, features that may be exploited in the future development of improved CaHsp90 inhibitors.
Collapse
Affiliation(s)
- Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sebastian Zagler
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Zheng C, Zhang X, Ma Y, Zhang Y. Voriconazole in the management of invasive pulmonary aspergillosis in patients with severe liver disease: balancing efficacy and hepatotoxicity. J Mycol Med 2025; 35:101549. [PMID: 40250078 DOI: 10.1016/j.mycmed.2025.101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Patients with severe liver disease (SLD) are prone to developing invasive pulmonary aspergillosis (IPA) due to immunodeficiency and microbial translocation, leading to high mortality rates. Although voriconazole is the first-line treatment for IPA, its use in patients with SLD is challenging due to the risk of hepatotoxicity. In this population, reduced hepatic blood flow and enzyme activity, compromised bile excretion, and increased intestinal permeability collectively affect voriconazole metabolism, resulting in a prolonged half-life, drug accumulation, and higher incidence of adverse events (AEs). Therapeutic drug monitoring (TDM) is essential to optimize voriconazole therapy, ensuring plasma concentrations within the therapeutic range (1.0-5.0 mg/L) while minimizing toxicity risks. This review highlights the risk factors for IPA in patients with SLD, the mechanisms of voriconazole-induced hepatotoxicity, its pharmacokinetics in this population, and current research on dose optimization. We emphasize the necessity of closely monitoring voriconazole plasma concentration, liver function, and inflammatory markers during treatment. For patients with SLD, we recommend a loading dose of 200 mg every 12 hours, with subsequent maintenance doses reduced to 1/4-1/3 of the standard dose, though the evidence remains limited. We call for large-scale clinical trials to define optimal dosing, efficacy, and safety of voriconazole for IPA in patients with SLD, providing clinicians with clearer treatment guidelines and improving patient outcomes.
Collapse
Affiliation(s)
- Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University; Beijing Research Center for Respiratory Infectious Diseases.
| |
Collapse
|
6
|
Ceballos-Garzon A, Holzapfel M, Welsch J, Mercer D. Identification and antifungal susceptibility patterns of reference yeast strains to novel and conventional agents: a comparative study using CLSI, EUCAST and Sensititre YeastOne methods. JAC Antimicrob Resist 2025; 7:dlaf040. [PMID: 40110552 PMCID: PMC11920621 DOI: 10.1093/jacamr/dlaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Objectives The aim of this study was to identify and determine the MICs of 13 antifungal drugs, including the novel agents ibrexafungerp, manogepix and rezafungin, against 22 laboratory reference strains from 14 different Candida spp. and allied yeast genera using the EUCAST, CLSI and Sensititre™ YeastOne™ (SYO) methods. Results Complete agreement between molecular and proteomics methods was observed for identification. The compounds with the greatest in vitro activity, as indicated by the lowest geometric mean MIC (GM), were manogepix (GM: 0.01), isavuconazole (GM: 0.05) and rezafungin (GM: 0.03-0.07). The overall essential agreement (EA) (within ±0 to ±2 2-fold dilutions) between the reference methods, EUCAST and CLSI, was 95%, with results ranging from 82% (ibrexafungerp) to 100% (amphotericin B, anidulafungin, fluconazole, 5-flucytosine and micafungin). Regarding EA for EUCAST and CLSI compared with SYO, values were 91% and 89%, respectively. Nevertheless, when the MIC values were transformed into log2, significant differences were observed (e.g. fluconazole, ibrexafungerp and 5-flucytosine). At the species level, Candidozyma auris and Candida duobushaemulonii exhibited the highest number of cases with significant differences when comparing the three techniques for each antifungal. Conclusions The high EA observed reinforces the reliability of EUCAST, CLSI and SYO in guiding antifungal therapy. However, the differences in EA, particularly for ibrexafungerp and 5-flucytosine, highlight the importance of continued evaluation of these methodologies to ensure consistency. Given that antifungal susceptibility testing plays a critical role in treatment decisions, understanding these variations is essential to prevent potential misclassification of susceptibility profiles, which could impact clinical outcomes.
Collapse
Affiliation(s)
- Andres Ceballos-Garzon
- BIOASTER Research Institute, 40 avenue Tony Garnier, Lyon F-69007, France
- Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marion Holzapfel
- BIOASTER Research Institute, 40 avenue Tony Garnier, Lyon F-69007, France
| | - Jeremy Welsch
- BIOASTER Research Institute, 40 avenue Tony Garnier, Lyon F-69007, France
| | - Derry Mercer
- BIOASTER Research Institute, 40 avenue Tony Garnier, Lyon F-69007, France
| |
Collapse
|
7
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
8
|
Štěpánek O, Parigger M, Procházková E, Čmoková A, Kolařík M, Dračínská H, Černá V, Kalíková K, Grobárová V, Černý J, Scheler J, Schweiger G, Binder U, Baszczyňski O. Prodrugging fungicidal amphotericin B significantly decreases its toxic effects. Eur J Med Chem 2025; 283:117157. [PMID: 39673865 DOI: 10.1016/j.ejmech.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Amphotericin B (AmB) is one of the most effective antifungal drugs, with a strong, dose-dependent activity against most Candida and Aspergillus species responsible for life-threatening infections. However, AmB is severely toxic, which hinders its broad use. In this proof-of-concept study, we demonstrate that prodrugging AmB considerably decreases AmB toxicity without affecting its fungicidal activity. For this purpose, we modified the AmB structure by attaching a designer phosphate promoiety, thereby switching off its mode of action and preventing its toxic effects. The original fungicidal activity of AmB was then restored upon prodrug activation by host plasma enzymes. These AmB prodrugs showed a safer toxicity profile than commercial AmB deoxycholate in Candida and Aspergillus species and significantly prolonged larval survival of infected Galleria mellonella larvae. Based on these findings, prodrugging toxic antifungals may be a viable strategy for broadening the antifungal arsenal, opening up opportunities for targeted prodrug design.
Collapse
Affiliation(s)
- Ondřej Štěpánek
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Marie Parigger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jakob Scheler
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Gottfried Schweiger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Ulrike Binder
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria.
| | - Ondřej Baszczyňski
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic.
| |
Collapse
|
9
|
Ortiz SC, Easter T, Valero C, Bromley MJ, Bertuzzi M. A microscopy-based image analysis pipeline for the quantification of germination of filamentous fungi. Fungal Genet Biol 2025; 176:103942. [PMID: 39615829 DOI: 10.1016/j.fgb.2024.103942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/22/2024]
Abstract
Germination is the fundamental process whereby fungi transition from the dormant and stress resistant spores into actively replicating cells such as hyphae. Germination is essential for fungal colonization of new environments and pathogenesis, yet this differentiation process remains relatively poorly understood. For filamentous fungi, the study of germination has been limited by the lack of high-throughput, temporal, low cost, and easy-to-use methods of quantifying germination. To this end we have developed an image analysis pipeline to automate the quantification of germination from microscopy images. We have optimized this tool for the fungal pathogen Aspergillus fumigatus and demonstrated its potential applications by evaluating different strains, germination inhibitors, and auxotrophic and antifungal resistant mutants. Finally, we have expanded this tool to a variety of filamentous fungi and developed an easy-to-use web app for the fungal research community.
Collapse
Affiliation(s)
- Sébastien C Ortiz
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Thomas Easter
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
10
|
Reginatto P, Joaquim AR, Teixeira ML, Andrade SFD, Fuentefria AM. 8-Hydroxyquinoline derivative as a promising antifungal agent to combat ocular fungal infections. J Med Microbiol 2025; 74. [PMID: 39787291 DOI: 10.1099/jmm.0.001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Introduction. Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera Candida and Fusarium. Both diagnosis and treatment require speed and effectiveness. However, the currently available therapy basically consists of the use of azoles and polyenes, known for their low penetration into the ocular tissue and the associated toxicity.Hypothesis. Thus, new strategies to combat these infections are needed, such as the development of new antifungals or the use of associations.Aim. Thus, the compound PH151, derived from a promising class of 8-hydroxyquinolines, and natamycin, amphotericin B (AMB) and voriconazole (VRC), the main antifungals used in ocular antifungal therapy, were considered against Candida spp. and Fusarium spp.Methodology. The MICs of compound PH151 ranged from 1.0 to 16.0 µg ml-1, according to CLSI protocols.Results. The association of PH151 with AMB and VRC showed a synergistic effect for more than 50% of the strains tested.Conclusion. Both the compound alone and its association (VRC-AMB-PH151) demonstrated promising potential as an antifungal agent in ocular infections, since the evaluated ocular toxicity profile was positive and the compounds presented low toxicity.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angélica Rocha Joaquim
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Faculty of Pharmacy of the Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Saulo Fernandes de Andrade
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Anlises, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Produo de Matria-Prima, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Li N, Zhang J, Yu F, Ye F, Tan W, Hao L, Li S, Deng J, Hu X. Garlic-Derived Quorum Sensing Inhibitors: A Novel Strategy Against Fungal Resistance. Drug Des Devel Ther 2024; 18:6413-6426. [PMID: 39749188 PMCID: PMC11693938 DOI: 10.2147/dddt.s503302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, the incidence of fungal infections has been rising annually, especially among immunocompromised populations, posing a significant challenge to public health. Although antifungal medications provide some relief, the escalating problem of resistance sharply curtails their effectiveness, presenting an urgent clinical dilemma that demands immediate attention. Research has shown that fungal resistance is closely related to quorum sensing (QS), and QS inhibitors (QSIs) are considered an effective solution to this issue. Garlic, as a natural QSI, has demonstrated significant effects in inhibiting fungal growth, preventing biofilm formation, enhancing immunity, and combating resistance. This study explores the potential of garlic in mitigating fungal drug resistance and identifies its key role in inhibiting the QS mechanism, these findings offer a new perspective for the treatment of fungal infections, especially in addressing the increasingly severe problem of resistance. However, the clinical application of garlic still faces several challenges, such as ensuring the standardization of active ingredient extraction, as well as issues of safety and stability. Future research should focus on the QS mechanism and promote interdisciplinary collaboration to develop more natural, effective, and safe QSI drugs like garlic, while actively conducting clinical trials to validate their efficacy and safety. Additionally, incorporating advanced technologies such as nanotechnology to enhance drug stability and targeting, provide a more comprehensive strategy for the treatment of fungal infections. Overall, Our study provides scientific evidence supporting the potential of garlic as a novel antifungal treatment and lays the groundwork for the development of future natural QSIs for therapeutic use. It offers new insights, particularly for the treatment of immunocompromised populations and drug-resistant fungal strains.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People’s Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wanying Tan
- Center for Infectious Diseases, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Han M, Xia Z, Zou Y, Hu P, Zhang M, Yang X, Ma MG, Yang R. Comparative Study and Transcriptomic Analysis on the Antifungal Mechanism of Ag Nanoparticles and Nanowires Against Trichosporon asahii. Int J Nanomedicine 2024; 19:11789-11804. [PMID: 39558917 PMCID: PMC11571931 DOI: 10.2147/ijn.s474299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Background Silver nanomaterials have been widely proven to have antifungal effects against Trichosporon asahii. However, the antifungal mechanism of silver nanomaterials with different morphologies still needs to be explored. Methods Herein, the antifungal effect of silver nanomaterials against fungus was comparative investigated via silver nanowires and silver nanoparticles with a similar size (30 nm). Results The optimal antifungal concentration of silver nanowires is 6.24 μg/mL, meanwhile the antifungal concentration of silver nanoparticles is 100 μg/mL. The silver nanowires are significantly superior to the silver nanoparticles. SEM and TEM results indicated that both silver nanoparticles and silver nanowires showed significant morphological changes in the mycelium of the strain, compared with the control. The lower MFC value of silver nanowires indicates good sterilization effect and suitability for eradication treatment, which is slower than that of silver nanoparticles. Moreover, we also investigated the toxicological effects of silver nanoparticles and silver nanowires. Conclusion We comparative studied and transcriptomic analyzed the antifungal mechanism of Ag nanoparticles and nanowires against Trichosporon asahii. The antifungal effects of silver nanowires were better than the silver nanoparticles, especially in the metabolic processes and oxidative phosphorylation. RNA sequencing results indicated that 15 key targets were selected for experimental verification to interpret the potential antifungal mechanism of Ag nanomaterials against fungus. This work proves that silver nanomaterials with different morphologies have potential applications in fungus therapy such as T. asahii.
Collapse
Affiliation(s)
- Minna Han
- Chinese PLA Medical School, Beijing, 100072, People’s Republic of China
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100072, People’s Republic of China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100072, People’s Republic of China
| | - Yuekun Zou
- Department of Geriatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100072, People’s Republic of China
| | - Ping Hu
- Department of Dermatology, Southern Medical Branch of PLA General Hospital, Beijing, 100072, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xin Yang
- Department of Geriatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100072, People’s Republic of China
| | - Ming-Guo Ma
- College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People’s Republic of China
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100072, People’s Republic of China
| |
Collapse
|
13
|
Nysten J, Peetermans A, Vaneynde D, Jacobs S, Demuyser L, Van Dijck P. The riboflavin biosynthetic pathway as a novel target for antifungal drugs against Candida species. mBio 2024; 15:e0250224. [PMID: 39404356 PMCID: PMC11559065 DOI: 10.1128/mbio.02502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024] Open
Abstract
In recent decades, there has been an increase in the occurrence of fungal infections; yet, the arsenal of drugs available to fight invasive infections remains very limited. The development of new antifungal agents is hindered by the restricted number of molecular targets that can be exploited, given the shared eukaryotic nature of fungi and their hosts which often leads to host toxicity. In this paper, we examine the riboflavin biosynthetic pathway as a potential novel drug target. Riboflavin is an essential nutrient for all living organisms. Its biosynthetic pathway does not exist in humans, who obtain riboflavin through their diet. Our findings demonstrate that all enzymes in the pathway are essential for Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Auxotrophic strains, which mimic a drug targeting the biosynthesis pathway, experience rapid mortality in the absence of supplemented riboflavin. Furthermore, RIB1 is essential for virulence in both C. albicans and C. glabrata in a systemic mouse model. The fungal burden of a RIB1 deletion strain is significantly reduced in the kidneys and brain of infected mice, and this reduction becomes more pronounced over time. Nevertheless, auxotrophic cells can still take up external riboflavin when supplemented. We identified Orf19.4337 as the riboflavin importer in C. albicans and named it Rut1. We found that Rut1 only facilitates growth at external riboflavin concentrations that exceed the physiological concentrations in the human body. This suggests that riboflavin uptake is unlikely to serve as a resistance mechanism against drugs targeting the biosynthesis pathway. Interestingly, the uptake system in S. cerevisiae is more effective than in C. albicans and C. glabrata, enabling an auxotrophic S. cerevisiae strain to outcompete an auxotrophic C. albicans strain in lower riboflavin concentrations. IMPORTANCE Candida species are a common cause of invasive fungal infections. Candida albicans, in particular, poses a significant threat to immunocompromised individuals. This opportunistic pathogen typically lives as a commensal on mucosal surfaces of healthy individuals but it can also cause invasive infections associated with high morbidity and mortality. Currently, there are only three major classes of antifungal drugs available to treat these infections. In addition, the efficacy of these antifungal agents is restricted by host toxicity, suboptimal pharmacokinetics, a narrow spectrum of activity, intrinsic resistance of fungal species, such as Candida glabrata, to certain drugs, and the acquisition of resistance over time. Therefore, it is crucial to identify new antifungal drug targets with novel modes of action to add to the limited armamentarium.
Collapse
Affiliation(s)
- Jana Nysten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Arne Peetermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Dries Vaneynde
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Tancer R, Pawar S, Wang Y, Ventura CR, Wiedman G, Xue C. Improved Broad Spectrum Antifungal Drug Synergies with Cryptomycin, a Cdc50-Inspired Antifungal Peptide. ACS Infect Dis 2024; 10:3973-3993. [PMID: 39475550 PMCID: PMC11555678 DOI: 10.1021/acsinfecdis.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024]
Abstract
Fungal infections in humans are difficult to treat, with very limited drug options. Due to a confluence of factors, there is an urgent need for innovation in the antifungal drug space, particularly to combat increasing antifungal drug resistance. Our previous studies showed that Cdc50, a subunit of fungal lipid translocase (flippase), is essential for Cryptococcus neoformans virulence and required for antifungal drug resistance, suggesting that fungal lipid flippase could be a novel drug target. Here, we characterized an antifungal peptide, Cryptomycinamide (KKOO-NH2), derived from a 9-amino acid segment of the C. neoformans Cdc50 protein. A fungal killing assay indicated that KKOO-NH2 is fungicidal against C. neoformans. The peptide has antifungal activity against multiple major fungal pathogens with a minimum inhibitory concentration (MIC) of 8 μg/mL against C. neoformans and Candida glabrata, 16 μg/mL against Candida albicans and C. auris, and 32 μg/mL against Aspergillus fumigatus. The peptide has low cytotoxicity against host cells based on our hemolysis assays and vesicle leakage assays. Strikingly, the peptide exhibits strong drug synergy with multiple antifungal drugs, including amphotericin B, itraconazole, and caspofungin, depending on the specific species on which the combinations were assayed. The fluorescently labeled peptide was detected to localize to the plasma membrane, likely inhibiting key interactions of Cdc50 with membrane proteins such as P4 ATPases. Cryptococcus cells exposed to sub-MIC of peptide showed increased reactive oxygen species production and intracellular calcium levels, indicating a peptide-induced stress response. Decreased intracellular proliferation within macrophages was observed after 30 min of peptide exposure and 24 h coincubation with macrophages, providing a potential translational mechanism to explore further in vivo. In aggregate, the synergistic activity of our KKOO-NH2 peptide may offer a potential novel candidate for combination therapy with existing antifungal drugs.
Collapse
Affiliation(s)
- Robert
J. Tancer
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Siddhi Pawar
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Yina Wang
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Cristina R. Ventura
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Gregory Wiedman
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Chaoyang Xue
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| |
Collapse
|
15
|
Kim YM, Guk T, Jang MK, Park SC, Lee JR. Targeted delivery of amphotericin B-loaded PLGA micelles displaying lipopeptides to drug-resistant Candida-infected skin. Int J Biol Macromol 2024; 279:135402. [PMID: 39245114 DOI: 10.1016/j.ijbiomac.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Amphotericin B (AmB) is an antifungal agent administered for the management of serious systemic fungal infections. However, its clinical application is limited because of its water insolubility and side effects. Herein, to apply the minimum dose of AmB that can be used to manage fungal infections, a targeted drug delivery system was designed using lipopeptides and poly(lactide-co-glycolide) (PLGA). Lipopeptides conjugated with PEGylated distearoyl phosphoethanolamine (DSPE) and short peptides via a maleimide-thiol reaction formed nanosized micelles with PLGA and AmB. The antifungal effects of AmB-loaded micelles containing lipopeptides were remarkably enhanced both in vitro and in vivo. Moreover, the intravenous injection of these micelles demonstrated their in vivo targeting capacity of short peptides in a mouse model infected with drug-resistant Candida albicans. Our findings suggest that short antifungal peptides displayed on the surfaces of micelles represent a promising therapeutic candidate for targeting drug-resistant fungal infections.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Taeuk Guk
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea.
| |
Collapse
|
16
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
17
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Wolfgruber S, Salmanton-García J, Kuate MPN, Hoenigl M, Brunelli JGP. Antifungal pipeline: New tools for the treatment of mycoses. Rev Iberoam Micol 2024; 41:68-78. [PMID: 40023755 DOI: 10.1016/j.riam.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 03/04/2025] Open
Abstract
Fungal infections are becoming an escalating public health challenge, particularly among immunocompromised individuals. The partially limited efficacy of current antifungal treatments, their potential adverse effects, and the increasing problem of resistance emphasize the need for new treatment options. Existing antifungal classes-allylamines, azoles, echinocandins, polyenes, and pyrimidine analogs-face challenges due to their similarity with human cells and rising resistance. New antifungal agents, such as ibrexafungerp, rezafungin, oteseconazole, and miltefosine, offer novel mechanisms of action along with reduced toxicity. While antifungal resistance is a growing global concern, fungal infections in low- and middle-income countries (LMICs) present specific challenges with high rates of opportunistic infections like cryptococcosis and endemic mycoses such as histoplasmosis. The World Health Organization's fungal priority pathogens list highlights the prevalence of these infections in LMICs, where limited access to antifungal drugs and misuse are common. This review provides a comprehensive overview of these new agents and their mechanisms, and explores the challenges and roles of antifungal drugs in LMICs, where the burden of fungal infections is high. Continued research and development are essential to address the rising incidence and resistance of fungal infections globally.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria.
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | | |
Collapse
|
19
|
Haji Ali S, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis, Investigation, and Biological Activity Assessments of (4-Substituted-Phenyl)- N-(3-morpholinopropyl)-3-phenylthiazol-2(3 H)-imine Derivatives as Antifungal Agents. ACS OMEGA 2024; 9:39326-39343. [PMID: 39346840 PMCID: PMC11425616 DOI: 10.1021/acsomega.3c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 10/01/2024]
Abstract
In this study, a series of novel thiazol-2(3H)-imine (2a-2j) were designed, synthesized, and characterized by means of 1H NMR, 13C NMR, and HRMS spectral analyses. In vitro antifungal activity was performed using a modified EUCAST protocol. Two of the synthesized compounds (2d and 2e) showed activity against Candida albicans and Candida parapsilosis. Compound 2e showed activity against C. parapsilosis (MIC50 = 1.23 μg/mL) for 48 h. This value is very similar to ketoconazole. The dynamic analysis of the potential compounds 2d and 2e revealed notable stability while interacting with the 14α-demethylase enzyme substrate. The absorption, distribution, metabolism, and excretion (ADME) studies of the candidate compound showed acceptable ADME parameter data and verified their drug-likeness characteristics. According to the results of this study, compound 4-(4-fluorophenyl)-N-(3-morpholinopropyl)-3-phenylthiazol-2(3H)-imine (2e) and its derivatives as 14α-demethylase inhibitors can be used as a new antifungal for further structural improvements and additional research.
Collapse
Affiliation(s)
- Sazan Haji Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hawler Medical University, Erbil 44000, Iraq
- Graduate Education Institute, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
20
|
Gong X, Zhou Y, Qin Q, Wang B, Wang L, Jin C, Fang W. Nitrate assimilation compensates for cell wall biosynthesis in the absence of Aspergillus fumigatus phosphoglucose isomerase. Appl Environ Microbiol 2024; 90:e0113824. [PMID: 39158312 PMCID: PMC11412302 DOI: 10.1128/aem.01138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.
Collapse
Affiliation(s)
- Xiufang Gong
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Yao Zhou
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Qijian Qin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Bin Wang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Linqi Wang
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Cheng Jin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Wenxia Fang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| |
Collapse
|
21
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Kulkarni NA, Nanjappa SG. Advances in Dendritic-Cell-Based Vaccines against Respiratory Fungal Infections. Vaccines (Basel) 2024; 12:981. [PMID: 39340013 PMCID: PMC11435842 DOI: 10.3390/vaccines12090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ever since the discovery of dendritic cells by Ralph Steinman and Zanvil Cohn in 1973, it is increasingly evident that dendritic cells are integral for adaptive immune responses, and there is an undeniable focus on them for vaccines development. Fungal infections, often thought to be innocuous, are becoming significant threats due to an increased immunocompromised or immune-suppressed population and climate change. Further, the recent COVID-19 pandemic unraveled the wrath of fungal infections and devastating outcomes. Invasive fungal infections cause significant case fatality rates ranging from 20% to 90%. Regrettably, no licensed fungal vaccines exist, and there is an urgent need for preventive and therapeutic purposes. In this review, we discuss the ontogeny, subsets, tissue distribution, and functions of lung dendritic cells. In the latter part, we summarize and discuss the studies on the DC-based vaccines against pulmonary fungal infections. Finally, we highlight some emerging potential avenues that can be incorporated for DC-based vaccines against fungal infections.
Collapse
Affiliation(s)
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
23
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
24
|
Gutierrez-Perez C, Puerner C, Jones JT, Vellanki S, Vesely EM, Xatse MA, Viera AFC, Olsen CP, Attiku KO, Cardinale S, Kwasny SM, G-Dayanandan N, Opperman TJ, Cramer RA. Unsaturated fatty acid perturbation combats emerging triazole antifungal resistance in the human fungal pathogen Aspergillus fumigatus. mBio 2024; 15:e0116624. [PMID: 38934618 PMCID: PMC11253624 DOI: 10.1128/mbio.01166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Charles Puerner
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandeep Vellanki
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mark A. Xatse
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F. C. Viera
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa P. Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Keren O. Attiku
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Robert A. Cramer
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
25
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
26
|
Sharma G, Sharma R. Novel spiro[indoline-3,2'thiazolo[5,4-e]pyrimido[1,2-a] pyrimidine] derivatives as possible anti-dermatophytic and anti-candidiasis agent. BIOMEDITSINSKAIA KHIMIIA 2024; 70:180-186. [PMID: 38940208 DOI: 10.18097/pbmc20247003180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A novel series of 5'-benzylidene-3'-phenylspiro[indoline-3,2'-thiazolidine]-2,4'(1H)-diones 6a-d and spiro[indoline-3,2'-thiazolo[5,4-e]pyrimido[1,2-a]pyrimidin]-2(1H)-one 9a-d derivatives have been synthesized. All the newly synthesized compounds were evaluated for antifungal and anti-candidiasis activity by using Disc Diffusion and Modified Microdilution methods. The antimicrobial experiments have shown that the synthesized compounds demonstrated broad-spectrum antifungal activity in vitro. Among them, compounds 9a-9d had stronger antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans; compounds 6a-d also showed significant antifungal activity against selected fungal strains as compared to ketoconazole, the reference antifungal drug. The evaluation of antifungal activity against drug-resistant fungal variants showed that the designed compounds had significant antifungal activity against the tested variants. The combination of compounds (6a-d) and (9a-d) exhibited that the synthesized compounds had synergistic effects or additive effects. These results demonstrated that the synthesized compounds were putative chitin synthase inhibitors exhibiting broad spectrum antifungal activities. The present results indicate that novel spiro pyrimidine derivatives can be used as an active pharmaceutical ingredient for novel drug candidate for treatment of dermatophytosis and other fungal agents.
Collapse
Affiliation(s)
- G Sharma
- Department of Chemistry, MPS International, Jaipur, India
| | - R Sharma
- Department of Microbiology, Mahatma Gandhi University of Medical Science and Technology
| |
Collapse
|
27
|
Liu MZ, Dai XH, Zeng MT, Chen EQ. Clinical treatment of cryptococcal meningitis: an evidence-based review on the emerging clinical data. J Neurol 2024; 271:2960-2979. [PMID: 38289535 DOI: 10.1007/s00415-024-12193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 05/30/2024]
Abstract
Cryptococcal meningitis (CM) is a fatal fungal central nervous system (CNS) infection caused by Cryptococcus infecting the meninges and/or brain parenchyma, with fever, headache, neck stiffness, and visual disturbances as the primary clinical manifestations. Immunocompromised individuals with human immunodeficiency virus (HIV) infection or who have undergone organ transplantation, as well as immunocompetent people can both be susceptible to CM. Without treatment, patients with CM may have a mortality rate of up to 100% after hospital admission. Even after receiving therapy, CM patients may still suffer from problems such as difficulty to cure, poor prognosis, and high mortality. Therefore, timely and effective treatment is essential to improve the mortality and prognosis of CM patients. Currently, the clinical outcomes of CM are frequently unsatisfactory due to limited drug choices, severe adverse reactions, drug resistance, etc. Here, we review the research progress of CM treatment strategies and discuss the suitable options for managing CM, hoping to provide a reference for physicians to select the most appropriate treatment regimens for CM patients.
Collapse
Affiliation(s)
- Mao-Zhu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Hua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming-Tang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
28
|
Xie J, Rybak JM, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Parker JE, Kelly SL, Rogers PD, Fortwendel JR. The sterol C-24 methyltransferase encoding gene, erg6, is essential for viability of Aspergillus species. Nat Commun 2024; 15:4261. [PMID: 38769341 PMCID: PMC11106247 DOI: 10.1038/s41467-024-48767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.
Collapse
Affiliation(s)
- Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Josie E Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
29
|
El Hachem S, Fattouh N, Chedraoui C, Finianos M, Bitar I, Khalaf RA. Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate. J Fungi (Basel) 2024; 10:347. [PMID: 38786702 PMCID: PMC11122215 DOI: 10.3390/jof10050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. METHODS The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. RESULTS We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. CONCLUSION This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance.
Collapse
Affiliation(s)
- Setrida El Hachem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
- Department of Biology, Saint George University of Beirut, Beirut 1100-2807, Lebanon
| | - Christy Chedraoui
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (M.F.); (I.B.)
- Biomedical Center, Faculty of Medicine, Charles University, 32300 Pilsen, Czech Republic
| | - Roy A. Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (S.E.H.); (N.F.); (C.C.)
| |
Collapse
|
30
|
Sathiyaseelan A, Zhang X, Han K, Wang MH. Enhancing antifungal and biocompatible efficacy of undecanoic acid through incorporation with chitosan-based nanoemulsion. Int J Biol Macromol 2024; 267:131328. [PMID: 38574901 DOI: 10.1016/j.ijbiomac.2024.131328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The management of invasive fungal infections in humans poses significant challenges due to the intricate nature of the treatment, which is both arduous and costly, necessitating routine diagnostic procedures. Consequently, this investigation aimed to formulate a chitosan-based nanoemulsion (CS NEMs) incorporating the antifungal agent undecanoic acid (UDA), characterizing these NEMs and assessing their antifungal efficacy against both filamentous and non-filamentous fungal pathogens. The CS-based UDA NEMs were synthesized by introducing the surfactant Triton X-100 and the stabilizer glycerol. Nanoparticle tracking analysis (NTA) and SEM demonstrated the CS-UDA NEMs with an average size of 145 nm and 164.5 ± 24 nm, respectively. The successful formation of CS-UDA NEMs was verified through FTIR and XRD. CS-UDA NEMs exhibited exceptional inhibition against Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Candida albicans with MFC of 500, 500, 250 and 250 μg/mL, respectively. Additionally, CS-UDA NEMs displayed comparatively lower antioxidant activity as determined by DPPH and ABTS radical scavenging assays. Importantly, CS-UDA NEMs demonstrated no cytotoxic effects on NIH3T3 cells even at higher concentration (1000 μg/mL), as confirmed by cell viability and fluorescent staining assays. In conclusion, this study suggests that the developed CS-UDA NEMs hold promise as potent antifungal agents with diverse potential applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kiseok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
31
|
Ross RL, Santiago-Tirado FH. Advanced genetic techniques in fungal pathogen research. mSphere 2024; 9:e0064323. [PMID: 38470131 PMCID: PMC11036804 DOI: 10.1128/msphere.00643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Although fungi have been important model organisms for solving genetic, molecular, and ecological problems, recently, they are also becoming an important source of infectious disease. Despite their high medical burden, fungal pathogens are understudied, and relative to other pathogenic microbes, less is known about how their gene functions contribute to disease. This is due, in part, to a lack of powerful genetic tools to study these organisms. In turn, this has resulted in inappropriate treatments and diagnostics and poor disease management. There are a variety of reasons genetic studies were challenging in pathogenic fungi, but in recent years, most of them have been overcome or advances have been made to circumvent these barriers. In this minireview, we highlight how recent advances in genetic studies in fungal pathogens have resulted in the discovery of important biology and potential new antifungals and have created the tools to comprehensively study these important pathogens.
Collapse
Affiliation(s)
- Robbi L. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
32
|
Lu X, Wang R, Yu Y, Wei J, Xu Y, Zhou L, Mao F, Li J, Li X, Jia X. Drug Repurposing of ACT001 to Discover Novel Promising Sulfide Prodrugs with Improved Safety and Potent Activity for Neutrophil-Mediated Antifungal Immunotherapy. J Med Chem 2024; 67:5783-5799. [PMID: 38526960 DOI: 10.1021/acs.jmedchem.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.
Collapse
Affiliation(s)
- Xiangran Lu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Rongrong Wang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Luoyifan Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
33
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
34
|
Wang Y, He Y, Cai T, Lei Z, Lei W, Cao Y, Wu J. A mechanism study on the synergistic effects of rifapentine and fluconazole against fluconazole-resistant Candida albicans in vitro. Heliyon 2024; 10:e27346. [PMID: 38515731 PMCID: PMC10955295 DOI: 10.1016/j.heliyon.2024.e27346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Candida albicans (C. albicans) is one of the most common clinical isolates of systemic fungal infection. Long-term and inappropriate use of antifungal drugs can cause fungal resistance, which poses a great challenge to the clinical treatment of fungal infections. The combination of antifungal drugs and non-antifungal drugs to overcome the problem of fungal resistance has become a research hotspot in recent years. Our previous study found that the combination of rifapentine (RFT) and fluconazole (FLC) has a significant synergistic against FLC-resistant C. albicans. The present study aimed to further verify the synergistic effect between FLC and RFT against the FLC-resistant C. albicans 100, and explore the underlying mechanism. The growth curve and spot assay test not only showed the synergistic effect of FLC and RFT on FLC-resistant C. albicans in vitro but exhibited a dose-dependent effect on RFT, indicating that RFT may play a principal role in the synergic effect of the two drugs. Flow cytometry showed that the combined use of RFT and FLC arrested cells in the G2/M phase, inhibiting the normal division and proliferation of FLC-resistant C. albicans. Transmission electron microscopy (TEM) demonstrated that FLC at a low concentration could still cause a certain degree of damage to the cell membrane in the FLC-resistant C. albicans, as represented by irregular morphologic changes and some defects observed in the cell membrane. When FLC was used in combination with RFT, the nuclear membrane was dissolved and the nucleus was condensed into a mass. Detection of the intracellular drug concentration of fungi revealed that the intracellular concentration of RFT was 31-195 fold that of RFT alone when it was concomitantly used with FLC. This indicated that FLC could significantly increase the concentration of RFT in cells, which may be due to the damage caused to the fungal cell membrane by FLC. In short, the present study revealed a synergistic mechanism in the combined use of RFT and FLC, which may provide a novel strategy for the clinical treatment of FLC-resistant C. albicans.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei He
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tongkai Cai
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongwei Lei
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenzhi Lei
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongbing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Reginatto P, Agostinetto GDJ, Teixeira ML, de Andrade SF, Fuentefria AM. Synergistic activity of clioquinol with voriconazole and amphotericin B against fungi of interest in eye infections. J Mycol Med 2024; 34:101462. [PMID: 38290229 DOI: 10.1016/j.mycmed.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Keratoplasty represents a risk factor for fungal eye infections, despites the antibacterial actives in the corneal tissue preservation means, it does not contain active substances with antifungal action. Among the most commonly associated fungal agents are the species belonging to the genera Fusarium and Candida. These agents can trigger an infectious process characterized by swift progression associated with high rates of morbidity, causing irreversible damage. Polyene and azole antifungals are the main agents of ocular therapy, however, they demonstrate some limitations, such as their toxicity and fungal resistance. In this context, drug repositioning and the combination of antifungals may be an alternative. Hence, the goal of this study was to investigate the potential activity of clioquinol (CLQ), a derivative of 8-hydroxyquinoline with previously described antifungal activity, along with its triple and quadruple combinations with antifungal agents commonly used in ophthalmic fungal therapy, natamycin (NAT), voriconazole (VRC), and amphotericin B (AMB), against main fungal pathogens in eye infections. The MICs for CLQ ranged from 0.25 to 2.0 μg/mL, for NAT from 4.0 to 32.0 μg/mL, for AMB it ranged from 0.25 to 16.0 μg/mL and for VRC from 0.03125 to 512.0 µg/mL. Among the tested combinations, the VRC-AMB-CLQ combination stands out, which showed a synergistic effect for more than 50 % of the tested strains and did not present antagonistic results against any of them. Toxicity data were similar to those antifungals already used, even with lower potential toxicity. Therefore, both clioquinol and the triple combination VCR-AMB-CLQ exhibited promising profiles for use as active components in corneal tissue preservation medium.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
37
|
da Costa PCT, Santos TLB, Ramos JF, Santos JAM, de Medeiros FD, Freitas JCR, de Oliveira WA. Synthesis and antifungal evaluation against Candida spp. of the (E)-3-(furan-2-yl)acrylic acid. Braz J Microbiol 2024; 55:133-142. [PMID: 37995041 PMCID: PMC10920609 DOI: 10.1007/s42770-023-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Infections of fungal origin are mainly caused by Candida spp. Some species, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis, stand out as promoters of diseases in humans. This study evaluated the synthesis and antifungal effects of (E)-3-(furan-2-yl)acrylic acid. The synthesis of the compound showed a yield of 88%, considered high. The minimum inhibitory concentration of the synthetic compound, amphotericin B, and fluconazole isolated against four Candida species ranged from 64 to 512 μg/mL, 1 to 2 μg/mL, and 32 to 256 μg/mL, respectively. The synergistic effect of the test compound was observed when associated with amphotericin B against C. albicans and C. tropicalis, with no antagonism between the substances against any of the strains tested. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance and virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores. Furthermore, it was also possible to identify the fungistatic profile of the test substance by studying the growth kinetics of C. albicans. Finally, it was observed that the test compound stimulated ergosterol biosynthesis by the yeast, probably by activating microbial resistance responses.
Collapse
Affiliation(s)
| | - Thales Luciano Bezerra Santos
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| | - Jaqueline Ferreira Ramos
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Jonh Anderson Macêdo Santos
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Francinalva Dantas de Medeiros
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
- Department of Chemistry, Federal Rural University of Pernambuco, Dom Manoel de Medeiros, Recife, PE, 52171-900, Brazil
| | - Wylly Araújo de Oliveira
- Education and Health Center, Professora Maria Anita Furtado Coelho, Bairro Sítio Olho D'água da Bica, Federal University of Campina Grande, Cuité, PB, 58175-000, Brazil
| |
Collapse
|
38
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
39
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Mottola A, Hartl J, Ralser M, Berman J. Metabolic sensing tips the balance of drug tolerance in fungal meningitis. Nat Microbiol 2024; 9:316-317. [PMID: 38316924 DOI: 10.1038/s41564-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
- Austin Mottola
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Johannes Hartl
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
41
|
Gu K, Feng S, Zhang X, Peng Y, Sun P, Liu W, Wu Y, Yu Y, Liu X, Liu X, Deng G, Zheng J, Li B, Zhao L. Deciphering the antifungal mechanism and functional components of cinnamomum cassia essential oil against Candida albicans through integration of network-based metabolomics and pharmacology, the greedy algorithm, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117156. [PMID: 37729978 DOI: 10.1016/j.jep.2023.117156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fungal pathogens can cause deadly invasive infections and have become a major global public health challenge. There is an urgent need to find new treatment options beyond established antifungal agents, as well as new drug targets that can be used to develop novel antifungal agents. Cinnamomum cassia is a tropical aromatic plant that has a wide range of applications in traditional Chinese medicine, especially in the treatment of bacterial and fungal infections. AIM OF THE STUDY The present study aimed to explore the mechanism of action and functional components of Cinnamomum cassia essential oil (CEO) against Candida albicans using an integrated strategy combining network-based metabolomics and pharmacology, the greedy algorithm and molecular docking. MATERIALS AND METHODS CEO was extracted using hydrodistillation and its chemical composition was identified by GC-MS. Cluster analysis was performed on the compositions of 19 other CEOs from the published literature, as well as the sample obtained in this study. The damages of C. albicans cells upon treatment with CEO was observed using a scanning electron microscope. The mechanisms of its antifungal effect at a subinhibitory concentration of 0.1 × MIC were determined using microbial metabolomics and network analysis. The functional components were studied using the greedy algorithm and molecular docking. RESULTS A total of 69 compounds were identified in the chemical analysis of CEO, which accounted for 90% of the sample. The major compounds were terpenoids (34.04%), aromatic compounds (4.52%), aliphatic compounds (0.9%), and others. Hierarchical cluster analysis of the compositions of 20 essential oils extracted from Cinnamomum cassia grown in different geographical locations showed a wide diversity of chemical composition with four major chemotypes. CEO showed strong antifungal activity and caused destruction of cell membranes in a concentration-dependent way. Metabolic fingerprint analysis identified 29 metabolites associated with lipid metabolism, which were mapped to 23 core targets mainly involved in fatty acid biosynthesis and metabolism. Six antifungal functional components of CEO were identified through network construction, greedy algorithm and molecular docking, including trans-cinnamaldehyde, δ-cadinol, ethylcinnamate, safrole, trans-anethole, and trans-cinnamyl acetate, which showed excellent binding with specific targets of AKR1B1, PPARG, BCHE, CYP19A1, CYP2C19, QPCT, and CYP51A1. CONCLUSIONS This study provides a systematic understanding of the antifungal activity of CEO and offers an integrated strategy for deciphering the potential metabolism and material foundation of complex component drugs.
Collapse
Affiliation(s)
- Keru Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shengyi Feng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yuanyuan Peng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Peipei Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wenchi Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yi Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yun Yu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jun Zheng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Bo Li
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
42
|
Vishwakarma M, Haider T, Soni V. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiol Res 2024; 278:127517. [PMID: 37863019 DOI: 10.1016/j.micres.2023.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India; Amity Institute of Pharmacy, Amity University, Gwalior, M.P., India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India.
| |
Collapse
|
43
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
44
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
45
|
Lee Y, Park E, Jang B, Hwang J, Lee J, Oh ES. Antifungal Activity of Bulgarian Rose Damascena Oil against Vaginitis-Causing Opportunistic Fungi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5054865. [PMID: 38074845 PMCID: PMC10708955 DOI: 10.1155/2023/5054865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 10/16/2024]
Abstract
Since Bulgarian rose damascena oil is known for its anti-inflammatory, antioxidant, and antimicrobial properties, we investigated its antifungal activity against the species of Candida, which are among the most common opportunistic fungal pathogens. Our disk-diffusion assay revealed that Bulgarian rose damascena oil effectively inhibited the growth of Candida albicans along with various bacteria. The minimum inhibitory and fungicidal concentrations against Candida albicans and Candida glabrata were all 0.25%. Under our experimental conditions, Bulgarian rose damascena oil showed better inhibitory effects on Candida glabrata and Candida albicans than several popular essential oils reported to have antifungal activity other than Origanum vulgare oil. Interestingly, Bulgarian rose damascena oil showed better antifungal activity against Candida species at acidic pH and induced cell death of Candida species in the culture medium, with cell death seen in 25-35% of the cells exposed to 0.05% Bulgarian rose damascena oil. Furthermore, Bulgarian rose damascena oil inhibited the hyphal growth of Candida albicans cultured in the RPMI medium with fetal bovine serum. These findings collectively suggest that Bulgarian rose damascena oil has antifungal activity against Candida species and thus could potentially be developed in novel therapies for vaginitis-causing pathogenic fungi.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunhye Park
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinmin Lee
- Jayeonin Inc., Seoul 04995, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
46
|
Li C, Meng Y, Li H, Du W, Gao X, Suo C, Gao Y, Ni Y, Sun T, Yang S, Lan T, Xin M, Ding C. Immunization with a heat-killed prm1 deletion strain protects the host from Cryptococcus neoformans infection. Emerg Microbes Infect 2023; 12:2244087. [PMID: 37526401 PMCID: PMC10431737 DOI: 10.1080/22221751.2023.2244087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/02/2023] [Accepted: 07/30/2023] [Indexed: 08/02/2023]
Abstract
Systemic infection with Cryptococcus neoformans, a dangerous and contagious pathogen found throughout the world, frequently results in lethal cryptococcal pneumonia and meningoencephalitis, and no effective treatments and vaccination of cryptococcosis are available. Here, we describe Prm1, a novel regulator of C. neoformans virulence. C. neoformans prm1Δ cells exhibit extreme sensitivity to various environmental stress conditions. Furthermore, prm1Δ cells show deficiencies in the biosynthesis of chitosan and mannoprotein, which in turn result in impairment of cell wall integrity. Treatment of mice with heat-killed prm1Δ cells was found to facilitate the host immunological defence against infection with wild-type C. neoformans. Further investigation demonstrated that prm1Δ cells strongly promote pulmonary production of interferon-γ, leading to activation of macrophage M1 differentiation and inhibition of M2 polarization. Therefore, our findings suggest that C. neoformans Prm1 may be a viable target for the development of anti-cryptococcosis medications and, cells lacking Prm1 represent a promising candidate for a vaccine.
Collapse
Affiliation(s)
- Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Yiru Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Yue Ni
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
- Department of Scientific Research, Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People’s Republic of China
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Tian Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Meiling Xin
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, People’s Republic of China
| |
Collapse
|
47
|
Fang T, Xiong J, Wang L, Feng Z, Hang S, Yu J, Li W, Feng Y, Lu H, Jiang Y. Unexpected Inhibitory Effect of Octenidine Dihydrochloride on Candida albicans Filamentation by Impairing Ergosterol Biosynthesis and Disrupting Cell Membrane Integrity. Antibiotics (Basel) 2023; 12:1675. [PMID: 38136708 PMCID: PMC10741164 DOI: 10.3390/antibiotics12121675] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans filamentation plays a significant role in developing both mucosal and invasive candidiasis, making it a crucial virulence factor. Consequently, exploring and identifying inhibitors that impede fungal hyphal formation presents an intriguing approach toward antifungal strategies. In line with this anti-filamentation strategy, we conducted a comprehensive screening of a library of FDA-approved drugs to identify compounds that possess inhibitory properties against hyphal growth. The compound octenidine dihydrochloride (OCT) exhibits potent inhibition of hyphal growth in C. albicans across different hyphae-inducing media at concentrations below or equal to 3.125 μM. This remarkable inhibitory effect extends to biofilm formation and the disruption of mature biofilm. The mechanism underlying OCT's inhibition of hyphal growth is likely attributed to its capacity to impede ergosterol biosynthesis and induce the generation of reactive oxygen species (ROS), compromising the integrity of the cell membrane. Furthermore, it has been observed that OCT demonstrates protective attributes against invasive candidiasis in Galleria mellonella larvae through its proficient eradication of C. albicans colonization in infected G. mellonella larvae by impeding hyphal formation. Although additional investigation is required to mitigate the toxicity of OCT in mammals, it possesses considerable promise as a potent filamentation inhibitor against invasive candidiasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
48
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
49
|
Munzen ME, Goncalves Garcia AD, Martinez LR. An update on the global treatment of invasive fungal infections. Future Microbiol 2023; 18:1095-1117. [PMID: 37750748 PMCID: PMC10718168 DOI: 10.2217/fmb-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 09/27/2023] Open
Abstract
Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
50
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|