1
|
de Vries RP. Colony differentiation of saprobic and pathogenic fungi in relation to carbon utilization. Fungal Genet Biol 2025; 179:104001. [PMID: 40348007 DOI: 10.1016/j.fgb.2025.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Carbon utilization is crucial for the cellular functions of all fungi and is highly dependent on the prevalent carbon sources in the environment. In natural environments, plant biomass is a major carbon source for most saprobic and pathogenic filamentous fungi and its utilization requires a complex process involving extracellular enzymes, sugar transporters and metabolic pathways, governed by a network of transcriptional regulators. Filamentous fungi form extensive colonies that encounter highly diverse environmental conditions and available carbon levels, which raises the question if, and to which extent, parts of the colony exposed to sufficient carbon source levels can support other parts that are under carbon limitation or starvation. While it is difficult to mimic the heterogenic natural conditions in a laboratory experiment, several studies into carbon translocation, and colony and hyphal differentiation have provided insights into this complex biological process. These studies are reviewed here and their insights are re-assessed and combined into a current state of the art of this field.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Ost KJ, Student M, Cord-Landwehr S, Moerschbacher BM, Ram AFJ, Dirks-Hofmeister ME. Cell walls of filamentous fungi - challenges and opportunities for biotechnology. Appl Microbiol Biotechnol 2025; 109:125. [PMID: 40411627 PMCID: PMC12103488 DOI: 10.1007/s00253-025-13512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
The cell wall of filamentous fungi is essential for growth and development, both of which are crucial for fermentations that play a vital role in the bioeconomy. It typically has an inner rigid core composed of chitin and beta-1,3-/beta-1,6-glucans and a rather gel-like outer layer containing other polysaccharides and glycoproteins varying between and within species. Only a fraction of filamentous fungal species is used for the biotechnological production of enzymes, organic acids, and bioactive compounds such as antibiotics in large amounts on a yearly basis by precision fermentation. Most of these products are secreted into the production medium and must therefore pass through fungal cell walls at high transfer rates. Thus, cell wall mutants have gained interest for industrial enzyme production, although the causal relationship between cell walls and productivity requires further elucidation. Additionally, the extraction of valuable biopolymers like chitin and chitosan from spent fungal biomass, which is predominantly composed of cell walls, represents an underexplored opportunity for circular bioeconomy. Questions persist regarding the effective extraction of these biopolymers from the cell wall and their repurposing in valorization processes. This review aims to address these issues and promote further research on understanding the cell walls in filamentous fungi to optimize their biotechnological use. KEY POINTS: • The highly complex cell walls of filamentous fungi are important for biotechnology. • Cell wall mutants show promising potential to improve industrial enzyme secretion. • Recent studies revealed enhanced avenues for chitin/chitosan from fungal biomass.
Collapse
Affiliation(s)
- Katharina J Ost
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mounashree Student
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Arthur F J Ram
- Fungal Genetics and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mareike E Dirks-Hofmeister
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany.
| |
Collapse
|
3
|
Schuster M, Kilaru S, Wösten HAB, Steinberg G. Secretion and endocytosis in subapical cells support hyphal tip growth in the fungus Trichoderma reesei. Nat Commun 2025; 16:4402. [PMID: 40355408 PMCID: PMC12069525 DOI: 10.1038/s41467-025-59606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Filamentous fungi colonise substrates by invasive growth of multi-cellular hyphae. It is commonly accepted that hyphae expand by tip growth that is restricted to the first apical cell, where turgor pressure, exocytosis and endocytosis cooperate to expand the apex. Here we show that, contrary to expectations, subapical cells play important roles in hyphal growth in the industrial enzyme-producing fungus Trichoderma reesei. We find that the second and third cells are crucial for hyphal extension, which correlates with tip-ward cytoplasmic streaming, and the fourth-to-sixth cells support rapid growth rates. Live cell imaging reveals exocytotic and endocytic activity in both apical and subapical cells, associated with microtubule-based bi-directional transport of secretory vesicles and early endosomes across septa. Moreover, visualisation of 1,3-β-glucan synthase in subapical cells reveals that these compartments deliver cell wall-forming enzymes to the apical growth region. Thus, subapical cells are active in exocytosis and endocytosis, and deliver growth supplies and enzymes to the expanding hyphal apex.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sreedhar Kilaru
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Han A B Wösten
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Gero Steinberg
- Department of Biosciences, University of Exeter, Exeter, United Kingdom.
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Chen Y, Sun H, Chen H, Wu J, Huang J, Jiang X, Qin L. Enhancing cellulase production in Neurospora crassa through combined deletion of the phospholipase D-encoding gene pla-7 and modulation of transcription factor CLR-2 expression. Int J Biol Macromol 2025; 307:141944. [PMID: 40074114 DOI: 10.1016/j.ijbiomac.2025.141944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Neurospora crassa, a saprophytic fungus, naturally secretes plant cell wall-degrading enzymes, demonstrating strong cellulases production. Despite its century-long use as a model organism, its industrial applications are underexplored. We compared N. crassa with Trichoderma reesei, an industrial workhorse, for cellulases production and lignocellulose degradation. The extracellular protein secretion level of N. crassa WT is significantly higher than that of T. reesei QM6a, indicating industrial potential. However, its mycelial morphology and dependence on insoluble substrates like lignocellulose pose bioreactor challenges. Deleting the phospholipase D gene pla-7 in N. crassa resulted in shorter aerial hyphae, increased branching, and improved biomass on sucrose. Although pla-7 deletion hindered cellulase induction on cellulose in shake flasks, mis-expressing clr-2 restored cellulase production in Δpla-7 strains. Additionally, protein secretion levels in Δpla-7::Mclr-2 strains were approximately doubled on both sucrose and cellulose carbon sources compared to WT::Mclr-2 strains in shake flasks. Furthermore, Δpla-7::Mclr-2 strains demonstrated enhanced fermentation properties in bioreactors using sucrose. These results highlight N. crassa' s industrial promise and provide insights for enhancing production of cellulases in other fungi.
Collapse
Affiliation(s)
- Yifan Chen
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Haowen Sun
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Huizhen Chen
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Jiaming Wu
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Jianzhong Huang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Xianzhang Jiang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China.
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Alam S, Chowdhury MNR, Hossain MA, Richi FT, Emon NU, Mohammad M, Ahmed N, Taher MA. Antifungal Potentials of Asian Plants: Ethnobotanical Insights and Phytochemical Investigations. Chem Biodivers 2025; 22:e202402867. [PMID: 39777852 DOI: 10.1002/cbdv.202402867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Ethnomedicinal plants in Asia offer a promising, low-side-effect alternative to synthetic drugs for treating fungal infections, one of the most widespread communicable diseases caused by pathogenic fungi. Despite being underexplored, the region's rich plant diversity holds the potential for developing effective antifungal drugs. Research is increasingly focused on bioactive compounds from these plants, which show strong antifungal properties and may serve as leads for new drug development. This comprehensive review included 257 articles which are peer-reviewed and written in english language with reported phytochemicals exerting antifungal potentials. In this review, we have discussed twenty-seven (27) Asian medicinal plants that contain sixty-seven (67) responsible phytochemicals deciphering promising antifungal action. This finding revealed that Asian plant diversity can be helpful in treating fungal invasion against several fungal species. Inhibition and reduction of mycelial growth and zoospore germination, fungistatic and fungicidal activities, and inhibition of ergosterol biosynthesis are some common mechanisms reported in this review. Thus, this Asian plant diversity can provide a ray of hope as a modern therapeutic approach to bypass antimicrobial resistance issues noticed in recent days. Further research is still recommended to ascertain their exact mode of action, required dose, and safety and efficacy profile.
Collapse
Affiliation(s)
- Safaet Alam
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Abir Hossain
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh
- Quality Assurance Department, Renata PLC, Gazipur, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mahathir Mohammad
- Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong, Bangladesh
| | - Najneen Ahmed
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Mohammad Abdullah Taher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| |
Collapse
|
6
|
Deng J, Chen Y, Lin S, Shao Y, Zou Y, Zheng Q, Guo L, Lin J, Chen M, Ye Z. Molecular Regulation of Carotenoid Accumulation Enhanced by Oxidative Stress in the Food Industrial Strain Blakeslea trispora. Foods 2025; 14:1452. [PMID: 40361535 PMCID: PMC12071634 DOI: 10.3390/foods14091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Blakeslea trispora is a key industrial strain for carotenoid production due to its rapid growth, ease of cultivation, and high yield. This study examined the effects of oxidative stress induced by rose bengal (RB) and hydrogen peroxide (H2O2) on carotenoid accumulation, achieving maximum yields of 459.38 ± 77.15 μg/g dry cell weight (DCW) at 0.4 g/L RB and 294.38 ± 14.16 μg/g DCW at 0.6% H2O2. These results demonstrate that oxidative stress promotes carotenoid accumulation in B. trispora. To investigate the underlying molecular mechanisms, transcriptional levels of key genes were analyzed under optimal stress conditions. In the carotenogenic pathway, only HMGR showed upregulation, while ACC, linked to fatty acid biosynthesis, remained unchanged. Within the mitogen-activated protein kinase (MAPK) pathway, FUS3 transcription increased under both stress conditions, MPK1 transcription rose only under H2O2 stress, and HOG1 exhibited no significant changes. Among heat shock proteins (HSPs), only HSP70 showed elevated transcription under H2O2 stress, while other HSP genes remained unchanged. These findings suggest that oxidative stress induced by RB and H2O2 enhances carotenoid accumulation in B. trispora through distinct regulatory pathways. This study provides valuable insights into stress-adaptive mechanisms and offers strategies to optimize carotenoid production in fungi.
Collapse
Affiliation(s)
- Jiawei Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siting Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Shao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Qianwang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Junfang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiwei Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
7
|
de Castro PA, Akiyama DY, Pinzan CF, dos Reis TF, Delbaje E, Rocha P, Izidoro MA, Schenkman S, Sugimoto S, Takeshita N, Steffen K, Aycock JL, Dolan SK, Rokas A, Fill T, Goldman GH. Aspergillus fumigatus secondary metabolite pyripyropene is important for the dual biofilm formation with Pseudomonas aeruginosa. mBio 2025; 16:e0036325. [PMID: 40094363 PMCID: PMC11980569 DOI: 10.1128/mbio.00363-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The human pathogenic fungus Aspergillus fumigatus establishes dual biofilm interactions in the lungs with the pathogenic bacterium Pseudomonas aeruginosa. Screening of 21 A. fumigatus null mutants revealed seven mutants (two G protein-coupled receptors, three mitogen-activated protein kinase receptors, a Gα protein, and one histidine kinase receptor) with reduced biofilm formation, specifically in the presence of P. aeruginosa. Transcriptional profiling and metabolomics analysis of secondary metabolites produced by one of these mutants, ΔgpaB (gpaB encodes a Gα protein), showed GpaB controls the production of several important metabolites for the dual biofilm interaction, including pyripyropene A, a potent inhibitor of mammalian acyl-CoA cholesterol acyltransferase. Deletion of pyr2, encoding a non-reducing polyketide synthase essential for pyripyropene biosynthesis, showed reduced A. fumigatus Δpyr2-P. aeruginosa biofilm growth, altered macrophage responses, and attenuated mouse virulence in a chemotherapeutic murine model. We identified pyripyropene as a novel player in the ecology and pathogenic interactions of this important human fungal pathogen.IMPORTANCEAspergillus fumigatus and Pseudomonas aeruginosa are two important human pathogens. Both organisms establish biofilm interactions in patients affected with chronic lung pulmonary infections, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease. Colonization with A. fumigatus is associated with an increased risk of P. aeruginosa colonization in CF patients, and disease prognosis is poor when both pathogens are present. Here, we identified A. fumigatus genetic determinants important for the establishment of in vitro dual A. fumigatus-P. aeruginosa biofilm interactions. Among them, an A. fumigatus Gα protein GpaB is important for this interaction controlling the production of the secondary metabolite pyripyropene. We demonstrate that the lack of pyripyropene production decreases the dual biofilm interaction between the two species as well as the virulence of A. fumigatus in a chemotherapeutic murine model of aspergillosis. These results reveal a complete novel role for this secondary metabolite in the ecology and pathogenic interactions of this important human fungal pathogen.
Collapse
Affiliation(s)
- Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Peter Rocha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sérgio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinya Sugimoto
- Department of Bacteriology, Jikei Center for Biofilm Science and Technology, Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Karin Steffen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L. Aycock
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Stephen K. Dolan
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
8
|
Mazheika IS, Kamzolkina OV. The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi. Arch Microbiol 2025; 207:65. [PMID: 39979668 DOI: 10.1007/s00203-025-04271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 117971.
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
9
|
Zhang S, Luo J, Chen Y, Li H. Vesicle trafficking mediated by small GTPase CfRab6 in association with CfRic1 and CfRgp1 governs growth, conidiation, and pathogenicity of Colletotrichum fructicola. Int J Biol Macromol 2025; 289:138988. [PMID: 39706448 DOI: 10.1016/j.ijbiomac.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola. Consistent with our hypothesis, targeted gene deletion revealed that the ΔCfrab6 mutant displays defects in vesicle trafficking, including endocytosis and autophagy. These combined effects led to the impairments in growth, conidia, and pathogenicity. Moreover, we demonstrated the critical importance of the GDP/GTP motifs are crucial for the normal function of CfRab6. Additionally, our findings demonstrated that CfRic1 and CfRgp1 act as conserved GEFs for CfRab6, supported by their interactions with CfRab6 and the partial restoration of the active GTP-bound CfRab6, which alleviated phenotypic defects in the ΔCfric1 and ΔCfrgp1 mutants. In conclusion, our study sheds new light on the significance of CfRab6-mediated vesicle trafficking in the physiology and pathogenicity of C. fructicola, which might offer new potential targets for the management of anthracnose disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Jing Luo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Yan Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China.
| |
Collapse
|
10
|
Doan AG, Schafer JE, Douglas CM, Quintanilla MS, Morse ME, Edwards H, Huso WD, Gray KJ, Lee J, Dayie JK, Harris SD, Marten MR. Protein kinases MpkA and SepH transduce crosstalk between CWI and SIN pathways to activate protective hyphal septation under echinocandin cell wall stress. mSphere 2025; 10:e0064124. [PMID: 39670729 PMCID: PMC11774030 DOI: 10.1128/msphere.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024] Open
Abstract
This study investigates a previously unreported stress signal transduced as crosstalk between the cell wall integrity (CWI) pathway and the septation initiation network (SIN). Echinocandins, which target cell wall synthesis, are widely used to treat mycoses. Their efficacy, however, is species specific. Our findings suggest that this is due largely to CWI-SIN crosstalk and the ability of filamentous species to fortify with septa in response to echinocandin stress. To better understand this crosstalk, we used a microscopy-based assay to measure septum density, aiming to understand the septation response to cell wall stress. The echinocandin micafungin, an inhibitor of β-(1,3)-glucan synthase, was employed to induce this stress. We observed a strong positive correlation between micafungin treatment and septum density in wild-type strains. This finding suggests that CWI activates SIN under cell wall stress, increasing septum density to protect against cell wall failure. More detailed investigations, with targeted knockouts of CWI and SIN signaling proteins, enabled us to identify crosstalk occurring between the CWI kinase, MpkA, and the SIN kinase, SepH. This discovery of the previously unknown crosstalk between the CWI and SIN pathways not only reshapes our understanding of fungal stress responses, but also unveils a promising new target pathway for the development of novel antifungal strategies. IMPORTANCE Echinocandin-resistant species pose a major challenge in clinical mycology by rendering one of only four lines of treatment, notably one of the two that are well-tolerated, ineffective in treating systemic mycoses of these species. Previous studies have demonstrated that echinocandins fail against highly polarized fungi because they target only apical septal compartments. It is known that many filamentous species respond to cell wall stress with hyperseptation. In this work, we show that echinocandin resistance hinges on this dynamic response, rather than on innate septation alone. We also describe, for the first time, the signaling pathway used to deploy the hyperseptation response. By disabling this pathway, we were able to render mycelia susceptible to echinocandin stress. This work enhances our microbiological understanding of filamentous fungi and introduces a potential target to overcome echinocandin-resistant species.
Collapse
Affiliation(s)
- Alexander G. Doan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Jessica E. Schafer
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Casey M. Douglas
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Matthew S. Quintanilla
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Meredith E. Morse
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Harley Edwards
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Walker D. Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Kelsey J. Gray
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - JungHun Lee
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Joshua K. Dayie
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Steven D. Harris
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Mark R. Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Balasubrahmaniam N, King JC, Hegarty B, Dannemiller KC. Moving beyond species: fungal function in house dust provides novel targets for potential indicators of mold growth in homes. MICROBIOME 2024; 12:231. [PMID: 39517024 PMCID: PMC11549777 DOI: 10.1186/s40168-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Increased risk of asthma and other respiratory diseases is associated with exposures to microbial communities growing in damp and moldy indoor environments. The exact causal mechanisms remain unknown, and occupant health effects have not been consistently associated with any species-based mold measurement methods. We need new quantitative methods to identify homes with potentially harmful fungal growth that are not dependent upon species. The goal of this study was to identify genes consistently associated with fungal growth and associated function under damp conditions for use as potential indicators of mold in homes regardless of fungal species present. A de novo metatranscriptomic analysis was performed using house dust from across the US, incubated at 50%, 85%, or 100% equilibrium relative humidity (ERH) for 1 week. RESULTS Gene expression was a function of moisture (adonis2 p < 0.001), with fungal metabolic activity increasing with an increase in moisture condition (Kruskal-Wallis p = 0.003). Genes associated with fungal growth such as sporulation (n = 264), hyphal growth (n = 62), and secondary metabolism (n = 124) were significantly upregulated at elevated ERH conditions when compared to the low 50% ERH (FDR-adjusted p ≤ 0.001, log2FC ≥ 2), indicating that fungal function is influenced by damp conditions. A total of 67 genes were identified as consistently associated with the elevated 85% or 100% ERH conditions and included fungal developmental regulators and secondary metabolite genes such as brlA (log2FC = 7.39, upregulated at 100% compared to 85%) and stcC (log2FC = 8.78, upregulated at 85% compared to 50%). CONCLUSIONS Our results demonstrate that moisture conditions more strongly influence gene expression of indoor fungal communities compared to species presence. Identifying genes indicative of microbial growth under damp conditions will help develop robust monitoring techniques for indoor microbial exposures and improve understanding of how dampness and mold are linked to disease. Video Abstract.
Collapse
Affiliation(s)
- Neeraja Balasubrahmaniam
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Jon C King
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Bridget Hegarty
- Department of Civil & Environmental Engineering, College of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Modaffari D, Finlayson A, Miao Y, Wallace EWJ, Sawin KE. Improved gene editing and fluorescent-protein tagging in Aspergillus nidulans using a Golden Gate-based CRISPR-Cas9 plasmid system. Wellcome Open Res 2024; 9:602. [PMID: 39640368 PMCID: PMC11617824 DOI: 10.12688/wellcomeopenres.23086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
CRISPR-Cas9 systems can be used for precise genome editing in filamentous fungi, including Aspergillus nidulans. However, current CRISPR-Cas9 systems for A. nidulans rely on relatively complex or multi-step cloning methods to build a plasmid expressing both Cas9 and an sgRNA targeting a genomic locus. In this study we improve on existing plasmid-based CRISPR-Cas9 systems for Aspergilli by creating an extremely simple-to-use CRISPR-Cas9 system for A. nidulans genome editing. In our system, a plasmid containing both Cas9 and an sgRNA is assembled in a one-step Golden Gate reaction. We demonstrate precise, scarless genome editing with nucleotide-level DNA substitutions, and we demonstrate markerless gene tagging by fusing fluorescent-protein coding sequences to the endogenous coding sequences of several A. nidulans genes. We also describe A. nidulans codon-adjusted versions of multiple recent-generation fluorescent proteins, which will be useful to the wider Aspergillus community.
Collapse
Affiliation(s)
- Domenico Modaffari
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
- Institute for Cell Biology and Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh, Scotland, EH9 3BF, UK
| | - Aimée Finlayson
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Yuyang Miao
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Edward W. J. Wallace
- Institute for Cell Biology and Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh, Scotland, EH9 3BF, UK
| | - Kenneth E. Sawin
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
13
|
Rutkowski DM, Vincenzetti V, Vavylonis D, Martin SG. Cdc42 mobility and membrane flows regulate fission yeast cell shape and survival. Nat Commun 2024; 15:8363. [PMID: 39333500 PMCID: PMC11437197 DOI: 10.1038/s41467-024-52655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Polarized exocytosis induced by local Cdc42 GTPase activity results in membrane flows that deplete low-mobility membrane-associated proteins. A reaction-diffusion particle model comprising Cdc42 positive feedback activation, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis shows that flow-induced depletion of low mobility GAPs promotes polarization. We modified Cdc42 mobility in Schizosaccharomyces pombe by replacing its prenylation site with 1, 2 or 3 repeats of the Rit C-terminal membrane-binding domain (ritC), yielding alleles with progressively lower mobility and increased flow-coupling. While Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC are inviable, in agreement with model's predictions. Deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells, verifying the model's prediction that GAP deletion increases Cdc42 activity at the expense of polarization. Our work demonstrates how membrane flows are an integral part of Cdc42-driven pattern formation and require Cdc42-GTP to turn over faster than the surface on which it forms.
Collapse
Affiliation(s)
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Department of Molecular and Cellular Biology, University of Geneva, Quai Ernest-Ansermet 30, Geneva, Switzerland.
| |
Collapse
|
14
|
Chevalier L, Klingelschmitt F, Mousseron L, Minc N. Mechanical strategies supporting growth and size diversity in Filamentous Fungi. Mol Biol Cell 2024; 35:br17. [PMID: 39046771 PMCID: PMC11449389 DOI: 10.1091/mbc.e24-04-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.
Collapse
Affiliation(s)
- Louis Chevalier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Flora Klingelschmitt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Ludovic Mousseron
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| |
Collapse
|
15
|
Diehl C, Pinzan CF, de Castro PA, Delbaje E, García Carnero LC, Sánchez-León E, Bhalla K, Kronstad JW, Kim DG, Doering TL, Alkhazraji S, Mishra NN, Ibrahim AS, Yoshimura M, Vega Isuhuaylas LA, Pham LTK, Yashiroda Y, Boone C, dos Reis TF, Goldman GH. Brilacidin, a novel antifungal agent against Cryptococcus neoformans. mBio 2024; 15:e0103124. [PMID: 38916308 PMCID: PMC11253610 DOI: 10.1128/mbio.01031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.
Collapse
Affiliation(s)
- Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Laura C. García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong-gyu Kim
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Nagendra N. Mishra
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | | | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
16
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
17
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
18
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Schuster M, Kilaru S, Steinberg G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat Commun 2024; 15:4357. [PMID: 38821954 PMCID: PMC11143370 DOI: 10.1038/s41467-024-48157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.
Collapse
|
20
|
Duan Y, Chen X, Wang T, Li M. The serine/threonine protein kinase MpSTE1 directly governs hyphal branching in Monascus spp. Appl Microbiol Biotechnol 2024; 108:255. [PMID: 38446219 PMCID: PMC10917826 DOI: 10.1007/s00253-024-13093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Monascus spp. are commercially important fungi due to their ability to produce beneficial secondary metabolites such as the cholesterol-lowering agent lovastatin and natural food colorants azaphilone pigments. Although hyphal branching intensively influenced the production of these secondary metabolites, the pivotal regulators of hyphal development in Monascus spp. remain unclear. To identify these important regulators, we developed an artificial intelligence (AI)-assisted image analysis tool for quantification of hyphae-branching and constructed a random T-DNA insertion library. High-throughput screening revealed that a STE kinase, MpSTE1, was considered as a key regulator of hyphal branching based on the hyphal phenotype. To further validate the role of MpSTE1, we generated an mpSTE1 gene knockout mutant, a complemented mutant, and an overexpression mutant (OE::mpSTE1). Microscopic observations revealed that overexpression of mpSTE1 led to a 63% increase in branch number while deletion of mpSTE1 reduced the hyphal branching by 68% compared to the wild-type strain. In flask cultures, the strain OE::mpSTE1 showed accelerated growth and glucose consumption. More importantly, the strain OE::mpSTE1 produced 9.2 mg/L lovastatin and 17.0 mg/L azaphilone pigments, respectively, 47.0% and 30.1% higher than those of the wild-type strain. Phosphoproteomic analysis revealed that MpSTE1 directly phosphorylated 7 downstream signal proteins involved in cell division, cytoskeletal organization, and signal transduction. To our best knowledge, MpSTE1 is reported as the first characterized regulator for tightly regulating the hyphal branching in Monascus spp. These findings significantly expanded current understanding of the signaling pathway governing the hyphal branching and development in Monascus spp. Furthermore, MpSTE1 and its analogs were demonstrated as promising targets for improving production of valuable secondary metabolites. KEY POINTS: • MpSTE1 is the first characterized regulator for tightly regulating hyphal branching • Overexpression of mpSTE1 significantly improves secondary metabolite production • A high-throughput image analysis tool was developed for counting hyphal branching.
Collapse
Affiliation(s)
- Yali Duan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Xizhu Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Tingya Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Mu Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented FoodsHuazhong Agricultural UniversityHubei Province, Wuhan, 430070, China.
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
21
|
Wang D, An B, Luo H, He C, Wang Q. Roles of CgEde1 and CgMca in Development and Virulence of Colletotrichum gloeosporioides. Int J Mol Sci 2024; 25:2943. [PMID: 38474190 DOI: 10.3390/ijms25052943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracnose, induced by Colletotrichum gloeosporioides, poses a substantial economic threat to rubber tree yields and various other tropical crops. Ede1, an endocytic scaffolding protein, plays a crucial role in endocytic site initiation and maturation in yeast. Metacaspases, sharing structural similarities with caspase family proteases, are essential for maintaining cell fitness. To enhance our understanding of the growth and virulence of C. gloeosporioides, we identified a homologue of Ede1 (CgEde1) in C. gloeosporioides. The knockout of CgEde1 led to impairments in vegetative growth, conidiation, and pathogenicity. Furthermore, we characterized a weakly interacted partner of CgEde1 and CgMca (orthologue of metacaspase). Notably, both the single mutant ΔCgMca and the double mutant ΔCgEde1/ΔCgMca exhibited severe defects in conidiation and germination. Polarity establishment and pathogenicity were also disrupted in these mutants. Moreover, a significantly insoluble protein accumulation was observed in ΔCgMca and ΔCgEde1/ΔCgMca strains. These findings elucidate the mechanism by which CgEde1 and CgMca regulates the growth and pathogenicity of C. gloeosporioides. Their regulation involves influencing conidiation, polarity establishment, and maintaining cell fitness, providing valuable insights into the intricate interplay between CgEde1 and CgMca in C. gloeosporioides.
Collapse
Affiliation(s)
- Dan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
22
|
Horikiri S, Harada M, Asada R, Tsuchido T, Furuta M. Gamma-irradiated Aspergillus conidia show a growth curve with a reproductive death phase. JOURNAL OF RADIATION RESEARCH 2024; 65:28-35. [PMID: 37948456 PMCID: PMC10803171 DOI: 10.1093/jrr/rrad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Indexed: 11/12/2023]
Abstract
In this study, we evaluated the effects of gamma irradiation on the germination of Aspergillus conidia and mycelial growth using microscopy and predictive microbiological modeling methods. A dose of 0.4 kGy reduced the germination rate by 20% compared to the untreated control, indicating interphase death due to the high radiation dose. The number of colonies formed (5.5%) was lower than the germination rate (69%), suggesting that most colonies died after germination. Microscopic observations revealed that mycelial elongation ceased completely in the middle of the growth phase, indicating reproductive death. The growth curves of irradiated conidia exhibited a delayed change in the growth pattern, and a decrease in slope during the early stages of germination and growth at low densities. A modified logistic model, which is a general purpose growth model that allows for the evaluation of subpopulations, was used to fit the experimental growth curves. Dose-dependent waveform changes may reflect the dynamics of the subpopulations during germination and growth. These methods revealed the occurrence of two cell death populations resulting from gamma irradiation of fungal conidia and contribute to the understanding of irradiation-induced cell death in fungi.
Collapse
Affiliation(s)
- Shigetoshi Horikiri
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Mami Harada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Ryoko Asada
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Masakazu Furuta
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| |
Collapse
|
23
|
Rogers AM, Taylor R, Egan MJ. The cell-end protein Tea4 spatially regulates hyphal branch initiation and appressorium remodeling in the blast fungus Magnaporthe oryzae. Mol Biol Cell 2024; 35:br2. [PMID: 37903237 PMCID: PMC10881174 DOI: 10.1091/mbc.e23-06-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
The differentiation of specialized infection cells, called appressoria, from polarized germ tubes of the blast fungus Magnaporthe oryzae, requires remarkable remodeling of cell polarity and architecture, yet our understanding of this process remains incomplete. Here we investigate the behavior and role of cell-end marker proteins in appressorium remodeling and hyphal branch emergence. We show that the SH3 domain-containing protein Tea4 is required for the normal formation of an F-actin ring at Tea1-GFP-labeled polarity nodes, which contributes to the remodeling of septin structures and repolarization of the appressorium. Further, we show that Tea1 localizes to a cortical structure during hyphal septation which, unlike contractile septin rings, persists after septum formation, and, in combination with other polarity determinants, likely spatially regulates branch emergence. Genetic loss of Tea4 leads to mislocalization of Tea1 at the hyphal apex and with it, impaired growth directionality. In contrast, Tea1 is largely depleted from septation events in Δtea4 mutants and branching and septation are significantly reduced. Together, our data provide new insight into polarity remodeling during infection-related and vegetative growth by the blast fungus.
Collapse
Affiliation(s)
- Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| | - Rachel Taylor
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| |
Collapse
|
24
|
Hillen T, Loy N, Painter KJ, Thiessen R. Modelling microtube driven invasion of glioma. J Math Biol 2023; 88:4. [PMID: 38015257 PMCID: PMC10684558 DOI: 10.1007/s00285-023-02025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Thomas Hillen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.
| | - Nadia Loy
- Department of Mathematical Sciences (DISMA), Politecnico di Torino, Turin, Italy
| | - Kevin J Painter
- Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino, Turin, Italy
| | - Ryan Thiessen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Chen Y, Liu J, Kang S, Wei D, Fan Y, Xiang M, Liu X. A palisade-shaped membrane reservoir is required for rapid ring cell inflation in Drechslerella dactyloides. Nat Commun 2023; 14:7376. [PMID: 37968349 PMCID: PMC10651832 DOI: 10.1038/s41467-023-43235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion of individual vesicles carrying membrane-building materials with the plasma membrane (PM) enables gradual cell expansion and shape change. Constricting ring (CR) cells of carnivorous fungi triple in size within 0.1-1 s to capture passing nematodes. Here, we investigated how a carnivorous fungus, Drechslerella dactyloides, executes rapid and irreversible PM expansion during CR inflation. During CR maturation, vesicles carrying membrane-building materials accumulate and fuse, forming a structure named the Palisade-shaped Membrane-building Structure (PMS) around the rumen side of ring cells. After CR inflation, the PMS disappears, with partially inflated cells displaying wavy PM and fully inflated cells exhibiting smooth PM, suggesting that the PMS serves as the reservoir for membrane-building materials to enable rapid and extensive PM expansion. The DdSnc1, a v-SNARE protein, accumulates at the inner side of ring cells and is necessary for PMS formation and CR inflation. This study elucidates the unique cellular mechanisms underpinning rapid CR inflation.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
27
|
Prieto-Ruiz F, Gómez-Gil E, Vicente-Soler J, Franco A, Soto T, Madrid M, Cansado J. Divergence of cytokinesis and dimorphism control by myosin II regulatory light chain in fission yeasts. iScience 2023; 26:107611. [PMID: 37664581 PMCID: PMC10470405 DOI: 10.1016/j.isci.2023.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Non-muscle myosin II activation by regulatory light chain (Rlc1Sp) phosphorylation at Ser35 is crucial for cytokinesis during respiration in the fission yeast Schizosaccharomyces pombe. We show that in the early divergent and dimorphic fission yeast S. japonicus non-phosphorylated Rlc1Sj regulates the activity of Myo2Sj and Myp2Sj heavy chains during cytokinesis. Intriguingly, Rlc1Sj-Myo2Sj nodes delay yeast to hyphae onset but are essential for mycelial development. Structure-function analysis revealed that phosphorylation-induced folding of Rlc1Sp α1 helix into an open conformation allows precise regulation of Myo2Sp during cytokinesis. Consistently, inclusion of bulky tryptophan residues in the adjacent α5 helix triggered Rlc1Sp shift and supported cytokinesis in absence of Ser35 phosphorylation. Remarkably, unphosphorylated Rlc1Sj lacking the α1 helix was competent to regulate S. pombe cytokinesis during respiration. Hence, early diversification resulted in two efficient phosphorylation-independent and -dependent modes of Rlc1 regulation of myosin II activity in fission yeasts, the latter being conserved through evolution.
Collapse
Affiliation(s)
- Francisco Prieto-Ruiz
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Elisa Gómez-Gil
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
28
|
Li S, Yang M, Yao T, Xia W, Ye Z, Zhang S, Li Y, Zhang Z, Song R. Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant. Front Microbiol 2023; 14:1199907. [PMID: 37555064 PMCID: PMC10405623 DOI: 10.3389/fmicb.2023.1199907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Smut fungi display a uniform life cycle including two phases: a saprophytic phase in vitro and a parasitic phase in host plants. Several apathogenic smut fungi are found, lacking suitable hosts in their habitat. Interestingly, MT-type Ustilago esculenta was found to maintain a parasitic life, lacking the saprophytic phase. Its long period of asexual proliferation in plant tissue results in severe defects in certain functions. In this study, the growth dynamics of U. esculenta in plant tissues were carefully observed. The mycelia of T- and MT-type U. esculenta exhibit rapid growth after karyogamy and aggregate between cells. While T-type U. esculenta successfully forms teliospores after aggregation, the aggregated mycelia of MT-type U. esculenta gradually disappeared after a short period of massive proliferation. It may be resulted by the lack of nutrition such as glucose and sucrose. After overwintering, infected Zizania latifolia plants no longer contained diploid mycelia resulting from karyogamy. This indicated that diploid mycelia failed to survive in plant tissues. It seems that diploid mycelium only serves to generate teliospores. Notably, MT-type U. esculenta keeps the normal function of karyogamy, though it is not necessary for its asexual life in plant tissue. Further investigations are required to uncover the underlying mechanism, which would improve our understanding of the life cycle of smut fungi and help the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Shiyu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shangfa Zhang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zhongjin Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| |
Collapse
|
29
|
Song X, Chen M, Zhao Y, Zhang M, Zhang L, Zhang D, Song C, Shang X, Tan Q. Multi-stage nuclear transcriptomic insights of morphogenesis and biparental role changes in Lentinula edodes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12624-y. [PMID: 37439832 DOI: 10.1007/s00253-023-12624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/14/2023]
Abstract
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: • Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. • Some genes show a biparental role-divergent expression at mycelial growth stage. • Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
Collapse
Affiliation(s)
- Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Dang Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| |
Collapse
|
30
|
Cairns TC, de Kanter T, Zheng XZ, Zheng P, Sun J, Meyer V. Regression modelling of conditional morphogene expression links and quantifies the impact of growth rate, fitness and macromorphology with protein secretion in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:95. [PMID: 37268954 DOI: 10.1186/s13068-023-02345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.
Collapse
Affiliation(s)
- Timothy C Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| | - Tom de Kanter
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Xiaomei Z Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
31
|
Kakoschke TK, Kleinemeier C, Knösel T, Kakoschke SC, Ebel F. The Novel Monoclonal IgG 1-Antibody AB90-E8 as a Diagnostic Tool to Rapidly Distinguish Aspergillus fumigatus from Other Human Pathogenic Aspergillus Species. J Fungi (Basel) 2023; 9:622. [PMID: 37367559 DOI: 10.3390/jof9060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
In most cases, invasive aspergillosis (IA) is caused by A. fumigatus, though infections with other Aspergillus spp. with lower susceptibilities to amphotericin B (AmB) gain ground. A. terreus, for instance, is the second leading cause of IA in humans and of serious concern because of its high propensity to disseminate and its in vitro and in vivo resistance to AmB. An early differentiation between A. fumigatus and non-A. fumigatus infections could swiftly recognize a potentially ineffective treatment with AmB and lead to the lifesaving change to a more appropriate drug regime in high-risk patients. In this study, we present the characteristics of the monoclonal IgG1-antibody AB90-E8 that specifically recognizes a surface antigen of A. fumigatus and the closely related, but not human pathogenic A. fischeri. We show immunostainings on fresh frozen sections as well as on incipient mycelium picked from agar plates with tweezers or by using the expeditious tape mount technique. All three methods have a time advantage over the common procedures currently used in the routine diagnosis of IA and outline the potential of AB90-E8 as a rapid diagnostic tool.
Collapse
Affiliation(s)
- Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sara Carina Kakoschke
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81337 Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| |
Collapse
|
32
|
Ledoux C, Chapeland-Leclerc F, Ruprich-Robert G, Bobée C, Lalanne C, Herbert É, David P. Prediction and experimental evidence of different growth phases of the Podospora anserina hyphal network. Sci Rep 2023; 13:8501. [PMID: 37231023 DOI: 10.1038/s41598-023-35327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Under ideal conditions, the growth of the mycelial network of a filamentous fungus is monotonous, showing an ever increasing complexity with time. The components of the network growth are very simple and based on two mechanisms: the elongation of each hypha, and their multiplication by successive branching. These two mechanisms are sufficient to produce a complex network, and could be localized only at the tips of hyphae. However, branching can be of two types, apical or lateral, depending on its location on the hyphae, therefore imposing the redistribution of the necessary material in the whole mycelium. From an evolutionary point of view, maintaining different branching processes, with additional energy needs for structure and metabolism, is intriguing. We propose in this work to discuss the advantages of each branching type using a new observable for the network growth, allowing us to compare growth configurations. For this purpose, we build on experimental observations of the Podospora anserina mycelium growth, enabling us to feed and constrain a lattice-free modeling of this network based on a binary tree. First, we report the set of statistics related to the branches of P. anserina that we have implemented into the model. Then, we build the density observable, allowing us to discuss the succession of growth phases. We predict that density over time is not monotonic, but shows a decay growth phase, clearly separated from an other one by a stationary phase. The time of appearance of this stable region appears to be driven solely by the growth rate. Finally, we show that density is an appropriate observable to differentiate growth stress.
Collapse
Affiliation(s)
- Clara Ledoux
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| | | | | | - Cécilia Bobée
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| | | | - Éric Herbert
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France.
| | - Pascal David
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| |
Collapse
|
33
|
Qiu R, Zhang J, McDaniel D, Peñalva MA, Xiang X. Live-Cell Imaging of Dynein-Mediated Cargo Transport in Aspergillus nidulans. Methods Mol Biol 2023; 2623:3-23. [PMID: 36602676 DOI: 10.1007/978-1-0716-2958-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have been used for studying long-distance transport of cargoes driven by cytoplasmic dynein. Aspergillus nidulans is a well-established genetic model organism used for studying dynein function and regulation in vivo. Here, we describe how we grow A. nidulans strains for live-cell imaging and how we observe the dynein-mediated distribution of early endosomes and secretory vesicles. Using an on-stage incubator and culture chambers for inverted microscopes, we can image fungal hyphae that naturally attach to the bottom of the chambers, using wide-field epifluorescence microscopes or the new Zeiss LSM 980 (with Airyscan 2) microscope. In addition to methods for preparing cells for imaging, a procedure for A. nidulans transformation is also described.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Dennis McDaniel
- Department of Microbiology and Immunology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
34
|
Lecointe K, Coulon P, Krzewinski F, Charlet R, Bortolus C, Sendid B, Cornu M. Parietal composition of Lichtheimia corymbifera: Differences between spore and germ tube stages and host-pathogen interactions. Med Mycol 2022; 61:6960681. [PMID: 36565722 DOI: 10.1093/mmy/myac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The molecular composition and structural organization of the cell wall of filamentous fungi underlie the ability of the host to identify them as pathogens. Although the organization of the fungal cell wall, composed of 90% polysaccharides, is similar from one fungus to another, small variations condition their ability to trigger pattern recognition receptors. Because the incidence of mucormycosis, an emerging life-threatening infection caused by the species of the order Mucorales is increasing worldwide, the precise composition of the cell wall of two strains of Lichtheimia corymbifera was investigated in the early growth stages of germination (spores and germ-tubes) using trimethylsilylation and confocal microscopy. This study also characterizes the response of THP-1 cells to Mucorales. The study identified the presence of uncommon monosaccharides (fucose, galactose, and glucuronic acid) whose respective proportions vary according to the germination stage, revealing early parietal reorganization. Immunofluorescence studies confirmed the exposure of β-glucan on the surface of swollen spores and germ-tubes. Both spores and germ-tubes of L. corymbifera promoted an early and strong pro-inflammatory response, through TLR-2. Our results show the singularity of the cell wall of the order Mucorales, opening perspectives for the development of specific diagnostic biomarkers.
Collapse
Affiliation(s)
- Karine Lecointe
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Pauline Coulon
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Frédéric Krzewinski
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France
| | - Rogatien Charlet
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Clovis Bortolus
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Marjorie Cornu
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
35
|
Chen Y, Liu J, Fan Y, Xiang M, Kang S, Wei D, Liu X. SNARE Protein DdVam7 of the Nematode-Trapping Fungus Drechslerella dactyloides Regulates Vegetative Growth, Conidiation, and the Predatory Process via Vacuole Assembly. Microbiol Spectr 2022; 10:e0187222. [PMID: 36287065 PMCID: PMC9769606 DOI: 10.1128/spectrum.01872-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play conserved roles in membrane fusion events in eukaryotes and have been documented to be involved in fungal growth and pathogenesis. However, little is known about the roles of SNAREs in trap morphogenesis in nematode-trapping fungi (NTF). Drechslerella dactyloides, one of the constricting ring-forming NTF, captures free-living nematodes via rapid ring cell inflation. Here, we characterized DdVam7 of D. dactyloides, a homolog of the yeast SNARE protein Vam7p. Deletion of DdVam7 significantly suppressed vegetative growth and conidiation. The mutation significantly impaired trap formation and ring cell inflation, resulting in a markedly decreased nematode-trapping ability. A large vacuole could develop in ring cells within ~2.5 s after instant inflation in D. dactyloides. In the ΔDdVam7 mutant, the vacuoles were small and fragmented in hyphae and uninflated ring cells, and the large vacuole failed to form in inflated ring cells. The localization of DdVam7 in vacuoles suggests its involvement in vacuole fusion. In summary, our results suggest that DdVam7 regulates vegetative growth, conidiation, and the predatory process by mediating vacuole assembly in D. dactyloides, and this provides a basis for studying mechanisms of SNAREs in NTF and ring cell rapid inflation. IMPORTANCE D. dactyloides is a nematode-trapping fungus that can capture nematodes through a constricting ring, the most sophisticated trapping device. It is amazing that constricting ring cells can inflate to triple their size within seconds to capture a nematode. A large centrally located vacuole is a unique signature associated with inflated ring cells. However, the mechanism underpinning trap morphogenesis, especially vacuole dynamics during ring cell inflation, remains unclear. Here, we documented the dynamics of vacuole assembly during ring cell inflation via time-lapse imaging for the first time. We characterized a SNARE protein in D. dactyloides (DdVam7) that was involved in vacuole assembly in hyphae and ring cells and played important roles in vegetative growth, conidiation, trap morphogenesis, and ring cell inflation. Overall, this study expands our understanding of biological functions of the SNARE proteins and vacuole assembly in NTF trap morphogenesis and provides a foundation for further study of ring cell rapid inflation mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
36
|
Pinar M, Alonso A, de los Ríos V, Bravo-Plaza I, de la Gandara Á, Galindo A, Arias-Palomo E, Peñalva MÁ. The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. iScience 2022; 25:104514. [PMID: 35754728 PMCID: PMC9213775 DOI: 10.1016/j.isci.2022.104514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Alonso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Álvaro de la Gandara
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Ernesto Arias-Palomo
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Á. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Corresponding author
| |
Collapse
|
37
|
Cairns TC, Zheng X, Feurstein C, Zheng P, Sun J, Meyer V. A Library of Aspergillus niger Chassis Strains for Morphology Engineering Connects Strain Fitness and Filamentous Growth With Submerged Macromorphology. Front Bioeng Biotechnol 2022; 9:820088. [PMID: 35111742 PMCID: PMC8801610 DOI: 10.3389/fbioe.2021.820088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Submerged fermentation using filamentous fungal cell factories is used to produce a diverse portfolio of useful molecules, including food, medicines, enzymes, and platform chemicals. Depending on strain background and abiotic culture conditions, different macromorphologies are formed during fermentation, ranging from dispersed hyphal fragments to approximately spherical pellets several millimetres in diameter. These macromorphologies are known to have a critical impact on product titres and rheological performance of the bioreactor. Pilot productivity screens in different macromorphological contexts is technically challenging, time consuming, and thus a significant limitation to achieving maximum product titres. To address this bottleneck, we developed a library of conditional expression mutants in the organic, protein, and secondary metabolite cell factory Aspergillus niger. Thirteen morphology-associated genes transcribed during fermentation were placed via CRISPR-Cas9 under control of a synthetic Tet-on gene switch. Quantitative analysis of submerged growth reveals that these strains have distinct and titratable macromorphologies for use as chassis during strain engineering programs. We also used this library as a tool to quantify how pellet formation is connected with strain fitness and filamentous growth. Using multiple linear regression modelling, we predict that pellet formation is dependent largely on strain fitness, whereas pellet Euclidian parameters depend on fitness and hyphal branching. Finally, we have shown that conditional expression of the putative kinase encoding gene pkh2 can decouple fitness, dry weight, pellet macromorphology, and culture heterogeneity. We hypothesize that further analysis of this gene product and the cell wall integrity pathway in which it is embedded will enable more precise engineering of A. niger macromorphology in future.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Claudia Feurstein
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| |
Collapse
|
38
|
Mazheika IS, Kamzolkina OV. Does macrovesicular endocytosis occur in fungal hyphae? FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Qiu R, Zhang J, Rotty JD, Xiang X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr Biol 2021; 31:4486-4498.e6. [PMID: 34428469 DOI: 10.1016/j.cub.2021.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023]
Abstract
Cytoplasmic dynein is activated by the dynactin complex, cargo adapters and LIS1 (Lissencephaly 1). How this process is regulated in vivo remains unclear. The dynein motor ring contains six AAA+ (ATPases associated with diverse cellular activities) domains. Here, we used the filamentous fungus Aspergillus nidulans to examine whether ATP hydrolysis at AAA3 regulates dynein activation in the context of other regulators. In fungal hyphae, early endosomes undergo dynein-mediated movement away from the microtubule plus ends near the hyphal tip. Dynein normally accumulates at the microtubule plus ends. The early endosomal adaptor Hook protein, together with dynactin, drives dynein activation to cause its relocation to the microtubule minus ends. This activation process depends on LIS1, but LIS1 tends to dissociate from dynein after its activation. In this study, we found that dynein containing a mutation-blocking ATP hydrolysis at AAA3 can undergo LIS1-independent activation, consistent with our genetic data that the same mutation suppresses the growth defect of the A. nidulans LIS1-deletion mutant. Our data also suggest that blocking AAA3 ATP hydrolysis allows dynein activation by dynactin without the early endosomal adaptor. As a consequence, dynein accumulates at microtubule minus ends whereas early endosomes stay near the plus ends. Dynein containing a mutation-blocking ATP binding at AAA3 largely depends on LIS1 for activation, but this mutation abnormally prevents LIS1 dissociation upon dynein activation. Together, our data suggest that the AAA3 ATPase cycle regulates the coordination between dynein activation and cargo binding as well as the dynamic dynein-LIS1 interaction.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
40
|
Gerganova V, Lamas I, Rutkowski DM, Vještica A, Castro DG, Vincenzetti V, Vavylonis D, Martin SG. Cell patterning by secretion-induced plasma membrane flows. SCIENCE ADVANCES 2021; 7:eabg6718. [PMID: 34533984 PMCID: PMC8448446 DOI: 10.1126/sciadv.abg6718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane–associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | | | - Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
- Corresponding author. (S.G.M.); (D.V.)
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
- Corresponding author. (S.G.M.); (D.V.)
| |
Collapse
|
41
|
Ramírez-Granillo A, Bautista-Hernández LA, Bautista-De Lucío VM, Magaña-Guerrero FS, Domínguez-López A, Córdova-Alcántara IM, Pérez NO, Martínez-Rivera MDLA, Rodríguez-Tovar AV. Microbial Warfare on Three Fronts: Mixed Biofilm of Aspergillus fumigatus and Staphylococcus aureus on Primary Cultures of Human Limbo-Corneal Fibroblasts. Front Cell Infect Microbiol 2021; 11:646054. [PMID: 34485167 PMCID: PMC8415486 DOI: 10.3389/fcimb.2021.646054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Background Coinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection. Objective To determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers. Results The biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited. Conclusion This is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.
Collapse
Affiliation(s)
- Adrián Ramírez-Granillo
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Luis Antonio Bautista-Hernández
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Víctor Manuel Bautista-De Lucío
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Alfredo Domínguez-López
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Itzel Margarita Córdova-Alcántara
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo de Mex, Mexico
| | - María de Los Angeles Martínez-Rivera
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| |
Collapse
|
42
|
Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. J Fungi (Basel) 2021; 7:jof7070580. [PMID: 34356959 PMCID: PMC8304394 DOI: 10.3390/jof7070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Polar growth is a key characteristic of all filamentous fungi. It allows these eukaryotes to not only effectively explore organic matter but also interact within its own colony, mating partners, and hosts. Therefore, a detailed understanding of the dynamics in polar growth establishment and maintenance is crucial for several fields of fungal research. We developed a new marker protein, the actin-related protein 1 (Arp1) fused to red and green fluorescent proteins, which allows for the tracking of polar axis establishment and active hyphal growth in microscopy approaches. To exclude a probable redundancy with known polarity markers, we compared the localizations of the Spitzenkörper (SPK) and Arp1 using an FM4-64 staining approach. As we show in applications with the coprophilous fungus Sordaria macrospora and the hemibiotrophic plant pathogen Colletotrichum graminicola, the monitoring of Arp1 can be used for detailed studies of hyphal growth dynamics and ascospore germination, the interpretation of chemotropic growth processes, and the tracking of elongating penetration pegs into plant material. Since the Arp1 marker showed the same dynamics in both fungi tested, we believe this marker can be broadly applied in fungal research to study the manifold polar growth processes determining fungal life.
Collapse
|
43
|
Higuchi Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7070534. [PMID: 34356913 PMCID: PMC8303533 DOI: 10.3390/jof7070534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The industrially important filamentous fungus Aspergillus oryzae, known as the yellow Koji mold and also designated the Japanese National fungus, has been investigated for understanding the intracellular membrane trafficking machinery due to the great ability of valuable enzyme production. The underlying molecular mechanisms of the secretory pathway delineate the main secretion route from the hyphal tip via the vesicle cluster Spitzenkörper, but also there is a growing body of evidence that septum-directed and unconventional secretion occurs in A. oryzae hyphal cells. Moreover, not only the secretory pathway but also the endocytic pathway is crucial for protein secretion, especially having a role in apical endocytic recycling. As a hallmark of multicellular filamentous fungal cells, endocytic organelles early endosome and vacuole are quite dynamic: the former exhibits constant long-range motility through the hyphal cells and the latter displays pleiomorphic structures in each hyphal region. These characteristics are thought to have physiological roles, such as supporting protein secretion and transporting nutrients. This review summarizes molecular and physiological mechanisms of membrane traffic, i.e., secretory and endocytic pathways, in A. oryzae and related filamentous fungi and describes the further potential for industrial applications.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
|
45
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
46
|
Bieger BD, Osmani AH, Xiang X, Egan MJ. The spindle pole-body localization of activated cytoplasmic dynein is cell cycle-dependent in Aspergillus nidulans. Fungal Genet Biol 2021; 148:103519. [PMID: 33472115 DOI: 10.1016/j.fgb.2021.103519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Cytoplasmic dynein is a minus end-directed microtubule motor that can be activated by cargo adapters. In Aspergillus nidulans, overexpression of ΔC-HookA, the early endosomal adapter HookA missing its cargo-binding site, causes activated dynein to accumulate at septa and spindle pole bodies (SPBs) where the microtubule-organizing centers are located. Intriguingly, only some interphase nuclei show SPB signals of dynein. Here we present data demonstrating that localization of the activated dynein at SPBs is cell cycle-dependent: SPB dynein signals are seen to associate with nuclei at early G1 but disappear at about the G1-S boundary.
Collapse
Affiliation(s)
- Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA.
| |
Collapse
|
47
|
Taheraly S, Ershov D, Dmitrieff S, Minc N. An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. J Cell Sci 2020; 133:133/22/jcs252064. [PMID: 33257499 DOI: 10.1242/jcs.252064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Tip growth is critical for the lifestyle of many walled cells. In yeast and fungi, this process is typically associated with the polarized deposition of conserved tip factors, including landmarks, Rho GTPases, cytoskeleton regulators, and membrane and cell wall remodelers. Because tip growth speeds may vary extensively between life cycles or species, we asked whether the local amount of specific polar elements could determine or limit tip growth speeds. Using the model fission yeast, we developed a quantitative image analysis pipeline to dynamically correlate single tip elongation speeds and polar protein abundance in large data sets. We found that polarity landmarks are typically diluted by growth. In contrast, tip growth speed is positively correlated with the local amount of factors related to actin, secretion or cell wall remodeling, but, surprisingly, exhibits long saturation plateaus above certain concentrations of those factors. Similar saturation observed for Spitzenkörper components in much faster growing fungal hyphae suggests that elements independent of canonical surface remodelers may limit single tip growth. This work provides standardized methods and resources to decipher the complex mechanisms that control cell growth.This article has an associated First Person interview with Sarah Taheraly, joint first author of the paper.
Collapse
Affiliation(s)
- Sarah Taheraly
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Dmitry Ershov
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| |
Collapse
|
48
|
Higuchi Y, Takegawa K. Single-Molecule FISH Reveals Subcellular Localization of α-Amylase and Actin mRNAs in the Filamentous Fungus Aspergillus oryzae. Front Microbiol 2020; 11:578862. [PMID: 33072046 PMCID: PMC7536267 DOI: 10.3389/fmicb.2020.578862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
The machinery for mRNA localization is one of crucial molecular structures allowing cellular spatiotemporal organization of protein synthesis. Although the molecular mechanisms underlying mRNA localization have been thoroughly investigated in unicellular organisms, little is known about multicellular and multinuclear filamentous fungi. Here, we conducted single-molecule fluorescence in situ hybridization (smFISH) to first visualize the mRNA molecules of α-amylase, which are encoded by amyB, and which are thought to be abundantly secreted from the hyphal tips of the industrially important fungus Aspergillus oryzae. Consistent with previous biochemical studies, fluorescein amidite (FAM) fluorescence derived from amyB expression was observed in A. oryzae hyphae cultured in a minimal medium containing maltose instead of glucose as the sole carbon source. Moreover, after more than 1 h incubation with fresh maltose-containing medium, the fluorescence of amyB mRNAs was observed throughout the cells, suggesting α-amylase secretion potentially from each cell, instead of the hyphal tip only. Furthermore, in cultures with complete medium containing maltose, amyB mRNAs were excluded from the tip regions, where no nuclei exist. In contrast, mRNAs of actin, encoded by actA, were localized mainly to the tip, where actin proteins also preferentially reside. Collectively, our smFISH analyses revealed distinct localization patterns of α-amylase and actin mRNAs in A. oryzae hyphal cells.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Schuster M, Steinberg G. The fungicide dodine primarily inhibits mitochondrial respiration in Ustilago maydis, but also affects plasma membrane integrity and endocytosis, which is not found in Zymoseptoria tritici. Fungal Genet Biol 2020; 142:103414. [PMID: 32474016 PMCID: PMC7526662 DOI: 10.1016/j.fgb.2020.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/03/2022]
Abstract
Early reports in the fungus Ustilago maydis suggest that the amphipathic fungicide dodine disrupts the fungal plasma membrane (PM), thereby killing this corn smut pathogen. However, a recent study in the wheat pathogen Zymoseptoria tritici does not support such mode of action (MoA). Instead, dodine inhibits mitochondrial ATP-synthesis, both in Z. tritici and U. maydis. This casts doubt on an fungicidal activity of dodine at the PM. Here, we use a cell biological approach and investigate further the effect of dodine on the plasma membrane in both fungi. We show that dodine indeed breaks the integrity of the PM in U. maydis, indicated by a concentration-dependent cell depolarization. In addition, the fungicide reduces PM fluidity and arrests endocytosis by inhibiting the internalization of endocytic vesicles at the PM. This is likely due to impaired recruitment of the actin-crosslinker fimbrin to endocytic actin patches. However, quantitative data reveal that the effect on mitochondria represents the primary MoA in U. maydis. None of these plasma membrane-associated effects were found in dodine-treated Z. tritici cells. Thus, the physiological effect of an anti-fungal chemistry can differ between pathogens. This merits consideration when characterizing a given fungicide.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
50
|
Hill TW, Wendt KE, Jones DA, Williamson MH, Ugwu UJ, Rowland LB, Jackson-Hayes L. The Aspergillus nidulans IQGAP orthologue SepG is required for constriction of the contractile actomyosin ring. Fungal Genet Biol 2020; 144:103439. [PMID: 32768603 DOI: 10.1016/j.fgb.2020.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
In this research we report that the sepG1 mutation in Aspergillus nidulans resides in gene AN9463, which is predicted to encode an IQGAP orthologue. The genetic lesion is predicted to result in a G-to-R substitution at residue 1637 of the 1737-residue protein in a highly conserved region of the RasGAP-C-terminal (RGCT) domain. When grown at restrictive temperature, strains expressing the sepGG1637R (sepG1) allele are aseptate, with reduced colony growth and aberrantly formed conidiophores. The aseptate condition can be replicated by deletion of AN9463 or by downregulating its expression via introduced promoters. The mutation does not prevent assembly of a cortical contractile actomyosin ring (CAR) at putative septation sites, but tight compaction of the rings is impaired and the rings fail to constrict. Both GFP::SepG wild type and the GFP-tagged product of the sepG1 allele localize to the CAR at both permissive and restrictive temperatures. Downregulation of myoB (encoding the A. nidulans type-II myosin heavy chain) does not prevent formation of SepG rings at septation sites, but filamentous actin is required for CAR localization of SepG and MyoB. We identify fourteen probable IQ-motifs (EF-hand protein binding sites) in the predicted SepG sequence. Two of the A. nidulans EF-hand proteins, myosin essential light chain (AnCdc4) and myosin regulatory light chain (MrlC), colocalize with SepG and MyoB at all stages of CAR formation and constriction. However, calmodulin (CamA) appears at septation sites only after the CAR has become fully compacted. When expression of sepG is downregulated, leaving MyoB as the sole IQ-motif protein in the pre-compaction CAR, both MrlC and AnCdc4 continue to associate with the forming CAR. When myoB expression is downregulated, leaving SepG as the sole IQ-motif protein in the CAR, AnCdc4 association with the forming CAR continues but MrlC fails to associate. This supports a model in which the IQ motifs of MyoB bind both MrlC and AnCdc4, while the IQ motifs of SepG bind only AnCdc4. Downregulation of either mrlC or Ancdc4 results in an aseptate phenotype, but has no effect on association of either SepG or MyoB with the CAR.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA.
| | - Kristen E Wendt
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - David A Jones
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - McLean H Williamson
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Uchenna J Ugwu
- Division of Natural & Mathematic Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA
| | - Lauren B Rowland
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Loretta Jackson-Hayes
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|