1
|
Pant A, Brahim Belhaouari D, Dsouza L, Priyamvada L, Wang Z, Navarro Forero S, Satheshkumar PS, Wang Z, Yang Z. Suppression of poxvirus replication by SC144. Antiviral Res 2025:106204. [PMID: 40449737 DOI: 10.1016/j.antiviral.2025.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/12/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Poxviruses are a significant threat to the health of human and economically important animals. Although smallpox, one of the most devastating infectious diseases, is eradicated, the rapid rise of mpox and other poxviral diseases call for the development of antivirals. Here, we show that SC144, a reported small molecule inhibitor of cellular gp130 pathway, suppresses the replication of monkeypox, cowpox, and vaccinia viruses in cultured cells. Interestingly, SC144 likely suppresses vaccinia virus replication independent of gp130. We further show that this suppression of poxvirus replication is achieved by inhibiting viral DNA replication. With EC50 in sub-micromolar range and CC50 of over 250 μM, SC144 is potent and selective, making it a promising candidate for further development as an antiviral against poxviruses.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ziyue Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Santiago Navarro Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Vigezzi GP, Vecchio R, Barbati C, Bonazza G, Mazzarello P, Odone A. Historical analysis of the first smallpox vaccination campaigns in early 19-century northern Italy: organisation and communication insights for contemporary epidemics' prevention and control. Vaccine 2025; 49:126764. [PMID: 39889535 DOI: 10.1016/j.vaccine.2025.126764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND In the annals of public health, smallpox is a watershed, being the first disease eradicated by vaccination. Drawing parallels to contemporary pandemic control measures, we examined the first smallpox vaccination campaigns in early 19th-century northern Italy and the seminal work of Luigi Sacco. Our study delves into this under-explored historical landscape to elucidate lessons that resonate with modern public health dilemmas. METHODS We scrutinised primary sources from the Historical Civic Archive of Pavia, the State Archive of Pavia, and the State Archive of Milan. These archives provided exhaustive data on administrative decrees, local epidemiology, and university-health authority collaborations. Using period-specific keyword searches and expert consultations, we extensively reviewed correspondence, vaccination lists, and academic writings, including Luigi Sacco's seminal Trattato di vaccinazione. The epidemiological investigation focused on the pivotal period of 1816-1828 in Lombardy's 19th-century public health landscape. RESULTS Organisational reforms enacted in 1821 succeeded in doubling the number of vaccinations administered in Pavia, stabilising at elevated rates in subsequent years. Despite improvements, incongruities in epidemiological data and vaccinator remuneration persisted. Communication strategies pioneered by Sacco, encompassing academic and religious collaborations, demonstrated their efficacy. Epidemiological data revealed an initial surge in vaccination uptake in 1822, with a declining trend in the following years, notably impacted by logistical and data recording limitations. CONCLUSION Our research underscores three salient dimensions pertinent to contemporary public health paradigms: first, the vital function of local administrative bodies as efficacious service providers, immunisation register keepers, and social safety nets; second, the equilibrium between mandatory vaccination policies and discretionary enforcement as a pragmatic framework for public compliance; lastly, the irrefutable importance of credible communication strategies in fighting vaccine hesitancy. These insights are not merely historical curiosities but cardinal principles for effectively managing modern epidemics and infectious disease threats.
Collapse
Affiliation(s)
- Giacomo Pietro Vigezzi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Riccardo Vecchio
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Collegio Ca' della Paglia, Fondazione Ghislieri, Pavia, Italy
| | - Chiara Barbati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Giulia Bonazza
- Department of History and Cultures, University of Bologna, Bologna, Italy
| | - Paolo Mazzarello
- Department of Brain and Behavioral Sciences and the University Museum System, University of Pavia, Pavia, Italy
| | - Anna Odone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
3
|
Bhatia B, Sonar S, Khan S, Bhattacharya J. Pandemic-Proofing: Intercepting Zoonotic Spillover Events. Pathogens 2024; 13:1067. [PMID: 39770327 PMCID: PMC11728701 DOI: 10.3390/pathogens13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Zoonotic spillover events pose a significant and growing threat to global health. By focusing on preventing these cross-species transmissions, we can significantly mitigate pandemic risks. This review aims to analyze the mechanisms of zoonotic spillover events, identify key risk factors, and propose evidence-based prevention strategies to reduce future pandemic threats. Through a comprehensive literature review and analysis of major databases including PubMed, Web of Science, and Scopus from 1960-2024, we examined documented spillover events, their outcomes, and intervention strategies. This article emphasizes that targeting the root cause-the spillover event itself-is key to averting future pandemics. By analyzing historical and contemporary outbreaks, we extract crucial insights into the dynamics of zoonotic transmission. Factors underlying these events include increased human-animal contact due to habitat encroachment, agricultural intensification, and wildlife trade. Climate change, global travel, and inadequate healthcare infrastructure exacerbate risks. The diversity of potential viral reservoirs and rapid viral evolution present major challenges for prediction and prevention. Solutions include enhancing surveillance of wildlife populations, improving biosecurity measures, investing in diagnostic capabilities, and promoting sustainable wildlife management. A "One Health" approach integrating human, animal, and environmental health is crucial. Predictive modelling, international cooperation, and public education are key strategies. Developing pre-exposure prophylactics and post-exposure treatments is essential for mitigating outbreaks. While obstacles remain, advances in genomics and ecological modelling offer hope. A proactive, comprehensive approach addressing the root causes of spillover events is vital for safeguarding global health against future pandemics.
Collapse
Affiliation(s)
- Bharti Bhatia
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sudipta Sonar
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Seema Khan
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Jayanta Bhattacharya
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
- Antibody Translational Research Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
4
|
Brouillard M, Mathieu T, Guillot S, Méducin F, Roy V, Marcheteau E, Gallardo F, Caire-Maurisier F, Favetta P, Agrofoglio LA. Lyotropic liquid crystal emulsions of LAVR-289: Influence of internal mesophase structure on cytotoxicity and in-vitro antiviral activity. Int J Pharm 2024; 665:124683. [PMID: 39265850 DOI: 10.1016/j.ijpharm.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Emerging and reemerging viruses pose significant public health threats, underscoring the urgent need for new antiviral drugs. Recently, a novel family of antiviral acyclic nucleoside phosphonates (ANP) composed of a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl phosphonic acid skeleton (O-DAPy nucleobase) has shown promise. Among these, LAVR-289 stands out for its potent inhibitory effects against various DNA viruses. Despite its efficacy, LAVR-289s poor water solubility hampers effective drug delivery. To address this, innovative delivery systems utilizing lipidic derivatives have been explored for various administration routes. Submicron lyotropic liquid crystals (LLCs) are particularly promising drug carriers for the encapsulation, protection, and delivery of lipophilic drugs like LAVR-289. This study focuses on developing submicron-sized lipid mesophase dispersions, including emulsified L2 phase, cubosomes, and hexosomes, by adjusting lipidic compounds such as Dimodan® U/J, Lecithins E80, and Miglyol® 812 N. These formulations aim to enhance the solubility and bioavailability of LAVR-289. In vitro evaluations demonstrated that LAVR-289-loaded LLCs at a concentration of 1 µM efficiently inhibited vaccinia virus in infected human cells, with no observed cytotoxicity. Notably, hexosomes exhibited the most favorable antiviral outcomes, suggesting that the internal mesophase structure plays a critical role in optimizing the therapeutic efficacy of this drug class.
Collapse
Affiliation(s)
- Mathias Brouillard
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Thomas Mathieu
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Samuel Guillot
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France.
| | - Fabienne Méducin
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | | | | | - François Caire-Maurisier
- Direction des Approvisionnements en produits de Santé des Armées, Pharmacie Centrale des Armées (PCA), F-45404 Fleury-les-Aubrais, France
| | - Patrick Favetta
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| | - Luigi A Agrofoglio
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| |
Collapse
|
5
|
Zhang J, Liu K, Zhu Z, Shang S, Wei D, Zheng Y, Zhang L, Liang Y, Ju D, Yuan J. Innovative strategies in genitourinary cancer: the role of oncolytic viruses. Front Oncol 2024; 14:1461324. [PMID: 39464707 PMCID: PMC11502293 DOI: 10.3389/fonc.2024.1461324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Urinary tumors pose a significant health threat because of their high prevalence and recurrence rates. Despite the availability of various treatment options, many patients poorly respond to traditional therapies, highlighting the urgent need for alternative approaches. Oncolytic viruses are promising therapeutic agents. These viruses exploit the unique characteristics of cancer cells to specifically target and destroy them, thereby triggering potent antitumor immune responses. This review delves into recent advancements and future prospects of oncolytic viruses, focusing on their application in renal, bladder, and prostate cancers. By discussing practical implications and the potential of different viruses, including the cowpox virus, adenovirus, measles virus, coxsackievirus, and reovirus, we pave the way for further exploration and refinement of this exciting field.
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Rodríguez-Varela R, Yaka R, Pochon Z, Sanchez-Pinto I, Solaun JL, Naidoo T, Guinet B, Pérez-Ramallo P, Lagerholm VK, de Anca Prado V, Valdiosera C, Krzewińska M, Herrasti L, Azkarate A, Götherström A. Five centuries of consanguinity, isolation, health, and conflict in Las Gobas: A Northern Medieval Iberian necropolis. SCIENCE ADVANCES 2024; 10:eadp8625. [PMID: 39196943 PMCID: PMC11352919 DOI: 10.1126/sciadv.adp8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/30/2024]
Abstract
Between the 8th and 11th centuries CE, the Iberian Peninsula underwent profound upheaval due to the Umayyad invasion against the Visigoths, resulting in population shifts and lasting demographic impacts. Our understanding of this period is hindered by limited written sources and few archaeogenetic studies. We analyzed 33 individuals from Las Gobas, a necropolis in northern Spain, spanning the 7th to 11th centuries. By combining archaeological and osteological data with kinship, metagenomics, and ancestry analyses, we investigate conflicts, health, and demography of these individuals. We reveal intricate family relationships and genetic continuity within a consanguineous population while also identifying several zoonoses indicative of close interactions with animals. Notably, one individual was infected with a variola virus phylogenetically clustering with the northern European variola complex between ~885 and 1000 CE. Last, we did not detect a significant increase of North African or Middle East ancestries over time since the Islamic conquest of Iberia, possibly because this community remained relatively isolated.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Reyhan Yaka
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Iban Sanchez-Pinto
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - José Luis Solaun
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Stockholm, Sweden
| | - Benjamin Guinet
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - Cristina Valdiosera
- Universidad de Burgos, Departamento de Historia, Geografía y Comunicaciones, Burgos, Spain
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Lourdes Herrasti
- Departamento de Antropología, Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
| | - Agustín Azkarate
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Martínez-Pena I, Puig B, Uskola A. One Health education for criticality on vaccination in teacher training. Front Public Health 2024; 12:1408965. [PMID: 39131576 PMCID: PMC11312376 DOI: 10.3389/fpubh.2024.1408965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Vaccines are the basis of health of our communities since they prevent severe infectious diseases. However vaccination rates continue to decrease due to the spread of misinformation about their side effects, which enhances vaccine hesitancy and puts at risk public health. Introducing vaccines from the One Health approach can help to develop an integral understanding of their role and to apply critical ignorance as part of criticality to avoid vaccine hesitancy and raise trust in science. This paper presents a design on vaccination for secondary-education teacher training developed toward this goal. Methods The design presented in this paper draws from previous studies on critical thinking, on vaccine rejection, and the One Health approach on other health issues in Secondary Education. The focus of this design is engaging secondary-education pre-service teachers in the practice of critical ignorance and criticality to assess diverse pieces of information on vaccination from the One Health approach. Results This study discusses the design principles and the activities of an original design that aims to provide Secondary Education teachers with some tools to introduce critical ignorance and criticality for addressing misinformation on vaccines by using the One Health approach. Discussion If secondary science teachers are going to successfully confront misinformation on vaccination in their science instruction, we need to develop and test designs and approaches that prepare them for this purpose. Critical ignorance plays a central role in managing misinformation; thus, such instruction should engage future teachers in critical evaluation of information on vaccination, as well as in the application of the One Health approach to take responsible actions.
Collapse
Affiliation(s)
- Inés Martínez-Pena
- Faculty of Education, Universidade de Santiago de Compostela (USC), Santiago, Spain
| | - Blanca Puig
- Faculty of Education, Universidade de Santiago de Compostela (USC), Santiago, Spain
| | - Araitz Uskola
- Department of Didactics of Mathematics and of Experimental and Social Sciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
8
|
Crawford RR, Hodson CM, Errickson D. Guidance for the identification of bony lesions related to smallpox. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2024; 44:65-77. [PMID: 38159426 DOI: 10.1016/j.ijpp.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This research aimed to address the underrepresentation of smallpox (osteomyelitis variolosa) in palaeopathology, providing a synthesis of published literature and presenting guidance for the identification of osteomyelitis variolosa in non-adult and adult skeletal remains. MATERIALS AND METHODS Literature regarding smallpox and published reports of individuals with osteomyelitis variolosa were synthesised and critiqued to produce clear diagnostic criteria for the identification of smallpox osteologically. RESULTS Associated osteological changes begin in non-adults, where skeletal morphology is rapidly changing. Characteristic lesions associated with non-adult osteomyelitis variolosa include inflammation and destructive remodelling of long-bone joints and metaphyses. Where childhood infection was survived, residual osteomyelitis variolosa lesions should also be visible in adults in the osteoarchaeological record. CONCLUSIONS Despite long-term clinical recognition, only limited osteological and archaeological evidence of osteomyelitis variolosa has yet emerged. With improved diagnostic criteria, osteomyelitis variolosa may be more frequently identified. SIGNIFICANCE This is the first synthesis of osteomyelitis variolosa encompassing both clinical and palaeopathological literature, providing detailed guidance for the identification of osteomyelitis variolosa in skeletal remains. It will lead to the increased identification of smallpox osteologically. LIMITATIONS Differential diagnoses should always be considered. The archaeological longevity of smallpox, and the potential for archaeological VARV to cause clinically recognised smallpox, is currently unknown. Characteristic bone changes in the archaeological record may be other, extinct human-infecting-orthopoxviruses. SUGGESTIONS FOR FURTHER RESEARCH Further consideration of the implications of age of smallpox contraction on bony pathology: whether epiphyses are affected differently due to state of fusion. Reassessment of individuals previously identified with smallpox-consistent lesions, but otherwise diagnosed.
Collapse
Affiliation(s)
- Rosie R Crawford
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK; McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK.
| | - Claire M Hodson
- Department of Archaeology, University of Reading, Whiteknights, Reading RG6 6AB, UK; Department of Archaeology, Durham University, Lower Mount Joy, South Rd, Durham DH1 3LE, UK
| | - David Errickson
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
9
|
Xu L, Sun H, Lemoine NR, Xuan Y, Wang P. Oncolytic vaccinia virus and cancer immunotherapy. Front Immunol 2024; 14:1324744. [PMID: 38283361 PMCID: PMC10811104 DOI: 10.3389/fimmu.2023.1324744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use. Vaccinia virus (VACV) has emerged as a potential candidate due to its ability to infect a wide range of cancer cells. This review discusses the mechanisms, benefits, and clinical trials of oncolytic VACVs. The safety and efficacy of different viral backbones are explored, as well as the effects of oncolytic VACVs on the tumor microenvironment. The potential combination of oncolytic VACVs with immunotherapy or traditional therapies is also highlighted. The review concludes by addressing prospects and challenges in the field of oncolytic VACVs, with the aim of promoting further research and application in cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Sun
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yujing Xuan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Faber WR, Sewpersad K, Menke H, Avanzi C, Geluk A, Verhard EM, Tió Coma M, Chan M, Pieters T. Origin and spread of leprosy in Suriname. A historical and biomedical study. FRONTIERS IN TROPICAL DISEASES 2023; 4:1258006. [PMID: 39175563 PMCID: PMC7616386 DOI: 10.3389/fitd.2023.1258006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The new world was considered free of leprosy before the arrival of Europeans. In Suriname, historical migration routes suggest that leprosy could have been introduced from West Africa by the slave trade, from Asia by indentured workers, from Europe by the colonizers, and more recently by Brazilian gold miners. Previous molecular studies on environmental and ancient samples suggested a high variability of the strains circulating in the country, possibly resulting from the various migration waves. However, a current overview of such diversity in humans still needs to be explored. The origin and spread of leprosy in Suriname are investigated from a historical point of view and by strain genotyping of Mycobacterium leprae from skin biopsies of 26 patients with multibacillary leprosy using PCR-genotyping and whole-genome sequencing. Moreover, molecular signs of resistance to the commonly used anti-leprosy drugs i.e. dapsone, rifampicin and ofloxacin, were investigated. Molecular detection was positive for M. leprae in 25 out of 26 patient samples, while M. lepromatosis was not found in any of the samples. The predominant M. leprae strain in our sample set is genotype 4P (n=8) followed by genotype 1D-2 (n=3), 4N (n=2), and 4O/P (n=1). Genotypes 4P, 4N, 4O/P are predominant in West Africa and Brazil, and could have been introduced in Suriname by the slave trade from West Africa, and more recently by gold miners from Brazil. The presence of the Asian strains 1D-2 probably reflects an introduction by contract workers from India, China and Indonesia during the late 19th and early 20th century after the abolition of slavery. There is currently no definite evidence for the occurrence of the European strain 3 in the 26 patients. Geoplotting reflects internal migration, and also shows that most patients live in and around Paramaribo. A biopsy of one patient harbored two M. leprae genotypes, 1D-2 and 4P, suggesting co-infection. A mutation in the dapsone resistance determining region of folP1 was detected in two out of 13 strains for which molecular drug susceptibility was obtained, suggesting the circulation of dapsone resistant strains.
Collapse
Affiliation(s)
- William R Faber
- Faculty of Medicine, Department of Dermatology, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Sewpersad
- Dermatology Service, Ministry of Health, Paramaribo, Suriname
| | - Henk Menke
- Dermatology Service, Ministry of Health, Paramaribo, Suriname
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Els M Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Tió Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mike Chan
- Department of Pathology, Academic Hospital, Paramaribo, Suriname
| | - Toine Pieters
- Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Zhen Z, Zhang L, Li Q, Zhu Y, Wang X, Fu X, Ai J, Wang R, Xie Z, Ma S. Cross-reactive antibodies against monkeypox virus exist in the population immunized with vaccinia Tian Tan strain in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105477. [PMID: 37392823 DOI: 10.1016/j.meegid.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Monkeypox virus (MPXV) belongs to the Orthopoxvirus genus. The worldwide outbreak of MPXV in 2022 has caused widespread concerns. Cross-reactive antibodies induced by vaccinia-inoculation can provide protection against reinfection by MPXV. The vaccinia Tian Tan (VTT) strain, which was widely inoculated in the Chinese population before the 1980s, has genomic differences from other vaccinia strains, although they all belong to the orthopoxviruses family. The current seroprevalence of VTT-vaccinated populations remains unclear more than four decades after the termination of vaccination campaigns in China. Our results showed that cross-reactive IgG antibodies against MPXV were present in 31.8% (75/236) of vaccinees four decades after VTT-vaccination, suggesting that vaccination with VTT may provide long-term protection against MPXV infection in some individuals.
Collapse
Affiliation(s)
- Zida Zhen
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Xiaohuan Wang
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaoyan Fu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
13
|
Dsouza L, Pant A, Offei S, Priyamvada L, Pope B, Satheshkumar PS, Wang Z, Yang Z. Antiviral activities of two nucleos(t)ide analogs against vaccinia, mpox, and cowpox viruses in primary human fibroblasts. Antiviral Res 2023:105651. [PMID: 37270160 PMCID: PMC10234405 DOI: 10.1016/j.antiviral.2023.105651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Dsouza L, Pant A, Offei S, Priyamvada L, Pope B, Satheshkumar PS, Wang Z, Yang Z. Antiviral activities of two nucleos(t)ide analogs against vaccinia and mpox viruses in primary human fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533943. [PMID: 36993701 PMCID: PMC10055413 DOI: 10.1101/2023.03.23.533943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox. Identification of inhibitors of poxvirus replication is critical for drug development to manage poxvirus threats. Here we tested two compounds, nucleoside trifluridine and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV) and mpox virus (MPXV) in physiologically relevant primary human fibroblasts. Both trifluridine and adefovir dipivoxil potently inhibited replication of VACV and MPXV (MA001 2022 isolate) in a plaque assay. Upon further characterization, they both conferred high potency in inhibiting VACV replication with half maximal effective concentrations (EC 50 ) at low nanomolar levels in our recently developed assay based on a recombinant VACV secreted Gaussia luciferase. Our results further validated that the recombinant VACV with Gaussia luciferase secretion is a highly reliable, rapid, non-disruptive, and simple reporter tool for identification and chracterization of poxvirus inhibitors. Both compounds inhibited VACV DNA replication and downstream viral gene expression. Given that both compounds are FDA-approved drugs, and trifluridine is used to treat ocular vaccinia in medical practice due to its antiviral activity, our results suggest that it holds great promise to further test trifluridine and adefovir dipivoxil for countering poxvirus infection, including mpox.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Blake Pope
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Panayampalli S. Satheshkumar
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Ghaseminia M. Preventing monkeypox outbreaks: Focus on diagnosis, care, treatment, and vaccination. J Clin Transl Sci 2023; 7:e60. [PMID: 37008622 PMCID: PMC10052442 DOI: 10.1017/cts.2023.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
The first human case of monkeypox virus (Mpox) was reported in 1970. In the years after 1970, human infection with Mpox and human-to-human transmission was not widely observed, and more cases were seen in endemic areas. In that year, Mpox spread was confirmed through the export of infected animals to other parts of the world. Every few years, sporadic infections were reported in different parts of the world from human contamination and human-to-human transmission. In recent years, with the slow decline of the COVID-19 pandemic, the outbreak of Mpox was observed in many countries of the world. To deal with the spread of this viral infection, we need to know the ways to diagnose the infection, treat the infection, care for the patients, and implement a wide program of vaccination. Currently, there are no specific drugs available for this virus, but according to previous studies related to smallpox, drugs such as tecovirimat, cidofovir, and brincidofovir, which were used for smallpox and other orthopoxviruses in the past, can be considered to deal with Mpox. Also, some vaccines such as JYNNEOS, IMVAMUNE, and MoVIHvax that have been used against smallpox can be useful to some extent in preventing Mpox.
Collapse
Affiliation(s)
- Moslem Ghaseminia
- Department of Microbiology & Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Forni D, Molteni C, Cagliani R, Clerici M, Sironi M. Analysis of variola virus molecular evolution suggests an old origin of the virus consistent with historical records. Microb Genom 2023; 9:mgen000932. [PMID: 36748699 PMCID: PMC9973844 DOI: 10.1099/mgen.0.000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Archaeovirology efforts provided a rich portrait of the evolutionary history of variola virus (VARV, the cause of smallpox), which was characterized by lineage extinctions and a relatively recent origin of the virus as a human pathogen (~1700 years ago, ya). This contrasts with historical records suggesting the presence of smallpox as early as 3500 ya. By performing an analysis of ancestry components in modern, historic, and ancient genomes, we unveil the progressive drifting of VARV lineages from a common ancestral population and we show that a small proportion of Viking Age ancestry persisted until the 18th century. After the split of the P-I and P-II lineages, the former experienced a severe bottleneck. With respect to the emergence of VARV as a human pathogen, we revise time estimates by accounting for the time-dependent rate phenomenon. We thus estimate that VARV emerged earlier than 3800 ya, supporting its presence in ancient societies, as pockmarked Egyptian mummies suggest.
Collapse
Affiliation(s)
- Diego Forni
- IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | | | | | - Mario Clerici
- University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | | |
Collapse
|
17
|
Therapeutic strategies for human poxvirus infections: Monkeypox (mpox), smallpox, molluscipox, and orf. Travel Med Infect Dis 2022; 52:102528. [PMID: 36539022 PMCID: PMC9758798 DOI: 10.1016/j.tmaid.2022.102528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Therapeutic and vaccine development for human poxvirus infections (e.g., monkeypox (mpox) virus, variola virus, molluscum contagiosum virus, orf virus) has been largely deserted, especially after the eradication of smallpox by 1980. Human mpox is a self-limited disease confined to Central and West Africa for decades. However, since April 2022, mpox has quickly emerged as a multi-country outbreak, urgently calling for effective antiviral agents and vaccines to control mpox. Here, this review highlights possible therapeutic options (e.g., tecovirimat, brincidofovir, cidofovir) and other strategies (e.g., vaccines, intravenous vaccinia immune globulin) for the management of human poxvirus infections worldwide.
Collapse
|
18
|
Rahman MM, McFadden G. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol 2022; 57:101286. [PMID: 36427482 PMCID: PMC9704024 DOI: 10.1016/j.coviro.2022.101286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.
Collapse
|
19
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
20
|
Vaccine cold chain management and cold storage technology to address the challenges of vaccination programs. ENERGY REPORTS 2022; 8. [PMCID: PMC8706030 DOI: 10.1016/j.egyr.2021.12.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The outbreaks of infectious diseases that spread across countries have generally existed for centuries. An example is the occurrence of the COVID-19 pandemic in 2020, which led to the loss of lives and economic depreciation. One of the essential ways of handling the spread of viruses is the discovery and administration of vaccines. However, the major challenges of vaccination programs are associated with the vaccine cold chain management and cold storage facilities. This paper discusses how vaccine cold chain management and cold storage technology can address the challenges of vaccination programs. Specifically, it examines different systems for preserving vaccines in either liquid or frozen form to help ensure that they are not damaged during distribution from manufacturing facilities. Furthermore, A vaccine is likely to provide very low efficacy when it is not properly stored. According to preliminary studies, the inability to store vaccine properly is partly due to the incompetency of many stakeholders, especially in technical matters. The novelty of this study is to thoroughly explore cold storage technology for a faster and more comprehensive vaccine distribution hence it is expected to be one of the reference and inspiration for stakeholders.
Collapse
|
21
|
Billioux BJ, Mbaya OT, Sejvar J, Nath A. Neurologic Complications of Smallpox and Monkeypox: A Review. JAMA Neurol 2022; 79:1180-1186. [PMID: 36125794 DOI: 10.1001/jamaneurol.2022.3491] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Importance Orthopox viruses include smallpox virus, a once feared but now eradicated virus, as well as monkeypox virus. Monkeypox is an emerging virus initially isolated in 1958, previously unrecognized outside sub-Saharan Africa until a worldwide outbreak in May 2022. It is important to review known neurologic consequences of both these viruses, as complications of smallpox may be relevant to monkeypox, though complications of monkeypox may be rarer and perhaps less severe. Observations This was a literature review of the known neurologic complications of smallpox, which include encephalitis, transverse myelitis, and acute disseminated encephalomyelitis among others; historical complications of smallpox vaccination, including postvaccinal encephalomyelitis; and the known neurologic complications of monkeypox, which include headaches and mood disturbances, as well as rare presentations of encephalitis, transverse myelitis, and seizures. Of concern is the possibility of viral persistence and systemic complications in immunocompromised individuals. Also provided were considerations for diagnosis, current treatment, and prevention of monkeypox. Conclusions and Relevance Monkeypox should be considered in high-risk populations who present with neurologic syndromes. Diagnosis may require serology and polymerase chain reaction testing of blood and spinal fluid. Antiviral therapy should be initiated early in the course of the illness.
Collapse
Affiliation(s)
- B Jeanne Billioux
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Oliver Tshiani Mbaya
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - James Sejvar
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
23
|
MacNeill AL. Comparative Pathology of Zoonotic Orthopoxviruses. Pathogens 2022; 11:pathogens11080892. [PMID: 36015017 PMCID: PMC9412692 DOI: 10.3390/pathogens11080892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides a brief history of the impacts that a human-specific Orthopoxvirus (OPXV), Variola virus, had on mankind, recalls how critical vaccination was for the eradication of this disease, and discusses the consequences of discontinuing vaccination against OPXV. One of these consequences is the emergence of zoonotic OPXV diseases, including Monkeypox virus (MPXV). The focus of this manuscript is to compare pathology associated with zoonotic OPXV infection in veterinary species and in humans. Efficient recognition of poxvirus lesions and other, more subtle signs of disease in multiple species is critical to prevent further spread of poxvirus infections. Additionally included are a synopsis of the pathology observed in animal models of MPXV infection, the recent spread of MPXV among humans, and a discussion of the potential for this virus to persist in Europe and the Americas.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Tan RKJ, Hsu LY. The global emergence of monkeypox. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2022; 51:456-457. [PMID: 36047518 DOI: 10.47102/annals-acadmedsg.2022291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Rayner Kay Jin Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | |
Collapse
|
25
|
Michalska-Smith M, VanderWaal K, Craft ME. Asymmetric host movement reshapes local disease dynamics in metapopulations. Sci Rep 2022; 12:9365. [PMID: 35672422 PMCID: PMC9171740 DOI: 10.1038/s41598-022-12774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how the movement of individuals affects disease dynamics is critical to accurately predicting and responding to the spread of disease in an increasingly interconnected world. In particular, it is not yet known how movement between patches affects local disease dynamics (e.g., whether pathogen prevalence remains steady or oscillates through time). Considering a set of small, archetypal metapopulations, we find three surprisingly simple patterns emerge in local disease dynamics following the introduction of movement between patches: (1) movement between identical patches with cyclical pathogen prevalence dampens oscillations in the destination while increasing synchrony between patches; (2) when patches differ from one another in the absence of movement, adding movement allows dynamics to propagate between patches, alternatively stabilizing or destabilizing dynamics in the destination based on the dynamics at the origin; and (3) it is easier for movement to induce cyclical dynamics than to induce a steady-state. Considering these archetypal networks (and the patterns they exemplify) as building blocks of larger, more realistically complex metapopulations provides an avenue for novel insights into the role of host movement on disease dynamics. Moreover, this work demonstrates a framework for future predictive modelling of disease spread in real populations.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA. .,Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA.
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
26
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Molina JA, Yang Z. Rapid and quantitative evaluation of VACV-induced host shutoff using newly generated cell lines stably expressing secreted Gaussia luciferase. J Med Virol 2022; 94:3811-3819. [PMID: 35415899 PMCID: PMC9197853 DOI: 10.1002/jmv.27773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/06/2022]
Abstract
Host shutoff, characterized by a global decline of cellular protein synthesis, is commonly observed in many viral infections, including vaccinia virus. Classic methods measuring host shutoff include the use of radioactive or non-radioactive probes to label newly synthesized proteins followed by radioautography or sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to resolve the proteins for follow-up detection. While these are highly reliable methods, they are time- and labor-consuming. Here we generated two cell lines stably expressing secreted Gaussia luciferase. These reporter cells allow rapid, quantitative, and consecutive monitoring of host shutoff from a single infection sample. We evaluated host shutoff induced by wild-type and various mutant vaccinia viruses using the reporter cell lines. The results validated the utilities of the reporter cells and quantitatively characterized vaccinia virus-induced host shutoff at different stages of replication. Notably, the results also indicated additional major unidentified VACV shutoff factors. Our study provides new tool to study host shutoff. The reporter cells are also suitable for high throughput settings and rapid testing of clinically isolated viruses. In combination with classical methods, this tool will greatly facilitate understanding of virus-induced host shutoff, and protein synthesis shutoff caused by other physiologically relevant stresses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joshua A Molina
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
28
|
Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: from cells to organisms. Curr Opin Immunol 2022; 74:172-182. [PMID: 35149239 PMCID: PMC8786610 DOI: 10.1016/j.coi.2022.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
29
|
Vaccination Status of Mothers and Children from the 'Mamma & Bambino' Cohort. Vaccines (Basel) 2021; 9:vaccines9020168. [PMID: 33671412 PMCID: PMC7921954 DOI: 10.3390/vaccines9020168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023] Open
Abstract
According to the evidence demonstrating vaccines’ safety and effectiveness in anticipation of and during pregnancy, several countries have established immunization programs during the periconceptional period. Here, we evaluated vaccination status among 220 mother–child pairs, using data from the ‘Mamma & Bambino’ cohort. The self-reported data were evaluated at delivery, and with planned follow-ups at 1–2 years after delivery. In general, we noted that the vaccination status among the women was heterogeneous, ranging from 8.3% (vaccine against Human Papillomavirus, HPV) to 65.6% (vaccine against Diphtheria Tetanus and Pertussis, DTaP). Excluding the women who contracted the diseases in the past, the main ground for refusal was the lack of information. We also demonstrated that increasing age was associated with higher odds of not being vaccinated against Measles-Mumps-Rubella (MMR; OR = 1.12; 95% CI = 1.04–1.21; p = 0.004), HPV (OR = 1.20; 95% CI = 1.08–1.33; p = 0.001) and DTaP (OR =1.09; 95% CI = 1.01–1.18; p = 0.040). As expected, we showed that the proportion of newborns vaccinated with the Hexavalent and Pneumococcal vaccines was high (99.5% and 98.6%, respectively), while the vaccination coverage against MMRV did not reach the auspicated threshold (84.1%). Overall, these results underlined the need for the improvement of women’s knowledge about the recommendations for vaccination, especially during pregnancy.
Collapse
|
30
|
Cantu F, Cao S, Hernandez C, Dhungel P, Spradlin J, Yang Z. Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs. PLoS Pathog 2020; 16:e1008926. [PMID: 33031446 PMCID: PMC7575113 DOI: 10.1371/journal.ppat.1008926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cellular decapping enzymes negatively regulate gene expression by removing the methylguanosine cap at the 5’ end of eukaryotic mRNA, rendering mRNA susceptible to degradation and repressing mRNA translation. Vaccinia virus (VACV), the prototype poxvirus, encodes two decapping enzymes, D9 and D10, that induce the degradation of both cellular and viral mRNAs. Using a genome-wide survey of translation efficiency, we analyzed vaccinia virus mRNAs in cells infected with wild type VACV and mutant VACVs with inactivated decapping enzymes. We found that VACV decapping enzymes are required for selective translation of viral post-replicative mRNAs (transcribed after viral DNA replication) independent of PKR- and RNase L-mediated translation repression. Further molecular characterization demonstrated that VACV decapping enzymes are necessary for efficient translation of mRNA with a 5'-poly(A) leader, which are present in all viral post-replicative mRNAs. Inactivation of D10 alone in VACV significantly impairs poly(A)-leader-mediated translation. Remarkably, D10 stimulates mRNA translation in the absence of VACV infection with a preference for RNA containing a 5’-poly(A) leader. We further revealed that VACV decapping enzymes are needed for 5’-poly(A) leader-mediated cap-independent translation enhancement during infection. Our findings identified a mechanism by which VACV mRNAs are selectively translated through subverting viral decapping enzymes to stimulate 5’-poly(A) leader-mediated translation. Decapping enzymes are encoded in eukaryotic cells and some viruses. Previous studies indicated that decapping enzymes are negative gene expression regulators by accelerating mRNA degradation and repressing translation. Surprisingly however, in this study we found that vaccinia virus (VACV) encoded-decapping enzymes, D9 and D10, are required to promote selective synthesis of viral proteins, although they are known to promote both cellular and viral mRNA degradation. We further showed that the unusual 5'-UTR of VACV mRNA, the 5'-poly(A) leader, confers an advantage to mRNA translation promoted by the decapping enzymes during vaccinia virus infection. Moreover, D9 and D10 are necessary for stimulating poly(A)-leader-mediated cap-independent translation enhancement during VACV infection. In the absence of VACV infection, D10 alone stimulates mRNA translation in a decapping activity-dependent manner, with a preference for mRNA that contains a poly(A) leader. The stimulation of mRNA translation by D10 is unique among decapping enzymes. Therefore, we identified a new mechanism to selectively synthesize VACV proteins through a coordination of viral mRNA 5’-UTR and virus-encoded decapping enzymes.
Collapse
Affiliation(s)
- Fernando Cantu
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Candy Hernandez
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Pragyesh Dhungel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Joshua Spradlin
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Xia Y, Zhong L, Tan J, Zhang Z, Lyu J, Chen Y, Zhao A, Huang L, Long Z, Liu NN, Wang H, Li S. How to Understand "Herd Immunity" in COVID-19 Pandemic. Front Cell Dev Biol 2020; 8:547314. [PMID: 33072741 PMCID: PMC7543944 DOI: 10.3389/fcell.2020.547314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic has been a global threat. Through rapid and effective surveillance and control, the newly confirmed patients have been fluctuated at a very low level and imported case explained most of them through March, 2020 to the present, indicating China’s response has achieved a stage victory. By contrast, the epidemic of COVID-19 in other countries out of China is bursting. Different countries are adopting varied response strategy in terms of their public health system to prevent the spread. Herd immunity has been a hot topic since the outbreak of COVID-19 pandemic. Can it be a possible strategy to combat COVID-19? To fully interpret the knowledge regarding the term upon the background of COVID-19-related health crisis, we aim to systematically review the definition, describe the effective measures of acquiring herd immunity, and discuss its feasibility in COVID-19 prevention. Findings from this review would promote and strengthen the international cooperation and joint efforts when confronting with COVID-19.
Collapse
Affiliation(s)
- Yuanqing Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Zhong
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Jingcong Tan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Lyu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichong Long
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Ning Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Ministry of Education of the People's Republic of China (MOE)-Shanghai Key Laboratory of Childre's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Trovato M, Sartorius R, D’Apice L, Manco R, De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front Immunol 2020; 11:2130. [PMID: 33013898 PMCID: PMC7494754 DOI: 10.3389/fimmu.2020.02130] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the last decades, a number of infectious viruses have emerged from wildlife or re-emerged, generating serious threats to the global health and to the economy worldwide. Ebola and Marburg hemorrhagic fevers, Lassa fever, Dengue fever, Yellow fever, West Nile fever, Zika, and Chikungunya vector-borne diseases, Swine flu, Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the recent Coronavirus disease 2019 (COVID-19) are examples of zoonoses that have spread throughout the globe with such a significant impact on public health that the scientific community has been called for a rapid intervention in preventing and treating emerging infections. Vaccination is probably the most effective tool in helping the immune system to activate protective responses against pathogens, reducing morbidity and mortality, as proven by historical records. Under health emergency conditions, new and alternative approaches in vaccine design and development are imperative for a rapid and massive vaccination coverage, to manage a disease outbreak and curtail the epidemic spread. This review gives an update on the current vaccination strategies for some of the emerging/re-emerging viruses, and discusses challenges and hurdles to overcome for developing efficacious vaccines against future pathogens.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Enhancement/immunology
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Communicable Diseases, Emerging/prevention & control
- Communicable Diseases, Emerging/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Cross Reactions/immunology
- Humans
- Immunization, Passive
- Pandemics/prevention & control
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- SARS-CoV-2
- Vaccination
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Subunit/immunology
- Viral Vaccines/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Maria Trovato
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | | | | |
Collapse
|
33
|
Current Clinical Trials Protocols and the Global Effort for Immunization against SARS-CoV-2. Vaccines (Basel) 2020; 8:vaccines8030474. [PMID: 32854391 PMCID: PMC7564421 DOI: 10.3390/vaccines8030474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines on different platforms due to the absence of a broad and effective treatment for COVID-19 or prevention strategy for SARS-CoV-2 dissemination. Based on 50 current studies selected from the main clinical trial databases, this systematic review summarizes the global race for vaccine development against COVID-19. For each study, the main intervention characteristics, the design used, and the local or global center partnerships created are highlighted. Most vaccine developments have taken place in Asia, using a viral vector method. Two purified inactivated SARS-CoV-2 vaccine candidates, an mRNA-based vaccine mRNA1273, and the chimpanzee adenoviral vaccine ChAdOx1 are currently in phase III clinical trials in the respective countries Brazil, the United Arab Emirates, the USA, and the United Kingdom. These vaccines are being developed based on a quickly formed network of collaboration.
Collapse
|
34
|
Block J. High risk genotypes for schizophrenia may have been adaptive in the context of smallpox. Med Hypotheses 2020; 137:109556. [DOI: 10.1016/j.mehy.2020.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
|
35
|
Stalder H, Bachofen C, Schweizer M, Zanoni R, Sauerländer D, Peterhans E. Traces of history conserved over 600 years in the geographic distribution of genetic variants of an RNA virus: Bovine viral diarrhea virus in Switzerland. PLoS One 2018; 13:e0207604. [PMID: 30517140 PMCID: PMC6281212 DOI: 10.1371/journal.pone.0207604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
The first records of smallpox and rabies date back thousands of years and foot-and-mouth disease in cattle was described in the 16th century. These diseases stood out by their distinct signs, dramatic way of transmission from rabid dogs to humans, and sudden appearance in cattle herds. By contrast, infectious diseases that show variable signs and affect few individuals were identified only much later. Bovine viral diarrhea (BVD), endemic in cattle worldwide, was first described in 1946, together with the eponymous RNA virus as its cause. There is general agreement that BVD was not newly emerging at that time, but its history remains unknown. A search for associations between the nucleotide sequences of over 7,000 BVD viral strains obtained during a national campaign to eradicate BVD and features common to the hosts of these strains enabled us to trace back in time the presence of BVD in the Swiss cattle population. We found that animals of the two major traditional cattle breeds, Fleckvieh and Swiss Brown, were infected with strains of only four different subgenotypes of BVDV-1. The history of these cattle breeds and the events that determined the current distribution of the two populations are well documented. Specifically, Fleckvieh originates from the Bernese and Swiss Brown from the central Alps. The spread to their current geographic distribution was determined by historic events during a major expansion of the Swiss Confederation during the 15th and 16th centuries. The association of the two cattle populations with different BVD viral subgenotypes may have been preserved by a lack of cattle imports, trade barriers within the country, and unique virus-host interactions. The congruent traces of history in the distribution of the two cattle breeds and distinct viral subgenotypes suggests that BVD may have been endemic in Switzerland for at least 600 years.
Collapse
Affiliation(s)
- Hanspeter Stalder
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Claudia Bachofen
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Zanoni
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominik Sauerländer
- University of Applied Sciences and Arts Northwestern Switzerland, Campus Brugg-Windisch, Windisch, Switzerland, Switzerland
| | - Ernst Peterhans
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Kambouris ME, Gaitanis G, Manoussopoulos Y, Arabatzis M, Kantzanou M, Kostis GD, Velegraki A, Patrinos GP. Humanome Versus Microbiome: Games of Dominance and Pan-Biosurveillance in the Omics Universe. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:528-538. [PMID: 30036141 DOI: 10.1089/omi.2018.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Global governance of pathogens such as Ebola virus and infectious diseases is central to global health, and to innovation in systems medicine. Worrisomely, the gaps in human immunity and healthcare services combined with novel pathogens emerging by travel, biotechnological advances, or the rupture of the host-species barrier challenge infectious diseases' global governance. Such biorisks and biothreats may scale up to global catastrophic biological risks (GCBRs) spatiotemporally, either as individual or as collective risks. The scale and intensity of such threats challenge current thinking on surveillance, and calls for a move toward pan-biosurveillance. New multilayered, cross-sectoral, and adaptable strategies of prevention and intervention on GCBRs should be developed, considering human hosts in entirety, and in close relationship with other hosts (plants and animals). This also calls for the "Humanome," which we introduce in this study as the totality of human subjects plus any directly dependent biological or nonbiological entities (products, constructs, and interventions). Surveillance networks should be implemented by integrating communications, diagnostics, and robotics/aeronautics technologies. Suppression of pathogens must be enforced both before and during an epidemic outbreak, the former allowing more drastic measures before the pathogens harbor the host. We propose in this expert review that microbiome-level intervention might particularly prove as an effective solution in medical and environmental scales against traditional, currently emerging, and future infectious threats. We conclude with a discussion on the ways in which the humanome and microbiome contest and cooperate, and how this knowledge might usefully inform in addressing the GCBRs, bioterrorism, and associated threats in the pursuit of pan-biosurveillance.
Collapse
Affiliation(s)
| | - Georgios Gaitanis
- 2 Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina , Ioannina, Greece
| | - Yiannis Manoussopoulos
- 3 Plant Protection Division of Patras, Institute of Industrial and Forage Plants N.E.O & Amerikis , Patras, Greece
| | - Michael Arabatzis
- 4 First Department of Dermatology, Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Maria Kantzanou
- 5 Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - George D Kostis
- 6 Department of Sociology, Panteion University , Athens, Greece
| | - Aristea Velegraki
- 7 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | | |
Collapse
|
37
|
Wong G, Qiu XG. Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential. Zool Res 2018; 39:3-14. [PMID: 29511140 PMCID: PMC5869239 DOI: 10.24272/j.issn.2095-8137.2017.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Due to their inability to generate a complete immune response, mice knockout for type I interferon (IFN) receptors (Ifnar–/–) are more susceptible to viral infections, and are thus commonly used for pathogenesis studies. This mouse model has been used to study many diseases caused by highly pathogenic viruses from many families, including the Flaviviridae, Filoviridae, Arenaviridae, Bunyaviridae, Henipaviridae, and Togaviridae. In this review, we summarize the findings from these animal studies, and discuss the pros and cons of using this model versus other known methods for studying pathogenesis in animals.
Collapse
Affiliation(s)
- Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen Guangzhou 518020, China. .,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiang-Guo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
38
|
Smithson C, Imbery J, Upton C. Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses 2017; 9:v9090253. [PMID: 28885569 PMCID: PMC5618019 DOI: 10.3390/v9090253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.
Collapse
Affiliation(s)
- Chad Smithson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| | - Jacob Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| |
Collapse
|