1
|
Elnar AG, Jang Y, Kim GB. Heterologous Expression and Polyphasic Analysis of CLA-Converting Linoleic Acid Isomerase from Bifidobacterium breve JKL2022. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1425-1440. [PMID: 39586027 DOI: 10.1021/acs.jafc.4c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The probiotic Bifidobacterium breve is known for its efficient conjugated linoleic acid (CLA) conversion, yet their CLA conversion pathway remains underexplored. This study investigated B. breve JKL2022 for its CLA conversion in actively growing cells, washed cell states, and in crude protein extracts. Moreover, the study aimed to confirm the CLA-converting enzyme in strain JKL2022 and optimize its purification through heterologous expression of fusion proteins (LAI_sGFP and MBP_LAI). JKL2022 exhibited superior CLA conversion compared to genetically similar B. breve strains (JCM7017, JCM7019, JCM1192, and JCM1273), particularly the observed CLA conversion in washed cells (60.14 ± 7.60%) and crude protein fractions (96.11 ± 6.63%). The multipass transmembrane linoleic acid isomerase (LAI) was cloned into the E. coli BL21(DE3) as free LAI or modified with superfolder-GFP or MBP tags and expressed with 0.01 mM IPTG at 37 °C, resulting in highly active protein fractions. LAI was characterized by predictive modeling, molecular docking, and phylogenetic analyses. Moreover, reverse transcription-quantitative PCR analysis revealed upregulation (20-140× higher expression) of lai in JKL2022 compared with that in the JCM strains. Nevertheless, upscaling the production and purification of LAI for downstream applications remains a challenge, primarily because of their membrane-spanning configuration.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Yujin Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| |
Collapse
|
2
|
Zhu P, Savova MV, Kindt A, Wopereis H, Belzer C, Harms AC, Hankemeier T. Exploring the Fecal Metabolome in Infants With Cow's Milk Allergy: The Distinct Impacts of Cow's Milk Protein Tolerance Acquisition and of Synbiotic Supplementation. Mol Nutr Food Res 2025; 69:e202400583. [PMID: 39665335 PMCID: PMC11704826 DOI: 10.1002/mnfr.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
SCOPE Cow's milk allergy (CMA) is one of the most prevalent food allergies in early childhood, often treated via elimination diets including standard amino acid-based formula or amino acid-based formula supplemented with synbiotics (AAF or AAF-S). This work aimed to assess the effect of cow's milk (CM) tolerance acquisition and synbiotic (inulin, oligofructose, Bifidobacterium breve M-16 V) supplementation on the fecal metabolome in infants with IgE-mediated CMA. METHODS AND RESULTS The CMA-allergic infants received AAF or AAF-S for a year during which fecal samples were collected. The samples were subjected to metabolomics analyses covering gut microbial metabolites including SCFAs, tryptophan metabolites, and bile acids (BAs). Longitudinal data analysis suggested amino acids, BAs, and branched SCFAs alterations in infants who outgrew CMA during the intervention. Synbiotic supplementation significantly modified the fecal metabolome after 6 months of intervention, including altered purine, BA, and unsaturated fatty acid levels, and increased metabolites of infant-type Bifidobacterium species: indolelactic acid and 4-hydroxyphenyllactic acid. CONCLUSION This study offers no clear conclusion on the impact of CM-tolerance acquisition on the fecal metabolome. However, our results show that 6 months of synbiotic supplementation successfully altered fecal metabolome and suggest induced bifidobacteria activity, which subsequently declined after 12 months of intervention.
Collapse
Affiliation(s)
- Pingping Zhu
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Mariyana V. Savova
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | | | - Clara Belzer
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
3
|
Zhang M, Yin YS, May KS, Wang S, Purcell H, Zhang XS, Blaser MJ, den Hartigh LJ. The role of intestinal microbiota in physiologic and body compositional changes that accompany CLA-mediated weight loss in obese mice. Mol Metab 2024; 89:102029. [PMID: 39293564 PMCID: PMC11447304 DOI: 10.1016/j.molmet.2024.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate. METHODS To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation. RESULTS While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production. CONCLUSIONS These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.
Collapse
Affiliation(s)
- Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue S Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Karolline S May
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Laura J den Hartigh
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Gebereyowhans S. Potential strategies to enhance conjugated linoleic acid content of milk and dairy products: A review. Heliyon 2024; 10:e38844. [PMID: 39435105 PMCID: PMC11492441 DOI: 10.1016/j.heliyon.2024.e38844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Conjugated linoleic acid (CLA) is a general term for all the geometric and positional isomers of linoleic acid. The cis-9, trans-11 CLA and trans-10 cis-12 CLA are considered to be the most abundant and essential isomers associated with health benefits. Though milk and dairy products are considered to be the major sources of CLA, the CLA content found in regular milk and dairy products is relatively low for effective health benefits in human beings. Thus, for effective health benefits, increasing the concentration of CLA in milk and dairy products is beneficial. Dietary supplementation with PUFA-rich lipid sources such as oilseeds and/or vegetable oils, fish meal, fish oil and microalgae and grass-based feeding can enhance the content of CLA in milk and dairy products. Application of CLA-producing bacterial strains during the fermentation process and ripening/storage are considered as potential strategies for enhancing the CLA content of fermented dairy products. Alternatively, the CLA content of milk and dairy products can be improved using genetic factor. In this paper, the latest scientific studies regarding CLA enrichment in milk and dairy products are reviewed, giving an overview of the effectiveness of the different CLA enrichment strategies and their combinations.
Collapse
|
5
|
Salsinha AS, Cima A, Araújo-Rodrigues H, Viana S, Reis F, Coscueta ER, Rodríguez-Alcalá LM, Relvas JB, Pintado M. The use of an in vitro fecal fermentation model to uncover the beneficial role of omega-3 and punicic acid in gut microbiota alterations induced by a Western diet. Food Funct 2024; 15:6095-6117. [PMID: 38757812 DOI: 10.1039/d4fo00727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Viana
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra, Rua 5 de Outubro - S. Martinho Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
6
|
Mei Y, Chang L, Ji Y, Yang B, Zhao J, Chen H, Chen W. Biomolecular investigations into BBI reveal an enzymatic mechanism for PUFA isomerisation in bifidobacterium CFA bioconversion strains. Int J Biol Macromol 2024; 268:131836. [PMID: 38692553 DOI: 10.1016/j.ijbiomac.2024.131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yibin Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
7
|
Haneishi Y, Treppiccione L, Maurano F, Luongo D, Miyamoto J, Rossi M. High Fat Diet-Wheat Gliadin Interaction and its Implication for Obesity and Celiac Disease Onset: In Vivo Studies. Mol Nutr Food Res 2024; 68:e2300779. [PMID: 38632845 DOI: 10.1002/mnfr.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The intestinal immune system plays a crucial role in obesity and insulin resistance. An altered intestinal immunity is associated with changes to the gut microbiota, barrier function, and tolerance to luminal antigens. Lipid metabolism and its unbalance can also contribute to acute and chronic inflammation in different conditions. In celiac disease (CD), the serum phospholipid profile in infants who developed CD is dramatically different when compared to that of infants at risk of CD not developing the disease. In a mouse model of gluten sensitivity, oral wheat gliadin challenge in connection with inhibition of the metabolism of arachidonic acid, an omega-6 polyunsaturated fatty acid, specifically induces the enteropathy. Recent evidence suggests that gluten may play a role also for development of life-style related diseases in populations on a high fat diet (HFD). However, the mechanisms behind these effects are not yet understood. Exploratory studies in mice feed HFD show that wheat gliadin consumption affects glucose and lipid metabolic homeostasis, alters the gut microbiota, and the immune cell profile in liver.
Collapse
Affiliation(s)
- Yuri Haneishi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | | | - Francesco Maurano
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| | - Diomira Luongo
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mauro Rossi
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| |
Collapse
|
8
|
Huyan Z, Pellegrini N, Rubert J, Steegenga WT, Capuano E. Levels of lipid-derived gut microbial metabolites differ among plant matrices in an in vitro model of colon fermentation. Food Res Int 2024; 184:114230. [PMID: 38609219 DOI: 10.1016/j.foodres.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.
Collapse
Affiliation(s)
- Zongyao Huyan
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Radka CD, Frank MW, Simmons TS, Johnson CN, Rosch JW, Rock CO. Staphylococcus aureus oleate hydratase produces ligands that activate host PPARα. Front Cell Infect Microbiol 2024; 14:1352810. [PMID: 38601738 PMCID: PMC11004285 DOI: 10.3389/fcimb.2024.1352810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by β-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tyler S. Simmons
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Cydney N. Johnson
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jason W. Rosch
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
10
|
Iorizzo M, Di Martino C, Letizia F, Crawford TW, Paventi G. Production of Conjugated Linoleic Acid (CLA) by Lactiplantibacillus plantarum: A Review with Emphasis on Fermented Foods. Foods 2024; 13:975. [PMID: 38611281 PMCID: PMC11012127 DOI: 10.3390/foods13070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The term Conjugated Linoleic Acid (CLA) refers generically to a class of positional and geometric conjugated dienoic isomers of linoleic acid. Among the isomers of linoleic acid cis9, trans11-CLA (c9, t11-CLA) and trans10, cis12-CLA (t10, c12-CLA) are found to be biologically active isomers, and they occur naturally in milk, dairy products and meat from ruminants. In addition, some vegetables and some seafoods have also been reported to contain CLA. Although the CLA levels in these natural sources are insufficient to confer the essential health benefits, anti-carcinogenic or anti-cancer effects are of current interest. In the rumen, CLA is an intermediate of isomerization and the biohydrogenation process of linoleic acid to stearic acid conducted by ruminal microorganisms. In addition to rumen bacteria, some other bacteria, such as Propionibacterium, Bifidobacterium and some lactic acid bacteria (LAB) are also capable of producing CLA. In this regard, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) has demonstrated the ability to produce CLA isomers from linoleic acid by multiple enzymatic activities, including hydration, dehydration, and isomerization. L. plantarum is one of the most versatile species of LAB and the bacterium is widely used in the food industry as a microbial food culture. Thus, in this review we critically analyzed the literature produced in the last ten years with the aim to highlight the potentiality as well as the optimal conditions for CLA production by L. plantarum. Evidence was provided suggesting that the use of appropriate strains of L. plantarum, as a starter or additional culture in the production of some fermented foods, can be considered a critical factor in the design of new CLA-enriched functional foods.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | | | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| |
Collapse
|
11
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
12
|
Fontes AL, Neves B, Conde T, Couto D, Pimentel LL, Rodríguez-Alcalá LM, Domingues MR, Gomes AM. Short-communication: Study of fatty acid metabolites in microbial conjugated fatty acids-enrichment of milk and discovery of additional undescribed conjugated linolenic acid isomers. Food Chem 2024; 432:137276. [PMID: 37659326 DOI: 10.1016/j.foodchem.2023.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbially enriched food in conjugated linoleic (CLA) and conjugated linolenic (CLNA) acids is intensively studied nowadays. The conversion of linoleic (LA) and α-linolenic acids (α-LNA) into these compounds may involve different fatty acid (FA) intermediates. This research aimed to investigate potential FA byproducts in milk during microbial CLA/CLNA-enrichment using Bifidobacterium breve DSM 20091. Milk fermented with pure α-LNA showed a decrease in free myristic acid, while pure LA led to an increase in free stearic acid. No additional FA compounds were found alongside CLA/CLNA isomers. The strain produced several CLA isomers from LA, but only when administered alone. Nonetheless, when α-LNA was assayed, additional CLNA isomers, never reported before for bifidobacteria, were observed. In conclusion, except for stearic acid in the presence of LA, no side-FA metabolites were released during milk microbial CLA/CLNA-enrichment. Results suggest either CLA/CLNA production occurs in one single-step or intermediates biotransformation is very fast.
Collapse
Affiliation(s)
- Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Associated Laboratory for Green Chemistry - LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Lígia Leão Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
13
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
14
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Fontes AL, Pimentel LL, Monteiro MJP, Domingues MR, Rodríguez-Alcalá LM, Gomes AM. Microbial Conjugated Linolenic Acid-Enriched Fermented Milk Using Lipase-Hydrolyzed Flaxseed Oil: Biochemical, Organoleptic and Storage Traits. Foods 2023; 13:21. [PMID: 38201050 PMCID: PMC10777994 DOI: 10.3390/foods13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The bioactive conjugated linolenic acid (CLNA) can be microbiologically produced by different probiotic strains when in the presence of α-linolenic acid (α-LNA). Food matrices are a good vector, such as has been previously demonstrated with fermented milk enriched with microbial CLNA by Bifidobacterium breve DSM 20091 from lipase-hydrolyzed flaxseed oil. The aim of the present work was to further assess the nutritional, biochemical and organoleptic properties of the developed dairy product, as well as its storage stability throughout 28 days at 4 °C, proving its suitability for consumption. Milk lactose hydrolyzed into glucose (0.89 g/100 g) and galactose (0.88 g/100 g), which were further metabolized into lactic (0.42 g/100 g), acetic (0.44 g/100 g) and propionic (0.85 g/100 g) acids. Titratable acidity reached 0.69% and pH 4.93. Compared with the control (no CLNA), fat content was slightly higher (2.0 g/100 g). Acetic acid was the major volatile (83.32%), lacking important dairy flavor contributors, like acetaldehyde. Sensory analysis revealed predominant astringency and bitterness. No microbial concerns arose during storage, but the CLNA content increased, and some saturated fatty acids seemed to oxidize. In conclusion, the CLNA-enriched fermented milk revealed reasonable compositional properties, yet further improvements are needed for optimal consumer acceptance and a prolonged shelf-life.
Collapse
Affiliation(s)
- Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
- Laboratório Associado para a Química Verde—LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Lígia L. Pimentel
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - Maria João P. Monteiro
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - M. Rosário Domingues
- Centro de Espectrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| |
Collapse
|
16
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
17
|
Song X, Zhang H, Zhang Y, Goh B, Bao B, Mello SS, Sun X, Zheng W, Gazzaniga FS, Wu M, Qu F, Yin Q, Gilmore MS, Oh SF, Kasper DL. Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature 2023; 619:837-843. [PMID: 37380774 DOI: 10.1038/s41586-023-06265-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The human gut microbiome constantly converts natural products derived from the host and diet into numerous bioactive metabolites1-3. Dietary fats are essential micronutrients that undergo lipolysis to release free fatty acids (FAs) for absorption in the small intestine4. Gut commensal bacteria modify some unsaturated FAs-for example, linoleic acid (LA)-into various intestinal FA isomers that regulate host metabolism and have anticarcinogenic properties5. However, little is known about how this diet-microorganism FA isomerization network affects the mucosal immune system of the host. Here we report that both dietary factors and microbial factors influence the level of gut LA isomers (conjugated LAs (CLAs)) and that CLAs in turn modulate a distinct population of CD4+ intraepithelial lymphocytes (IELs) that express CD8αα in the small intestine. Genetic abolition of FA isomerization pathways in individual gut symbionts significantly decreases the number of CD4+CD8αα+ IELs in gnotobiotic mice. Restoration of CLAs increases CD4+CD8αα+ IEL levels in the presence of the transcription factor hepatocyte nuclear factor 4γ (HNF4γ). Mechanistically, HNF4γ facilitates CD4+CD8αα+ IEL development by modulating interleukin-18 signalling. In mice, specific deletion of HNF4γ in T cells leads to early mortality from infection by intestinal pathogens. Our data reveal a new role for bacterial FA metabolic pathways in the control of host intraepithelial immunological homeostasis by modulating the relative number of CD4+ T cells that were CD4+CD8αα+.
Collapse
Affiliation(s)
- Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Haohao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Zhang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suelen S Mello
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ximei Sun
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wen Zheng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca S Gazzaniga
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Mass General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fangfang Qu
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Fontes AL, Pimentel LL, Soares AMS, Domingues MDR, Rodríguez-Alcalá LM, Gomes AM. Study of the viability of using lipase-hydrolyzed commercial vegetable oils to produce microbially conjugated linolenic acid-enriched milk. Food Chem 2023; 413:135665. [PMID: 36787664 DOI: 10.1016/j.foodchem.2023.135665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
This work studied the viability of using vegetable oils as precursor substrates to develop a dairy product enriched in microbial conjugated linoleic (CLA) and conjugated linolenic (CLNA) acids. Hydrolysis of hempseed, flaxseed (FSO) and soybean (SBO) oils was tested with Candida rugosa (CRL), Pseudomonas fluorescens, or Pancreatic porcine lipases. FSO and SBO, previously hydrolyzed with CRL, were further selected for cow's milk CLA/CLNA-enrichment with Bifidobacterium breve DSM 20091. Thereafter, higher substrate concentrations with hydrolyzed FSO were tested. For all tested oils, CRL revealed the best degrees of hydrolysis (>90 %). Highest microbial CLA/CLNA yield in milk was achieved with hydrolyzed FSO, which led to the appearance of mainly CLNA isomers (0.34 mg/g). At higher substrate concentrations, maximum yield was 0.88 mg/g CLNA. Therefore, it was possible to enrich milk with microbial CLNA using vegetable oil, but not with CLA, nor develop a functional product that can deliver a reliable effective dose.
Collapse
Affiliation(s)
- Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Laboratório Associado para a Química Verde - LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Lígia Leão Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Ana Maria Silva Soares
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Maria do Rosário Domingues
- Centro de Espectrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
19
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023; 43:614-682. [PMID: 36658724 PMCID: PMC10947485 DOI: 10.1002/med.21933] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| |
Collapse
|
20
|
Taboada N, Fernández Salom M, Córdoba A, González SN, López Alzogaray S, Van Nieuwenhove C. Administration of selected probiotic mixture improves body weight gain and meat fatty acid composition of creole goats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Azari SR, Hojjatoleslamy M, Mousavi ZE, Kiani H, Jalali SMA. Production and Optimization of Conjugated Linoleic and Eicosapentaenoic Acids by Bifidobacterium lactis in Cold-Pressed Soybean Cake. Front Nutr 2022; 9:916728. [PMID: 35967809 PMCID: PMC9363755 DOI: 10.3389/fnut.2022.916728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose In regard to the biosynthesis of conjugated linoleic acid (CLA) and eicosapentaenoic acid (EPA) by some bacteria, the objective of this study was to evaluate the efficiency of solid-state fermentation based on soybean pressed cake (SPC) to produce CLA and EPA by Bifidobacterium lactis. The objective of this study was to evaluate the efficiency of solid-state fermentation based on SPC to produce CLA and EPA by B. lactis. Methods Process conditions including humidity, inoculation level, and temperature parameters were optimized by adopting the response surface methodology (RSM) method (response surface method) and the design expert software. Accordingly, a homogeneous SPC paste substrate at 60, 70, and 80% humidity was prepared with different inoculation levels at 30, 37, and 44°C to assess the strain behavior. The introduced SPC consisted of 60% humidity, 2% inoculation level at 37°C, and 60% humidity, and 4% inoculation level at 30 and 44°C; it also included 6% inoculation level at 37°C, 70% humidity at 2% inoculation level, at 30 and 44°C, and 4% inoculation level at 37°C. Also, SPC with 80% humidity at 2% and 4% inoculation levels, and at 30 and 44°C was obtained. To confirm the accuracy of the conditions, an experiment was conducted according to the defined requirements. Results The results were compared with the predicted data, which showed a significant difference. Under optimized conditions, with an inoculation level of 4% on the SPC medium with 70% humidity and at 37°C, B. lactis strains could yield 9cis-, 11 trans-linoleic and eicosapentaenoic at 0.18 and 0.39% of the total fatty acids. Conclusion So, the potential benefits of using SPC as an inexpensive substrate for the commercial production of CLA and EPA should be noted.
Collapse
Affiliation(s)
- Samin Rafi Azari
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Hojjatoleslamy
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zeinab E Mousavi
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hossein Kiani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sayed Mohammad Ali Jalali
- Department of Animal Sciences, Faculty of Agriculture and Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
22
|
Mei Y, Li X, Yang B, Zhao J, Zhang H, Chen H, Chen W. Heterologous expression of a novel linoleic acid isomerase BBI, and effect of fusion tags on its performance. Curr Res Food Sci 2022; 5:2053-2060. [DOI: 10.1016/j.crfs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022] Open
|
23
|
Adaptation of gut microbiome and host metabolic systems to lignocellulosic degradation in bamboo rats. THE ISME JOURNAL 2022; 16:1980-1992. [PMID: 35568757 PMCID: PMC9107070 DOI: 10.1038/s41396-022-01247-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.
Collapse
|
24
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
25
|
Du Z, Sun L, Lin Y, Yang F, Cai Y. Using PacBio SMRT Sequencing Technology and Metabolomics to Explore the Microbiota-Metabolome Interaction Related to Silage Fermentation of Woody Plant. Front Microbiol 2022; 13:857431. [PMID: 35794909 PMCID: PMC9251423 DOI: 10.3389/fmicb.2022.857431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023] Open
Abstract
Silage fermentation is a dynamic process involving the succession of microbial communities and changes in metabolites. Fresh branched and leaves of paper mulberry were used to prepared silage. Crop by-products including corn bran, rice bran, and wheat bran were used as exogenous additives. Pacific Biosciences single-molecule real-time (SMRT) sequencing technology and metabolomics are used to explore the interaction mechanism of microbial structure and metabolites during woody silage fermentation and to verify the principle that exogenous additives can modulate silage fermentation. Under the dual stress of anaerobic and acidic environment of silage fermentation, the microbial community changed from Gram-negative to Gram-positive bacteria, and a large amount of lactic acid and volatile fatty acid were produced, which lowered the pH value and caused the rapid death of aerobic bacteria with thin cell walls. The exogenous additives of corn bran and wheat bran accelerated the dynamic succession of lactic acid bacteria as the dominant microbial community in silage fermentation, increased the metabolic pathways of lactic acid, unsaturated fatty acids, citric acid, L-malic acid and other flavoring agents, and inhibited the growth of Clostridium and Enterobacter, thereby improving the flavor and quality of the silage. However, because rice bran contained butyric acid spore bacteria, it can multiply in an anaerobic environment, led to butyric acid fermentation, and promoted protein degradation and ammonia nitrogen production, thereby reduced the fermentation quality of woody silage. The results showed that during the silage fermentation process, the microbial community and the metabolome can interact, and exogenous additives can affect the fermentation quality of silage. SMRT sequencing technology and untargeted metabolomics revealed the microbiota-metabolome interaction during silage fermentation. Changes in the structure of the microbial community can affect the metabolic pathways, and the final metabolites can inhibit the growth of microorganisms that are not conducive to silage fermentation. Exogenous carbohydrate additives can change the fermentation substrate and affect microbial community structure, thus modulate the silage fermentation.
Collapse
Affiliation(s)
- Zhumei Du
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Lin Sun
- Inner Mongolia Academy of Agricultural Sciences and Animal Husbandry, Hohhot, China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Fuyu Yang,
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Yimin Cai,
| |
Collapse
|
26
|
The Arginine Repressor ArgR 2 Controls Conjugated Linoleic Acid Biosynthesis by Activating the cla Operon in Lactiplantibacillus plantarum. Microbiol Spectr 2022; 10:e0261921. [PMID: 35652699 PMCID: PMC9241672 DOI: 10.1128/spectrum.02619-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CLA (conjugated linoleic acid) has attracted substantial attention due to its physiological functions, including regulating immunity, reducing obesity, and contributing to cancer suppression. In Lactiplantibacillus plantarum, CLA oleate hydratase (CLA-HY), CLA short-chain dehydrogenase (CLA-DH), and CLA acetoacetate decarboxylase (CLA-DC) catalyze the biotransformation of linoleic acid (LA) to CLA. However, the underlying transcriptional regulation mechanism of this pathway remains largely unknown. In this study, the potential transcriptional regulators that might bind to the cla promoter of L. plantarum AR195 were investigated by DNA pulldown. Interestingly, ArgR2, the transcriptional regulator of arginine metabolism, was identified as a potential regulator involved in the regulation of CLA biotransformation. Electrophoretic mobility shift assay (EMSA) and molecular interaction results demonstrated the specific binding of ArgR2 to the regulatory region of the cla operon. The knockout of argR2 led to the downregulation of cla-dh and cla-dc by 91% and 34%, respectively, resulting in a decline in the CLA yield by 14%. A segmental EMSA revealed that ArgR2 bound to three distinct sites in the cla regulatory region, and these binding sites were highly conserved and rich in AT. The regulatory mechanism of ArgR2 on CLA biosynthesis further expanded our knowledge of the regulatory mechanism of CLA biosynthesis in L. plantarum and laid the theoretical foundation for the production and application of CLA. IMPORTANCE CLA (conjugated linoleic acid) has received extensive attention owing to its important physiological functions. CLA from natural sources is far from meeting people's demands. Lactic acid bacteria can efficiently synthesize cis-9,trans-11-CLA and trans-10,cis-12-CLA, which possess physiological activities. However, little is known about the regulatory mechanism. In this study, we identified that the biosynthesis of CLA in L. plantarum AR195 was transcriptionally regulated by the arginine biosynthesis regulatory protein ArgR2. The regulation mechanism of ArgR2 on CLA biosynthesis lays a theoretical foundation for the regulation of CLA synthesis and industrial production.
Collapse
|
27
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
28
|
Turek K, Wszołek M. Effect of walnut oil on the fatty acid content of probiotic kefir produced either with kefir grains or kefir starter cultures. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Microbiota-diet interactions: towards personalized nutrition. NUTR HOSP 2022; 39:39-43. [DOI: 10.20960/nh.04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
30
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Di Rienzi SC, Johnson EL, Waters JL, Kennedy EA, Jacobson J, Lawrence P, Wang DH, Worgall TS, Brenna JT, Ley RE. The microbiome affects liver sphingolipids and plasma fatty acids in a murine model of the Western diet based on soybean oil. J Nutr Biochem 2021; 97:108808. [PMID: 34186211 PMCID: PMC8585862 DOI: 10.1016/j.jnutbio.2021.108808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Jillian L Waters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elizabeth A Kennedy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Juliet Jacobson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Dong Hao Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology and Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA; Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
32
|
Oleate Hydratase in Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230 Catalyzes the Reversible Conversion between Linoleic Acid and Ricinoleic Acid. Microbiol Spectr 2021; 9:e0117921. [PMID: 34643412 PMCID: PMC8515934 DOI: 10.1128/spectrum.01179-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography-coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA. IMPORTANCE This study provides insight into the enzymatic mechanism of CLA synthesis in L. delbrueckii subsp. bulgaricus and broadens our understanding of the bioconversion of LA and RA by OleH. The impact of OleH on the production of the c9, t11 CLA isomer and stress tolerance by E. coli has been assisted. The results provide an understanding of the factors which influence OleH activity. L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH presented two putative fatty acid-binding sites. Recombinant OleH catalyzed both LA hydration and RA dehydration. OleH was shown to play a role in bacterial growth performance in the presence of LA.
Collapse
|
33
|
Chan MZA, Lau H, Lim SY, Li SFY, Liu SQ. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Res Int 2021; 149:110656. [PMID: 34600658 DOI: 10.1016/j.foodres.2021.110656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Amidst trends in non-dairy probiotic foods and functional coffees, we recently developed a fermented coffee brew containing high live counts of the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. However, probiotic fermentation did not alter levels of principal coffee bioactive components based on targeted analyses. Here, to provide therapeutic justification compared to other non-fermented coffee brews, we aimed to discover postbiotics in coffee brews fermented with L. rhamnosus GG and/or S. boulardii CNCM-I745. By using an untargeted LC-QTOF-MS/MS based metabolomics approach coupled with validated multivariate analyses, 37 differential metabolites between fermentation treatments were putatively annotated. These include the production of postbiotics such as 2-isopropylmalate by S. boulardii CNCM-I745, and aromatic amino acid catabolites (indole-3-lactate, p-hydroxyphenyllactate, 3-phenyllactate), and hydroxydodecanoic acid by L. rhamnosus GG. Overall, LC-QTOF based untargeted metabolomics can be an effective approach to uncover postbiotics, which may substantiate additional potential functionalities of probiotic fermented foods compared to their non-fermented counterparts.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
34
|
Mei Y, Chen H, Yang B, Zhao J, Zhang H, Chen W. Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11311-11321. [PMID: 34523917 DOI: 10.1021/acs.jafc.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abundant conjugated linoleic acid (CLA) producers exist among Bifidobacterium species. This CLA production is related to the mitigation of LA toxicity. However, there is still a lack of information on the metabolic response underlying this detoxification strategy. In this study, six bifidobacteria strains belonging to three different species were used to characterize growth and CLA accumulation in the presence of LA. A combination of non-targeted metabolomics techniques and biochemical indicators were used to explore metabolic profile changes in response to LA and the expression of important factors driving CLA production in Bifidobacterium species. The results suggested that free LA had growth inhibitory effects on bifidobacteria, resulting in a global metabolic stress response that caused metabolic reprogramming on all tested strains and promoted malondialdehyde production, inducing a redox imbalance. In particular, a strong decrease in reduced glutathione level was observed in Bifidobacterium breve CCFM683 [log2(FC) = -3.29]. Furthermore, LA-induced oxidative stress is an important factor driving high CLA production in certain strains.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
35
|
Metzler-Zebeli BU. The Role of Dietary and Microbial Fatty Acids in the Control of Inflammation in Neonatal Piglets. Animals (Basel) 2021; 11:ani11102781. [PMID: 34679802 PMCID: PMC8532928 DOI: 10.3390/ani11102781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The maturation of the gut is a specific and very dynamic process in new-born piglets. Consequently, piglet’s gut is very susceptible to disturbances, especially in stressful periods of life, such as weaning, when the gut lining often becomes inflamed and leaky. Dietary fatty acids (FA) do not only serve as source of energy and essential FA, but they are important precursors for bioactive lipid mediators, which modulate inflammatory signalling in the body. The current review summarizes results on dietary sources of FA for piglets, the signalling cascades, bioactivities, the necessity to consider the autoxidation potential of polyunsaturated FA and the area of microbially produced long-chain FA. That said, porcine milk is high in fat, whereby the milk FA composition partly depends on the dietary FA composition of the sow. Therefore, manipulation of the sow diet is an efficient tool to increase the piglet’s intake of specific FA, e.g., n-3 polyunsaturated FA which show anti-inflammatory activity and may support intestinal integrity and functioning in the growing animal. Abstract Excessive inflammation and a reduced gut mucosal barrier are major causes for gut dysfunction in piglets. The fatty acid (FA) composition of the membrane lipids is crucial for mediating inflammatory signalling and is largely determined by their dietary intake. Porcine colostrum and milk are the major sources of fat in neonatal piglets. Both are rich in fat, demonstrating the dependence of the young metabolism from fat and providing the young organism with the optimum profile of lipids for growth and development. The manipulation of sow’s dietary polyunsaturated FA (PUFA) intake has been shown to be an efficient strategy to increase the transfer of specific FAs to the piglet for incorporation in enteric tissues and cell membranes. n-3 PUFAs, especially seems to be beneficial for the immune response and gut epithelial barrier function, supporting the piglet’s enteric defences in situations of increased stress such as weaning. Little is known about microbial lipid mediators and their role in gut barrier function and inhibition of inflammation in neonatal piglets. The present review summarizes the current knowledge of lipid nutrition in new-born piglets, comparing the FA ingestion from milk and plant-based lipid sources and touching the areas of host lipid signalling, inflammatory signalling and microbially derived FAs.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
36
|
Sanjulián L, Lamas A, Barreiro R, Cepeda A, Fente CA, Regal P. Bacterial Diversity of Breast Milk in Healthy Spanish Women: Evolution from Birth to Five Years Postpartum. Nutrients 2021; 13:2414. [PMID: 34371924 PMCID: PMC8308733 DOI: 10.3390/nu13072414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The objective of this work was to characterize the microbiota of breast milk in healthy Spanish mothers and to investigate the effects of lactation time on its diversity. A total of ninety-nine human milk samples were collected from healthy Spanish women and were assessed by means of next-generation sequencing of 16S rRNA amplicons and by qPCR. Firmicutes was the most abundant phylum, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. Accordingly, Streptococcus was the most abundant genus. Lactation time showed a strong influence in milk microbiota, positively correlating with Actinobacteria and Bacteroidetes, while Firmicutes was relatively constant over lactation. 16S rRNA amplicon sequencing showed that the highest alpha-diversity was found in samples of prolonged lactation, along with wider differences between individuals. As for milk nutrients, calcium, magnesium, and selenium levels were potentially associated with Streptococcus and Staphylococcus abundance. Additionally, Proteobacteria was positively correlated with docosahexaenoic acid (DHA) levels in breast milk, and Staphylococcus with conjugated linoleic acid. Conversely, Streptococcus and trans-palmitoleic acid showed a negative association. Other factors such as maternal body mass index or diet also showed an influence on the structure of these microbial communities. Overall, human milk in Spanish mothers appeared to be a complex niche shaped by host factors and by its own nutrients, increasing in diversity over time.
Collapse
Affiliation(s)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| | | | | | | | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| |
Collapse
|
37
|
Metzler-Zebeli BU, Klinsoda J, Vötterl J, Sharma S, Koger S, Sener-Aydemir A. Short-, medium-, and long-chain fatty acid profiles and signaling is responsive to dietary phytase and lactic acid treatment of cereals along the gastrointestinal tract of growing pigs. J Anim Sci 2021; 99:6231813. [PMID: 33864091 DOI: 10.1093/jas/skab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Dietary and microbially derived fatty acids (FA) play important roles in gut mucosal inflammatory signaling, barrier function, and oxidative stress response. Nevertheless, little information is available about gastrointestinal FA profiles and receptor distribution in pigs, especially for long-chain FA (LCFA). Therefore, the present pilot study aimed to (1) investigate the gastrointestinal FA profiles; (2) link the luminal FA profiles to the mucosal expression of genes related to FA sensing and signaling; and (3) assess potential dietary effects on gut and systemic lipid metabolism in pigs. Gut, liver, and serum samples were obtained from barrows (13.1 ± 2.3 kg) fed diets containing either phytase (500 phytase units/kg diet) or cereals treated with 2.5% lactic acid (LA; n = 8/diet) for 18 d. Results showed gut regional and diet-related differences in luminal FA profiles and mucosal receptor expression, whereas diet little affected hepatic expression levels and serum lipids. Short-chain fatty acids (SCFA) increased from stomach, jejunum, and ileum to the cecum (P < 0.05), whereas LCFA were higher in stomach, cecum, and colon than in jejunum and ileum (P < 0.05). LA-treated cereals enhanced cecal acetate and butyrate, whereas phytase and LA treated cereals decreased the LCFA by 35.9% and 14.4%, respectively (P < 0.05). Gut regional differences suggested stronger signaling via FFAR1 expression in the ileum, and via FFAR2, FFAR4, and HCAR1 expression in cecum and colon (P < 0.05). Expression of AMPK, FASN, PPARG, SREBP1, and SREBP2 was higher in the cecum and colon compared with the small intestine (P < 0.05), with stronger sensing via FASN and SREBP2. Phytase decreased expression of FFAR2 and FFAR4, whereas it increased that of FFAR3 and MCT1 in the cecum (P < 0.05). LA-treated cereals raised cecal expression of FFAR3 and HCAR1 (P < 0.05). Pearson's correlations (|r| > 0.35; P < 0.05) supported that FA receptor- and nuclear transcription factor-dependent pathways were involved in the mucosal regulation of gut incretin expression but differed across gut regions. In conclusion, results support regional differences in SCFA, lactate and LCFA sensing and absorption capacities in the small and large intestines of pigs. Effects of phytase and the LA-treated cereals on intestinal FA levels and signaling can be explained by differences in nutrient flows (e.g., phosphorus and carbohydrate fractions). This overview provides a solid basis for future intestinal FA sensing in pigs.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jutamat Klinsoda
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Institute of Food Research and Product Development, University of Kasetsart, Bangkok, Thailand
| | - Julia Vötterl
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simone Koger
- Institute of Food Research and Product Development, University of Kasetsart, Bangkok, Thailand
| | - Arife Sener-Aydemir
- Institute of Food Research and Product Development, University of Kasetsart, Bangkok, Thailand
| |
Collapse
|
38
|
Fujita Y, Kano K, Kishino S, Nagao T, Shen X, Sato C, Hatakeyama H, Ota Y, Niibori S, Nomura A, Kikuchi K, Yasuno W, Takatori S, Kikuchi K, Sano Y, Tomita T, Suzuki T, Aoki J, Zou K, Natori S, Komano H. Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid β-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer's disease mouse model. Sci Rep 2021; 11:9749. [PMID: 33980877 PMCID: PMC8115273 DOI: 10.1038/s41598-021-88870-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-β protein (Aβ) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aβ levels and suppression of inflammation.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduates School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, Morinomiya Center, Joto-ku, Osaka, Japan
| | - Xuefeng Shen
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Chiharu Sato
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hatsune Hatakeyama
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Yume Ota
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Sho Niibori
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Ayako Nomura
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kota Kikuchi
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
- Department of Pharmacy, Japanese Red Cross Morioka Hospital, Morioka, Iwate, Japan
| | - Wataru Yasuno
- Institute for Biomedical Sciences, Library, Iwate Medical University, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduates School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kun Zou
- Department of Biochemistry, School of Medicine, Nagoya City University, Nagoya, Aichi, Japan
| | - Shunji Natori
- Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - Hiroto Komano
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
39
|
Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. Methods Mol Biol 2021; 2278:87-100. [PMID: 33649950 DOI: 10.1007/978-1-0716-1274-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.
Collapse
|
40
|
Abstract
Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.
Collapse
|
41
|
POURBABA H, ANVAR AA, Pourahmad R, AHARI H. Increase in conjugated linoleic acid content and improvement in microbial and physicochemical properties of a novel kefir stored at refrigerated temperature using complementary probiotics and prebiotic. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.61520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
42
|
Butyrivibrio fibrisolvens F7 dietary supplementation increases levels of cis 9-trans 11 conjugated linoleic acid in gut and adipose tissue in mice. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Özer CO, Kılıç B. Optimization of pH, time, temperature, variety and concentration of the added fatty acid and the initial count of added lactic acid Bacteria strains to improve microbial conjugated linoleic acid production in fermented ground beef. Meat Sci 2021; 171:108303. [DOI: 10.1016/j.meatsci.2020.108303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
|
44
|
Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Compr Rev Food Sci Food Saf 2020; 20:960-979. [PMID: 33325160 DOI: 10.1111/1541-4337.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.,Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
45
|
Vahvaselkä M, Leskinen H, Mäkilä L, Kallio H, Laakso S, Yang B. Microbial enrichment of blackcurrant press residue with conjugated linoleic and linolenic acids. J Appl Microbiol 2020; 130:1602-1610. [PMID: 33030792 DOI: 10.1111/jam.14888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study was to investigate the isomerization of linoleic (LA) and linolenic acids (LNAs) into their conjugated isomers by Propionibacterium freudenreichii DSM 20270 and utilize this feature for microbial enrichment of blackcurrant press residue (BCPR) with health-beneficial conjugated fatty acids. METHODS AND RESULTS First, the ability of P. freudenreichii to isomerize 0·4 mg ml-1 of LA and LNA was studied in lactate growth medium. Free LA and α-LNA were efficiently converted into conjugated linoleic (CLA) and α-linolenic acid (α-CLNA), being the predominant isomers c9,t11-CLA and c9,t11,c15-CLNA, respectively. The bioconversion of α-LNA by P. freudenreichii was more efficient in terms of formation rate, yield and isomer-specificity. Thereafter, free LA and LNAs obtained from hydrolysed BCPR neutral lipids, by lipolytically active oat flour, were subjected to microbial isomerization in BCPR slurries. In 10% (w/v) slurries, a simultaneous enrichment in c9,t11-CLA and c9,t11,c15-CLNA of up to 0·51 and 0·29 mg ml-1 was observed from starting levels of 0·96 mg LA ml-1 and 0·37 mg α-LNA ml-1 respectively. CONCLUSIONS This study shows that growing cultures of P. freudenreichii DSM 20270 are able to simultaneously enrich BCPR with health-beneficial conjugated isomers of LA and α-LNA. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that microbial isomerization technique can be utilized to enrich lipid-containing plant materials with bioactive compounds and thereby enable valorization of low value plant-based side streams from food industry into value-added food ingredients.
Collapse
Affiliation(s)
- M Vahvaselkä
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Biorefinery and Bioproducts, Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - H Leskinen
- Milk Production, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - L Mäkilä
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - H Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - S Laakso
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Liu Y, Sheng Y, Pan Q, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 2020; 11:1279-1291. [PMID: 31984399 DOI: 10.1039/c9fo02935d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus plantarum is a probiotic that is widely used to prevent ulcerative colitis (UC). However, the effects of this species are strain-specific. We believe that the physiological characteristics of L. plantarum strains may affect their UC-alleviating function. Therefore, this study investigated the relationship between the alleviating effect of L. plantarum strains on UC and their physiological characteristics in vitro. The physiological characteristics of 14 L. plantarum strains were assayed in vitro, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid (CLA) synthesis. To create animal models, colitis was established in C57BL/6 mice by adding 3.5% dextran sulfate sodium to drinking water for 7 days. L. plantarum strains with significantly different physiological characteristics were orally administered to the mice at a dose of 3 × 109 CFU. The results indicated that among the tested L. plantarum strains, L. plantarum N13 and L. plantarum CCFM8610 significantly alleviated colitis in the mice, as observed from the restoration of the body weight and disease activity index (DAI) score, recovery of the gut microbiota composition, reduced expression of pro-inflammatory cytokines, and significantly inhibited expression of p65. Correlation analysis indicated that four of the measured physiological characteristics (gastrointestinal transit tolerance, HT-29 cell adhesion, generation time, and CLA synthesis) were related to the UC-alleviating effects to different degrees. The strongest correlation was observed between the CLA synthesis ability and UC-alleviating effects (with Pearson correlation coefficients for IL-1β, IL-6, IL-17F, TNF-α, myeloperoxidase, and the DAI all below -0.95). The ability to synthesize CLA may be the key physiological characteristic of L. plantarum in UC alleviation. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
47
|
Xu D, Wang N, Rinne M, Ke W, Weinberg ZG, Da M, Bai J, Zhang Y, Li F, Guo X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb Biotechnol 2020; 14:561-576. [PMID: 32627363 PMCID: PMC7936295 DOI: 10.1111/1751-7915.13623] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023] Open
Abstract
Multi‐omics approach was adopted to investigate the modulation of bacterial microbiota and metabolome as well as their interactions in whole crop corn ensiling systems by inoculating homofermentative Lactobacillus plantarum or heterofermentative Lactobacillus buchneri. Inoculations of the two different inoculants resulted in substantial differences in microbial community and metabolic composition as well as their dynamics in ensiled corn. Inoculants also altered the correlations of microbiota in different manners, and various keystone species were identified in corn silages with different treatments. Many metabolites with biofunctional activities like bacteriostatic, antioxidant, central nervous system inhibitory and anti‐inflammatory were found in the present silage. A constitutive difference in microbiota dynamics was found for several pathways, which were upregulated by specific taxa in middle stage of fermentation, and widespread associations between metabolites with biofunctions and the species of lactic acid bacteria dominated in silage were observed. Multiple microbial and metabolic structures and dynamics were correlated and affected the fermentation process of the corn ensiling systems. Results of the current study improve our understanding of the complicated biological process underlying silage fermentation and provide a framework to re‐evaluate silages with biofunctions, which may contribute to target‐based regulation methods to produce functional silage for animal production.
Collapse
Affiliation(s)
- Dongmei Xu
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Nian Wang
- Nextomics Biosciences Institute, Wuhan, 430000, China
| | - Marketta Rinne
- Natural Resources Institute Finland (Luke) Animale, Jokioinen, 31600, Finland
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Zwika G Weinberg
- Microbial Food-Safety Research Unit, Department of Food Quality and Safety, The Volcani Center, Agriculture Research Organization, Institute for Postharvest and Food Sciences, Derech HaMaccabim Road 68, POB 15159, Rishon-LeZion, 7528809, Israel
| | - Mi Da
- Nextomics Biosciences Institute, Wuhan, 430000, China
| | - Jie Bai
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Fuhou Li
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
48
|
Bodkowski R, Czyż K, Wyrostek A, Cholewińska P, Sokoła-Wysoczańska E, Niedziółka R. The Effect of CLA-Rich Isomerized Poppy Seed Oil on the Fat Level and Fatty Acid Profile of Cow and Sheep Milk. Animals (Basel) 2020; 10:E912. [PMID: 32466271 PMCID: PMC7278435 DOI: 10.3390/ani10050912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to examine the effect of dietary supplementation of isomerized poppy seed oil (IPO) enriched with conjugated dienes of linoleic acid (CLA) on cow and sheep milk parameters (fat content, fatty acid profile, Δ9-desaturase index, and atherogenic index). The process of poppy seed oil alkaline isomerization caused the formation of CLA isomers with cis-9,trans-11, trans-10,cis-12, and cis-11,trans-13 configurations in the amounts of 31.2%, 27.6%, and 4.1% of total fatty acids (FAs), respectively. Animal experiments were conducted on 16 Polish Holstein Friesian cows (control (CTRL) and experimental (EXP), n = 8/group) and 20 East Friesian Sheep (CTRL and EXP, n = 10/group). For four weeks, animals from EXP groups received the addition of IPO in the amount of 1% of dry matter. Milk was collected three times: on days 7, 14, and 30. Diet supplementation with IPO decrease milk fat content (p < 0.01). Milk fat from EXP groups had higher levels of polyunsaturated fatty acids, including FAs with beneficial biological properties, that is, CLA and TVA (p < 0.01), and lower levels of saturated fatty acids, particularly short- (p < 0.01) and medium-chain FAs (p < 0.05). The addition of IPO led to a decrease in the atherogenic index.
Collapse
Affiliation(s)
- Robert Bodkowski
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (A.W.); (P.C.)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (A.W.); (P.C.)
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (A.W.); (P.C.)
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (A.W.); (P.C.)
| | | | - Roman Niedziółka
- Institute of Animal Production and Fisheries, Siedlce University of Natural Sciences and Humanities, Prusa 14B, 08-110 Siedlce, Poland;
| |
Collapse
|
49
|
Senizza A, Rocchetti G, Callegari ML, Lucini L, Morelli L. Linoleic acid induces metabolic stress in the intestinal microorganism Bifidobacterium breve DSM 20213. Sci Rep 2020; 10:5997. [PMID: 32265475 PMCID: PMC7138814 DOI: 10.1038/s41598-020-62897-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 02/04/2023] Open
Abstract
Despite clinical and research interest in the health implications of the conjugation of linoleic acid (LA) by bifidobacteria, the detailed metabolic pathway and physiological reasons underlying the process remain unclear. This research aimed to investigate, at the molecular level, how LA affects the metabolism of Bifidobacterium breve DSM 20213 as a model for the well-known LA conjugation phenotype of this species. The mechanisms involved and the meaning of the metabolic changes caused by LA to B. breve DSM 20213 are unclear due to the lack of comprehensive information regarding the responses of B. breve DSM 20213 under different environmental conditions. Therefore, for the first time, an untargeted metabolomics-based approach was used to depict the main changes in the metabolic profiles of B. breve DSM 20213. Both supervised and unsupervised statistical methods applied to the untargeted metabolomic data allowed confirming the metabolic changes of B. breve DSM 20213 when exposed to LA. In particular, alterations to the amino-acid, carbohydrate and fatty-acid biosynthetic pathways were observed at the stationary phase of growth curve. Among others, significant up-regulation trends were detected for aromatic (such as tyrosine and tryptophan) and sulfur amino acids (i.e., methionine and cysteine). Besides confirming the conjugation of LA, metabolomics suggested a metabolic reprogramming during the whole growth curve and an imbalance in redox status following LA exposure. Such redox stress resulted in the down-accumulation of peroxide scavengers such as low-molecular-weight thiols (glutathione- and mycothiol-related compounds) and ascorbate precursors, together with the up-accumulation of oxidized (hydroxy- and epoxy-derivatives) forms of fatty acids. Consistently, growth was reduced and the levels of the oxidative stress marker malondialdehyde were higher in LA-exposed B. breve DSM 20213 than in the control.
Collapse
Affiliation(s)
- Alice Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
- Centre for Research on Biotechnology (CRB), Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
50
|
Chambers SA, Moore RE, Craft KM, Thomas HC, Das R, Manning SD, Codreanu SG, Sherrod SD, Aronoff DM, McLean JA, Gaddy JA, Townsend SD. A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim. mBio 2020; 11:e00076-20. [PMID: 32184236 PMCID: PMC7078465 DOI: 10.1128/mbio.00076-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 01/21/2023] Open
Abstract
Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs' mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.
Collapse
Affiliation(s)
| | - Rebecca E Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kelly M Craft
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Harrison C Thomas
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Rishub Das
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|