1
|
Webster MW. Initiation of Translation in Bacteria and Chloroplasts. J Mol Biol 2025:169137. [PMID: 40221131 DOI: 10.1016/j.jmb.2025.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Relative rates of protein synthesis in bacteria generally depend on the number of copies of a messenger RNA (mRNA) and the efficiency of their loading with ribosomes. Translation initiation involves the multi-stage assembly of the ribosome on the mRNA to begin protein synthesis. In bacteria, the small ribosomal subunit (30S) and mRNA form a complex that can be supported by RNA-protein and RNA-RNA interactions and is extensively modulated by mRNA folding. The initiator transfer RNA (tRNA) and large ribosomal subunit (50S) are recruited with aid of three initiation factors (IFs). Equivalent translation initiation processes occur in chloroplasts due to their endosymbiotic origin from photosynthetic bacteria. This review first summarizes the molecular basis of translation initiation in bacteria, highlighting recent insight into the initial, intermediate and late stages of the pathway obtained by structural analyses. The molecular basis of chloroplast translation initiation is then reviewed, integrating our mechanistic understanding of bacterial gene expression supported by detailed in vitro experiments with data on chloroplast gene expression derived primarily from genetic studies.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Sun Y, Bakhtiari S, Valente-Paterno M, Jiang H, Zerges W. Membranous translation platforms in the chloroplast of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2025; 197:kiaf111. [PMID: 40116843 PMCID: PMC11973481 DOI: 10.1093/plphys/kiaf111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/23/2025]
Abstract
A small genome in chloroplasts encodes many of the polypeptide subunits of the photosynthetic electron transport complexes embedded in the membranes of thylakoid vesicles in the chloroplast stroma and synthesized by ribosomes of the bacterial-like genetic system of this semiautonomous organelle. While thylakoid membranes (TMs) are sites of translation, evidence in the unicellular alga Chlamydomonas reinhardtii supports translation on noncanonical membranes in a discrete translation zone in the chloroplast. To characterize the membranous platforms for translation and the biogenesis of TMs, we profiled membranes during chloroplast development, using the yellow-in-the-dark1 mutant, and carried out proteomic analyses on 2 membrane types proposed previously to support translation in the chloroplast of C. reinhardtii: "low-density membrane" (LDM) and "chloroplast translation membrane" (CTM). The results support the roles of LDM and CTM in the preliminary and ongoing stages of translation, respectively. Proteomics, immunoprecipitation, and transmission electron microscopy results support connections of these membranous platforms and a chloroplast envelope domain bound by cytoplasmic ribosomes. Our results contribute to a model of photosynthesis complex biogenesis in a spatiotemporal "assembly line" involving LDM and CTM as sequential stages leading to photosynthetic TMs.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6, Canada
| | - Shiva Bakhtiari
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6, Canada
| | - Melissa Valente-Paterno
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6, Canada
| | - Heng Jiang
- Centre for Biological Applications of Mass Spectrometry, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
3
|
Lee CS, Sim J, Kim SY, Lee H, Roh TY, Hwang CS. Formyl-methionine-mediated eukaryotic ribosome quality control pathway for cold adaptation. Mol Cell 2025; 85:602-619.e16. [PMID: 39721582 DOI: 10.1016/j.molcel.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Protein synthesis in the eukaryotic cytosol can start using both conventional methionine and formyl-methionine (fMet). However, a mechanism, if such exists, for detecting and regulating the incorporation of fMet (instead of Met) during translation, thereby preventing cellular toxicity of nascent fMet-bearing (fMet-) polypeptides, remains unknown. Here, we describe the fMet-mediated ribosome quality control (fMet-RQC) pathway in Saccharomyces cerevisiae. A eukaryotic translation initiation factor 3 subunit c, Nip1, specifically recognizes N-terminal fMet in nascent polypeptides, recruiting a small GTPase, Arf1, to induce ribosome stalling, largely with 41-residue fMet-peptidyl tRNAs. This leads to ribosome dissociation and subsequent stress granule formation. Loss of the fMet-RQC pathway causes the continued synthesis of fMet polypeptides, which inhibits essential N-terminal Met modifications and promotes their coaggregation with ribosomes. This fMet-RQC pathway is important for the adaptation of yeast cells to cold stress by promoting stress granule formation and preventing a buildup of toxic fMet polypeptides.
Collapse
Affiliation(s)
- Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jaehwan Sim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Kim D, Park KS, Hwang CS. Development of an enhanced anti-pan-N-formylmethionine-specific antibody. Biotechniques 2025; 77:46-55. [PMID: 39973362 DOI: 10.1080/07366205.2025.2467583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Both bacterial and eukaryotic ribosomes can initiate protein synthesis with formylmethionine (fMet), but detecting fMet-bearing peptides and fMet-bearing proteins has been challenging due to the lack of effective anti-pan-fMet antibodies. Previously, we developed a polyclonal anti-fMet antibody using a fMet-Gly-Ser-Gly-Cys pentapeptide that detects those fMet-bearing peptides and fMet-bearing proteins regardless of their sequence context. In this study, we significantly improved the antibody's specificity and affinity by using a mixture of fMet-Xaa-Cys tripeptides (Xaa, any of the 20 amino acids) as the immunogen. This newly optimized anti-fMet antibody is a powerful, cost-effective tool for detecting fMet-bearing proteins across species. Furthermore, this approach provides a foundation for developing anti-pan-specific antibodies targeting other N-terminal modifications through acylation, alkylation, oxidation, arginylation, etc.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Buric F, Viknander S, Fu X, Lemke O, Carmona OG, Zrimec J, Szyrwiel L, Mülleder M, Ralser M, Zelezniak A. Amino acid sequence encodes protein abundance shaped by protein stability at reduced synthesis cost. Protein Sci 2025; 34:e5239. [PMID: 39665261 PMCID: PMC11635393 DOI: 10.1002/pro.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Understanding what drives protein abundance is essential to biology, medicine, and biotechnology. Driven by evolutionary selection, an amino acid sequence is tailored to meet the required abundance of a proteome, underscoring the intricate relationship between sequence and functional demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains elusive. Here we show that the amino acid sequence alone encodes over half of protein abundance variation across all domains of life, ranging from bacteria to mouse and human. With an attempt to go beyond predictions, we trained a manageable-size Transformer model to interpret latent factors predictive of protein abundances. Intuitively, the model's attention focused on the protein's structural features linked to stability and metabolic costs related to protein synthesis. To probe these relationships, we introduce MGEM (Mutation Guided by an Embedded Manifold), a methodology for guiding protein abundance through sequence modifications. We find that mutations which increase predicted abundance have significantly altered protein polarity and hydrophobicity, underscoring a connection between protein structural features and abundance. Through molecular dynamics simulations we revealed that abundance-enhancing mutations possibly contribute to protein thermostability by increasing rigidity, which occurs at a lower synthesis cost.
Collapse
Affiliation(s)
- Filip Buric
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Sandra Viknander
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Xiaozhi Fu
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Oliver Lemke
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Oriol Gracia Carmona
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Jan Zrimec
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Lukasz Szyrwiel
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Michael Mülleder
- Core Facility High Throughput Mass SpectrometryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Markus Ralser
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Aleksej Zelezniak
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
- Institute of Biotechnology, Life Sciences CentreVilnius UniversityVilniusLithuania
| |
Collapse
|
6
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2025; 301:108015. [PMID: 39608721 PMCID: PMC11728972 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
7
|
Mori Y, Tanaka S. Stabilization Mechanism of Initiator Transfer RNA in the Small Ribosomal Subunit from Coarse-Grained Molecular Simulations. J Phys Chem B 2024; 128:12059-12065. [PMID: 39603259 DOI: 10.1021/acs.jpcb.4c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proteins play a variety of roles in biological phenomena in cells. Proteins are synthesized by the ribosome, which is a large molecular complex composed of proteins and nucleic acids. Among the many molecules involved in the process of protein synthesis, tRNA is one of the essential molecules. In this study, coarse-grained molecular dynamics simulations were performed to understand how the tRNA molecule is stabilized in the ribosome, and the free energy along the dissociation path of the tRNA was calculated. We found that some ribosomal proteins, which are components of the ribosome, are involved in the stabilization of the tRNA. The positively charged amino acid residues in the C-terminal region of the ribosomal proteins are particularly important for stabilization. These findings contribute to our understanding of the molecular evolution of protein synthesis in terms of the ribosome, which is a universal component of life.
Collapse
Affiliation(s)
- Yoshiharu Mori
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
8
|
Ren JW, Zhang JP, Mei ZL, Shao JY, Xu GQ, Li H, Gong JS, Zhang XM, Shi JS, Zhang XJ, Xu ZH. Regulatory significance of terminator: A systematic approach for dissecting terminator-mediated enhancement of upstream mRNA stability. Synth Syst Biotechnol 2024; 10:326-335. [PMID: 39758116 PMCID: PMC11696848 DOI: 10.1016/j.synbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
The primary function of terminators is to terminate transcription in gene expression. Although some studies have suggested that terminators also contribute positively to upstream gene expression, the extent and underlying mechanism of this effect remain largely unexplored. Here, the correlation between terminating strength and upstream mRNA stability was investigated by constructing a terminator mutation library through randomizing 5 nucleotides, assisted by FlowSeq technology, terminator variants were categorized based on the downstream fluorescence intensity, followed by high-throughput sequencing. To examine the impact of terminators on mRNA stability, the abundance of downstream gene transcripts for each terminator variant was quantified through cDNA sequencing. The results revealed that the transcript abundance controlled by strong terminators was, on average 2.2 times greater than those controlled by weak terminators on average. Moreover, several distinct features could be ascribed to high relative abundance of upstream gene transcript, including a high GC content at the base region of hairpin, and a high AT content in downstream of the U-tract. Additionally, these terminators showed a free energy between -28 and -22 kcal/mol, and a stem length of 14 nt. Finally, these features ascribed the upstream beneficial terminator were validated across various expression systems. By incorporating the optimal terminator downstream of RSF, GSH and HIS in three different strains, the fermentation productions-NMN SAM and VD13 exhibited a remarkable enhancement of 30 %-70 %. The findings presented here uncovered the terminator characteristics contributed to the upstream mRNA stability, providing guiding principles for gene circuit design.
Collapse
Affiliation(s)
- Jia-Wei Ren
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Jin-Peng Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Zi-Lun Mei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Jia-Yi Shao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
| | - Guo-Qiang Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Hui Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Gong
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Mei Zhang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-juan Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Zheng-hong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, 24 Southern Yihuan, Chengdu, 610065, PR China
| |
Collapse
|
9
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
10
|
Tan R, Hoare M, Bellomio P, Broas S, Camacho K, Swovick K, Welle KA, Hryhorenko JR, Ghaemmaghami S. Formylation facilitates the reduction of oxidized initiator methionines. Proc Natl Acad Sci U S A 2024; 121:e2403880121. [PMID: 39499632 PMCID: PMC11572973 DOI: 10.1073/pnas.2403880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation. Here, we investigated how formylation and acetylation of initiator methionines impact their propensity for oxidation and reduction. We show that in vitro, N-terminal methionine residues are particularly prone to chemical oxidation and that their modification by formylation or acetylation greatly enhances their subsequent enzymatic reduction by MsrA and MsrB. Concordantly, in vivo ablation of methionyl-tRNA formyltransferase (MTF) in Escherichia coli increases the prevalence of oxidized methionines within synthesized proteins. We show that oxidation of formylated initiator methionines is detrimental in part because it obstructs their ensuing deformylation by peptide deformylase (PDF) and hydrolysis by methionyl aminopeptidase (MAP). Thus, by facilitating their reduction, formylation mitigates the misprocessing of oxidized initiator methionines.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Philip Bellomio
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Sarah Broas
- Department of Biology, University of Rochester, Rochester, NY14627
| | | | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
11
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
12
|
Li M, Cai Z, Song S, Yue X, Lu W, Rao S, Zhang C, Xue C. EcCas6e-based antisense crRNA for gene repression and RNA editing in microorganisms. Nucleic Acids Res 2024; 52:8628-8642. [PMID: 38994565 PMCID: PMC11317134 DOI: 10.1093/nar/gkae612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.
Collapse
Affiliation(s)
- Mutong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shucheng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinmin Yue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
13
|
Gayen A, Alone P. eIF2β zinc-binding domain interacts with the eIF2γ subunit through the guanine nucleotide binding interface to promote Met-tRNAiMet binding. Biosci Rep 2024; 44:BSR20240438. [PMID: 38873976 PMCID: PMC11230868 DOI: 10.1042/bsr20240438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2β subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2β-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2βS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2βS264Y mutation has eIF2β-γ interaction defect. Consistently, the eIF2βT238A intragenic suppressor mutation restored the eIF2β-γ and Met-tRNAiMet binding. The eIF2β-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2βT238A mutation, suggesting the eIF2β-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2βF217A/Q221A double mutation in the HTH domain. The eIF2βT238A suppressor mutation could not rescue the eIF2β binding defect of the eIF2γV281K mutation; however, combining the eIF2βS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2β with the eIF2γ subunit via its α1-helix, the eIF2β-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2β-γ interacts via two distinct binding sites.
Collapse
Affiliation(s)
- Aranyadip Gayen
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| | - Pankaj V. Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
14
|
Chen M, Dai S, Chen D, Chen H, Feng N, Zheng D. Unveiling the translational dynamics of lychee (Litchi chinesis Sonn.) in response to cold stress. BMC Genomics 2024; 25:686. [PMID: 38992605 PMCID: PMC11241792 DOI: 10.1186/s12864-024-10591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Cold stress poses a significant threat to the quality and productivity of lychee (Litchi chinensis Sonn.). While previous research has extensively explored the genomic and transcriptomic responses to cold stress in lychee, the translatome has not been thoroughly investigated. This study delves into the translatomic landscape of the 'Xiangjinfeng' cultivar under both control and low-temperature conditions using RNA sequencing and ribosome profiling. We uncovered a significant divergence between the transcriptomic and translatomic responses to cold exposure. Additionally, bioinformatics analyses underscored the crucial role of codon occupancy in lychee's cold tolerance mechanisms. Our findings reveal that the modulation of translation via codon occupancy is a vital strategy to abiotic stress. Specifically, the study identifies ribosome stalling, particularly at the E site AAU codon, as a key element of the translation machinery in lychee's response to cold stress. This work enhances our understanding of the molecular dynamics of lychee's reaction to cold stress and emphasizes the essential role of translational regulation in the plant's environmental adaptability.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
15
|
Coale TH, Loconte V, Turk-Kubo KA, Vanslembrouck B, Mak WKE, Cheung S, Ekman A, Chen JH, Hagino K, Takano Y, Nishimura T, Adachi M, Le Gros M, Larabell C, Zehr JP. Nitrogen-fixing organelle in a marine alga. Science 2024; 384:217-222. [PMID: 38603509 DOI: 10.1126/science.adk1075] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."
Collapse
Affiliation(s)
- Tyler H Coale
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Valentina Loconte
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Bieke Vanslembrouck
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Shunyan Cheung
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Axel Ekman
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyoko Hagino
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Yoshihito Takano
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Tomohiro Nishimura
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Mark Le Gros
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
16
|
To H, Maldonado J, Tsutsumi N, Gottschalk M, Frey J, Nagai S. Characterization of Actinobacillus pleuropneumoniae biovar 2 isolates reportedly reacted with the serovar 4 antiserum, and development of a multiplex PCR for O-antigen typing. Vet Microbiol 2024; 291:110030. [PMID: 38428226 DOI: 10.1016/j.vetmic.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of twelve Spanish field isolates of Actinobacillus pleuropneumoniae biovar 2, eleven of them previously typed serologically as serovar 4 and one non-typable (NT) (Maldonado et al., 2009, 2011). These isolates have the common core genes of the type I CPS locus, sharing >98% identity with those of serovar 2. However, the former possesses the O-Ag locus as serovar 4, and the latter possesses the O-Ag locus as serovar 7. The main difference found between the CPS loci of the 11 isolates and that of serovar 2 reference strain S1536 are two deletions, one of an 8 bp sequence upstream of the coding sequence and one of 111 bp sequence at the 5' end of the cps2G gene. The deletion mutations mentioned lead to a defect in the production of CPS in these isolates, which contributed to their previous mis-identification. In order to complement the serotyping of A. pleuropneumoniae in diagnostics and epidemiology, we have developed a multiplex PCR for the comprehensive O-Ag typing of all A. pleuropneumoniae isolates.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | - Jaime Maldonado
- Diagnostic Laboratory, Laboratorios HIPRA S.A., Paratge Arbusset s/n, Girona 17170, Spain
| | | | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
17
|
Koomen J, Ma X, Bombelli A, Tempelaars MH, Boeren S, Zwietering MH, den Besten HMW, Abee T. Ribosomal mutations enable a switch between high fitness and high stress resistance in Listeria monocytogenes. Front Microbiol 2024; 15:1355268. [PMID: 38605704 PMCID: PMC11006974 DOI: 10.3389/fmicb.2024.1355268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Multiple stress resistant variants of Listeria monocytogenes with mutations in rpsU encoding ribosomal protein RpsU have previously been isolated after a single exposure to acid stress. These variants, including L. monocytogenes LO28 variant V14 with a complete deletion of the rpsU gene, showed upregulation of the general stress sigma factor Sigma B-mediated stress resistance genes and had a lower maximum specific growth rate than the LO28 WT, signifying a trade-off between stress resistance and fitness. In the current work V14 has been subjected to an experimental evolution regime, selecting for higher fitness in two parallel evolving cultures. This resulted in two evolved variants with WT-like fitness: 14EV1 and 14EV2. Comparative analysis of growth performance, acid and heat stress resistance, in combination with proteomics and RNA-sequencing, indicated that in both lines reversion to WT-like fitness also resulted in WT-like stress sensitivity, due to lack of Sigma B-activated stress defense. Notably, genotyping of 14EV1 and 14EV2 provided evidence for unique point-mutations in the ribosomal rpsB gene causing amino acid substitutions at the same position in RpsB, resulting in RpsB22Arg-His and RpsB22Arg-Ser, respectively. Combined with data obtained with constructed RpsB22Arg-His and RpsB22Arg-Ser mutants in the V14 background, we provide evidence that loss of function of RpsU resulting in the multiple stress resistant and reduced fitness phenotype, can be reversed by single point mutations in rpsB leading to arginine substitutions in RpsB at position 22 into histidine or serine, resulting in a WT-like high fitness and low stress resistance phenotype. This demonstrates the impact of genetic changes in L. monocytogenes' ribosomes on fitness and stress resistance.
Collapse
Affiliation(s)
- Jeroen Koomen
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Wood WN, Rubio MA, Leiva LE, Phillips GJ, Ibba M. Methionyl-tRNA synthetase synthetic and proofreading activities are determinants of antibiotic persistence. Front Microbiol 2024; 15:1384552. [PMID: 38601944 PMCID: PMC11004401 DOI: 10.3389/fmicb.2024.1384552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site of MetRS and the other two mutants changes near the anticodon binding domain. Mutations in metG are of particular interest because MetRS is responsible for aminoacylation both initiator tRNAMet and elongator tRNAMet indicating that these mutants could impact translation initiation and/or translation elongation. We observed that all the metG mutants increased the level of antibiotic persistence as did reduced transcription levels of wild type metG. Although, the MetRS variants did not have an impact on MetRS activity itself, they did reduce translation rates. It was also observed that the MetRS variants affected the proofreading mechanism for homocysteine and that these mutants' growth is hypersensitive to homocysteine. Taken together with previous findings, our data indicate that both reductions in cellular Met-tRNAMet synthetic capacity and reduced proofreading of homocysteine by MetRS variants are positive determinants for bacterial antibiotic persistence.
Collapse
Affiliation(s)
- Whitney N. Wood
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Miguel Angel Rubio
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, IA, United States
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| |
Collapse
|
19
|
Köppl C, Buchinger W, Striedner G, Cserjan-Puschmann M. Modifications of the 5' region of the CASPON TM tag's mRNA further enhance soluble recombinant protein production in Escherichia coli. Microb Cell Fact 2024; 23:86. [PMID: 38509572 PMCID: PMC10953258 DOI: 10.1186/s12934-024-02350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Escherichia coli is one of the most commonly used host organisms for the production of biopharmaceuticals, as it allows for cost-efficient and fast recombinant protein expression. However, challenging proteins are often produced with low titres or as inclusion bodies, and the manufacturing process needs to be developed individually for each protein. Recently, we developed the CASPONTM technology, a generic fusion tag-based platform process for high-titer soluble expression including a standardized downstream processing and highly specific enzymatic cleavage of the fusion tag. To assess potential strategies for further improvement of the N-terminally fused CASPONTM tag, we modified the 5'UTR and 5' region of the tag-coding mRNA to optimize the ribosome-mRNA interactions. RESULTS In the present work, we found that by modifying the 5'UTR sequence of a pET30acer plasmid-based system, expression of the fusion protein CASPONTM-tumour necrosis factor α was altered in laboratory-scale carbon-limited fed-batch cultivations, but no significant increase in expression titre was achieved. Translation efficiency was highest for a construct carrying an expression enhancer element and additionally possessing a very favourable interaction energy between ribosome and mRNA (∆Gtotal). However, a construct with comparatively low transcriptional efficiency, which lacked the expression enhancer sequence and carried the most favourable ∆Gtotal tested, led to the highest recombinant protein formation alongside the reference pET30a construct. Furthermore, we found, that by introducing synonymous mutations within the nucleotide sequence of the T7AC element of the CASPONTM tag, utilizing a combination of rare and non-rare codons, the free folding energy of the nucleotides at the 5' end (-4 to + 37) of the transcript encoding the CASPONTM tag increased by 6 kcal/mol. Surprisingly, this new T7ACrare variant led to improved recombinant protein titres by 1.3-fold up to 5.3-fold, shown with three industry-relevant proteins in lab-scale carbon limited fed-batch fermentations under industrially relevant conditions. CONCLUSIONS This study reveals some of the complex interdependencies between the ribosome and mRNA that govern recombinant protein expression. By modifying the 5'UTR to obtain an optimized interaction energy between the mRNA and the ribosome (ΔGtotal), transcript levels were changed, highlighting the different translation efficiencies of individual transcripts. It was shown that the highest recombinant titre was not obtained by the construct with the most efficient translation but by a construct with a generally high transcript amount coupled with a favourable ΔGtotal. Furthermore, an unexpectedly high potential to enhance expression by introducing silent mutations including multiple rare codons into the 5'end of the CAPONTM tag's mRNA was identified. Although the titres of the fusion proteins were dramatically increased, no formation of inclusion bodies or negative impact on cell growth was observed. We hypothesize that the drastic increase in titre is most likely caused by better ribosomal binding site accessibility. Our study, which demonstrates the influence of changes in ribosome-mRNA interactions on protein expression under industrially relevant production conditions, opens the door to the applicability of the new T7ACrare tag in biopharmaceutical industry using the CASPONTM platform process.
Collapse
Affiliation(s)
- Christoph Köppl
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria
| | - Wolfgang Buchinger
- Biopharma Austria, Development Operations, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1121, Austria
| | - Gerald Striedner
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria
| | - Monika Cserjan-Puschmann
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, 1190, Austria.
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria.
| |
Collapse
|
20
|
Alanis E, Aguilar F, Banaei N, Dean FB, Villarreal A, Alanis M, Lozano K, Bullard JM, Zhang Y. A rationally designed antimicrobial peptide from structural and functional insights of Clostridioides difficile translation initiation factor 1. Microbiol Spectr 2024; 12:e0277323. [PMID: 38329351 PMCID: PMC10913371 DOI: 10.1128/spectrum.02773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
A significant increase of hospital-acquired bacterial infections during the COVID-19 pandemic has become an urgent medical problem. Clostridioides difficile is an urgent antibiotic-resistant bacterial pathogen and a leading causative agent of nosocomial infections. The increasing recurrence of C. difficile infection and antibiotic resistance in C. difficile has led to an unmet need for the discovery of new compounds distinctly different from present antimicrobials, while antimicrobial peptides as promising alternatives to conventional antibiotics have attracted growing interest recently. Protein synthesis is an essential metabolic process in all bacteria and a validated antibiotic target. Initiation factor 1 from C. difficile (Cd-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis. Here, we report the solution nuclear magnetic resonance (NMR) structure of Cd-IF1 which adopts a typical β-barrel fold and consists of a five-stranded β-sheet and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. The interaction of Cd-IF1 with the 30S ribosomal subunit was studied by NMR titration for the construction of a structural model of Cd-IF1 binding with the 30S subunit. The short α-helix in IF1 was found to be critical for IF1 ribosomal binding. A peptide derived from this α-helix was tested and displayed a high ability to inhibit the growth of C. difficile and other bacterial strains. These results provide a clue for the rational design of new antimicrobials.IMPORTANCEBacterial infections continue to represent a major worldwide health hazard due to the emergence of drug-resistant strains. Clostridioides difficile is a common nosocomial pathogen and the causative agent in many infections resulting in an increase in morbidity and mortality. Bacterial protein synthesis is an essential metabolic process and an important target for antibiotic development; however, the precise structural mechanism underlying the process in C. difficile remains unknown. This study reports the solution structure of C. difficile translation initiation factor 1 (IF1) and its interaction with the 30S ribosomal subunit. A short α-helix in IF1 structure was identified as critically important for ribosomal binding and function in regulating the translation initiation, which allowed a rational design of a new peptide. The peptide demonstrated a high ability to inhibit bacterial growth with broad-spectrum antibacterial activity. This study provides a new clue for the rational design of new antimicrobials against bacterial infections.
Collapse
Affiliation(s)
- Elvira Alanis
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Faith Aguilar
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Frank B. Dean
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexa Villarreal
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Miguel Alanis
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - James M. Bullard
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Yonghong Zhang
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
21
|
Acosta-Reyes FJ, Bhattacharjee S, Gottesman M, Frank J. How Dedicated Ribosomes Translate a Leaderless mRNA. J Mol Biol 2024; 436:168423. [PMID: 38185325 PMCID: PMC11003707 DOI: 10.1016/j.jmb.2023.168423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.
Collapse
Affiliation(s)
- Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sayan Bhattacharjee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Max Gottesman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology & Immunology, Columbia University, New York, NY 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
22
|
Ali Z, Kukhta T, Trant JF, Sharma P. An Atlas of the base inter-RNA stacks involved in bacterial translation. Biophys Chem 2024; 305:107144. [PMID: 38061282 DOI: 10.1016/j.bpc.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.
Collapse
MESH Headings
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; We-Spark Health Institute, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; Binary Star Research Services, LaSalle, ON N9J 3X8, Canada.
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
23
|
Naeem FM, Gemler BT, McNutt ZA, Bundschuh R, Fredrick K. Analysis of programmed frameshifting during translation of prfB in Flavobacterium johnsoniae. RNA (NEW YORK, N.Y.) 2024; 30:136-148. [PMID: 37949662 PMCID: PMC10798248 DOI: 10.1261/rna.079721.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Ribosomes of Bacteroidia fail to recognize Shine-Dalgarno (SD) sequences due to sequestration of the 3' tail of the 16S rRNA on the 30S platform. Yet in these organisms, the prfB gene typically contains the programmed +1 frameshift site with its characteristic SD sequence. Here, we investigate prfB autoregulation in Flavobacterium johnsoniae, a member of the Bacteroidia. We find that the efficiency of prfB frameshifting in F. johnsoniae is low (∼7%) relative to that in Escherichia coli (∼50%). Mutation or truncation of bS21 in F. johnsoniae increases frameshifting substantially, suggesting that anti-SD (ASD) sequestration is responsible for the reduced efficiency. The frameshift site of certain Flavobacteriales, such as Winogradskyella psychrotolerans, has no SD. In F. johnsoniae, this W. psychrotolerans sequence supports frameshifting as well as the native sequence, and mutation of bS21 causes no enhancement. These data suggest that prfB frameshifting normally occurs without SD-ASD pairing, at least under optimal laboratory growth conditions. Chromosomal mutations that remove the frameshift or ablate the SD confer subtle growth defects in the presence of paraquat or streptomycin, respectively, indicating that both the autoregulatory mechanism and the SD element contribute to F. johnsoniae cell fitness. Analysis of prfB frameshift sites across 2686 representative bacteria shows loss of the SD sequence in many clades, with no obvious relationship to genome-wide SD usage. These data reveal unexpected variation in the mechanism of frameshifting and identify another group of organisms, the Verrucomicrobiales, that globally lack SD sequences.
Collapse
Affiliation(s)
- Fawwaz M Naeem
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
24
|
Rao X, Li D, Su Z, Nomura CT, Chen S, Wang Q. A smart RBS library and its prediction model for robust and accurate fine-tuning of gene expression in Bacillus species. Metab Eng 2024; 81:1-9. [PMID: 37951459 DOI: 10.1016/j.ymben.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, are important industrial bacteria. However, there is a lack of standardized and predictable genetic tools for convenient and reproducible assembly of genetic modules in Bacillus species to realize their full potential. In this study, we constructed a Ribosome Binding Site (RBS) library in B. licheniformis, which provides incremental regulation of expression levels over a 104-fold range. Additionally, we developed a model to quantify the resulting translation rates. We successfully demonstrated the robust expression of various target genes using the RBS library and showed that the model accurately predicts the translation rates of arbitrary coding genes. Importantly, we also extended the use of the RBS library and prediction model to B. subtilis, B. thuringiensis, and B. amyloliquefacie. The versatility of the RBS library and its prediction model enables quantification of biological behavior, facilitating reliable forward engineering of gene expression.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Dian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | | | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
25
|
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, Hashemzehi A. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli. Recent Pat Biotechnol 2024; 18:95-109. [PMID: 38282441 DOI: 10.2174/1872208317666230503094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 01/30/2024]
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli.
Collapse
Affiliation(s)
- Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehrnaz Jamshidi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradbeygi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hashemzehi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
27
|
Irshad IU, Sharma AK. Decoding stoichiometric protein synthesis in E. coli through translation rate parameters. BIOPHYSICAL REPORTS 2023; 3:100131. [PMID: 37789867 PMCID: PMC10542608 DOI: 10.1016/j.bpr.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
E. coli is one of the most widely used organisms for understanding the principles of cellular and molecular genetics. However, we are yet to understand the origin of several experimental observations related to the regulation of gene expression in E. coli. One of the prominent examples in this context is the proportional synthesis in multiprotein complexes where all of their obligate subunits are produced in proportion to their stoichiometry. In this work, by combining the next-generation sequencing data with the stochastic simulations of protein synthesis, we explain the origin of proportional protein synthesis in multicomponent complexes. We find that the estimated initiation rates for the translation of all subunits in those complexes are proportional to their stoichiometry. This constraint on protein synthesis kinetics enforces proportional protein synthesis without requiring any feedback mechanism. We also find that the translation initiation rates in E. coli are influenced by the coding sequence length and the enrichment of A and C nucleotides near the start codon. Thus, this study rationalizes the role of conserved and nonrandom features of genes in regulating the translation kinetics and unravels a key principle of the regulation of protein synthesis.
Collapse
Affiliation(s)
| | - Ajeet K. Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| |
Collapse
|
28
|
Li T, Wang X, Li C, Fu Q, Shi X, Wang B. Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods 2023; 12:4471. [PMID: 38137274 PMCID: PMC10742644 DOI: 10.3390/foods12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Acetobacter pasteurianus is always used to brew vinegar because of its ability of producing and tolerating a high concentration of acetic acid. During vinegar fermentation, initial acetic acid contributes to acetic acid accumulation, which varies with initial concentrations. In this study, to investigate the mechanisms of tolerating and producing acetic acid of Acetobacter pasteurianus under different concentrations of substrate acetic acid, four-dimensional label-free proteomic technology has been used to analyze the protein profiles of Acetobacter pasteurianus at different growth stages (the lag and exponential phases) and different substrate acetic acid concentrations (0%, 3%, and 6%). A total of 2093 proteins were quantified in this study. The differentially expressed proteins were majorly involved in gene ontology terms of metabolic processes, cellular metabolic processes, and substance binding. Under acetic acid stress, strains might attenuate the toxicity of acetic acid by intensifying fatty acid metabolism, weakening the tricarboxylic acid cycle, glycerophospholipid and energy metabolism during the lag phase, while strains might promote the assimilation of acetic acid and inter-conversion of substances during the exponential phase by enhancing the tricarboxylic acid cycle, glycolysis, pyruvate, and energy metabolism to produce and tolerate acid. Besides, cell cycle regulation and protein translation might be potential acid tolerance pathways under high acid stress. The result contributes to the exploration of new potential acid tolerance mechanisms in Acetobacter pasteurianus from four-dimensional label-free relative quantitative proteomics analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China
| |
Collapse
|
29
|
Song K, Chen L, Suo N, Kong X, Li J, Wang T, Song L, Cheng M, Guo X, Huang Z, Huang Z, Yang Y, Tian X, Choo SW. Whole-transcriptome analysis reveals mechanisms underlying antibacterial activity and biofilm inhibition by a malic acid combination (MAC) in Pseudomonas aeruginosa. PeerJ 2023; 11:e16476. [PMID: 38084141 PMCID: PMC10710775 DOI: 10.7717/peerj.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Pseudomonas aeruginosa is a highly prevalent bacterial species known for its ability to cause various infections and its remarkable adaptability and biofilm-forming capabilities. In earlier work, we conducted research involving the screening of 33 metabolites obtained from a commercial source against two prevalent bacterial strains, Escherichia coli and Staphylococcus aureus. Through screening assays, we discovered a novel malic acid combination (MAC) consisting of malic acid, citric acid, glycine, and hippuric acid, which displayed significant inhibitory effects. However, the precise underlying mechanism and the potential impact of the MAC on bacterial biofilm formation remain unknown and warrant further investigation. Methods To determine the antibacterial effectiveness of the MAC against Pseudomonas aeruginosa, we conducted minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques were employed to observe bacterial morphology and biofilm formation. We further performed a biofilm inhibition assay to assess the effect of the MAC on biofilm formation. Whole-transcriptome sequencing and bioinformatics analysis were employed to elucidate the antibacterial mechanism of the MAC. Additionally, the expression levels of differentially expressed genes were validated using the real-time PCR approach. Results Our findings demonstrated the antibacterial activity of the MAC against P. aeruginosa. SEM analysis revealed that the MAC can induce morphological changes in bacterial cells. The biofilm assay showed that the MAC could reduce biofilm formation. Whole-transcriptome analysis revealed 1093 differentially expressed genes consisting of 659 upregulated genes and 434 downregulated genes, in response to the MAC treatment. Mechanistically, the MAC inhibited P. aeruginosa growth by targeting metabolic processes, secretion system, signal transduction, and cell membrane functions, thereby potentially compromising the survival of this human pathogen. This study provides valuable insights into the antibacterial and antibiofilm activities of the MAC, a synergistic and cost-effective malic acid combination, which holds promise as a potential therapeutic drug cocktail for treating human infectious diseases in the future.
Collapse
Affiliation(s)
- Kunping Song
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
| | - Li Chen
- Universiti Malaya, Institute of Biological Sciences, Faculty of Science, Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Nanhua Suo
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
| | - Xinyi Kong
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
| | - Juexi Li
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
| | - Tianyu Wang
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
| | - Lanni Song
- Wenzhou-Kean University, Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| | - Mengwei Cheng
- Wenzhou-Kean University, Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| | - Xindian Guo
- Wenzhou No.2 Foreign Language School, Wenzhou, Zhejiang, China
| | - Zhenghe Huang
- Wenzhou No.2 Foreign Language School, Wenzhou, Zhejiang, China
| | - Zichen Huang
- Wenzhou No.2 Foreign Language School, Wenzhou, Zhejiang, China
| | - Yixin Yang
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
- Wenzhou-Kean University, Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
- Wenzhou-Kean University, Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
| | - Xuechen Tian
- Wenzhou-Kean University, Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
- Wenzhou-Kean University, Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
| | - Siew Woh Choo
- Wenzhou-Kean University, College of Science, Mathematics and Technology, Wenzhou, Zhejiang, China
- Wenzhou-Kean University, Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
- Wenzhou-Kean University, Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
| |
Collapse
|
30
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
31
|
Baleva MV, Piunova UE, Chicherin IV, Levitskii SA, Kamenski PA. Diversity and Evolution of Mitochondrial Translation Apparatus. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1832-1843. [PMID: 38105202 DOI: 10.1134/s0006297923110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.
Collapse
Affiliation(s)
- Mariya V Baleva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ulyana E Piunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Piotr A Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
32
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
33
|
Acosta-Reyes FJ, Bhattacharjee S, Gottesman M, Frank J. Structural insight into translation initiation of the λcl leaderless mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556006. [PMID: 37693525 PMCID: PMC10491246 DOI: 10.1101/2023.09.02.556006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fmet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entry channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.
Collapse
Affiliation(s)
- Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Sayan Bhattacharjee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Max Gottesman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
34
|
van Lent P, Schmitz J, Abeel T. Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering. ACS Synth Biol 2023; 12:2588-2599. [PMID: 37616156 PMCID: PMC10510747 DOI: 10.1021/acssynbio.3c00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/25/2023]
Abstract
Combinatorial pathway optimization is an important tool in metabolic flux optimization. Simultaneous optimization of a large number of pathway genes often leads to combinatorial explosions. Strain optimization is therefore often performed using iterative design-build-test-learn (DBTL) cycles. The aim of these cycles is to develop a product strain iteratively, every time incorporating learning from the previous cycle. Machine learning methods provide a potentially powerful tool to learn from data and propose new designs for the next DBTL cycle. However, due to the lack of a framework for consistently testing the performance of machine learning methods over multiple DBTL cycles, evaluating the effectiveness of these methods remains a challenge. In this work, we propose a mechanistic kinetic model-based framework to test and optimize machine learning for iterative combinatorial pathway optimization. Using this framework, we show that gradient boosting and random forest models outperform the other tested methods in the low-data regime. We demonstrate that these methods are robust for training set biases and experimental noise. Finally, we introduce an algorithm for recommending new designs using machine learning model predictions. We show that when the number of strains to be built is limited, starting with a large initial DBTL cycle is favorable over building the same number of strains for every cycle.
Collapse
Affiliation(s)
- Paul van Lent
- Delft
Bioinformatics Lab, Delft University of
Technology Van Mourik, Delft 2628 XE, The Netherlands
| | - Joep Schmitz
- Department
of Science and Research, Joep Schmitz -
dsm-firmenich, Science & Research, P.O. Box 1, 2600
MA Delft, The Netherlands
| | - Thomas Abeel
- Delft
Bioinformatics Lab, Delft University of
Technology Van Mourik, Delft 2628 XE, The Netherlands
- Infectious
Disease and Microbiome Program, Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
35
|
Fábrega MJ, Knödlseder N, Nevot G, Sanvicente M, Toloza L, Santos-Moreno J, Güell M. Establishing a Cell-Free Transcription-Translation Platform for Cutibacterium acnes to Prototype Engineered Metabolic and Synthetic Biology. ACS Biomater Sci Eng 2023; 9:5101-5110. [PMID: 34971313 PMCID: PMC10498419 DOI: 10.1021/acsbiomaterials.1c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the past few years, new bacterial-cell-free transcription-translation systems have emerged as potent and quick platforms for protein production as well as for prototyping of DNA regulatory elements, genetic circuits, and metabolic pathways. The Gram-positive commensal Cutibacterium acnes is one of the most abundant bacteria present in the human skin microbiome. However, it has recently been reported that some C. acnes phylotypes can be associated with common inflammatory skin conditions, such as acne vulgaris, whereas others seem to play a protective role, acting as possible "skin probiotics". This fact has made C. acnes become a bacterial model of interest for the cosmetic industry. In the present study we report for the first time the development and optimization of a C. acnes-based cell-free system (CFS) that is able to produce 85 μg/mL firefly luciferase. We highlight the importance of harvesting the bacterial pellet in mid log phase and maintaining CFS reactions at 30 °C and physiological pH to obtain the optimal yield. Additionally, a C. acnes promoter library was engineered to compare coupled in vitro TX-TL activities, and a temperature biosensor was tested, demonstrating the wide range of applications of this toolkit in the synthetic biology field.
Collapse
Affiliation(s)
- María-José Fábrega
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Nastassia Knödlseder
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Guillermo Nevot
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marta Sanvicente
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Lorena Toloza
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marc Güell
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| |
Collapse
|
36
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
37
|
Fricke R, Swenson CV, Roe LT, Hamlish NX, Shah B, Zhang Z, Ficaretta E, Ad O, Smaga S, Gee CL, Chatterjee A, Schepartz A. Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo. Nat Chem 2023; 15:960-971. [PMID: 37264106 PMCID: PMC10322718 DOI: 10.1038/s41557-023-01224-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-L-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-L-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.
Collapse
Affiliation(s)
- Riley Fricke
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Cameron V Swenson
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Leah Tang Roe
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Noah Xue Hamlish
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Bhavana Shah
- Process Development, Amgen, Thousand Oaks, CA, USA
| | | | - Elise Ficaretta
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Sarah Smaga
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Abhishek Chatterjee
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Höllerer S, Jeschek M. Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript. Nucleic Acids Res 2023; 51:2377-2396. [PMID: 36727459 PMCID: PMC10018350 DOI: 10.1093/nar/gkad040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Translation is a key determinant of gene expression and an important biotechnological engineering target. In bacteria, 5'-untranslated region (5'-UTR) and coding sequence (CDS) are well-known mRNA parts controlling translation and thus cellular protein levels. However, the complex interaction of 5'-UTR and CDS has so far only been studied for few sequences leading to non-generalisable and partly contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 million 5'-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of various sequence determinants of translation. We find that 5'-UTR and CDS individually account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with different synonymous codons. Moreover, the obtained large-scale data provide clear experimental evidence for a base-pairing interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our study highlights the indispensability of ultradeep sequence-function mapping to accurately determine the contribution of parts and phenomena involved in gene regulation.
Collapse
Affiliation(s)
- Simon Höllerer
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
- Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| |
Collapse
|
39
|
Gao Z, Jiang S, Zhong W, Liu T, Guo J. Linalool controls the viability of Escherichia coli by regulating the synthesis and modification of lipopolysaccharide, the assembly of ribosome, and the expression of substrate transporting proteins. Food Res Int 2023; 164:112337. [PMID: 36737930 DOI: 10.1016/j.foodres.2022.112337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium and some pathogenic types may cause serious diseases, foods or food environments were the primary routes for its infection. Citrus aurantium L. var. amara Engl., a variety of sour orange, were used as a kind of non-conventional edible plant in China, but its antimicrobial activity and mechanisms were not well studied. Thus, in this study, EO from the flower of Citrus aurantium L. var. amara Engl. (CAEO) were studied as a kind of natural antimicrobial agent to control E. coli, our results showed that both of CAEO and its main component (linalool) exhibited strong antibacterial efficacy. Further, transcriptomic and proteomic analysis were carried out to explore cell response under linalool treatment and the main results included: (1) The synthesis and modification of lipopolysaccharide (LPS) was significantly influenced. (2) Ribosomal assembly and protein synthesis were significantly inhibited. (3) The expression of proteins related to the uptake of several essential substances was significantly changed. In all, our results would supply a theoretical basis for the proper use of CAEO and linalool as a promising antimicrobial agent to prevent and control E. coli infection in the future.
Collapse
Affiliation(s)
- Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Ting Liu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China.
| |
Collapse
|
40
|
Takallou S, Puchacz N, Allard D, Said KB, Nokhbeh MR, Samanfar B, Golshani A. IRES-mediated translation in bacteria. Biochem Biophys Res Commun 2023; 641:110-115. [PMID: 36527744 DOI: 10.1016/j.bbrc.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Despite the similarity in fundamental goals of translation initiation between different domains of life, it is one of the most phylogenetically diverse steps of the central dogma of molecular biology. In a classical view, the translation signals for prokaryotes and eukaryotes are distinct from each other. This idea was challenged by the finding that the Internal Ribosome Entry Site (IRES) belonging to Plautia stali intestine virus (PSIV) could bypass the domain-specific boundaries and effectively initiate translation in E. coli. This finding led us to investigate whether the ability of PSIV IRES to initiate translation in E. coli is specific to this IRES and also to study features that allow this viral IRES to mediate prokaryotic translation initiation. We observed that certain IRESs may also possess the ability to initiate E. coli translation. Our results also indicated that the structural integrity of the PSIV IRES in translation in prokaryotes does not appear to be as critical as it is in eukaryotes. We also demonstrated that two regions of the PSIV IRES with complementarity to 16S ribosomal RNA are important for the ability of this IRES to initiate translation in E. coli.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Nathalie Puchacz
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia.
| | | | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada.
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
41
|
Kohl MP, Kompatscher M, Clementi N, Holl L, Erlacher M. Initiation at AUGUG and GUGUG sequences can lead to translation of overlapping reading frames in E. coli. Nucleic Acids Res 2023; 51:271-289. [PMID: 36546769 PMCID: PMC9841429 DOI: 10.1093/nar/gkac1175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
During initiation, the ribosome is tasked to efficiently recognize open reading frames (ORFs) for accurate and fast translation of mRNAs. A critical step is start codon recognition, which is modulated by initiation factors, mRNA structure, a Shine Dalgarno (SD) sequence and the start codon itself. Within the Escherichia coli genome, we identified more than 50 annotated initiation sites harboring AUGUG or GUGUG sequence motifs that provide two canonical start codons, AUG and GUG, in immediate proximity. As these sites may challenge start codon recognition, we studied if and how the ribosome is accurately guided to the designated ORF, with a special focus on the SD sequence as well as adenine at the fourth coding sequence position (A4). By in vitro and in vivo experiments, we characterized key requirements for unambiguous start codon recognition, but also discovered initiation sites that lead to the translation of both overlapping reading frames. Our findings corroborate the existence of an ambiguous translation initiation mechanism, implicating a multitude of so far unrecognized ORFs and translation products in bacteria.
Collapse
Affiliation(s)
- Maximilian P Kohl
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lena Holl
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
43
|
Bögeholz LA, Mercier E, Wintermeyer W, Rodnina MV. Deformylation of nascent peptide chains on the ribosome. Methods Enzymol 2023; 684:39-70. [DOI: 10.1016/bs.mie.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
44
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
45
|
Singh J, Mishra RK, Ayyub SA, Hussain T, Varshney U. The initiation factor 3 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of translation initiation and growth fitness in Escherichia coli. Nucleic Acids Res 2022; 50:11712-11726. [PMID: 36399509 PMCID: PMC9723500 DOI: 10.1093/nar/gkac1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.
Collapse
Affiliation(s)
| | | | - Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Correspondence may also be addressed to Tanweer Hussain. Tel: +91 80 22933262;
| | - Umesh Varshney
- To whom correspondence should be addressed. Tel: +91 80 22932686;
| |
Collapse
|
46
|
Zhang M, Song J, Xiao J, Jin J, Nomura CT, Chen S, Wang Q. Engineered multiple translation initiation sites: a novel tool to enhance protein production in Bacillus licheniformis and other industrially relevant bacteria. Nucleic Acids Res 2022; 50:11979-11990. [PMID: 36382403 PMCID: PMC9723656 DOI: 10.1093/nar/gkac1039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gram-positive bacteria are a nascent platform for synthetic biology and metabolic engineering that can provide new opportunities for the production of biomolecules. However, the lack of standardized methods and genetic parts is a major obstacle towards attaining the acceptance and widespread use of Gram-positive bacterial chassis for industrial bioproduction. In this study, we have engineered a novel mRNA leader sequence containing more than one ribosomal binding site (RBS) which could initiate translation from multiple sites, vastly enhancing the translation efficiency of the Gram-positive industrial strain Bacillus licheniformis. This is the first report elucidating the impact of more than one RBS to initiate translation and enhance protein output in B. licheniformis. We also explored the application of more than one RBS for both intracellular and extracellular protein production in B. licheniformis to demonstrate its efficiency, consistency and potential for biotechnological applications. Moreover, we applied these concepts for use in other industrially relevant Gram-positive bacteria, such as Bacillus subtilis and Corynebacterium glutamicum. In all, a highly efficient and robust broad-host expression element has been designed to strengthen and fine-tune the protein outputs for the use of bioproduction in microbial cell factories.
Collapse
Affiliation(s)
- Manyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | | | - Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jingjie Jin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Christopher T Nomura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Shouwen Chen
- Correspondence may also be addressed to Shouwen Chen.
| | - Qin Wang
- To whom correspondence should be addressed. Tel: +86 18507140137;
| |
Collapse
|
47
|
Komarova ES, Dontsova OA, Pyshnyi DV, Kabilov MR, Sergiev PV. Flow-Seq Method: Features and Application in Bacterial Translation Studies. Acta Naturae 2022; 14:20-37. [PMID: 36694903 PMCID: PMC9844084 DOI: 10.32607/actanaturae.11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 01/22/2023] Open
Abstract
The Flow-seq method is based on using reporter construct libraries, where a certain element regulating the gene expression of fluorescent reporter proteins is represented in many thousands of variants. Reporter construct libraries are introduced into cells, sorted according to their fluorescence level, and then subjected to next-generation sequencing. Therefore, it turns out to be possible to identify patterns that determine the expression efficiency, based on tens and hundreds of thousands of reporter constructs in one experiment. This method has become common in evaluating the efficiency of protein synthesis simultaneously by multiple mRNA variants. However, its potential is not confined to this area. In the presented review, a comparative analysis of the Flow-seq method and other alternative approaches used for translation efficiency evaluation of mRNA was carried out; the features of its application and the results obtained by Flow-seq were also considered.
Collapse
Affiliation(s)
- E. S. Komarova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119234 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437 Russia
| | - D. V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - M. R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234 Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119234 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
48
|
Fer E, McGrath KM, Guy L, Hockenberry AJ, Kaçar B. Early divergence of translation initiation and elongation factors. Protein Sci 2022; 31:e4393. [PMID: 36250475 PMCID: PMC9601768 DOI: 10.1002/pro.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Protein translation is a foundational attribute of all living cells. The translation function carried out by the ribosome critically depends on an assortment of protein interaction partners, collectively referred to as the translation machinery. Various studies suggest that the diversification of the translation machinery occurred prior to the last universal common ancestor, yet it is unclear whether the predecessors of the extant translation machinery factors were functionally distinct from their modern counterparts. Here we reconstructed the shared ancestral trajectory and subsequent evolution of essential translation factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation factor IF2 (aIF5B/eIF5B). Based upon their similar functions and structural homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu proteins and reconstructed ancestral sequences corresponding to the deepest nodes in their shared evolutionary history, including the last common IF2 and EF-Tu ancestor. By identifying the residue and domain substitutions, as well as structural changes along the phylogenetic history, we developed an evolutionary scenario for the origins, divergence and functional refinement of EF-Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2 and EF-Tu was an IF2-like GTPase protein. Given the central importance of the translation machinery to all cellular life, its earliest evolutionary constraints and trajectories are key to characterizing the universal constraints and capabilities of cellular evolution.
Collapse
Affiliation(s)
- Evrim Fer
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaitlyn M. McGrath
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Adam J. Hockenberry
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| | - Betül Kaçar
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
49
|
Otoupal PB, Cress BF, Doudna JA, Schoeniger J. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res 2022; 50:8986-8998. [PMID: 35950485 PMCID: PMC9410913 DOI: 10.1093/nar/gkac680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tools for synthetically controlling gene expression are a cornerstone of genetic engineering. CRISPRi and CRISPRa technologies have been applied extensively for programmable modulation of gene transcription, but there are few such tools for targeted modulation of protein translation rates. Here, we employ CRISPR-Cas13 as a programmable activator of translation. We develop a novel variant of the catalytically-deactivated Cas13d enzyme dCasRx by fusing it to translation initiation factor IF3. We demonstrate dCasRx-IF3's ability to enhance expression 21.3-fold above dCasRx when both are targeted to the start of the 5' untranslated region of mRNA encoding red fluorescent protein in Escherichia coli. Activation of translation is location-dependent, and we show dCasRx-IF3 represses translation when targeted to the ribosomal binding site, rather than enhancing it. We provide evidence that dCasRx-IF3 targeting enhances mRNA stability relative to dCasRx, providing mechanistic insights into how this new tool functions to enhance gene expression. We also demonstrate targeted upregulation of native LacZ 2.6-fold, showing dCasRx-IF3's ability to enhance expression of endogenous genes. dCasRx-IF3 requires no additional host modification to influence gene expression. This work outlines a novel approach, CRISPR-RNAa, for post-transcriptional control of translation to activate gene expression.
Collapse
Affiliation(s)
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA,Department of Chemistry, University of California, Berkeley, CA, USA,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Joseph S Schoeniger
- To whom correspondence should be addressed. Tel: +1 925 294 2955; Fax: +1 925 294 3020;
| |
Collapse
|
50
|
Watanangura A, Meller S, Suchodolski JS, Pilla R, Khattab MR, Loderstedt S, Becker LF, Bathen-Nöthen A, Mazzuoli-Weber G, Volk HA. The effect of phenobarbital treatment on behavioral comorbidities and on the composition and function of the fecal microbiome in dogs with idiopathic epilepsy. Front Vet Sci 2022; 9:933905. [PMID: 35990279 PMCID: PMC9386120 DOI: 10.3389/fvets.2022.933905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.
Collapse
Affiliation(s)
- Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Shenja Loderstedt
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lisa F. Becker
- Department for Small Animal, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- *Correspondence: Holger A. Volk
| |
Collapse
|