1
|
Huang Y, Li Z. Introducing internal allocation factors for assessing aggregate pesticide exposure across multiple pathways and routes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137346. [PMID: 39874755 DOI: 10.1016/j.jhazmat.2025.137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
In the health risk assessment of pesticides, methods for external exposure assessment have been well developed. However, quantifying the contribution of various exposure pathways or routes to internal dose remains challenging. This study introduced the internal allocation factor (IAF) for 319 pesticides to investigate the impact of different exposure pathways and routes on chemical distribution within the human body. The IAFs can be calculated from various exposure sources (or pathways), routes, and biological samples. Analysis of different exposure sources revealed that crop exposure generally had the lowest IAF in organs and tissues, indicating a high contribution to the internal dose. The median IAF values for crop exposure in blood, liver, lung, kidney, fat, and muscle were all around 1.05. For three exposure routes of soil pesticide, the results found that IAF values for oral and dermal exposure routes were significantly lower than those for inhalation exposure. When the pesticide concentrations in biological samples are known, IAF can be utilized to back-calculate the pesticide levels in other organs and tissues. The results show that under a single exposure route, the concentration factor varies greatly between organs or tissues due to differences in compositions of human tissues (e.g., water and lipid contents) and pesticide properties (e.g., hydrophilicity and lipophilicity).
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
2
|
Bernabei G, De Simone G, Becarelli S, Di Mambro R, Gentini A, Di Gregorio S. Co-metabolic growth and microbial diversity: Keys for the depletion of the α, δ, β and γ-HCH isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135963. [PMID: 39341188 DOI: 10.1016/j.jhazmat.2024.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, β and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the β-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.
Collapse
|
3
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
4
|
Dang HM, Vo CH, Inagaki Y, Dao NT, Tran TD, Tran TM, Nguyen TT, Ho HTT, Tran VD, Sakakibara Y. Phyto-Fenton remediation of a dichloro-diphenyl-trichloroethane contaminated site in Ha Tinh Province, Vietnam. Sci Rep 2022; 12:16460. [PMID: 36180547 PMCID: PMC9525602 DOI: 10.1038/s41598-022-20687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
A field trial was conducted at a site in Cam Binh commune, Ha Tinh province, Vietnam, highly contaminated with organo-pesticides. The phyto-Fenton process was applied to remove pesticide residues in soils. In addition to magnetite (Fe3O4) materials added to the soils, fertilizers and elicitors for oxidative burst were also added in the different experimental treatments. Dichloro-diphenyl-trichloroethane (DDT) and isomers were removed in all experimental lots. The removal efficiency was highest in lot B1, a site where only iron materials were added. The removal efficiency and the final content of DDTs in B1 were 98.4% and 0.009 mg kg−1, respectively. In the presence of elicitors, the conversion of DDT to dichloro-diphenyl-dichloroethylene was more favorable. Analysis of soil properties indicated that the phyto-Fenton process can occur at neutral soil pH, and when there are only small changes in soil organic carbon content and cation exchange capacities. Shifts in the composition of the microbial communities were observed. Further studies on the interactions between materials added to soil, plants, and the soil microbiome are needed to understand the mechanism of action of the phyto-Fenton process during soil remediation.
Collapse
Affiliation(s)
- Hieu Minh Dang
- Vietnam Japan University, Vietnam National University, Hanoi, Vietnam
| | - Cong Huu Vo
- Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Yoshihiko Inagaki
- School of Creative Science and Engineering, Waseda University, Tokyo, Japan
| | - Nhung Thi Dao
- University of Science, Vietnam National University, Hanoi, Vietnam
| | - Trinh Dinh Tran
- University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thao Minh Tran
- University of Technology and Education, The University of Danang, Danang, Vietnam
| | - Thinh Thi Nguyen
- Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Hang Thi Thuy Ho
- Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Vien Duc Tran
- Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Yutaka Sakakibara
- School of Creative Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
5
|
Gharbi K, Tay JW. Fumigant Toxicity of Essential Oils against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as Affected by Polymer Release and Adjuvants. INSECTS 2022; 13:insects13060493. [PMID: 35735830 PMCID: PMC9224942 DOI: 10.3390/insects13060493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Frankliniella occidentalis is among the most economically significant pests of greenhouse crops. In contrast, F. insularis is a relatively minor pest with a narrower distribution and host range. We conducted a series of fumigation assays to assess the vulnerability of both species to fumigation with essential oils released from hydrogels. These hydrogels contained either (R)-linalool, (S)-linalool, racemic linalool, or a binary mixture of (R)-linalool with one of twelve other essential oils. Solanum lycopersicum seedlings were screened for their sensitivity to the most potent fumigants, as determined from thrips bioassays. The least saturated hydrogels conditioned in essential oils were the most effective, and both species of thrips were more sensitive to (R)-linalool than to (S)-linalool. Frankliniella occidentalis was significantly more resistant to all treatments than F. insularis. Treatment of S. lycopersicum with the same concentrations of oils required to control thrips resulted in reduced root and hypocotyl lengths, most severely in seedlings exposed via foliar sprays than as fumigants. While our study demonstrates that essential oils are a promising alternative to conventional insecticides for thrips control, the resistance demonstrated by F. occidentalis underlines the need for judicious use of essential oils as part of broader pest control programs. Abstract Frankliniella occidentalis is among the most economically significant pests of greenhouse crops, whose resistance to conventional insecticides has created demand for biopesticides such as essential oils. We assessed the fumigant toxicity of linalool against F. occidentalis, F. insularis, and Solanum lycopersicum. Thrips were fumigated with polyacrylamide hydrogels containing either (R)-linalool, (S)-linalool, racemic linalool, or a binary mixture of (R)-linalool with one of twelve adjuvants (i.e., peppermint, cedarwood, neem, clove, coconut, jojoba, soybean, olive, α-terpineol, 1,8-cineole, trans-anethole, or (R)-pulegone). Solanum lycopersicum seedlings were exposed to (R)-linalool or a mixture of (R)-linalool and peppermint oil via conditioned hydrogels or foliar spray. For F. insularis, (R)-linalool was more toxic than (S)-linalool, with LC50 values of 11.7 mg/L air and 16.7 mg/L air, respectively. Similarly for F. occidentalis, (R)-linalool was more toxic than (S)-linalool, with LC50 values of 29.0 mg/L air and 34.9 mg/L air, respectively. Peppermint oil and α-terpineol were the only synergists, while the other adjuvants exhibited varying degrees of antagonism. All seedling treatments demonstrated phytotoxicity, but symptoms were most severe for foliar sprays and mixtures containing peppermint oil. While hydrogels conditioned in linalool may be a favorable substitute to conventional insecticides, the cross-resistance demonstrated herein indicates that expectations should be metered.
Collapse
|
6
|
Knobloch MC, Schinkel L, Kohler HPE, Mathis F, Kern S, Bleiner D, Heeb NV. Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum - Kinetic models for the homologue-specific conversion of reactive and persistent material. CHEMOSPHERE 2021; 283:131199. [PMID: 34153917 DOI: 10.1016/j.chemosphere.2021.131199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Structure, reactivity and physico-chemical properties of polyhalogenated compounds determine their up-take, transport, bio-accumulation, transformation and toxicity and their environmental fate. In technical mixtures of chlorinated paraffins (CPs), these properties are distributed due to the presence of thousands of homologues. We hypothesized that roles of CP dehalogenation reactions, catalyzed by the haloalkane dehalogenase LinB, depend on structural properties of the substrates, e.g. chlorination degree and carbon-chain length. We exposed mixtures of chlorinated undecanes, dodecanes and tridecanes in-vitro to LinB from Sphingobium Indicum bacteria. These single-chain CP-materials also contain small amounts of chlorinated olefins (COs), which can be distinct by mathematical deconvolution of respective mass-spectra. With this procedure, we obtained homologue-specific transformation kinetics of substrates differing in saturation degree, chlorination degree and carbon chain-length. For all homologues, two-stage first-order kinetic models were established, which described the faster conversion of reactive material and the slower transformation of more persistent material. Half-lifes of 0.5-3.2 h and 56-162 h were determined for more reactive and more persistent CP-material. Proportions of persistent material increased steadily from 18 to 67% for lower (Cl6) to higher (Cl11) chlorinated paraffins and olefins. Conversion efficiencies decreased with increasing chlorination degree from 97 to 70%. Carbon-chain length had only minor effects on transformation rates. Hence, the conversion was faster and more efficient for lower-chlorinated material, and slower for higher-chlorinated and longer-chained CPs and COs. Current legislation has banned short-chain chlorinated paraffins (SCCPs) and forced a transition to longer-chain CPs. This may be counterproductive with regard to enzymatic transformation with LinB.
Collapse
Affiliation(s)
- Marco C Knobloch
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Lena Schinkel
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Swiss Federal Institute of Aquatic Research and Technology Eawag, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Hans-Peter E Kohler
- Swiss Federal Institute of Aquatic Research and Technology Eawag, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Flurin Mathis
- Zürich University of Applied Sciences ZHAW, Unterstrass 31, 8820, Wädenswil, Switzerland
| | - Susanne Kern
- Zürich University of Applied Sciences ZHAW, Unterstrass 31, 8820, Wädenswil, Switzerland
| | - Davide Bleiner
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Norbert V Heeb
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
7
|
Suman S, Tanuja. Isolation and Characterization of a Bacterial Strain Enterobacter cloacae (Accession No. KX438060.1) Capable of Degrading DDTs Under Aerobic Conditions and Its Use in Bioremediation of Contaminated Soil. Microbiol Insights 2021; 14:11786361211024289. [PMID: 34177271 PMCID: PMC8207271 DOI: 10.1177/11786361211024289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2021] [Indexed: 12/02/2022] Open
Abstract
DDT is one of the most persistent pesticides among all the different types of organo-chlorine pesticides used. Among all the degradation methods, bacterial degradation of DDT is most effective. The present study was conducted to isolate different bacteria present in waste samples which have the ability to degrade DDT present in the soil in the minimum possible period of time and to observe the effect of different physical and chemical properties of the soil samples. Many pesticide degrading bacteria were isolated and identified through cultural, biochemical tests and further identified by 16S RNA sequencing method. The most potent strain DDT 1 growth in mineral salt medium supplemented with DDT as the only source of carbon (5-100 PPM) and was monitored at an optical density of 600 nm. The growth parameters at different physio-chemical conditions were further optimized. The result showed that Enterobacter cloacae had maximum growth in 15 days. FTIR analysis of the residual DDT after 15 days incubation showed that Enterobacter cloacae was able to degrade pesticide into its further metabolites of DDD, DDE, DDNU and other components can be used for biodegradation of DDT present in contaminated soil and water ecosystems.
Collapse
Affiliation(s)
- Sonal Suman
- Research Scholar Department of Biotechnology, Magadh University, Bodh Gaya, BR, India
| | - Tanuja
- TPS College, Patna, BR, India
| |
Collapse
|
8
|
Castillo MV, Iramain MA, Davies L, Manzur ME, Brandán SA. Structural study and vibrational assignments of FT-IR and FT-Raman spectra of powerful pesticide 2,4’-DDT. Its comparison with 4,4’-DDT. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Huang H, Li J, Zhang Y, Chen W, Ding Y, Chen W, Qi S. How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114574. [PMID: 33618471 DOI: 10.1016/j.envpol.2020.114574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ10DDTs) ranging 37.7-70,100 pg g-1 dw and 3.4-175 pg m-3, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ10DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
Xiao P, Kondo R. Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J Microbiol 2020; 58:395-404. [PMID: 32266564 DOI: 10.1007/s12275-020-9492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022]
Abstract
The widespread use of the organochlorine insecticide lindane in the world has caused serious environmental problems. The main purpose of this paper is to investigate the potency of several Phlebia species of white rot fungi to degrade, transform and mineralize lindane, and to provide the feasibility of using white rot fungi for bioremediation at contaminated sites. Based on tolerance experiment results, Phlebia brevispora and Phlebia lindtneri had the highest tolerance to lindane and were screened by degradation tests. After 25 days of incubation, P. brevispora and P. lindtneri degraded 87.2 and 73.3% of lindane in low nitrogen medium and 75.8 and 64.9% of lindane in high nitrogen medium, respectively. Several unreported hydroxylation metabolites, including monohydroxylated, dehydroxylated, and trihydroxylated products, were detected and identified by GC/MS as metabolites of lindane. More than 10% of [14C] lindane was mineralized to 14CO2 by two fungi after 60 days of incubation, and the mineralization was slightly promoted by the addition of glucose. Additionally, the degradation of lindane and the formation of metabolites were efficiently inhibited by piperonyl butoxide, demonstrating that cytochrome P450 enzymes are involved in the fungal transformation of lindane. The present study showed that P. brevispora and P. lindtneri were efficient degraders of lindane; hence, they can be applied in the bioremediation process of lindane-contaminated sites.
Collapse
Affiliation(s)
- Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Ryuichiro Kondo
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
11
|
González-Acevedo ZI, García-Zarate MA, Flores-Lugo IP. Emerging contaminants and nutrients in a saline aquifer of a complex environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:885-897. [PMID: 30469283 DOI: 10.1016/j.envpol.2018.10.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
The quality and availability of water has become a pressing issue worldwide, being particularly important in semi-arid regions, where climate change has aggravated the problem. The use of anthropogenic chemicals, classified as emerging pollutants, adds to the problem representing a treat, since they are not regulated and have a potential impact on human and environmental health. This pressing problem has not been studied widely in complex environments like the one we present here. Distribution and seasonal variability of fecal sterols, alkylphenols, pesticides (emerging pollutants) and nutrients were determined in 35 wells used for agriculture and human consumption in the Valley of Maneadero, located in the semi-arid region of Baja California, Mexico. The presence of the tested pollutants in the saline aquifer was heterogeneous, showing important differences in concentration and distribution. Wells destined for household use showed the highest variability. In these wells, anthropogenic fecal sterols were detected and, alkylphenols, such as octyphenol and nonylphenol had maximum concentrations (2.7 ng/mL). In agriculture and urban wells, we identified DDT and organochlorine pesticides, as well as myclobutanil, which is considered a modern pesticide. Nitrates were identified in concentrations above international standards, mainly during the dry season, in both the agricultural and urban areas. As emerging pollutants represent a negative effect on environmental and human health, this is the first paper showing the importance of measuring this type of pollutant in agricultural/semi-urban areas, especially in aquifers that have been overexploited and communities that have relied on the use of septic tanks for decades.
Collapse
Affiliation(s)
- Zayre I González-Acevedo
- Geology Department, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Ensenada-Tijuana 3918, Zona Playitas, C. P, 22860, Ensenada, Baja California, Mexico.
| | - Marco A García-Zarate
- Applied Physics Department, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Ensenada-Tijuana 3918, Zona Playitas, C. P, 22860, Ensenada, Baja California, Mexico
| | - I Pamela Flores-Lugo
- Postgraduate Program on Environmental Geosciences, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Ensenada-Tijuana 3918, Zona Playitas, C. P, 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
12
|
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Front Microbiol 2018; 9:2992. [PMID: 30568644 PMCID: PMC6289982 DOI: 10.3389/fmicb.2018.02992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Lisa Pataczek
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Thomas H. Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | | | - Svein Ø. Solberg
- World Vegetable Center, Tainan, China
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
13
|
Navarrete IA, Tee KAM, Unson JRS, Hallare AV. Organochlorine pesticide residues in surface water and groundwater along Pampanga River, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:289. [PMID: 29667072 DOI: 10.1007/s10661-018-6680-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Pesticide use in developing countries such as the Philippines has significantly increased food production. However, the improper and poorly regulated practice of pesticide use may lead to pollution of water resources. To detect and assess the extent of pesticide contamination, residues of organochlorine pesticides were tested in surface water and groundwater in selected areas along the Pampanga River, Philippines. The physicochemical properties of the surface water and ground water were also analyzed and results revealed that phosphate concentrations in surface water and groundwater samples were two to three times higher than the regulatory limits of 0.5 mg L-1, whereas the nitrate concentrations were below the regulatory limit of 7 mg L-1. Results further revealed that surface water and groundwater showed the presence of seven organochlorine pesticides and residues listed in the Stockholm Convention list of 2009 such as dieldrin, endrin aldehyde, α-BHC, β-BHC, δ-BHC, γ-chlordane, and endosulfan II. The concentrations of organochlorine pesticides including endrin aldehyde, total BHCs (i.e., α-BHC, β-BHC, δ-BHC), and heptachlor in groundwater were also found to exceed regulatory limits, indicating that these chemicals are still being used illegally and remains a major environmental concern despite the bans and restrictions. We suggest that routine chemical monitoring (including seasonal variations) coupled with biological monitoring using a battery of biomarker tests of organochlorine pesticide and residues along the Pampanga River is necessary to provide inputs for the control and reduction of environmental pollution and for minimizing human health risks.
Collapse
Affiliation(s)
- Ian A Navarrete
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines.
| | - Kendric Aaron M Tee
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - Jewel Racquel S Unson
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - Arnold V Hallare
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Padre Faura St., 1000, Manila, Philippines
| |
Collapse
|
14
|
Zhang C, Liu L, Ma Y, Li F. Using Isomeric and Metabolic Ratios of DDT To Identify the Sources and Fate of DDT in Chinese Agricultural Topsoil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1990-1996. [PMID: 29345919 DOI: 10.1021/acs.est.7b05877] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The metabolic ratio of (p,p'-DDE + p,p'-DDD)/p,p'-DDT or p,p'-DDE/p,p'-DDT has been used previously to estimate the approximate half-life of p,p'-DDT, with a relatively unclear concept of "old" and "new" sources of p,p'-DDT and without paying attention to the influence by dicofol-type DDT contributed from the more recent usage of dicofol. Based on the isomeric ratio of o,p'-DDT/p,p'-DDT to distinguish the sources of DDT, this study used the corrected metabolic ratio of (p,p'-DDE + p,p'-DDD)/p,p'-DDT to estimate a more accurate half-life of p,p'-DDT using a model-based approach. This indicates the average half-life of p,p'-DDT in Chinese topsoils was 14.2 ± 0.9 years with dicofol-type DDT input considered. In deeper soil, the half-life was >30 years and the metabolic pathway of p,p'-DDT was significantly different with topsoil's. Further analysis on the fraction of DDT from technical DDT suggested that a region that had been sprayed with technical DDT was likely to have been sprayed with dicofol as well, but the monitoring residues of DDT in topsoil mainly derive from historical use of technical DDT.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Li Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Yan Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| |
Collapse
|
15
|
Rani M, Shanker U, Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:208-222. [PMID: 28056354 DOI: 10.1016/j.jenvman.2016.12.068] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 05/12/2023]
Abstract
Organochlorines (OCs) are the most hazardous class of pesticides, therefore, banned or restricted in several countries. The major sources of OCs include food industries, agriculture and sewage wastes. Their effluents discharged into the water bodies contain extremely high concentration of OCs which ultimately causes environmental concern. Because of their high persistence, toxicity and potential to bioaccumulation, their removal from wastewater is imperative. The degradation techniques are now advanced using nanomaterials of various kinds. During the last few years, nanoparticles such as TiO2 and Fe are found to be excellent adsorbents and efficient photocatalysts for degrading more or less whole OCs as well as their toxic metabolites, which opens the opportunities for exploring various other nanoparticles as well. It is noteworthy that such methodologies are economic, fast and very efficient. In this review, the detailed information on different types of OC pesticides, their metabolites, environmental concern and present status on degradation methods using nanoparticles have been reviewed. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India.
| | - Vidhisha Jassal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| |
Collapse
|
16
|
Fenoll J, Garrido I, Vela N, Ros C, Navarro S. Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9278-9285. [PMID: 28229382 DOI: 10.1007/s11356-017-8589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The leaching potential of three insecticides (spirodiclofen, spiromesifen, and spirotetramat) was assessed using disturbed soil columns. Small quantities of spirodiclofen and spiromesifen were detected in leachate fraction, while spirotetramat residues were not found in the leachates. In addition, the transformation products (enol derivatives) are relatively more mobile than the parent compounds and may leach into groundwater. Moreover, the use of disinfection soil techniques (solarization and biosolarization) to enhance their degradation rates in soil was investigated. The results show that both practices achieved a reduction in the number of juvenile nematodes, enhancing in a parallel way degradation rates of the insecticides and their enol derivatives as compared with the non-disinfected soil. This behavior can be mainly attributed to the increase in soil temperature and changes in microbial activity. All insecticides showed similar behavior under solarization and biosolarization conditions. As a consequence, both agronomic techniques could be considered as suitable strategies for detoxification of soils polluted with the studied pesticides.
Collapse
Affiliation(s)
- José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n. La Alberca, 30150, Murcia, Spain.
| | - Isabel Garrido
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Nuria Vela
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia, Campus de Los Jerónimos, s/n. Guadalupe, 30107, Murcia, Spain
| | - Caridad Ros
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Simón Navarro
- Departamento de Química Agrícola, Geología y Edafología. Facultad de Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
17
|
Walsh JJ, Lenes JM, Weisberg RH, Zheng L, Hu C, Fanning KA, Snyder R, Smith J. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs. MARINE POLLUTION BULLETIN 2017; 116:9-40. [PMID: 28111002 DOI: 10.1016/j.marpolbul.2016.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine.
Collapse
Affiliation(s)
- J J Walsh
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States.
| | - J M Lenes
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R H Weisberg
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - L Zheng
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - C Hu
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - K A Fanning
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R Snyder
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA 23480, United States
| | - J Smith
- Department of Radiology, School of Medicine, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
18
|
Gregory SJ, Anderson CWN, Camps-Arbestain M, Biggs PJ, Ganley ARD, O’Sullivan JM, McManus MT. Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLoS One 2015; 10:e0125393. [PMID: 25923541 PMCID: PMC4414470 DOI: 10.1371/journal.pone.0125393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 03/24/2015] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil.
Collapse
Affiliation(s)
- Samuel J. Gregory
- New Zealand Biochar Research Centre, Massey University, Palmerston North, New Zealand
| | - Christopher W. N. Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- * E-mail:
| | - Marta Camps-Arbestain
- New Zealand Biochar Research Centre, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | | | - Michael T. McManus
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
Kafilzadeh F, Ebrahimnezhad M, Tahery Y. Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in kor river, iran. Osong Public Health Res Perspect 2014; 6:39-46. [PMID: 25737830 PMCID: PMC4346598 DOI: 10.1016/j.phrp.2014.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/15/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives Endosulfan is a lipophilic insecticide, which causes severe health issues due to its environmental stability, toxicity, and biological reservation in organisms. It is found in the atmosphere, soil, sediments, surface waters, rain, and food in almost equal proportions. The aim of this study was to isolate and identify endosulfan-degrading bacteria from the Kor River and evaluate the possibility of applying bioremediation in reducing environmental pollution in the desired region. Methods Samples of surface sediments and water were collected from three different stations in two seasons (summer and autumn), as these are areas with high agricultural activity. Isolated bacteria were identified by various biochemical tests and morphological characteristics. The amounts of degradation of endosulfan isomers and metabolites produced as a result of biodegradation were then analyzed using gas chromatography/mass spectrometry. Results In this study, the following five bacterial genera were able to degrade endosulfan: Klebsiella, Acinetobacter, Alcaligenes, Flavobacterium, and Bacillus. During biodegradation, metabolites of endosulfan diol, endosulfan lactone, and endosulfan ether were also produced, but these had lesser toxicity compared with the original compound (i.e., endosulfan). Conclusion The five genera isolated can be used as a biocatalyst for bioremediation of endosulfan.
Collapse
|
20
|
Karigar CS, Rao SS. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011; 2011:805187. [PMID: 21912739 PMCID: PMC3168789 DOI: 10.4061/2011/805187] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 11/20/2022] Open
Abstract
A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.
Collapse
|
21
|
Yu HY, Bao LJ, Liang Y, Zeng EY. Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5245-5252. [PMID: 21595473 DOI: 10.1021/es2006397] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although the production and use of dichlorodiphenyltrichloroethane (DDT), a legacy component of persistent organic pollutants, have been highly restricted worldwide, the environmental fate of DDT has remained a great concern as it is not only ubiquitous and bioaccumulative but can also be degraded to a series of metabolites that may be more hazardous ecologically. The present study, taking advantage of the abundant levels of DDT and its metabolites in a subtropical coastal region of China, investigated into the degradation pathways of DDT in natural coastal sediment. Sediment profiles indicated that degradation of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDT) to 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDD) mainly occurred in sediment of the top 20 cm layer. 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDE), aerobically transformed from p,p'-DDT prior to sedimentation, was likely to degrade to 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDMU) which was further converted to 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU). In addition, p,p'-DDNU could be transformed to 2,2-bis(p-chlorophenyl)ethane (p,p'-DDNS) and other high-order metabolites. On the other hand, the conversions of p,p'-DDD to p,p'-DDMU and 1-chloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDMS) to p,p'-DDNU were deemed slow in anaerobic sediment. Therefore, the present study confirmed all the degradation pathways involving reductive dechlorination and p,p'-DDE being a more important precursor for p,p'-DDMU than p,p'-DDD in anaerobic sediment, as proposed previously. On the other hand, the present study suggested that p,p'-DDMU instead of p,p'-DDMS was more likely the precursor for formation of high-order metabolites. Based on the current assessments, use of (DDD+DDE)/DDTs to indicate whether there is fresh DDT input may lead to large uncertainties if the concentrations of high-order metabolites are not negligible. Similarly, ecological risk assessment associated with DDT should be conducted with consideration of high-order DDT metabolites.
Collapse
Affiliation(s)
- Huan-Yun Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | |
Collapse
|
22
|
Fenoll Serrano J, Ruiz E, Hellín P, Lacasa A, Flores P. Enhanced dissipation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin in soil by solarization and biosolarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2433-2438. [PMID: 20112907 DOI: 10.1021/jf903697u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study was conducted to assess the effects of solarization and biosolarization on the degradation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin. The experimental design consisted of 17 L pots filled with clay-loam soil, which were contaminated with the studied herbicides. Then, soil disinfection treatments were applied during the summer season, including a control without disinfection (C), solarization (S), and biosolarization (BS). Soil from five pots per treatment was sampled periodically up to 90 days. Herbicide dissipation rates were higher in both S and BS treatments with regard to the control. Similar dissipation rates were observed under S and BS for most of the herbicides studied, except oxyfluorfen and pendimethalin, which were degraded to a greater extent in the BS than in the S treatment. The obtained results showed that both solarization and biosolarization can be considered, in addition to soil disinfection techniques, such as bioremediation tools for herbicide-polluted soils.
Collapse
Affiliation(s)
- José Fenoll Serrano
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, C/Mayor s/n, La Alberca, 30150 Murcia, Spain
| | | | | | | | | |
Collapse
|
23
|
Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:1-132. [PMID: 19957234 DOI: 10.1007/978-1-4419-1440-8_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is detoxification and bioactivation. Hydrophobic pesticides that are expected to be highly stored in tissues would not be bioconcentrated if susceptible to biotic transformation by aquatic organisms to more rapidly metabolized to hydrophilic entities are generally less toxic. By analogy, pesticides that are metabolized to similar entities by aquatic species surely are les ecotoxicologically significant. One feature of fish and other aquatic species that makes them more relevant as targets of environmental studies and of regulation is that they may not only become contaminated by pesticides or other chemicals, but that they constitute and important part of the human diet. In this chapter, we provide an overview of the enzymes that are capable of metabolizing or otherwise assisting in the removal of xenobiotics from aquatic species. Many studies have been performed on the enzymes that are responsible for metabolizing xenobiotics. In addition to the use of conventional biochemical methods, such studies on enzymes are increasingly being conducted using immunochemical methods and amino acid or gene sequences analysis. Such studies have been performed in algae, in some aquatic macrophytes, and in bivalva, but less information is available for other aquatic species such as crustacea, annelids, aquatic insecta, and other species. Although their catabolizing activity is often lower than in mammals, oxidases, especially cytochrome P450 enzymes, play a central role in transforming pesticides in aquatic organisms. Primary metabolites, formed from such initial enzymatic action, are further conjugated with natural components such as carbohydrates, and this aids removal form the organisms. The pesticides that are susceptible to abiotic hydrolysis are generally also biotically degraded by various esterases to from hydrophilic conjugates. Reductive transformation is the main metabolic pathway for organochlorine pesticides, but less information on reductive enzymology processes is available. The information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of ecotoxicological endpoints. Therefore, more metabolic and tissue distribution information for terminal pesticide residues is needed for aquatic species both in laboratory settings and in higher-tier (microcosm, mesocosm) studies.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, 665-8555, Japan.
| |
Collapse
|
24
|
Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, Holliger C, van der Meer JR, Lal R. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 2004; 186:2225-35. [PMID: 15060023 PMCID: PMC412113 DOI: 10.1128/jb.186.8.2225-2235.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of lin genes and IS6100 was studied in three strains of Sphingomonas paucimobilis (B90A, Sp+, and UT26) which degraded hexachlorocyclohexane (HCH) isomers but which had been isolated at different geographical locations. DNA-DNA hybridization data revealed that most of the lin genes in these strains were associated with IS6100, an insertion sequence classified in the IS6 family and initially found in Mycobacterium fortuitum. Eleven, six, and five copies of IS6100 were detected in B90A, Sp+, and UT26, respectively. IS6100 elements in B90A were sequenced from five, one, and one regions of the genomes of B90A, Sp+, and UT26, respectively, and were found to be identical. DNA-DNA hybridization and DNA sequencing of cosmid clones also revealed that S. paucimobilis B90A contains three and two copies of linX and linA, respectively, compared to only one copy of these genes in strains Sp+ and UT26. Although the copy number and the sequence of the remaining genes of the HCH degradative pathway (linB, linC, linD, and linE) were nearly the same in all strains, there were striking differences in the organization of the linA genes as a result of replacement of portions of DNA sequences by IS6100, which gave them a strange mosaic configuration. Spontaneous deletion of linD and linE from B90A and of linA from Sp+ occurred and was associated either with deletion of a copy of IS6100 or changes in IS6100 profiles. The evidence gathered in this study, coupled with the observation that the G+C contents of the linA genes are lower than that of the remaining DNA sequence of S. paucimobilis, strongly suggests that all these strains acquired the linA gene through horizontal gene transfer mediated by IS6100. The association of IS6100 with the rest of the lin genes further suggests that IS6100 played a role in shaping the current lin gene organization.
Collapse
Affiliation(s)
- Charu Dogra
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK. Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane). ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:269-98. [PMID: 12876800 DOI: 10.1016/s0065-2164(00)47007-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- B K Singh
- Department of Microbiology, University of Delhi, New Delhi 110021, India
| | | | | | | | | |
Collapse
|
26
|
Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R. Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 2002; 68:6021-8. [PMID: 12450824 PMCID: PMC134425 DOI: 10.1128/aem.68.12.6021-6028.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 09/18/2002] [Indexed: 11/20/2022] Open
Abstract
Hexachlorocyclohexane (HCH) has been used extensively against agricultural pests and in public health programs for the control of mosquitoes. Commercial formulations of HCH consist of a mixture of four isomers, alpha, beta, gamma, and delta. While all these isomers pose serious environmental problems, beta-HCH is more problematic due to its longer persistence in the environment. We have studied the degradation of HCH isomers by Sphingomonas paucimobilis strain B90 and characterized the lin genes encoding enzymes from strain B90 responsible for the degradation of HCH isomers. Two nonidentical copies of the linA gene encoding HCH dehydrochlorinase, which were designated linA1 and linA2, were found in S. paucimobilis B90. The linA1 and linA2 genes could be expressed in Escherichia coli, leading to dehydrochlorination of alpha-, gamma-, and delta-HCH but not of beta-HCH, suggesting that S. paucimobilis B90 contains another pathway for the initial steps of beta-HCH degradation. The cloning and characterization of the halidohydrolase (linB), dehydrogenase (linC and linX), and reductive dechlorinase (linD) genes from S. paucimobilis B90 revealed that they share approximately 96 to 99% identical nucleotides with the corresponding genes of S. paucimobilis UT26. No evidence was found for the presence of a linE-like gene, coding for a ring cleavage dioxygenase, in strain B90. The gene structures around the linA1 and linA2 genes of strain B90, compared to those in strain UT26, are suggestive of a recombination between linA1 and linA2, which formed linA of strain UT26.
Collapse
Affiliation(s)
- Rekha Kumari
- Department of Zoology, University of Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bidlan R, Manonmani H. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 2002. [DOI: 10.1016/s0032-9592(02)00066-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Singh BK, Kuhad RC. Biodegradation of lindane (gamma-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 1999; 28:238-41. [PMID: 10196776 DOI: 10.1046/j.1365-2672.1999.00508.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of the white-rot fungus Trametes hirsutus to degrade an insecticide, lindane, in liquid culture was investigated and compared with that of Phanerochaete chrysosporium. Trametes hirsutus degraded lindane faster than P. chrysosporium but the mechanism of degradation appears to be the same in both. Two metabolites identified in both fungi were tetrachlorocyclohexane and tetrachlorocyclohexanol. The presence of lindane alone inside the mycelium ruled out the involvement of any intracellular enzyme(s) during the initial step of lindane degradation. Lindane at a concentration of 0.27 mumol l-1 exhibited no adverse effect on fungal growth.
Collapse
Affiliation(s)
- B K Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
29
|
|
30
|
Odokuma LO, Okpokwasili GC. Seasonal ecology of hydrocarbon-utilizing microbes in the surface Waters of a river. ENVIRONMENTAL MONITORING AND ASSESSMENT 1993; 27:175-191. [PMID: 24221023 DOI: 10.1007/bf00548364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/1991] [Revised: 08/15/1992] [Indexed: 06/02/2023]
Abstract
Seasonal changes in the microbial communities of the New Calabar Riverwater have been investigated. Analyses of the BOD, pH, salinity, oil and grease levels of effluents of industries sited along the river were also conducted. High hydrocarbon-utilizing microbial populations were found. The percentage of hydrocarbon-utilizing heterotrophic bacteria ranged between 0-98% and 0-68% in the rainy and dry months, respectively. Counts of hydrocarbon-utilizing actinomycetes in the rainy months ranged between 0-95% and 2-55% in the dry months. The hydrocarbon-utilizing yeast population ranged between 1-95% and 2-85% for the rainy and dry months, respectively. Rainy month values for hydrocarbon-utilizing mould population ranged from 0-17% while dry month values ranged from 0-47%. The hydrocarbon-utilizing cyanobacterial population ranged between 0-95% and 0-33% in the rainy and dry months, respectively. Our results suggest that the heterotrophic bacterial and cyanobacterial populations are higher in the rainy months than in the dry months. However, the hydrocarbon-utilizing yeast, mould and actinomycete populations did not show seasonal variation.
Collapse
Affiliation(s)
- L O Odokuma
- Department of Microbiology, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | | |
Collapse
|
31
|
Shochat E, Hermoni I, Cohen Z, Abeliovich A, Belkin S. Bromoalkane-degrading Pseudomonas strains. Appl Environ Microbiol 1993; 59:1403-9. [PMID: 8517736 PMCID: PMC182096 DOI: 10.1128/aem.59.5.1403-1409.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two Pseudomonas isolates, named ES-1 and ES-2, were shown to possess a wide degradative spectrum for haloalkanes in general and bromoalkanes in particular but did not degrade nonsubstituted alkanes. The utilization of water-insoluble haloalkanes, such as 1-bromooctane, appeared to consist of three phases: (i) extracellular emulsification by a constitutively excreted, broad-spectrum surface-active agent, (ii) dehalogenation by an inducible hydrolytic dehalogenase (possibly periplasmic), and (iii) intracellular degradation of the residual carbon skeleton. Several observations suggest the existence of more than one dehalogenase in strain ES-2.
Collapse
Affiliation(s)
- E Shochat
- Environmental Microbiology Unit, Jacob Blaustein Institute for Desert Research, Ben Gurion University of the Negev, Israel
| | | | | | | | | |
Collapse
|
32
|
Abstract
A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes.
Collapse
Affiliation(s)
- W W Mohn
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario
| | | |
Collapse
|
33
|
Abstract
A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes.
Collapse
Affiliation(s)
- W W Mohn
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario
| | | |
Collapse
|
34
|
Lindqvist R, Enfield CG. Biosorption of dichlorodiphenyltrichloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport. Appl Environ Microbiol 1992; 58:2211-8. [PMID: 1637158 PMCID: PMC195757 DOI: 10.1128/aem.58.7.2211-2218.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The potential for enhanced mobility of hydrophobic pollutants by cotransport with bacteria in saturated soils was evaluated from measurements of biosorption of 14C-labeled hexachlorobenzene and dichlorodiphenyltrichloroethane (DDT) to five strains of soil and sewage bacteria. The sorption process could be described by a linear partition equation and appeared to be reversible, but desorption kinetics were slow and/or partly irreversible. The DDT partition coefficients varied with equilibration time, possibly reflecting DDT-induced changes in the physiology of the bacteria. The partition coefficients, normalized to the masses of the bacteria, ranged from 250 to 14,000 for live cells, but the largest coefficients were associated with autoclaved cells of a Pseudomonas sp. The sorptive capacity of the bacterial biomass was greater for DDT than for hexachlorobenzene but was not correlated to overall bacterial hydrophobicity, measured by hydrophobic interaction chromatography. In a column study, 1.2 x 10(9) cells of a Bacillus sp. strain per ml enhanced DDT transport about 8-fold, whereas an advective-dispersive-sorptive equilibrium model for two mobile phases, water and free-living bacteria, suggested a 14-fold enhancement, based on the DDT partition coefficient. The disagreement was in part due to a retarded nonequilibrium movement of the bacteria. Model calculations based on literature data covering a wide range of organisms and compounds suggested that 10(6) cells ml-1 would increase the mobility of very hydrophobic compounds (log octanol-water partition coefficient [K(ow) of greater than or equal to 6), whereas higher densities of bacteria (10(8) cells ml-1) would have a significant impact on compounds with a log K(ow) of greater than or equal to 4.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Lindqvist
- Department of Environmental Science and Engineering, Rice University, Houston, Texas 77251
| | | |
Collapse
|
35
|
Reinhart DR, Pohland FG. The assimilation of organic hazardous wastes by municipal solid waste landfills. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf01575853] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Abstract
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.
Collapse
Affiliation(s)
- G R Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|
37
|
Jaffé R. Fate of hydrophobic organic pollutants in the aquatic environment: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1991; 69:237-257. [PMID: 15092165 DOI: 10.1016/0269-7491(91)90147-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/1990] [Accepted: 08/27/1990] [Indexed: 05/24/2023]
Abstract
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.
Collapse
Affiliation(s)
- R Jaffé
- Universidad Simón Bolívar, Chemistry Department, Geochemistry and Environmental Chemistry Laboratory, Apartado 89000, Caracas 1080-A, Venezuela
| |
Collapse
|
38
|
Gälli R, McCarty PL. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl Environ Microbiol 1989; 55:837-44. [PMID: 2729985 PMCID: PMC184211 DOI: 10.1128/aem.55.4.837-844.1989] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A gram-positive, strictly anaerobic, motile, endospore-forming rod, tentatively identified as a proteolytic Clostridium sp., was isolated from the effluent of an anaerobic suspended-growth bioreactor. The organism was able to biotransform 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane. 1,1,1-Trichloroethane was completely transformed (greater than or equal to 99.5%) by reductive dehalogenation to 1,1-dichloroethane (30 to 40%) and, presumably by other mechanisms, to acetic acid (7%) and unidentified products. The reductive dehalogenation of tetrachloromethane led to the intermediate trichloromethane, which was further transformed to dichloromethane (8%) and unidentified products. The biotransformation occurred during the exponential growth phase, as well as during the stationary phase. Tetrachlorethene, trichloroethene, 1,1-dichloroethene, chloroethane, 1,1-dichloroethane, and dichloromethane were not biotransformed significantly by the organism.
Collapse
Affiliation(s)
- R Gälli
- Department of Civil Engineering, Stanford University, California 94305-4020
| | | |
Collapse
|
39
|
Liu SY, Zheng Z, Zhang R, Bollag JM. Sorption and Metabolism of Metolachlor by a Bacterial Community. Appl Environ Microbiol 1989; 55:733-40. [PMID: 16347880 PMCID: PMC184188 DOI: 10.1128/aem.55.3.733-740.1989] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A stable bacterial community absorbed and transformed the herbicide metolachlor [2-chloro-
N
-(2-ethyl- 6-methylphenyl)-
N
-(2-methoxy-1-methylethyl)-acetamide] from a liquid medium. About 80% of the added ring-[U-
14
C]metolachlor (50 μg/ml) disappeared from the medium and accumulated inside the cells. The ratio of cellular
14
C to
14
C in 1 mg of supernatant reached a value of 1.1 × 10
4
in a 10-day-old culture.
14
C remaining in the medium consisted primarily of two dechlorinated products of metolachlor with
m/z
233 and 263 as determined by mass spectrometry. The
14
C-labeled material absorbed by the cells was strongly bound; only 2% of the
14
C was released into deionized water after shaking for 3 h. Approximately 96% of the
14
C associated with the biomass was extracted with acetone, and high-performance liquid chromatographic analysis of this fraction showed six peaks containing radioactivity. Since no metolachlor was detected by chromatographic analysis, it was concluded that the radioactivity recovered from the cells represented transformed products of metolachlor. Pure cultures isolated from the bacterial mixed culture were less effective in transforming and accumulating metolachlor. These results suggest that it may be advantageous to seed an aquatic environment with a mixture of microorganisms, rather than individual microbial species, as a method for removal or detoxification of metolachlor.
Collapse
Affiliation(s)
- S Y Liu
- Laboratory of Soil Biochemistry, Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | | |
Collapse
|
40
|
Fathepure BZ. Factors Affecting the Methanogenic Activity of
Methanothrix soehngenii
VNBF. Appl Environ Microbiol 1987; 53:2978-82. [PMID: 16347514 PMCID: PMC204234 DOI: 10.1128/aem.53.12.2978-2982.1987] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane production by
Methanothrix soehngenii
VNBF grown on acetate (50 mM) as the sole carbon and energy source was influenced by the addition of Fe, trace elements, and pesticides. The addition of Fe and trace elements significantly enhanced the rate of CH
4
production. The addition of pesticides in the early growth phase caused complete inhibition. However, less inhibition was noted when pesticides were added during early exponential growth phase. Addition to culture tubes of Co, Ni, or Mo at 2 μM produced 64, 41, or 17%, respectively, more CH
4
than that produced in tubes lacking the corresponding trace element. A concentration of more than 5 μM of these trace elements in the medium resulted in decreased CH
4
production, presumably because of toxic effects.
Collapse
Affiliation(s)
- B Z Fathepure
- Microbiology and Cell Biology Laboratory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
41
|
|
42
|
Motosugi K, Soda K. Microbial degradation of synthetic organochlorine compounds. EXPERIENTIA 1983; 39:1214-20. [PMID: 6416886 DOI: 10.1007/bf01990358] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
|
44
|
Bouwer EJ, McCarty PL. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 1983; 45:1286-94. [PMID: 6859849 PMCID: PMC242452 DOI: 10.1128/aem.45.4.1286-1294.1983] [Citation(s) in RCA: 306] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several 1- and 2-carbon halogenated aliphatic organic compounds present at low concentrations (less than 100 micrograms/liter) were degraded under methanogenic conditions in batch bacterial cultures and in a continuous-flow methanogenic fixed-film laboratory-scale column. Greater than 90% degradation was observed within a 2-day detention time under continuous-flow methanogenic conditions with acetate as a primary substrate. Carbon-14 measurements indicated that chloroform, carbon tetrachloride, and 1,2-dichloroethane were almost completely oxidized to carbon dioxide, confirming removal by biooxidation. The initial step in the transformations of tetrachloroethylene and 1,1,2,2-tetrachloroethane to nonchlorinated end products appeared to be reductive dechlorination to trichloroethylene and 1,1,2-trichloroethane, respectively. Transformations of the brominated aliphatic compounds appear to be the result of both biological and chemical processes. The data suggest that transformations of halogenated aliphatic compounds can occur under methanogenic conditions in the environment.
Collapse
|