1
|
Issa KD, Othman HO, Amin HIM, Omar SE, Jihad SS, Rasool DD, Ahmed AS, Ghazali MF, Hussain FHS. Sustainable Antimicrobial and Anticancer Agents: Eco-Friendly Synthesis of Copper Nanoparticles Using Biebersteinia multifida DC. Chem Biodivers 2025:e202402612. [PMID: 40262138 DOI: 10.1002/cbdv.202402612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/12/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Biebersteinia multifida DC. is a wild therapeutic plant, traditionally used for various medicinal applications. The aim of the present study is to extract bioactive constituents from the plants' roots and synthesize copper nanoparticles (CuNPs). Ethanolic extraction of the plant's roots yielded 19 bioactive compounds, recognized through gas chromatography-mass spectroscopy (GC-MS), mainly including citraconic anhydride, γ-sitosterol, and 2-furancarboxaldehyde. The prepared CuNPs have been fully characterized. The biological activity evaluations revealed these CuNPs possess acceptable antibacterial and antifungal activities. Furthermore, the CuNPs displayed significant cytotoxic potency toward "4T1 breast cancer cells" while showing a relatively low cell death rate against the normal "HEK-293 kidney cell". In conclusion, our findings showed that the CuNPs can be synthesized from B. multifida roots with a simple, fast, and eco-friendly procedure. These CuNPs are efficient in antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Kovan Dilawer Issa
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, Tishk International University, Erbil, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Shahnaz Erfan Omar
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Sarya Siraj Jihad
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Danya Dler Rasool
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Abdullah Shahab Ahmed
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Mardin Firsat Ghazali
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Iraq
| |
Collapse
|
2
|
Khan A, Moni SS, Ali M, Mohan S, Jan H, Rasool S, Kamal MA, Alshahrani S, Halawi M, Alhazmi HA. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr Mol Pharmacol 2023; 16:15-42. [PMID: 35249516 DOI: 10.2174/1874467215666220304143332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Huma Jan
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar -190006, J&K, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001 J&K, India
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589. Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
3
|
Boriollo MFG, Oliveira MC, Bassinello V, Aníbal PC, da Silva TA, da Silva JJ, Bassi RC, Netto MFR, Dos Santos Dias CT, Höfling JF. Candida species biotypes and polyclonality of potentially virulent Candida albicans isolated from oral cavity of patients with orofacial clefts. Clin Oral Investig 2021; 26:3061-3084. [PMID: 34791549 DOI: 10.1007/s00784-021-04290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study evaluated the incidence of Candida species, and the genetic diversity and virulence of C. albicans of the oral cavity from patients with cleft lip and palate (CLP). MATERIALS AND METHODS Oral samples were investigated by microbiological and species-specific PCR methods. The genetic diversity of C. albicans was established using isoenzyme markers, Nei's statistics, and clustering analysis. Hydrolytic enzymes (SAPs and PLs) were analyzed in vitro. RESULTS Oral colonization by Candida species was observed in 29 patients with CLP (65.9%), and C. albicans was highly prevalent. SAP and PL activities were observed in 100% and 51.9% of isolates, respectively. High genetic diversity and patterns of monoclonal and polyclonal oral colonization by C. albicans were observed among patients with CLP. Two major polymorphic taxa (A and B) and other minor polymorphic taxa (C to J) were identified. Only one of the 16 clusters (taxon A) harbored strains from patients with and without CLP, whereas other clusters harbored strains exclusively from CLP patients. CONCLUSIONS The anatomical conditions of the oral cavity of patients with CLP contribute to the high incidence of Candida species (C. albicans, C. krusei, C. tropicalis, and/or Candida spp.). Data suggest high genetic diversity of potentially virulent C. albicans strains in the oral cavity of CLP patients. CLINICAL RELEVANCE Microbiological niches in orofacial clefts can contribute to the emergence of a relative clinical genotypic identity of C. albicans. However, orofacial rehabilitation centers can contribute to the direct and indirect sources of transmission and propagation of Candida species.
Collapse
Affiliation(s)
- Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil.
| | - Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Vanessa Bassinello
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Paula Cristina Aníbal
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Thaísla Andrielle da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Rodrigo Carlos Bassi
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Manoel Francisco Rodrigues Netto
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Carlos Tadeu Dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), 11 Pádua Dias Ave, Piracicaba, SP, 13418-900, Brazil
| | - José Francisco Höfling
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
4
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Kabir MA, Hussain MA, Ahmad Z. Candida albicans: A Model Organism for Studying Fungal Pathogens. ISRN MICROBIOLOGY 2012; 2012:538694. [PMID: 23762753 PMCID: PMC3671685 DOI: 10.5402/2012/538694] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | | | | |
Collapse
|
6
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Lee KH, Kim SY, Jung JH, Kim J. Proteomic analysis of hyphae-specific proteins that are expressed differentially in cakem1/cakem1 mutant strains of Candida albicans. J Microbiol 2010; 48:365-71. [PMID: 20571955 DOI: 10.1007/s12275-010-9155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
Abstract
The yeast-to-hyphal transition is a major virulence factor in the fungal pathogen Candida albicans. Mutations in the CaKEM1 gene, which encodes a 5'-3' exoribonuclease responsible for mRNA degradation, show a defect in hyphal growth. We applied two-dimensional gel electrophoresis to identify hyphae-specific proteins that have altered expressions in the presence of the cakem1 mutation. Eight proteins, Eno1, Eps1, Fba1, Imh3, Lpd1, Met6, Pdc11, and Tsa1 were upregulated during hyphal transition in wild-type but not in cakem1/cakem1 mutant cells. A second group of proteins, Idh1, Idh2, and Ssb1, showed increased levels of expression in cakem1/cakem1 mutant cells when compared to wild-type cells. Overexpression of Lpd1, a component of the pyruvate dehydrogenase complex, caused slight hyperfilamentation in a wild-type strain and suppressed the filamentation defect of the cakem1 mutation. The Ssb1 protein, which is a potential heat shock protein, and the Imh3 protein, which is a putative enzyme in GMP biosynthesis also showed the filamentation-associated phenotypes.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Microbiology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. EUKARYOTIC CELL 2009; 8:1554-66. [PMID: 19700634 DOI: 10.1128/ec.00209-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans strains tolerate aneuploidy, historically detected as karyotype alterations by pulsed-field gel electrophoresis and more recently revealed by array comparative genome hybridization, which provides a comprehensive and detailed description of gene copy number. Here, we first retrospectively analyzed 411 expression array experiments to predict the frequency of aneuploidy in different strains. As expected, significant levels of aneuploidy were seen in strains exposed to stress conditions, including UV light and/or sorbose treatment, as well as in strains that are resistant to antifungal drugs. More surprisingly, strains that underwent transformation with DNA displayed the highest frequency of chromosome copy number changes, with strains that were initially aneuploid exhibiting approximately 3-fold more copy number changes than strains that were initially diploid. We then prospectively analyzed the effect of lithium acetate (LiOAc) transformation protocols on the stability of trisomic chromosomes. Consistent with the retrospective analysis, the proportion of karyotype changes was highly elevated in strains carrying aneuploid chromosomes. We then tested the hypothesis that stresses conferred by heat and/or LiOAc exposure promote chromosome number changes during DNA transformation procedures. Indeed, a short pulse of very high temperature caused frequent gains and losses of multiple chromosomes or chromosome segments. Furthermore, milder heat exposure over longer periods caused increased levels of loss of heterozygosity. Nonetheless, aneuploid chromosomes were also unstable when strains were transformed by electroporation, which does not include a heat shock step. Thus, aneuploid strains are particularly prone to undergo changes in chromosome number during the stresses of DNA transformation protocols.
Collapse
|
9
|
Fujioka K, Geis P, Saito M, Matsuoka H. Visualization of yeast single-cells on fabric surface with a fluorescent glucose and their isolation for culture. J Ind Microbiol Biotechnol 2007; 34:685-8. [PMID: 17566804 DOI: 10.1007/s10295-007-0231-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
An ultra-deep focusing range (UDF) fluorescent microscope system has been combined with a micromanipulation system to develop a viable cell detection-identification system applicable to microbes on environmental surfaces and products. Candida albicans yeast cells on a fabric sample surface were viably stained with a fluorescent glucose derivative, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy glucose (2-NBDG) and detected with a UDF fluorescent microscope. Visualized single-cells of C. albicans were picked in a glass microcapillary and transferred onto an agar medium. After the culture, the colony was assayed for DNA sequence to identify the isolate. This demonstrates a potential application to the study of unknown environmental microorganisms.
Collapse
Affiliation(s)
- Kohtaro Fujioka
- Kobe Technical Center, Procter & Gamble Far East Inc., 17, Koyo-cho Naka 1-Chome, Higashinada-ku, Kobe, Japan
| | | | | | | |
Collapse
|
10
|
Gognies S, Barka EA, Gainvors-Claisse A, Belarbi A. Interactions between yeasts and grapevines: filamentous growth, endopolygalacturonase and phytopathogenicity of colonizing yeasts. MICROBIAL ECOLOGY 2006; 51:109-16. [PMID: 16408245 DOI: 10.1007/s00248-005-0098-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/07/2005] [Indexed: 05/06/2023]
Abstract
It has been clearly established that phytopathogenic fungi, bacteria, and viruses exert biotic stresses on plants. Much less is known, however, about the interactions between enological species of yeast and their host plants. In a previous study, we described how Saccharomyces cerevisiae, the most common enological yeast, can act as a grapevine (Vitis vinifera L.) pathogen, causing growth retardation or plant death. In the present in vitro study on 11 strains of yeast belonging to different genera, which often occur on the surfaces of vineyard grapes and V. vinifera, a link was found to exist between strain phytopathogenecity and pseudohyphal growth habits and/or endopolygalacturonase activity. The results obtained here are consistent with earlier findings showing that the phytopathogenicity of yeast strains depends on the filamentous growth process, and show that endopolygalacturonase alone is not responsible for the invasion of plants tissues. The mechanisms observed here may be of significant ecological importance and may help to explain the long periods of yeast survival found to occur in vineyards.
Collapse
Affiliation(s)
- Sabine Gognies
- Laboratoire de Microbiologie Générale et Moléculaire, Université de Reims, UFR Sciences, URVVC, UPRES EA 2069, B.P. 1039, 51687 Reims Cedex 2, France
| | | | | | | |
Collapse
|
11
|
Odds FC, Brown AJP, Gow NAR. Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biol 2004; 5:230. [PMID: 15239821 PMCID: PMC463275 DOI: 10.1186/gb-2004-5-7-230] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Publication of the complete diploid genome sequence of the yeast Candida albicans will accelerate research into the pathogenesis of Candida infections. Comparative genomic analysis highlights genes that may contribute to C. albicans survival and its fitness as a human commensal and pathogen.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
12
|
Dhillon NK, Sharma S, Khuller GK. Biochemical characterization of Ca2+/calmodulin dependent protein kinase from Candida albicans. Mol Cell Biochem 2004; 252:183-91. [PMID: 14577592 DOI: 10.1023/a:1025596008765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
13
|
Beadle J, Wright M, McNeely L, Bennett JW. Electrophoretic karyotype analysis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:243-70. [PMID: 14696321 DOI: 10.1016/s0065-2164(03)53007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resolution of chromosomal-sized DNAs by PFGE has many applications that include karyotyping, strain identification of similar species, characterization of transformed strains, building of linkage maps, and preparation of DNA for genomic analysis. Successful electrophoretic separation of chromosomes is an empiric process in which the initial concentration of intact chromosome-sized DNA and the optimization of electrophoretic parameters are the most important experimental variables. Nonetheless, inherent attributes of the genome architecture of certain species may thwart success. When a karyotype contains numerous chromosomes of the same size and/or many large (greater than 8 Mb) chromosomes, no amount of manipulation of the electrophoretic parameters will resolve individual chromosome bands using present technology. Further, fungi display a surprising amount of intraspecific variation in both chromosome number and size, making it difficult to establish a standard "reference" karyotype for many species. Although PFGE is not a panacea for bringing genetics to species that lack classical genetic systems, it often does provide a way for developing a molecular linkage map in the absence of a formal genetic system. It is far faster than parasexual analysis in the discovery of linkage relationships. For genomics projects, DNA can be recovered from pulsed field gels and used to prepare chromosome-specific libraries. Where whole genome sequencing strategies are used, chromosomes separated by PFGE provide an anchor for sequencing data. Electrophoretic karyotypes can be probed with anonymous pieces of DNA from bacterial artificial chromosome (BAC) contigs, thereby facilitating the building of physical maps. In conclusion, despite its shortcomings, the PFGE technique underlies much of our current understanding of the physical nature of the fungal genome.
Collapse
Affiliation(s)
- J Beadle
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
14
|
Novák A, Vágvölgyi C, Emody L, Pesti M. Characterization of Candida albicans colony morphological mutants and their hybrids by means of RAPD-PCR, isoenzyme analysis and pathogenicity analysis. Folia Microbiol (Praha) 2004; 49:527-33. [PMID: 15702540 DOI: 10.1007/bf02931528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A wild-type strain of Candida albicans (S1, ATCC 10261) was used to obtain stable auxotrophic colony morphological mutants (mutant M5 producing only true hyphae and mutant M2 containing 90 % blastospores and 10 % pseudohyphae) by induced mutagenesis. A hybrid was produced by somatic hybridization between these 2 mutants. Out of the isolated 10 clones, 2 stable hybrid clones were chosen and characterized: clone VI. 1M produced rough colonies containing a new, extended cell type (never observed in natural isolates), exhibited unipolar budding, did not form a germ tube, and possessed 12 chromosomal bands. All other features (antifungal and stress sensitivity, adhesion ability, pathogenicity, and isoenzyme and RAPD patterns) were similar to those of mycelial mutant M5. In contrast, the characteristics of clone VI.9S were similar to those of morphological mutant M2.
Collapse
Affiliation(s)
- A Novák
- Department of General and Environmental Microbiology, Faculty of Science, University of Pécs, 7624 Pécs, Hungary
| | | | | | | |
Collapse
|
15
|
Rottmann M, Dieter S, Brunner H, Rupp S. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Mol Microbiol 2003; 47:943-59. [PMID: 12581351 DOI: 10.1046/j.1365-2958.2003.03358.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis in Saccharomyces cerevisiae and the pathogenic yeast Candida albicans is governed in part by the same molecular circuits. In S. cerevisiae, FLO11/MUC1 expression has been shown to be modulated by multiple signalling pathways required for pseudohyphal development. We have established a screen in S. cerevisiae to identify regulators of fungal development in C. albicans based on FLO11::lacZ expression as a reporter. This screen identified both known components of the mitogen-activated protein kinase (MAPK) cascade and the cAMP cascade that are important for hyphal development in C. albicans, as well as genes not yet known to be involved in morphogenesis. The Candida homologue of MCM1 is one of the novel factors identified in this screen as being important for morphogenesis. CaMcm1p levels do not vary significantly in different cell types and respond to an autoregulatory feedback mechanism, arguing that CaMcm1p activity is regulated by post-translational modifications. Both overexpression and repression of this essential gene led to the induction of hyphae. Moreover, we found that the expression of HWP1, a hyphae-specific gene, was induced by repression of CaMCM1. The changes in morphology and HWP1 expression were not the result of a change in expression levels of NRG1 or TUP1, known repressors of hyphal development. Thus, CaMcm1p is a component of a hitherto unknown regulatory mechanism of hyphal growth.
Collapse
Affiliation(s)
- M Rottmann
- Fraunhofer IGB, Nobelstr. 12, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
16
|
Berman J, Sudbery PE. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002; 3:918-30. [PMID: 12459722 DOI: 10.1038/nrg948] [Citation(s) in RCA: 390] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, in immunocompromised patients, blood-stream infections often cause death, despite the use of anti-fungal therapies. The recent completion of the C. albicans genome sequence, the availability of whole-genome microarrays and the development of tools for rapid molecular-genetic manipulations of the C. albicans genome are generating an explosion of information about the intriguing biology of this pathogen and about its mechanisms of virulence. They also reveal the extent of similarities and differences between C. albicans and its benign relative, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Judith Berman
- Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
17
|
Bougnoux ME, Morand S, d'Enfert C. Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J Clin Microbiol 2002; 40:1290-7. [PMID: 11923347 PMCID: PMC140389 DOI: 10.1128/jcm.40.4.1290-1297.2002] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular characterization of Candida albicans isolates is essential for understanding the epidemiology of nosocomial infections caused by this yeast. Here, we investigated the potential value of multilocus sequence typing (MLST) for characterizing epidemiologically related or unrelated C. albicans strains of various clinical origins. Accordingly, we sequenced the internal regions (loci) of six selected housekeeping genes of 40 C. albicans clinical isolates and 2 reference strains. In all, 68 polymorphic nucleotide sites were identified, of which 65 were found to be heterozygous in at least one isolate. Ten to 24 different genotypes were observed at the different loci, resulting, when combined, in 39 unique genotype combinations or diploid sequence types (DSTs). When MLST was applied to 26 epidemiologically unrelated isolates and the 2 reference strains, it allowed the identification of 27 independent DSTs, thus demonstrating a discriminatory power of 99.7. Using multidimensional scaling together with the minimum spanning tree method to analyze interstrain relationships, we identified six groups of genetically related isolates on the basis of bootstrap values of greater than 900. Application of MLST to 14 epidemiologically related isolates showed that those recovered from patients in the same hospital ward during the same 3 months had specific DSTs, although 73% of these isolates were genetically very close. This suggests that MLST can trace minute variations in the sequences of related isolates. Overall, MLST proved to be a highly discriminatory and stable method for unambiguous characterization of C. albicans.
Collapse
Affiliation(s)
- M-E Bougnoux
- Unité Microbiologie et Environnement, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
18
|
Abstract
Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data.
Collapse
Affiliation(s)
- Y H Samaranayake
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
19
|
Abstract
The frequency of opportunistic infections caused by the fungus Candida albicans is very high and is expected to continue to increase as the number of immunocompromised patients rises. Research initiatives to study the biology of this organism and elucidate its pathogenic determinants have therefore expanded significantly during the last 5-10 years. The past few years have also brought continuous improvement in the techniques to study gene function by gene inactivation and by regulated gene expression and to study gene expression and protein localization by using gene reporter systems. As steadily more genomic sequence information from this human fungal pathogen becomes available, we are entering a new era in antimicrobial research. However, many of the currently available molecular genetics tools are poorly adapted to a genome-wide functional analysis in C. albicans, and further development of these tools is hampered by the asexual and diploid nature of this organism. This review outlines recent advances in the development of molecular tools for functional analysis in C. albicans and summarizes current knowledge about the genomic and genetic variability of this important human fungal pathogen.
Collapse
Affiliation(s)
- M D De Backer
- Department of Advanced Bio-Technologies, Janssen Research Foundation, B-2340 Beerse, Belgium.
| | | | | |
Collapse
|
20
|
Anderson JB, Wickens C, Khan M, Cowen LE, Federspiel N, Jones T, Kohn LM. Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol 2001; 183:865-72. [PMID: 11208783 PMCID: PMC94952 DOI: 10.1128/jb.183.3.865-872.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous analyses of diploid nuclear genotypes have concluded that recombination has occurred in populations of the yeast Candida albicans. To address the possibilities of clonality and recombination in an effectively haploid genome, we sequenced seven regions of mitochondrial DNA (mtDNA) in 45 strains of C. albicans from human immunodeficiency virus-positive patients in Toronto, Canada, and 3 standard reference isolates of C. albicans, CA, CAI4, and WO-1. Among a total of 2,553 nucleotides in the seven regions, 62 polymorphic nucleotide sites and seven indels defined nine distinct mtDNA haplotypes among the 48 strains. Five of these haplotypes occurred in more than one strain, indicating clonal proliferation of mtDNA. Phylogenetic analysis of mtDNA haplotypes resulted in one most-parsimonious tree. Most of the nucleotide sites undergoing parallel change in this tree were clustered in blocks that corresponded to sequenced regions. Because of the existence of these blocks, the apparent homoplasy can be attributed to infrequent, past genetic exchange and recombination between individuals and cannot be attributed to parallel mutation. Among strains sharing the same mtDNA haplotypes, multilocus nuclear genotypes were more similar than expected from a random comparison of nuclear DNA genotypes, suggesting that clonal proliferation of the mitochondrial genome was accompanied by clonal proliferation of the nuclear genome.
Collapse
Affiliation(s)
- J B Anderson
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | | | | | |
Collapse
|
21
|
Beckerman J, Chibana H, Turner J, Magee PT. Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect Immun 2001; 69:108-14. [PMID: 11119495 PMCID: PMC97861 DOI: 10.1128/iai.69.1.108-114.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasexual genetic analysis of Candida albicans utilized the dominant selectable marker that conferred resistance to mycophenolic acid. We cloned and sequenced the IMH3(r) gene from C. albicans strain 1006, which was previously identified as resistant to mycophenolic acid (MPA) (A. K. Goshorn and S. Scherer, Genetics 123:213-218, 1989). MPA is an inhibitor of IMP dehydrogenase, an enzyme necessary for the de novo biosynthesis of GMP. G. A. Kohler et al. (J. Bacteriol. 179:2331-2338, 1997) have shown that the wild-type IMH3 gene, when expressed in high copy number, will confer resistance to this antibiotic. We demonstrate that the IMH3(r) gene from strain 1006 has three amino acid changes, two of which are nonconservative, and demonstrate that at least two of the three mutations are required to confer resistance to MPA. We used this gene as a dominant selectable marker in clinical isolates of C. albicans and Candida tropicalis. We also identified the presence of autonomously replicating sequence elements that permit autonomous replication in the promoter region of this gene. Finally, we found the excision of a phi-type long terminal repeat element outside the IMH3 open reading frame of the gene in some strains. We used the IMH3(r) allele to disrupt one allele of ARG4 in two clinical isolates, WO-1 and FC18, thus demonstrating that a single ectopic integration of this dominant selectable marker is sufficient to confer resistance to MPA.
Collapse
Affiliation(s)
- J Beckerman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
22
|
Maneu V, Roig P, Gozalbo D. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes. Res Microbiol 2000; 151:739-46. [PMID: 11130864 DOI: 10.1016/s0923-2508(00)01139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.
Collapse
Affiliation(s)
- V Maneu
- Departament de Microbiologia i Ecologia, Facultat de Farm ia, Universitat de Valencia, Spain
| | | | | |
Collapse
|
23
|
Braun BR, Head WS, Wang MX, Johnson AD. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 2000; 156:31-44. [PMID: 10978273 PMCID: PMC1461230 DOI: 10.1093/genetics/156.1.31] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TUP1 encodes a transcriptional repressor that negatively controls filamentous growth in Candida albicans. Using subtractive hybridization, we identified six genes, termed repressed by TUP1 (RBT), whose expression is regulated by TUP1. One of the genes (HWP1) has previously been characterized, and a seventh TUP1-repressed gene (WAP1) was recovered due to its high similarity to RBT5. These genes all encode secreted or cell surface proteins, and four out of the seven (HWP1, RBT1, RBT5, and WAP1) encode putatively GPI-modified cell wall proteins. The remaining three, RBT2, RBT4, and RBT7, encode, respectively, an apparent ferric reductase, a plant pathogenesis-related protein (PR-1), and a putative secreted RNase T2. The expression of RBT1, RBT4, RBT5, HWP1, and WAP1 was induced in wild-type cells during the switch from the yeast form to filamentous growth, indicating the importance of TUP1 in regulating this process and implicating the RBTs in hyphal-specific functions. We produced knockout strains in C. albicans for RBT1, RBT2, RBT4, RBT5, and WAP1 and detected no phenotypes on several laboratory media. However, two animal models for C. albicans infection, a rabbit cornea model and a mouse systemic infection model, revealed that rbt1Delta and rbt4Delta strains had significantly reduced virulence. TUP1 appears, therefore, to regulate many genes in C. albicans, a significant fraction of which are induced during filamentous growth, and some of which participate in pathogenesis.
Collapse
Affiliation(s)
- B R Braun
- Department of Microbiology, University of California, San Francisco, California 94143-0414, USA.
| | | | | | | |
Collapse
|
24
|
Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 2000; 182:4899-905. [PMID: 10940034 PMCID: PMC111370 DOI: 10.1128/jb.182.17.4899-4905.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper ion homeostasis is complicated in that copper is an essential element needed for a variety of cellular processes but is toxic at excess levels. To identify Candida albicans genes that are involved in resistance to copper ion toxicity, a library containing inserts of C. albicans genomic DNA was used to complement the copper sensitivity phenotype of a Saccharomyces cerevisiae cup1Delta strain that is unable to produce Cup1p, a metallothionein (MT) responsible for high-level copper ion resistance. A P1-type ATPase (CPx type) that is closely related to the human Menkes and Wilson disease proteins was cloned. The gene encoding this pump was termed CRD1 (for copper resistance determinant). A gene encoding a 76-amino-acid MT similar to higher eukaryotic MTs in structure was also cloned, and the gene was termed CRD2. Transcription of the CRD1 gene was found to increase upon growth with increasing copper levels, while the CRD2 mRNA was expressed at a constant level. Strains with the CRD1 gene disrupted were extremely sensitive to exogenous copper and failed to grow in medium containing 100 microM CuSO(4). These crd1 strains also exhibited increased sensitivity to silver and cadmium, indicating that Crd1p is somewhat promiscuous with respect to metal ion transport. Although strains with the CRD2 gene disrupted showed reduced growth rate with increasing copper concentration, the crd2 mutants eventually attained wild-type levels of growth, demonstrating that CRD2 is less important for resistance to copper ion toxicity. Crd1p is the first example of a eukaryotic copper pump that provides the primary source of cellular copper resistance, and its ability to confer silver resistance may enhance the prevalence of C. albicans as a nosocomial pathogen.
Collapse
Affiliation(s)
- P J Riggle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
25
|
Abstract
Although the diploid fungus Candida albicans, a human pathogen, has been thought to have no sexual cycle, it normally possesses mating-type-like orthologs (MTL) of both of the Saccharomyces cerevisiae mating-type genes (MAT) a and alpha. When strains containing only MTLa or MTLalpha were constructed by the loss of one homolog of chromosome 5, the site of the MTL loci, MTLa and MTLalpha strains mated, but like mating types did not. Evidence for mating included formation of stable prototrophs from strains with complementing auxotrophic markers; these contained both MTL alleles and molecular markers from both parents and were tetraploid in DNA content and mononucleate.
Collapse
Affiliation(s)
- B B Magee
- Department of Genetics, Cell Biology and Development, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | | |
Collapse
|
26
|
Timpel C, Zink S, Strahl-Bolsinger S, Schröppel K, Ernst J. Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen candida albicans. J Bacteriol 2000; 182:3063-71. [PMID: 10809683 PMCID: PMC94490 DOI: 10.1128/jb.182.11.3063-3071.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterized PMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or two PMT6 alleles grow normally and contain normal Pmt enzymatic activities in cell extracts but show phenotypes including a partial block of hyphal formation (dimorphism) and a supersensitivity to hygromycin B. The morphogenetic defect can be suppressed by overproduction of known components of signaling pathways, including Cek1p, Cph1p, Tpk2p, and Efg1p, suggesting a specific Pmt6p target protein upstream of these components. Mutants lacking both PMT1 and PMT6 are viable and show pmt1 mutant phenotypes and an additional sensitivity to the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The lack of Pmt6p significantly reduces adherence to endothelial cells and overall virulence in a mouse model of systemic infection. The results suggest that Pmt6p regulates a more narrow subclass of proteins in C. albicans than Pmt1p, including secreted proteins responsible for morphogenesis and antifungal sensitivities.
Collapse
Affiliation(s)
- C Timpel
- Institut für Mikrobiologie, Biologisch-Medizinisches Forschungszentrum, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Young LY, Lorenz MC, Heitman J. A STE12 homolog is required for mating but dispensable for filamentation in candida lusitaniae. Genetics 2000; 155:17-29. [PMID: 10790381 PMCID: PMC1461059 DOI: 10.1093/genetics/155.1.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Candida lusitaniae is a dimorphic yeast that is emerging as an opportunistic fungal pathogen. In contrast to Candida albicans, which is diploid and asexual, C. lusitaniae has been reported to have a sexual cycle. We have employed genetic approaches to demonstrate that C. lusitaniae is haploid and has a sexual cycle involving mating between MATa and MATalpha cells under nutrient deprivation conditions. By degenerate PCR, we identified a C. lusitaniae homolog (Cls12) of the Ste12 transcription factor that regulates mating, filamentation, and virulence in Saccharomyces cerevisiae, C. albicans, and Cryptococcus neoformans. Comparison of the CLS12 DNA and protein sequences to other STE12 homologs and transformation experiments with selectable markers from S. cerevisiae (URA3, KanMX, HphMX) and C. albicans (CaURA3) provide evidence that the CUG codon encodes serine instead of leucine in C. lusitaniae, as is also the case in C. albicans. The C. lusitaniae CLS12 gene was disrupted by biolistic transformation and homologous recombination. C. lusitaniae cls12 mutant strains were sterile but had no defect in filamentous growth. Our findings reveal both conserved and divergent roles for the C. lusitaniae STE12 homolog in regulating differentiation of this emerging fungal pathogen.
Collapse
Affiliation(s)
- L Y Young
- Department of Genetics, Pharmacology and Cancer Biology, Microbiology, and Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
28
|
Cowen LE, Sanglard D, Calabrese D, Sirjusingh C, Anderson JB, Kohn LM. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 2000; 182:1515-22. [PMID: 10692355 PMCID: PMC94447 DOI: 10.1128/jb.182.6.1515-1522.2000] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation to inhibitory concentrations of the antifungal agent fluconazole was monitored in replicated experimental populations founded from a single, drug-sensitive cell of the yeast Candida albicans and reared over 330 generations. The concentration of fluconazole was maintained at twice the MIC in six populations; no fluconazole was added to another six populations. All six replicate populations grown with fluconazole adapted to the presence of drug as indicated by an increase in MIC; none of the six populations grown without fluconazole showed any change in MIC. In all populations evolved with drug, increased fluconazole resistance was accompanied by increased resistance to ketoconazole and itraconazole; these populations contained ergosterol in their cell membranes and were amphotericin sensitive. The increase in fluconazole MIC in the six populations evolved with drug followed different trajectories, and these populations achieved different levels of resistance, with distinct overexpression patterns of four genes involved in azole resistance: the ATP-binding cassette transporter genes, CDR1 and CDR2; the gene encoding the target enzyme of the azoles in the ergosterol biosynthetic pathway, ERG11; and the major facilitator gene, MDR1. Selective sweeps in these populations were accompanied by additional genomic changes with no known relationship to drug resistance: loss of heterozygosity in two of the five marker genes assayed and alterations in DNA fingerprints and electrophoretic karyotypes. These results show that chance, in the form of mutations that confer an adaptive advantage, is a determinant in the evolution of azole drug resistance in experimental populations of C. albicans.
Collapse
Affiliation(s)
- L E Cowen
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | | | |
Collapse
|
29
|
Goodwin TJ, Poulter RT. Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res 2000; 10:174-91. [PMID: 10673276 DOI: 10.1101/gr.10.2.174] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have begun a characterization of the long terminal repeat (LTR) retrotransposons in the asexual yeast Candida albicans. A database of assembled C. albicans genomic sequence at Stanford University, which represents 14.9 Mb of the 16-Mb haploid genome, was screened and >350 distinct retrotransposon insertions were identified. The majority of these insertions represent previously unrecognized retrotransposons. The various elements were classified into 34 distinct families, each family being similar, in terms of the range of sequences that it represents, to a typical Ty element family of the related yeast Saccharomyces cerevisiae. These C. albicans retrotransposon families are generally of low copy number and vary widely in coding capacity. For only three families, was a full-length and apparently intact retrotransposon identified. For many families, only solo LTRs and LTR fragments remain. Several families of highly degenerate elements appear to be still capable of transposition, presumably via trans-activation. The overall structure of the retrotransposon population in C. albicans differs considerably from that of S. cerevisiae. In that species, retrotransposon insertions can be assigned to just five families. Most of these families still retain functional examples, and they generally appear at higher copy numbers than the C. albicans families. The possibility that these differences between the two species are attributable to the nonstandard genetic code of C. albicans or the asexual nature of its genome is discussed. A region rich in retrotransposon fragments, that lies adjacent to many of the CARE-2/Rel-2 sub-telomeric repeats, and which appears to have arisen through multiple rounds of duplication and recombination, is also described.
Collapse
Affiliation(s)
- T J Goodwin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
30
|
Cowen LE, Sirjusingh C, Summerbell RC, Walmsley S, Richardson S, Kohn LM, Anderson JB. Multilocus genotypes and DNA fingerprints Do not predict variation in azole resistance among clinical isolates of Candida albicans. Antimicrob Agents Chemother 1999; 43:2930-8. [PMID: 10582885 PMCID: PMC89590 DOI: 10.1128/aac.43.12.2930] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
If variation in azole resistance is due to inherent differences in strains of Candida albicans, as a predominantly clonal organism, then correlation between multilocus genotypes and drug resistance would be expected. A sample of 81 clinical isolates from patients infected with human immunodeficiency virus in Toronto, Canada, plus 3 reference isolates were genotyped at 16 loci, distributed on all linkage groups, by means of oligonucleotide hybridizations specific for each of the alleles at each locus. These multilocus genotypes were significantly correlated with DNA fingerprints obtained with the species-specific probe 27A, indicating widespread linkage disequilibrium in the genome. There were 64 multilocus diploid genotypes and 77 DNA fingerprint types delineated in this sample. Neither the multilocus genotyping nor DNA fingerprinting alone identified all of the 81 types identified by the combination of these two methods. Multilocus genotypes were not predictive of fluconazole resistance, suggesting that resistance is gained or lost too quickly to be predicted by linkage with neutral markers.
Collapse
Affiliation(s)
- L E Cowen
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | | | | | |
Collapse
|
31
|
Irobi J, Schoofs A, Goossens H. Genetic identification of Candida species in HIV-positive patients using the polymerase chain reaction and restriction fragment length polymorphism analysis of its DNA. Mol Cell Probes 1999; 13:401-6. [PMID: 10657143 DOI: 10.1006/mcpr.1999.0266] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymerase chain reaction was used to amplify a targeted region: an internal transcribed spacer region of the ribosomal DNA from 114 Candida isolates and 65 reference strains. Unique product sizes were obtained for Candida glabrata, C. guillermondii and C. inconspicua. Isolates of C. albicans, C. tropicalis, C. dubliniensis and C. krusei could be identified following restriction digestion of the PCR products. The methods proved to be both simple and reproducible and may offer potential advantages over phenotyping methods.
Collapse
Affiliation(s)
- J Irobi
- Department of Biochemistry, University of Antwerp, UIA, Antwerp, Belgium.
| | | | | |
Collapse
|
32
|
Care RS, Trevethick J, Binley KM, Sudbery PE. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 1999; 34:792-8. [PMID: 10564518 DOI: 10.1046/j.1365-2958.1999.01641.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A central technique used to investigate the role of a Candida albicans gene is to study the phenotype of a cell in which both copies of the gene have been deleted. To date, such investigations can only be undertaken if the gene is not essential. We describe the use of the Candida albicans MET3 promoter to express conditionally an essential gene, so that the consequences of depletion of the gene product may be investigated. The effects of environmental conditions on its expression were investigated, using GFP as a reporter gene. The promoter showed an approximately 85-fold range of expression, according to the presence or absence of either methionine or cysteine in concentrations in excess of 1 mM. In the presence of either amino acid, expression was reduced to levels that were close to background. We used URA3 as a model to demonstrate that the MET3 promoter could control the expression of an essential gene, provided that a mixture of both methionine and cysteine was used to repress the promoter. We describe an expression vector that may be used to express any gene under the control of the MET3 promoter and a vector that may be used to disrupt a gene and simultaneously place an intact copy under the control of the MET3 promoter. During the course of these experiments, we discovered that directed integration into the RP10 locus gives a high frequency of transformation, providing a means to solve a long-standing problem in this field.
Collapse
Affiliation(s)
- R S Care
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
33
|
Polanco A, Mellado E, Castilla C, Rodriguez-Tudela JL. Detection of Candida albicans in blood by PCR in a rabbit animal model of disseminated candidiasis. Diagn Microbiol Infect Dis 1999; 34:177-83. [PMID: 10403097 DOI: 10.1016/s0732-8893(99)00036-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A model of acute disseminated Candida albicans infection in New Zealand rabbits was developed to determine the sensitivity and accuracy of polymerase chain reaction (PCR) assay compared with the lysis-centrifugation blood culture method. Primers used amplify a DNA fragment from the multicopy gene coding for the small subunit rRNA, highly conserved in fungi. The sensitivity of PCR achieved in rabbit blood samples spiked with Candida albicans was 10-50 CFU/100 microL. A nested-PCR increased the limit of detection 10-fold. The sensitivity achieved exclusively with the lysis-centrifugation method (37.5%) was higher than that obtained with PCR (25%), but lower than nested PCR (52.5%). The combination of both techniques, lysis-centrifugation and nested PCR, increased the overall sensitivity rate to 62.5%. These results have demonstrated that, globally, the nested PCR was more sensitive than both single PCR and lysis-centrifugation culture in detecting C. albicans in blood from immunecompetent rabbits with acute disseminated candidosis. PCR could be a useful complementary technique to traditional methods in the early diagnosis of candidemia.
Collapse
Affiliation(s)
- A Polanco
- Nexstar Farmaceutica (AMP), Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Pérez-Martín J, Uría JA, Johnson AD. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 1999; 18:2580-92. [PMID: 10228170 PMCID: PMC1171338 DOI: 10.1093/emboj/18.9.2580] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the cloning of a gene from the human fungal pathogen Candida albicans with sequence and functional similarity to the Saccharomyces cerevisiae SIR2 gene. Deletion of the gene in C. albicans produces a dramatic phenotype: variant colony morphologies arise at frequencies as high as 1 in 10. The morphologies resemble those described previously as part of a phenotypic switching system proposed to contribute to pathogenesis. Deletion of SIR2 also produces a high frequency of karyotypic changes. These and other results are consistent with a model whereby Sir2 controls phenotypic switching and chromosome stability in C.albicans by organizing chromatin structure.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
35
|
Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 1999; 181:3058-68. [PMID: 10322006 PMCID: PMC93760 DOI: 10.1128/jb.181.10.3058-3068.1999] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.
Collapse
Affiliation(s)
- R Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lorberg A, Kirchrath L, Ernst JF, Heinisch JJ. Genetic and biochemical characterization of phosphofructokinase from the opportunistic pathogenic yeast Candida albicans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:217-26. [PMID: 10091602 DOI: 10.1046/j.1432-1327.1999.00132.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used the two PFK genes of Saccharomyces cerevisiae encoding the alpha and beta-subunit of the enzyme phosphofructokinase (Pfk) as heterologous probes to isolate fragments of the respective genes from the dimorphic pathogenic fungus Candida albicans. The complete coding sequences were obtained by combining sequences of chromosomal fragments and fragments obtained by inverse polymerase chain reaction (PCR). The CaPFK1 and CaPFK2 comprise open reading frames of 2961 bp and 2838 bp, respectively, encoding Pfk subunits with deduced molecular masses of 109 kDa and 104 kDa. The genes presumably evolved by a duplication event from a prokaryotic type ancestor, followed by another duplication. Heterologous expression in S. cerevisiae revealed that each gene alone was able to complement the glucose-negative phenotype of a pfk1 pfk2 double mutant. In vitro Pfk activity in S. cerevisiae was not only obtained after coexpression of both genes, but also in conjunction with the respective complementary subunits from S. cerevisiae. This indicates the formation of functional hetero-oligomers consisting of C. albicans and S. cerevisiae Pfk subunits. In C. albicans, specific Pfk activity was shown to decrease twofold upon induction of hyphal growth. CaPfk cross-reacts with a polyclonal antiserum raised against ScPfk and displays similar allosteric properties, i.e. inhibition by ATP and activation by AMP and fructose 2,6-bisphosphate.
Collapse
Affiliation(s)
- A Lorberg
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
37
|
Chen CY, Rosamondt J. Candida albicans SSD1 can suppress multiple mutations in Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):2941-2950. [PMID: 9846729 DOI: 10.1099/00221287-144-11-2941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SSD1 gene of Saccharomyces encodes a 160 kDa cytoplasmic protein that can suppress mutations in a number of other genes. A functional homologue of SSD1 from the human pathogen Candida albicans was isolated on the basis of its ability to restore viability at the restrictive temperature in a Saccharomyces cerevisiae swi4 ssd1-d strain. The C. albicans gene, designated CaSSD1, encodes a 1262 aa protein which has 47% identity overall to S. cerevisiae SSD1 as well as significant identity to Schizosaccharomyces pombe dis3 and sts5 products. It is shown that CaSSD1 expression is constitutive through the mitotic cell cycle, which is consistent with a role for the protein in cell growth. CaSSD1 rescues the swi4ts defect in an ssd1-d background when expressed from its own promoter on a single-copy plasmid and under the same conditions can rescue mutations in genes encoding protein phosphatase type 2A catalytic subunits. These data suggest that CaSSD1, like its S. cerevisiae homologue, can limit the effect of mutations on a variety of cellular processes.
Collapse
Affiliation(s)
- Chung-Yung Chen
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - John Rosamondt
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
38
|
Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 1998; 66:5301-6. [PMID: 9784536 PMCID: PMC108662 DOI: 10.1128/iai.66.11.5301-5306.1998] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ura-blaster technique for the disruption of Candida albicans genes has been employed in a number of studies to identify possible genes encoding virulence factors of this fungal pathogen. In this study, the URA3-encoded orotidine 5'-monophosphate (OMP) decarboxylase enzyme activities of C. albicans strains with ura-blaster-mediated genetic disruptions were measured. All strains harboring genetic lesions via the ura-blaster construct showed reduced OMP decarboxylase activities compared to that of the wild type when assayed. The activity levels in different gene disruptions varied, suggesting a positional effect on the level of gene expression. Because the URA3 gene of C. albicans has previously been identified as a virulence factor for this microorganism, our results suggest that decreased virulence observed in strains constructed with the ura-blaster cassette cannot accurately be attributed, in all cases, to the targeted genetic disruption. Although revised methods for validating a URA3-disrupted gene as a target for antifungal drug development could be devised, it is clearly desirable to replace URA3 with a different selectable marker that does not influence virulence.
Collapse
Affiliation(s)
- J Lay
- Microbiology Department, University of Tennessee, Knoxville, Tennessee 37919, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chibana H, Magee BB, Grindle S, Ran Y, Scherer S, Magee PT. A physical map of chromosome 7 of Candida albicans. Genetics 1998; 149:1739-52. [PMID: 9691033 PMCID: PMC1460290 DOI: 10.1093/genetics/149.4.1739] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As part of the ongoing Candida albicans Genome Project, we have constructed a complete sequence-tagged site contig map of chromosome 7, using a library of 3840 clones made in fosmids to promote the stability of repeated DNA. The map was constructed by hybridizing markers to the library, to a blot of the electrophoretic karyotype, and to a blot of the pulsed-field separation of the SfiI restriction fragments of the genome. The map includes 149 fosmids and was constructed using 79 markers, of which 34 were shown to be genes via determination of function or comparison of the DNA sequence to the public databases. Twenty-five of these genes were identified for the first time. The absolute position of several markers was determined using random breakage mapping. Each of the homologues of chromosome 7 is approximately 1 Mb long; the two differ by about 20 kb. Each contains two major repeat sequences, oriented so that they form an inverted repeat separated by 370 kb of unique DNA. The repeated sequence CARE2/Rel2 is a subtelomeric repeat on chromosome 7 and possibly on the other chromosomes as well. Genes located on chromosome 7 in Candida are found on 12 different chromosomes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- H Chibana
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
40
|
Alex LA, Korch C, Selitrennikoff CP, Simon MI. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci U S A 1998; 95:7069-73. [PMID: 9618540 PMCID: PMC22741 DOI: 10.1073/pnas.95.12.7069] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/1998] [Indexed: 02/07/2023] Open
Abstract
Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425-432]. We assess the function of COS1/CaNIK1 by constructing a diploid deletion mutant. Mutants lacking both copies of COS1 appear normal when grown as yeast cells; however, they exhibit defective hyphal formation when placed on solid agar media, either in response to nutrient deprivation or serum. In constrast to the Deltanik-1 mutant, the Deltacos1/Deltacos1 mutant does not demonstrate deleterious effects when grown in media of high osmolarity; however both Deltanik-1 and Deltacos1/Deltacos1 mutants show defective hyphal formation. Thus, as predicted for Nik-1, Cos1p may be involved in some aspect of hyphal morphogenesis and may play a role in virulence properties of the organism.
Collapse
Affiliation(s)
- L A Alex
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
41
|
van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998; 62:275-93. [PMID: 9618442 PMCID: PMC98915 DOI: 10.1128/mmbr.62.2.275-293.1998] [Citation(s) in RCA: 455] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as microbial surface components recognizing adhesive matrix molecules and specific bacterial virulence factors such as lipopolysaccharide-modifying enzymes or adhesins. SSRs enable genetic and consequently phenotypic flexibility. SSRs function at various levels of gene expression regulation. Variations in the number of repeat units per locus or changes in the nature of the individual repeat sequences may result from recombination processes or polymerase inadequacy such as slipped-strand mispairing (SSM), either alone or in combination with DNA repair deficiencies. These rather complex phenomena can occur with relative ease, with SSM approaching a frequency of 10(-4) per bacterial cell division and allowing high-frequency genetic switching. Bacteria use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. SSR-mediated variation has important implications for bacterial pathogenesis and evolutionary fitness. Molecular analysis of changes in SSRs allows epidemiological studies on the spread of pathogenic bacteria. The occurrence, evolution and function of SSRs, and the molecular methods used to analyze them are discussed in the context of responsiveness to environmental factors, bacterial pathogenicity, epidemiology, and the availability of full-genome sequences for increasing numbers of microorganisms, especially those that are medically relevant.
Collapse
Affiliation(s)
- A van Belkum
- Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Cutler JE. The Candida albicans phosphomannan complex in Candida-host interactions. RESEARCH IN IMMUNOLOGY 1998; 149:299-308; discussion 507-9. [PMID: 9720948 DOI: 10.1016/s0923-2494(98)80754-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J E Cutler
- Department of Microbiology, Montana State University, Bozeman 59717-3520, USA
| |
Collapse
|
43
|
Nakazawa T, Horiuchi H, Ohta A, Takagi M. Isolation and characterization of EPD1, an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa. J Bacteriol 1998; 180:2079-86. [PMID: 9555889 PMCID: PMC107133 DOI: 10.1128/jb.180.8.2079-2086.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Additional copies of the centromeric DNA (CEN) region induce pseudohyphal growth in a dimorphic yeast, Candida maltosa (T. Nakazawa, T. Motoyama, H. Horiuchi, A. Ohta, and M. Takagi, J. Bacteriol. 179:5030-5036, 1997). To understand the mechanism of this transition, we screened the gene library of C. maltosa for sequences which could suppress this morphological change. As a result, we isolated the 5' end of a new gene, EPD1 (for essential for pseudohyphal development), and then cloned the entire gene. The predicted amino acid sequence of Epdlp was highly homologous to those of Ggp1/Gas1/Cwh52p, a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae, and Phr1p and Phr2p of Candida albicans. The expression of EPD1 was moderately regulated by environmental pH. A homozygous EPD1 null mutant showed some morphological defects and reduction in growth rate and reduced levels of both alkali-soluble and alkali-insoluble beta-glucans. Moreover, the mutant could not undergo the transition from yeast form to pseudohyphal form induced by additional copies of the CEN sequence at pH 4 or by n-hexadecane at pH 4 or pH 7, suggesting that EPD1 is not essential for yeast form growth but is essential for transition to the pseudohyphal form. Overexpression of the amino-terminal part of Epd1p under the control of the GAL promoter suppressed the pseudohyphal development induced by additional copies of the CEN sequence, whereas overexpression of the full-length EPD1 did not. This result and the initial isolation of the 5' end of EPD1 as a suppressor of the pseudohyphal growth induced by the CEN sequence suggest that the amino-terminal part of Epd1p may have a dominant-negative effect on the functions of Epd1p in the pseudohyphal growth induced by the CEN sequence.
Collapse
Affiliation(s)
- T Nakazawa
- Department of Biotechnology, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Chindamporn A, Nakagawa Y, Mizuguchi I, Chibana H, Doi M, Tanaka K. Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):849-857. [PMID: 9579060 DOI: 10.1099/00221287-144-4-849] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel sequence designated HOK, which is next to the RPS, a repetitive sequence specific to Candida albicans, was cloned and sequenced. HOK hybridized with all of the chromosomes on which the RPSs were located, but did not hybridize with chromosome 3, which does not harbour any RPSs. Sequence determination revealed that a portion of HOK has significant homology with the B and C1 fragments of Ca3, which is used as a molecular epidemiological probe. A homology search of the deduced amino acids of HOK against the protein database showed partial homology with an isocitrate dehydrogenase of Saccharomyces cerevisiae, although an ORF large enough to encode the enzyme was not detected. To verify the existence of other sequences homologous with HOK, a portion of the HOK sequence was amplified using PCR. Sequence determination of the 41 clones from the PCR products resulted in at least six HOK-homologous clones. Another RPS-containing clone, RB2, was isolated from the Pstl-digested chromosome R or 1. It was determined that RB2a, one of the subclones from RB2, hybridized with all of the chromosomes, including chromosome 3, with which neither HOK nor RPS hybridized. The hybridization profile also showed that RPS is located between HOK and RB2a on chromosomes other than chromosome 3.
Collapse
Affiliation(s)
- Ariya Chindamporn
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| | - Yoshiyuki Nakagawa
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| | - Ikuyo Mizuguchi
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| | - Hiroji Chibana
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| | - Matsuko Doi
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| | - Kenji Tanaka
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466, Japan
| |
Collapse
|
45
|
Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62:130-80. [PMID: 9529890 PMCID: PMC98909 DOI: 10.1128/mmbr.62.1.130-180.1998] [Citation(s) in RCA: 519] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was initially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis.
Collapse
Affiliation(s)
- W L Chaffin
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | | | | | | | |
Collapse
|
46
|
Beverley SM, Turco SJ. Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol 1998; 6:35-40. [PMID: 9481823 DOI: 10.1016/s0966-842x(97)01180-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leishmania exploits several strategies to survive within the phagolysosome of vertebrate macrophages and be transmitted by sand fly vectors. Recent advances in functional genetic analysis provide a new avenue for identifying genes implicated in the infectious cycle of the parasite, such as those necessary for the synthesis and expression of the key surface glycoconjugate, lipophosphoglycan (LPG).
Collapse
Affiliation(s)
- S M Beverley
- Dept of Molecular Microbiology, Washington University Medical School, St Louis, MO 63110, USA.
| | | |
Collapse
|
47
|
Nakazawa T, Motoyama T, Horiuchi H, Ohta A, Takagi M. Evidence that part of a centromeric DNA region induces pseudohyphal growth in a dimorphic yeast, Candida maltosa. J Bacteriol 1997; 179:5030-6. [PMID: 9260943 PMCID: PMC179359 DOI: 10.1128/jb.179.16.5030-5036.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We observed that a YCp-type vector having the centromeric DNA (CEN) sequence previously isolated from the genome, but not a YRp-type vector lacking the CEN sequence, induced pseudohyphal growth in a dimorphic fungi, Candida maltosa, which had been shown to be closely related to Candida albicans by phylogenetic analysis. Deletion analysis of the CEN sequence revealed that the intact CEN sequence was not required for the induction, but part of it, having partial centromeric activity, was enough for the induction. By screening the gene library of this yeast for the sequences which induced pseudohyphal growth, we isolated three different DNA fragments which also had part of the centromere-like sequence. Partial centromeric activity of these fragments was confirmed by three criteria: low copy number and high stability of the plasmids carrying these fragments and rearrangement at high frequency of the plasmid DNA with one of these fragments plus the CEN sequence. Furthermore, when the GGTAGCG sequence commonly found in one copy in each of these four sequences was mutated in the CEN sequence by site-directed mutagenesis, both partial centromeric activity and pseudohyphal growth-inducing activity of the CEN sequence were lost. These results indicated that part of CEN region with partial centromeric activity induces pseudohyphal growth in C. maltosa. It is suggested that some cellular components which interact with the sequence containing GGTAGCG required for centromeric activity are involved in the regulation of the transition between yeast forms and pseudohyphal forms of the cells.
Collapse
Affiliation(s)
- T Nakazawa
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
48
|
Sentandreu M, Nieto A, Iborra A, Elorza MV, Ponton J, Fonzi WA, Sentandreu R. Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans. J Bacteriol 1997; 179:4654-63. [PMID: 9244249 PMCID: PMC179308 DOI: 10.1128/jb.179.15.4654-4663.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the course of an analysis of the functions and assembly of the cell wall of Candida albicans, we have cloned and characterized a gene, which we designated CSP37 (cell surface protein), encoding a 37-kDa polypeptide which is a membrane-associated protein. The gene was isolated by immunological screening of a DNA library constructed from mycelial cells with a polyclonal serum raised against cell walls of this morphology. Analysis of the nucleotide sequence of a corresponding genomic DNA fragment revealed a single open reading frame which encodes a predicted protein of 321 amino acids with no significant homology to others in the databases. Disruption of the CSP37 gene by the method described by Fonzi and Irwin (Genetics 134:717-728, 1993) eliminated expression of the Csp37 protein. The mutant strains showed no apparent defect in cell viability, growth, or cell wall assembly but displayed attenuated virulence in systemic infections induced in mice and reduced the ability to adhere to polystyrene.
Collapse
Affiliation(s)
- M Sentandreu
- Seccio Departamental de Microbiologia, Facultat de Farmàcia, Universitat de València, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Tait E, Simon MC, King S, Brown AJ, Gow NA, Shaw DJ. A Candida albicans genome project: cosmid contigs, physical mapping, and gene isolation. Fungal Genet Biol 1997; 21:308-14. [PMID: 9290243 DOI: 10.1006/fgbi.1997.0983] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new project to map the genome of the pathogenic fungus, Candida albicans, has been started. The entire genome was cloned as 5088 cosmids, stored in individual microtiter plate wells. DNA was prepared and fingerprinted using restriction digestion, fluorescent labeling, and analysis on an ABI sequencer. These data are being used to construct contigs of the genome. Simultaneously, a DNA pooling system has been set up, suitable for PCR-based isolation of cosmids containing any known gene. Ultimately, these approaches will lead to the creation of a physically based map of the C. albicans genome, providing the means to localize precisely all the genes, act as a substrate for genome sequencing projects, and provide probes for future studies of genome rearrangement and comparative genomics.
Collapse
Affiliation(s)
- E Tait
- Department of Molecular and Cell Biology, University of Aberdeen Medical School, Scotland
| | | | | | | | | | | |
Collapse
|
50
|
Köhler GA, White TC, Agabian N. Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 1997; 179:2331-8. [PMID: 9079920 PMCID: PMC178971 DOI: 10.1128/jb.179.7.2331-2338.1997] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An IMP dehydrogenase gene was isolated from Candida albicans on a approximately 2.9-kb XbaI genomic DNA fragment. The putative Candida IMP dehydrogenase gene (IMH3) encodes a protein of 521 amino acids with extensive sequence similarity to the IMP dehydrogenases of Saccharomyces cerevisiae and various other organisms. Like the S. cerevisiae IMH3 sequence characterized in the genome sequencing project, the open reading frame of the C. albicans IMH3 gene is interrupted by a small intron (248 bp) with typical exon-intron boundaries and a consensus S. cerevisiae branchpoint sequence. IMP dehydrogenase mRNAs are detected in both the yeast and hyphal forms of C. albicans as judged by Northern hybridization. Growth of wild-type (sensitive) C. albicans cells is inhibited at 1 microg of mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenases, per ml, whereas transformants hosting a plasmid with the IMH3 gene are resistant to MPA levels of up to at least 40 microg/ml. The resistance of cells to MPA is gene dosage dependent and suggests that IMH3 can be used as a dominant selection marker in C. albicans.
Collapse
Affiliation(s)
- G A Köhler
- Department of Stomatology, University of California-San Francisco, 94143-0422, USA
| | | | | |
Collapse
|