1
|
Lasso G, Grodus M, Valencia E, DeJesus V, Liang E, Delwel I, Bortz RH, Lupyan D, Ehrlich HY, Castellanos AA, Gazzo A, Wells HL, Wacharapluesadee S, Tremeau-Bravard A, Seetahal JFR, Hughes T, Lee J, Lee MH, Sjodin AR, Geldenhuys M, Mortlock M, Navarrete-Macias I, Gilardi K, Willig MR, Nava AFD, Loh EH, Asrat M, Smiley-Evans T, Magesa WS, Zikankuba S, Wolking D, Suzán G, Ojeda-Flores R, Carrington CVF, Islam A, Epstein JH, Markotter W, Johnson CK, Goldstein T, Han BA, Mazet JAK, Jangra RK, Chandran K, Anthony SJ. Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning. Cell Host Microbe 2025; 33:294-313.e11. [PMID: 39818205 PMCID: PMC11825280 DOI: 10.1016/j.chom.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species. We found that GP-NPC1 binding correlated poorly with phylogeny. By integrating binding assays with machine learning, we identified genetic factors influencing virus-receptor-binding and predicted GP-NPC1-binding avidity for additional filoviruses and bats. Moreover, combining receptor-binding avidities with bat geographic distribution and the locations of previous Ebola outbreaks allowed us to rank bats by their potential as Ebola virus hosts. This study represents a comprehensive investigation of filovirus-receptor binding in bats (1,484 GP-NPC1 pairs, 11 filoviruses, and 135 bats) and describes a multidisciplinary approach to predict susceptible species and guide filovirus host surveillance.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Veronica DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rob H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | - Hanna Y Ehrlich
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather L Wells
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Janine F R Seetahal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Tom Hughes
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Jimmy Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Mei-Ho Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Anna R Sjodin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kirsten Gilardi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Michael R Willig
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - Alessandra F D Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia - EDTA, Manaus 69.057-070, AM, Brazil
| | - Elisabeth H Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY 40508, USA
| | - Makda Asrat
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley-Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Walter S Magesa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Sijali Zikankuba
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - David Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ariful Islam
- Gulbali Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
3
|
Shukla N, Roelle SM, Snell JC, DelSignore O, Bruchez AM, Matreyek KA. Pseudotyped virus infection of multiplexed ACE2 libraries reveals SARS-CoV-2 variant shifts in receptor usage. PLoS Pathog 2024; 20:e1012044. [PMID: 38768238 PMCID: PMC11142672 DOI: 10.1371/journal.ppat.1012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sarah M. Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - John C. Snell
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Olivia DelSignore
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anna M. Bruchez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
4
|
Shukla N, Roelle SM, Snell JC, DelSignore O, Bruchez AM, Matreyek KA. Pseudotyped virus infection of multiplexed ACE2 libraries reveals SARS-CoV-2 variant shifts in receptor usage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580056. [PMID: 38405739 PMCID: PMC10888787 DOI: 10.1101/2024.02.13.580056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarah M Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John C Snell
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Olivia DelSignore
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Anna M Bruchez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Slough MM, Li R, Herbert AS, Lasso G, Kuehne AI, Monticelli SR, Bakken RR, Liu Y, Ghosh A, Moreau AM, Zeng X, Rey FA, Guardado-Calvo P, Almo SC, Dye JM, Jangra RK, Wang Z, Chandran K. Two point mutations in protocadherin-1 disrupt hantavirus recognition and afford protection against lethal infection. Nat Commun 2023; 14:4454. [PMID: 37488123 PMCID: PMC10366084 DOI: 10.1038/s41467-023-40126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.
Collapse
Affiliation(s)
- Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rong Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Stephanie R Monticelli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Russell R Bakken
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Yanan Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alicia M Moreau
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015, Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Structural Biology of Infectious Diseases Unit, F-75015, Paris, France
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Odongo L, Zadrozny KK, Diehl WE, Luban J, White JM, Ganser-Pornillos BK, Tamm LK, Pornillos O. Purification and structure of luminal domain C of human Niemann-Pick C1 protein. Acta Crystallogr F Struct Biol Commun 2023; 79:45-50. [PMID: 36748341 PMCID: PMC9903137 DOI: 10.1107/s2053230x23000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Niemann-Pick C1 protein (NPC1) is a membrane protein that primarily resides in late endosomes and lysosomes, and plays an important role in cholesterol homeostasis in the cell. The second luminal domain of NPC1 (NPC1-C) serves as the intracellular receptor for Ebola and Marburg viruses. Here, the recombinant production of nonglycosylated and glycosylated NPC1-C and a new crystal form of the nonglycosylated protein are reported. The crystals belonged to space group P21 and diffracted to 2.3 Å resolution. The structure is similar to other reported structures of NPC1-C, with differences observed in the protruding loops when compared with NPC1-C in complex with Ebola virus glycoprotein or NPC2.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Kaneil K. Zadrozny
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Barbie K. Ganser-Pornillos
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA,Correspondence e-mail:
| | - Owen Pornillos
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Sundaram M, Schmidt JP, Han BA, Drake JM, Stephens PR. Traits, phylogeny and host cell receptors predict Ebolavirus host status among African mammals. PLoS Negl Trop Dis 2022; 16:e0010993. [PMID: 36542657 PMCID: PMC9815631 DOI: 10.1371/journal.pntd.0010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
We explore how animal host traits, phylogenetic identity and cell receptor sequences relate to infection status and mortality from ebolaviruses. We gathered exhaustive databases of mortality from Ebolavirus after exposure and infection status based on PCR and antibody tests. We performed ridge regressions predicting mortality and infection as a function of traits, phylogenetic eigenvectors and separately host receptor sequences. We found that mortality from Ebolavirus had a strong association to life history characteristics and phylogeny. In contrast, infection status related not just to life history and phylogeny, but also to fruit consumption which suggests that geographic overlap of frugivorous mammals can lead to spread of virus in the wild. Niemann Pick C1 (NPC1) receptor sequences predicted infection statuses of bats included in our study with very high accuracy, suggesting that characterizing NPC1 in additional species is a promising avenue for future work. We combine the predictions from our mortality and infection status models to differentiate between species that are infected and also die from Ebolavirus versus species that are infected but tolerate the virus (possible reservoirs of Ebolavirus). We therefore present the first comprehensive estimates of Ebolavirus reservoir statuses for all known terrestrial mammals in Africa.
Collapse
Affiliation(s)
- Mekala Sundaram
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Paul Schmidt
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Barbara A. Han
- Cary Institute of Ecosystems Studies, Millbrook, New York, United States of America
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Patrick R. Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
8
|
Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 2022; 87:101166. [PMID: 35513161 PMCID: PMC9059347 DOI: 10.1016/j.plipres.2022.101166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023]
Abstract
The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
9
|
A Glycoprotein Mutation That Emerged during the 2013-2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion. mBio 2021; 12:mBio.03616-20. [PMID: 33593971 PMCID: PMC8545129 DOI: 10.1128/mbio.03616-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic surveillance of viral isolates during the 2013–2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro. Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.
Collapse
|
10
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
11
|
Takadate Y, Manzoor R, Saito T, Kida Y, Maruyama J, Kondoh T, Miyamoto H, Ogawa H, Kajihara M, Igarashi M, Takada A. Receptor-Mediated Host Cell Preference of a Bat-Derived Filovirus, Lloviu Virus. Microorganisms 2020; 8:microorganisms8101530. [PMID: 33027954 PMCID: PMC7601172 DOI: 10.3390/microorganisms8101530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022] Open
Abstract
Lloviu virus (LLOV), a bat-derived filovirus that is phylogenetically distinct from human pathogenic filoviruses such as Ebola virus (EBOV) and Marburg virus (MARV), was discovered in Europe. However, since infectious LLOV has never been isolated, the biological properties of this virus remain poorly understood. We found that vesicular stomatitis virus (VSV) pseudotyped with the glycoprotein (GP) of LLOV (VSV–LLOV) showed higher infectivity in one bat (Miniopterus sp.)-derived cell line than in the other bat-derived cell lines tested, which was distinct from the tropism of VSV pseudotyped with EBOV (VSV–EBOV) and MARV GPs. We then focused on the interaction between GP and Niemann–Pick C1 (NPC1) protein, one of the cellular receptors of filoviruses. We introduced the Miniopterus bat and human NPC1 genes into NPC1-knockout Vero E6 cells and their susceptibilities to the viruses were compared. The cell line expressing the bat NPC1 showed higher susceptibility to VSV–LLOV than that expressing human NPC1, whereas the opposite preference was seen for VSV–EBOV. Using a site-directed mutagenesis approach, amino acid residues involved in the differential tropism were identified in the NPC1 and GP molecules. Our results suggest that the interaction between GP and NPC1 is an important factor in the tropism of LLOV to a particular bat species.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Takeshi Saito
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Yurie Kida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001–0020, Japan; (Y.T.); (R.M.); (T.S.); (Y.K.); (J.M.); (T.K.); (H.M.); (M.K.); (M.I.)
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001–0020, Japan
- Correspondence: ; Tel.: +81-11-706-9502
| |
Collapse
|
12
|
Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection. Nat Microbiol 2020; 5:1096-1106. [PMID: 32541946 PMCID: PMC7483988 DOI: 10.1038/s41564-020-0740-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cell-to-cell communication by exosomes controls normal and pathogenic processes1,2. Viruses can spread in exosomes and thereby avoid immune recognition3. While biogenesis, binding and uptake of exosomes are well characterized4,5, delivery of exosome cargo into the cytoplasm is poorly understood3. We report that the phosphatidylserine receptor HAVCR1 (refs. 6,7) and the cholesterol transporter NPC1 (ref. 8) participate in cargo delivery from exosomes of hepatitis A virus (HAV)-infected cells (exo-HAV) by clathrin-mediated endocytosis. Using CRISPR-Cas9 knockout technology, we show that these two lipid receptors, which interact in the late endosome9, are necessary for the membrane fusion and delivery of RNA from exo-HAV into the cytoplasm. The HAVCR1-NPC1 pathway, which Ebola virus exploits to infect cells9, mediates HAV infection by exo-HAV, which indicates that viral infection via this exosome mimicry mechanism does not require an envelope glycoprotein. The capsid-free viral RNA in the exosome lumen, but not the endosomal uncoating of HAV particles contained in the exosomes, is mainly responsible for exo-HAV infectivity as assessed by methylene blue inactivation of non-encapsidated RNA. In contrast to exo-HAV, infectivity of HAV particles is pH-independent and requires HAVCR1 or another as yet unidentified receptor(s) but not NPC1. Our findings show that envelope-glycoprotein-independent fusion mechanisms are shared by exosomes and viruses, and call for a reassessment of the role of envelope glycoproteins in infection.
Collapse
|
13
|
Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol 2020; 18:461-471. [PMID: 32528128 PMCID: PMC7289071 DOI: 10.1038/s41579-020-0394-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Most viral pathogens in humans have animal origins and arose through cross-species transmission. Over the past 50 years, several viruses, including Ebola virus, Marburg virus, Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory coronavirus (MERS-CoV) and SARS-CoV-2, have been linked back to various bat species. Despite decades of research into bats and the pathogens they carry, the fields of bat virus ecology and molecular biology are still nascent, with many questions largely unexplored, thus hindering our ability to anticipate and prepare for the next viral outbreak. In this Review, we discuss the latest advancements and understanding of bat-borne viruses, reflecting on current knowledge gaps and outlining the potential routes for future research as well as for outbreak response and prevention efforts.
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| | - Stephanie N Seifert
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | | | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
14
|
Takadate Y, Kondoh T, Igarashi M, Maruyama J, Manzoor R, Ogawa H, Kajihara M, Furuyama W, Sato M, Miyamoto H, Yoshida R, Hill TE, Freiberg AN, Feldmann H, Marzi A, Takada A. Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Rep 2020; 30:308-319.e5. [PMID: 31940478 PMCID: PMC11075117 DOI: 10.1016/j.celrep.2019.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Fruit bats are suspected to be natural hosts of filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV). Interestingly, however, previous studies suggest that these viruses have different tropisms depending on the bat species. Here, we show a molecular basis underlying the host-range restriction of filoviruses. We find that bat-derived cell lines FBKT1 and ZFBK13-76E show preferential susceptibility to EBOV and MARV, respectively, whereas the other bat cell lines tested are similarly infected with both viruses. In FBKT1 and ZFBK13-76E, unique amino acid (aa) sequences are found in the Niemann-Pick C1 (NPC1) protein, one of the cellular receptors interacting with the filovirus glycoprotein (GP). These aa residues, as well as a few aa differences between EBOV and MARV GPs, are crucial for the differential susceptibility to filoviruses. Taken together, our findings indicate that the heterogeneity of bat NPC1 orthologs is an important factor controlling filovirus species-specific host tropism.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Masahiro Sato
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Terence E Hill
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia.
| |
Collapse
|
15
|
Kondoh T, Letko M, Munster VJ, Manzoor R, Maruyama J, Furuyama W, Miyamoto H, Shigeno A, Fujikura D, Takadate Y, Yoshida R, Igarashi M, Feldmann H, Marzi A, Takada A. Single-Nucleotide Polymorphisms in Human NPC1 Influence Filovirus Entry Into Cells. J Infect Dis 2019; 218:S397-S402. [PMID: 30010949 DOI: 10.1093/infdis/jiy248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Niemann-Pick C1 (NPC1), a host receptor involved in the envelope glycoprotein (GP)-mediated entry of filoviruses into cells, is believed to be a major determinant of cell susceptibility to filovirus infection. It is known that proteolytically digested Ebola virus (EBOV) GP interacts with 2 protruding loops in domain C of NPC1. Using previously published structural data and the National Center for Biotechnology Information Single-Nucleotide Polymorphism (SNP) database, we identified 10 naturally occurring missense SNPs in human NPC1. To investigate whether these SNPs affect cell susceptibility to filovirus infection, we generated Vero E6 cell lines stably expressing NPC1 with SNP substitutions and compared their susceptibility to vesicular stomatitis virus pseudotyped with filovirus GPs and infectious EBOV. We found that some of the substitutions resulted in reduced susceptibility to filoviruses, as indicated by the lower titers and smaller plaque/focus sizes of the viruses. Our data suggest that human NPC1 SNPs may likely affect host susceptibility to filoviruses.
Collapse
Affiliation(s)
- Tatsunari Kondoh
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Wakako Furuyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Asako Shigeno
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Takadate
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,School of Veterinary Medicine, the University of Zambia, Lusaka
| |
Collapse
|
16
|
A Hyperstabilizing Mutation in the Base of the Ebola Virus Glycoprotein Acts at Multiple Steps To Abrogate Viral Entry. mBio 2019; 10:mBio.01408-19. [PMID: 31289183 PMCID: PMC6747718 DOI: 10.1128/mbio.01408-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) causes highly lethal disease outbreaks against which no FDA-approved countermeasures are available. Although many host factors exploited by EBOV for cell entry have been identified, including host cell surface phosphatidylserine receptors, endosomal cysteine proteases, and the lysosomal cholesterol trafficking protein NPC1, key questions remain. Specifically, late entry steps culminating in viral membrane fusion remain enigmatic. Here, we investigated a set of glycoprotein (GP) mutants previously hypothesized to be entry defective and identified one mutation, R64A, that abolished infection with no apparent impact on GP expression, folding, or viral incorporation. R64A profoundly thermostabilized EBOV GP and rendered it highly resistant to proteolysis in vitro Forward-genetics and cell entry studies strongly suggested that R64A's effects on GP thermostability and proteolysis arrest viral entry at least at two distinct steps: the first upstream of NPC1 binding and the second at a late entry step downstream of fusion activation. Concordantly, toremifene, a small-molecule entry inhibitor previously shown to bind and destabilize GP, may selectively enhance the infectivity of viral particles bearing GP(R64A) at subinhibitory concentrations. R64A provides a valuable tool to further define the interplay between GP stability, proteolysis, and viral membrane fusion; to explore the rational design of stability-modulating antivirals; and to spur the development of next-generation Ebola virus vaccines with improved stability.IMPORTANCE Ebola virus is a medically relevant virus responsible for outbreaks of severe disease in western and central Africa, with mortality rates reaching as high as 90%. Despite considerable effort, there are currently no FDA-approved therapeutics or targeted interventions available, highlighting the need of development in this area. Host-cell invasion represents an attractive target for antivirals, and several drug candidates have been identified; however, our limited understanding of the complex viral entry process challenges the development of such entry-targeting drugs. Here, we report on a glycoprotein mutation that abrogates viral entry and provides insights into the final steps of this process. In addition, the hyperstabilized phenotype of this mutant makes it useful as a tool in the discovery and design of stability-modulating antivirals and next-generation vaccines against Ebola virus.
Collapse
|
17
|
Characterization of a novel species of adenovirus from Japanese microbat and role of CXADR as its entry factor. Sci Rep 2019; 9:573. [PMID: 30679679 PMCID: PMC6345744 DOI: 10.1038/s41598-018-37224-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Recently, bat adenoviruses (BtAdVs) of genus Mastadenovirus have been isolated from various bat species, some of them displaying a wide host range in cell culture. In this study, we isolated two BtAdVs from Japanese wild microbats. While one isolate was classified as Bat mastadenovirus A, the other was phylogenetically independent of other BtAdVs. It was rather related to, but serologically different from, canine adenoviruses. We propose that the latter, isolated from Asian parti-colored bat, should be assigned to a novel species of Bat mastadenovirus. Both isolates replicated in various mammalian cell lines, implying their wide cell tropism. To gain insight into cell tropism of these BtAdVs, we investigated the coxsackievirus and adenovirus receptor (CXADR) for virus entry to the cells. We prepared CXADR-knockout canine kidney cells and found that replication of BtAdVs was significantly hampered in these cells. For confirmation, their replication in canine CXADR-addback cells was rescued to the levels with the original cells. We also found that viral replication was corrected in human or bat CXADR-transduced cells to similar levels as in canine CXADR-addback cells. These results suggest that BtAdVs were able to use several mammalian-derived CXADRs as entry factors.
Collapse
|
18
|
Fedewa G, Radoshitzky SR, Chī X, Dǒng L, Zeng X, Spear M, Strauli N, Ng M, Chandran K, Stenglein MD, Hernandez RD, Jahrling PB, Kuhn JH, DeRisi JL. Ebola virus, but not Marburg virus, replicates efficiently and without required adaptation in snake cells. Virus Evol 2018; 4:vey034. [PMID: 30524754 PMCID: PMC6277580 DOI: 10.1093/ve/vey034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ebola virus (EBOV) disease is a viral hemorrhagic fever with a high case-fatality rate in humans. This disease is caused by four members of the filoviral genus Ebolavirus, including EBOV. The natural hosts reservoirs of ebolaviruses remain to be identified. Glycoprotein 2 of reptarenaviruses, known to infect only boa constrictors and pythons, is similar in sequence and structure to ebolaviral glycoprotein 2, suggesting that EBOV may be able to infect reptilian cells. Therefore, we serially passaged EBOV and a distantly related filovirus, Marburg virus (MARV), in boa constrictor JK cells and characterized viral infection/replication and mutational frequency by confocal imaging and sequencing. We observed that EBOV efficiently infected and replicated in JK cells, but MARV did not. In contrast to most cell lines, EBOV-infected JK cells did not result in an obvious cytopathic effect. Surprisingly, genomic characterization of serial-passaged EBOV in JK cells revealed that genomic adaptation was not required for infection. Deep sequencing coverage (>10,000×) demonstrated the existence of only a single nonsynonymous variant (EBOV glycoprotein precursor pre-GP T544I) of unknown significance within the viral population that exhibited a shift in frequency of at least 10 per cent over six serial passages. In summary, we present the first reptilian cell line that replicates a filovirus at high titers, and for the first time demonstrate a filovirus genus-specific restriction to MARV in a cell line. Our data suggest the possibility that there may be differences between the natural host spectra of ebolaviruses and marburgviruses.
Collapse
Affiliation(s)
- Greg Fedewa
- Integrative Program in Quantitative Biology, Bioinformatics, University of California San Francisco, San Francisco, CA, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiǎolì Chī
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Lián Dǒng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Melissa Spear
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Nicolas Strauli
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan D Hernandez
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
19
|
Annunziata I, Sano R, d'Azzo A. Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis 2018; 9:328. [PMID: 29491402 PMCID: PMC5832421 DOI: 10.1038/s41419-017-0025-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases (LSDs) comprise a large group of disorders of catabolism, mostly due to deficiency of a single glycan-cleaving hydrolase. The consequent endo-lysosomal accumulation of undigested or partially digested substrates in cells of virtually all organs, including the nervous system, is diagnostic of these diseases and underlies pathogenesis. A subgroup of LSDs, the glycosphingolipidoses, are caused by deficiency of glycosidases that process/degrade sphingolipids and glycosphingolipids (GSLs). GSLs are among the lipid constituents of mammalian membranes, where they orderly distribute and, together with a plethora of membrane proteins, contribute to the formation of discrete membrane microdomains or lipid rafts. The composition of intracellular membranes enclosing organelles reflects that at the plasma membrane (PM). Organelles have the tendencies to tether to one another and to the PM at specific membrane contact sites that, owing to their lipid and protein content, resemble PM lipid rafts. The focus of this review is on the MAMs, mitochondria associated ER membranes, sites of juxtaposition between ER and mitochondria that function as biological hubs for the exchange of molecules and ions, and control the functional status of the reciprocal organelles. We will focus on the lipid components of the MAMs, and highlight how failure to digest or process the sialylated GSL, GM1 ganglioside, in lysosomes alters the lipid conformation and functional properties of the MAMs and leads to neuronal cell death and neurodegeneration.
Collapse
Affiliation(s)
- Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
20
|
McElroy AK, Mühlberger E, Muñoz-Fontela C. Immune barriers of Ebola virus infection. Curr Opin Virol 2018; 28:152-160. [PMID: 29452995 PMCID: PMC5886007 DOI: 10.1016/j.coviro.2018.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
Abstract
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions.
Collapse
Affiliation(s)
- Anita K McElroy
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 3501 Fifth Ave, Pittsburgh, PA 15261, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, 02118 Boston, MA, USA
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
21
|
van Sluijs L, Pijlman GP, Kammenga JE. Why do Individuals Differ in Viral Susceptibility? A Story Told by Model Organisms. Viruses 2017; 9:E284. [PMID: 28973976 PMCID: PMC5691635 DOI: 10.3390/v9100284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023] Open
Abstract
Viral susceptibility and disease progression is determined by host genetic variation that underlies individual differences. Genetic polymorphisms that affect the phenotype upon infection have been well-studied for only a few viruses, such as HIV-1 and Hepatitis C virus. However, even for well-studied viruses the genetic basis of individual susceptibility differences remains elusive. Investigating the effect of causal polymorphisms in humans is complicated, because genetic methods to detect rare or small-effect polymorphisms are limited and genetic manipulation is not possible in human populations. Model organisms have proven a powerful experimental platform to identify and characterize polymorphisms that underlie natural variations in viral susceptibility using quantitative genetic tools. We summarize and compare the genetic tools available in three main model organisms, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, and illustrate how these tools can be applied to detect polymorphisms that determine the viral susceptibility. Finally, we analyse how candidate polymorphisms from model organisms can be used to shed light on the underlying mechanism of individual variation. Insights in causal polymorphisms and mechanisms underlying individual differences in viral susceptibility in model organisms likely provide a better understanding in humans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
22
|
|
23
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus Structural Biology: The Molecules in the Machine. Curr Top Microbiol Immunol 2017; 411:381-417. [PMID: 28795188 DOI: 10.1007/82_2017_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hal Wasserman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Wec AZ, Nyakatura EK, Herbert AS, Howell KA, Holtsberg FW, Bakken RR, Mittler E, Christin JR, Shulenin S, Jangra RK, Bharrhan S, Kuehne AI, Bornholdt ZA, Flyak AI, Saphire EO, Crowe JE, Aman MJ, Dye JM, Lai JR, Chandran K. A "Trojan horse" bispecific-antibody strategy for broad protection against ebolaviruses. Science 2016; 354:350-354. [PMID: 27608667 PMCID: PMC5647781 DOI: 10.1126/science.aag3267] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
Abstract
There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.
Collapse
Affiliation(s)
- Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Katie A Howell
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | | | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Zachary A Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - M Javad Aman
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA.
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135:1-14. [PMID: 27640102 PMCID: PMC7113884 DOI: 10.1016/j.antiviral.2016.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
This review focuses on the recent progress in our understanding of filovirus protein structure/function and its impact on antiviral research. Here we focus on the surface glycoprotein GP1,2 and its different roles in filovirus entry. We first describe the latest advances on the characterization of GP gene-overlapping proteins sGP, ssGP and Δ-peptide. Then, we compare filovirus surface GP1,2 proteins in terms of structure, synthesis and function. As they bear potential in drug-design, the discovery of small organic compounds inhibiting filovirus entry is a currently very active field. Although it is at an early stage, the development of antiviral drugs against Ebola and Marburg virus entry might prove essential to reduce outbreak-associated fatality rates through post-exposure treatment of both suspected and confirmed cases. The filovirus surface glycoprotein is the key player protein responsible for viral entry. Secreted forms of the glycoprotein have been suggested to participate to filovirus virus pathogenicity. Recent structural insights of the filovirus surface glycoprotein highlight new antiviral perspectives. Interesting compounds and innovative antiviral strategies emerge from research and development to inhibit filovirus entry.
Collapse
|