1
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
van Hoogstraten SWG, Kuik C, Arts JJC, Cillero-Pastor B. Molecular imaging of bacterial biofilms-a systematic review. Crit Rev Microbiol 2024; 50:971-992. [PMID: 37452571 PMCID: PMC11523921 DOI: 10.1080/1040841x.2023.2223704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.
Collapse
Affiliation(s)
- S. W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C. Kuik
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - J. J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - B. Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, The MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
3
|
Fransson A, Dimovska Nilsson K, Henderson A, Farewell A, Fletcher JS. PCA, PC-CVA, and Random Forest of GCIB-SIMS Data for the Elucidation of Bacterial Envelope Differences in Antibiotic Resistance Research. Anal Chem 2024; 96:14168-14177. [PMID: 39163401 PMCID: PMC11375623 DOI: 10.1021/acs.analchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Antibiotic resistance can rapidly spread through bacterial populations via bacterial conjugation. The bacterial membrane has an important role in facilitating conjugation, thus investigating the effects on the bacterial membrane caused by conjugative plasmids, antibiotic resistance, and genes involved in conjugation is of interest. Analysis of bacterial membranes was conducted using gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS). The complexity of the data means that data analysis is important for the identification of changes in the membrane composition. Preprocessing of data and several analytical methods for identification of changes in bacterial membranes have been investigated. GCIB-SIMS data from Escherichia coli samples were subjected to principal components analysis (PCA), principal components-canonical variate analysis (PC-CVA), and Random Forests (RF) data analysis with the aim of extracting the maximum biological information. The influence of increasing replicate data was assessed, and the effect of diminishing biological variation was studied. Optimized m/z region-specific scaling provided improved clustering, with an increase in biologically significant peaks contributing to the loadings. PC-CVA improved clustering, provided clearer loadings, and benefited from larger data sets collected over several months. RF required larger sample numbers and while showing overlap with the PC-CVA, produced additional peaks of interest. The combination of PC-CVA and RF allowed very subtle differences between bacterial strains and growth conditions to be elucidated for the first time. Specifically, comparative analysis of an E. coli strain with and without the F-plasmid revealed changes in cyclopropanation of fatty acids, where the addition of the F-plasmid led to a reduction in cyclopropanation.
Collapse
Affiliation(s)
- Alfred Fransson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Kelly Dimovska Nilsson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Alex Henderson
- Faculty
of Science and Engineering, The University
of Manchester, M13 9PL Manchester, United Kingdom
| | - Anne Farewell
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 45 Gothenburg, Sweden
| | - John S. Fletcher
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Parker GD, Plymale A, Hager J, Hanley L, Yu XY. Studying microbially induced corrosion on glass using ToF-SIMS. Biointerphases 2024; 19:051004. [PMID: 39392276 DOI: 10.1116/6.0003883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Microbially induced corrosion (MIC) is an emerging topic that has huge environmental impacts, such as long-term evaluation of microbial interactions with radioactive waste glass, environmental cleanup and disposal of radioactive material, and weathering effects of microbes. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a powerful mass spectral imaging technique with high surface sensitivity, mass resolution, and mass accuracy, can be used to study biofilm effects on different substrates. Understanding how to prepare biofilms on MIC susceptible substrates is critical for proper analysis via ToF-SIMS. We present here a step-by-step protocol for preparing bacterial biofilms for ToF-SIMS analysis, comparing three biofilm preparation techniques: no desalination, centrifugal spinning (CS), and water submersion (WS). Comparisons of two desalinating methods, CS and WS, show a decrease in the media peaks up to 99% using CS and 55% using WS, respectively. Proper desalination methods also can increase biological signals by over four times for fatty acids using WS, for example. ToF-SIMS spectral results show chemical compositional changes of the glass exposed in a Paenibacillus polymyxa SCE2 biofilm, indicating its capability to probe microbiologically induced corrosion of solid surfaces. This represents the proper desalination technique to use without significantly altering biofilm structure and substrate for ToF-SIMS analysis. ToF-SIMS spectral results showed chemical compositional changes of the glass exposed by a Paenibacillus bacterial biofilm over 3-month inoculation. Possible MIC products include various phosphate phase molecules not observed in any control samples with the highest percent increases when experimental samples were compared with biofilm control samples.
Collapse
Affiliation(s)
- Gabriel D Parker
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607
- Oak Ridge National Laboratory, Physical Science Directorate, Material Science and Technology Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830
| | - Andrew Plymale
- Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Boulevard, Richland, Washington 99354
| | - Jacqueline Hager
- Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Boulevard, Richland, Washington 99354
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607
| | - Xiao-Ying Yu
- Oak Ridge National Laboratory, Physical Science Directorate, Material Science and Technology Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830
| |
Collapse
|
5
|
Wheeler K, Gosmanov C, Sandoval MJ, Yang Z, McCall LI. Frontiers in Mass Spectrometry-Based Spatial Metabolomics: Current Applications and Challenges in the Context of Biomedical Research. Trends Analyt Chem 2024; 175:117713. [PMID: 40094101 PMCID: PMC11905388 DOI: 10.1016/j.trac.2024.117713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metabolites are critical products and mediators of cellular and tissue function, and key signals in cell-to-cell, organ-to-organ and cross-organism communication. Many of these interactions are spatially segregated. Thus, spatial metabolomics can provide valuable insight into healthy tissue function and disease pathogenesis. Here, we review major mass spectrometry-based spatial metabolomics techniques and the biological insights they have enabled, with a focus on brain and microbiota function and on cancer, neurological diseases and infectious diseases. These techniques also present significant translational utility, for example in cancer diagnosis, and for drug development. However, spatial mass spectrometry techniques still encounter significant challenges, including artifactual features, metabolite annotation, open data, and ethical considerations. Addressing these issues represent the future challenges in this field.
Collapse
Affiliation(s)
- Kate Wheeler
- Department of Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Camil Gosmanov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
6
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
7
|
Burzio C, Mohammadi AS, Malmberg P, Modin O, Persson F, Wilén BM. Chemical Imaging of Pharmaceuticals in Biofilms for Wastewater Treatment Using Secondary Ion Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7431-7441. [PMID: 37130040 DOI: 10.1021/acs.est.2c05027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment is a global water quality challenge for several reasons, such as deleterious effects on ecological and human health, antibiotic resistance development, and endocrine-disrupting effects on aquatic organisms. To optimize their removal from the water cycle, understanding the processes during biological wastewater treatment is crucial. Time-of-flight secondary ion mass spectrometry imaging was successfully applied to investigate and analyze the distribution of pharmaceuticals as well as endogenous molecules in the complex biological matrix of biofilms for wastewater treatment. Several compounds and their localization were identified in the biofilm section, including citalopram, ketoconazole, ketoconazole transformation products, and sertraline. The images revealed the pharmaceuticals gathered in distinct sites of the biofilm matrix. While citalopram penetrated the biofilm deeply, sertraline remained confined in its outer layer. Both pharmaceuticals seemed to mainly colocalize with phosphocholine lipids. Ketoconazole concentrated in small areas with high signal intensity. The approach outlined here presents a powerful strategy for visualizing the chemical composition of biofilms for wastewater treatment and demonstrates its promising utility for elucidating the mechanisms behind pharmaceutical and antimicrobial removal in biological wastewater treatment.
Collapse
Affiliation(s)
- Cecilia Burzio
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Amir Saeid Mohammadi
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
8
|
Akbari A, Galstyan A, Peterson RE, Arlinghaus HF, Tyler BJ. Label-free sub-micrometer 3D imaging of ciprofloxacin in native-state biofilms with cryo-time-of-flight secondary ion mass spectrometry. Anal Bioanal Chem 2023; 415:991-999. [PMID: 36625895 PMCID: PMC9883301 DOI: 10.1007/s00216-022-04496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
High spatial resolution mass spectrometry imaging has been identified as a key technology needed to improve understanding of the chemical components that influence antibiotic resistance within biofilms, which are communities of micro-organisms that grow attached to a surface. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers the unique ability for label-free 3D imaging of organic molecules with sub-micrometer spatial resolution and high sensitivity. Several studies of biofilms have been done with the help of ToF-SIMS, but none of those studies have shown 3D imaging of antibiotics in native-state hydrated biofilms with cell-level resolution. Because ToF-SIMS measurements must be performed in a high-vacuum environment, cryogenic preparation and analysis are necessary to preserve the native biofilm structure and antibiotic spatial distribution during ToF-SIMS measurements. In this study, we have investigated the penetration of the antibiotic ciprofloxacin into Bacillus subtilis biofilms using sub-micrometer resolution 3D imaging cryo-ToF-SIMS. B. subtilis biofilms were exposed to physiologically relevant levels of ciprofloxacin. The treated biofilms were then plunge-frozen in liquid propane and analyzed with ToF-SIMS under cryogenic conditions. Multivariate analysis techniques, including multivariate curve resolution (MCR) and inverse maximum signal factor (iMSF) denoising, were used to aid analysis of the data and facilitate high spatial resolution 3D imaging of the biofilm, providing individually resolved cells and spatially resolved ciprofloxacin intensity at "real world" concentrations.
Collapse
Affiliation(s)
- Anoosheh Akbari
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Anzhela Galstyan
- Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Richard E Peterson
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.
| |
Collapse
|
9
|
Pitchapa R, Dissook S, Putri SP, Fukusaki E, Shimma S. MALDI Mass Spectrometry Imaging Reveals the Existence of an N-Acyl-homoserine Lactone Quorum Sensing System in Pseudomonas putida Biofilms. Metabolites 2022; 12:1148. [PMID: 36422288 PMCID: PMC9697013 DOI: 10.3390/metabo12111148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 02/28/2024] Open
Abstract
Quorum sensing (QS) is generally used to describe the process involving the release and recognition of signaling molecules, such as N-acyl-homoserine lactones, by bacteria to coordinate their response to population density and biofilm development. However, detailed information on the heterogeneity of QS metabolites in biofilms remains largely unknown. Here, we describe the utilization of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to follow the production of specific metabolites, including QS metabolites, during Pseudomonas putida biofilm development. To do so, a method to grow an agar-based biofilm was first established, and MALDI-MSI was used to detect and visualize the distribution of QS metabolites in biofilms at different cultivation times. This study demonstrated that N-acyl-homoserine lactones are homogeneously produced in the early stages of P. putida biofilm formation. In contrast, the spatial distribution of quinolones and pyochelin correlated with the swarming motility of P. putida in mature biofilms. These two metabolites are involved in the production of extracellular polymeric substances and iron chelators. Our study thus contributes to establishing the specific temporal regulation and spatial distribution of N-acyl-homoserine lactone-related metabolites and quinolone and pyochelin in P. putida biofilms.
Collapse
Affiliation(s)
- Rattanaburi Pitchapa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Sivamoke Dissook
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita 5650871, Osaka, Japan
| |
Collapse
|
10
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Coenye T, Bové M, Bjarnsholt T. Biofilm antimicrobial susceptibility through an experimental evolutionary lens. NPJ Biofilms Microbiomes 2022; 8:82. [PMID: 36257971 PMCID: PMC9579162 DOI: 10.1038/s41522-022-00346-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
Experimental evolution experiments in which bacterial populations are repeatedly exposed to an antimicrobial treatment, and examination of the genotype and phenotype of the resulting evolved bacteria, can help shed light on mechanisms behind reduced susceptibility. In this review we present an overview of why it is important to include biofilms in experimental evolution, which approaches are available to study experimental evolution in biofilms and what experimental evolution has taught us about tolerance and resistance in biofilms. Finally, we present an emerging consensus view on biofilm antimicrobial susceptibility supported by data obtained during experimental evolution studies.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Lim AC, Tang SGH, Zin NM, Maisarah AM, Ariffin IA, Ker PJ, Mahlia TMI. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022; 27:4895. [PMID: 35956846 PMCID: PMC9370046 DOI: 10.3390/molecules27154895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 μg/mL and EC50 of 20.03 μg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 μL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.
Collapse
Affiliation(s)
- Ann Chie Lim
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Noraziah Mohamad Zin
- Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Abdul Mutalib Maisarah
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Indang Ariati Ariffin
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Teuku Meurah Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
13
|
Jia J, Ellis JF, Cao T, Fu K, Morales-Soto N, Shrout JD, Sweedler JV, Bohn PW. Biopolymer Patterning-Directed Secretion in Mucoid and Nonmucoid Strains of Pseudomonas aeruginosa Revealed by Multimodal Chemical Imaging. ACS Infect Dis 2021; 7:598-607. [PMID: 33620198 DOI: 10.1021/acsinfecdis.0c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinolone, pyocyanin, and rhamnolipid production were studied in Pseudomonas aeruginosa by spatially patterning mucin, a glycoprotein important to infection of lung epithelia. Mass spectrometric imaging and confocal Raman microscopy are combined to probe P. aeruginosa biofilms from mucoid and nonmucoid strains grown on lithographically defined patterns. Quinolone signatures from biofilms on patterned vs unpatterned and mucin vs mercaptoundecanoic acid (MUA) surfaces were compared. Microbial attachment is accompanied by secretion of 2-alkyl-4-quinolones as well as rhamnolipids from the mucoid and nonmucoid strains. Pyocyanin was also detected both in the biofilm and in the supernatant in the mucoid strain only. Significant differences in the spatiotemporal distributions of secreted factors are observed between strains and among different surface patterning conditions. The mucoid strain is sensitive to composition and patterning while the nonmucoid strain is not, and in promoting community development in the mucoid strain, nonpatterned surfaces are better than patterned, and mucin is better than MUA. Also, the mucoid strain secretes the virulence factor pyocyanin in a way that correlates with distress. A change in the relative abundance for two rhamnolipids is observed in the mucoid strain during exposure to mucin, whereas minimal variation is observed in the nonmucoid strain. Differences between mucoid and nonmucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected and withdrawn biofilms that achieve Pseudomonas quinolone signal production under limited conditions.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joanna F. Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556,United States
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556,United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Harrington NE, Sweeney E, Harrison F. Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2020; 2:100024. [PMID: 33381751 PMCID: PMC7762787 DOI: 10.1016/j.bioflm.2020.100024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa biofilm infections in the cystic fibrosis (CF) lung are highly resistant to current antimicrobial treatments and are associated with increased mortality rates. The existing models for such infections are not able to reliably mimic the clinical biofilms observed. We aimed to further optimise an ex vivo pig lung (EVPL) model for P. aeruginosa CF lung infection that can be used to increase understanding of chronic CF biofilm infection. The EVPL model will facilitate discovery of novel infection prevention methods and treatments, and enhanced exploration of biofilm architecture. We investigated purine metabolism and biofilm formation in the model using transposon insertion mutants in P. aeruginosa PA14 for key genes: purD, gacA and pelA. Our results demonstrate that EVPL recapitulates a key aspect of in vivo P. aeruginosa infection metabolism, and that the pathogen forms a biofilm with a clinically realistic structure not seen in other in vitro studies. Two pathways known to be required for in vivo biofilm infection - the Gac regulatory pathway and production of the Pel exopolysaccharide - are essential to the formation of this mature, structured biofilm on EVPL tissue. We propose the high-throughput EVPL model as a validated biofilm platform to bridge the gap between in vitro work and CF lung infection.
Collapse
Affiliation(s)
- Niamh E. Harrington
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Antimicrobial resistance: the good, the bad, and the ugly. Emerg Top Life Sci 2020; 4:129-136. [PMID: 32463087 DOI: 10.1042/etls20190194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
As the Royal Society for Biology (RSB) was forming 10 years ago, antimicrobial resistance (AMR) was being heralded as the next threat with a magnitude on a par with global warming. Just a few years later, in 2016, Jim O'Neill's report was published laying out recommendations for tackling drug-resistant infections globally. Where are we now, and what are the challenges ahead? As a slow burner, how will the impact of AMR compare against the recent rapid devastation of the COVID-19 pandemic, and how can we channel some of the good things that come from it (like the awareness and technique of effective hand hygiene) to help us combat AMR speedily and definitively?
Collapse
|
16
|
Ribeiro F, Rossoni R, Barros P, Santos J, Fugisaki L, Leão M, Junqueira J. Action mechanisms of probiotics on
Candida
spp. and candidiasis prevention: an update. J Appl Microbiol 2019; 129:175-185. [DOI: 10.1111/jam.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- F.C. Ribeiro
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - R.D. Rossoni
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - P.P. Barros
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - J.D. Santos
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - L.R.O. Fugisaki
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - M.P.V. Leão
- Bioscience Basic Institute University of Taubaté Bom Conselho Taubaté SP Brazil
| | - J.C. Junqueira
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| |
Collapse
|
17
|
Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil Against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019; 24:molecules24213864. [PMID: 31717766 PMCID: PMC6864855 DOI: 10.3390/molecules24213864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The study investigated the antimicrobial activity of the essential oil extract of Ocimum gratissimum L. (EOOG) against multiresistant microorganisms in planktonic and biofilm form. Hydrodistillation was used to obtain the EOOG, and the analysis of chemical composition was done by gas chromatography coupled with mass spectrometry (GC/MS) and flame ionization detection (GC/FID). EOOG biological activity was verified against isolates of Staphylococcus aureus and Escherichia coli, using four strains for each species. The antibacterial action of EOOG was determined by disk diffusion, microdilution (MIC/MBC), growth curve under sub-MIC exposure, and the combinatorial activity with ciprofloxacin (CIP) and oxacillin (OXA) were determined by checkerboard assay. The EOOG antibiofilm action was performed against the established biofilm and analyzed by crystal violet, colony-forming unit count, and SEM analyses. EOOG yielded 1.66% w/w, with eugenol as the major component (74.83%). The MIC was 1000 µg/mL for the most tested strains. The growth curve showed a lag phase delay for both species, mainly S. aureus, and reduced the growth level of E. coli by half. The combination of EOOG with OXA and CIP led to an additive action for S. aureus. A significant reduction in biofilm biomass and cell viability was verified for S. aureus and E. coli. In conclusion, EOOG has relevant potential as a natural alternative to treat infections caused by multiresistant strains.
Collapse
|
18
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
19
|
Najafinobar N, Venkatesan S, von Sydow L, Klarqvist M, Olsson H, Zhou XH, Cloonan SM, Malmberg P. ToF-SIMS mediated analysis of human lung tissue reveals increased iron deposition in COPD (GOLD IV) patients. Sci Rep 2019; 9:10060. [PMID: 31296897 PMCID: PMC6624371 DOI: 10.1038/s41598-019-46471-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease that is currently the third leading cause of death worldwide. Recent reports have indicated that dysfunctional iron handling in the lungs of COPD patients may be one contributing factor. However, a number of these studies have been limited to the qualitative assessment of iron levels through histochemical staining or to the expression levels of iron-carrier proteins in cells or bronchoalveolar lavage fluid. In this study, we have used time of flight secondary ion mass spectrometry (ToF-SIMS) to visualize and relatively quantify iron accumulation in lung tissue sections of healthy donors versus severe COPD patients. An IONTOF 5 instrument was used to perform the analysis, and further multivariate analysis was used to analyze the data. An orthogonal partial least squares discriminant analysis (OPLS-DA) score plot revealed good separation between the two groups. This separation was primarily attributed to differences in iron content, as well as differences in other chemical signals possibly associated with lipid species. Further, relative quantitative analysis revealed twelve times higher iron levels in lung tissue sections of COPD patients when compared to healthy donors. In addition, iron accumulation observed within the cells was heterogeneously distributed, indicating cellular compartmentalization.
Collapse
Affiliation(s)
- Neda Najafinobar
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Shalini Venkatesan
- Target & Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lena von Sydow
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Klarqvist
- Early Product Development, Pharm Sci, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Target & Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Hong Zhou
- Target & Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York City, New York, USA
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
20
|
Kabanov D, Khabipova N, Valeeva L, Sharipova M, Rogov A, Kuznetsova S, Abaseva I, Mardanova A. Effect of Subtilisin-like Proteinase of Bacillus pumilus 3–19 on Pseudomonas aeruginosa Biofilms. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Garg N, Whiteley M. The chemical topology of a bacterial swarm. J Biol Chem 2018; 293:9553-9554. [PMID: 29907734 DOI: 10.1074/jbc.h118.003178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microbes respond to antibiotics by initiating a suite of defense mechanisms, including the production of small-molecule effectors. However, it is not well-known how these defenses vary according to the particular effector or antibiotic and bacterial state, due in part to the challenges of monitoring small molecules in complex environments. A new study uses state-of-the-art imaging techniques to track the location of secreted small molecules produced by a bacterial swarm in response to different antibiotics, providing unexpected insights into the spatial heterogeneity of bacterial stress responses.
Collapse
Affiliation(s)
- Neha Garg
- From the School of Chemistry and Biochemistry and .,Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia 30322
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 and.,Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia 30322
| |
Collapse
|
22
|
Dunham SJB, Ellis JF, Baig NF, Morales-Soto N, Cao T, Shrout JD, Bohn PW, Sweedler JV. Quantitative SIMS Imaging of Agar-Based Microbial Communities. Anal Chem 2018; 90:5654-5663. [PMID: 29623707 PMCID: PMC5930052 DOI: 10.1021/acs.analchem.7b05180] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.
Collapse
Affiliation(s)
- Sage J. B. Dunham
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| | - Joseph F. Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| | - Nameera F. Baig
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| |
Collapse
|