1
|
Cohen SA, Tagliamonte MS, Mavian C, Iovine NM, Zhai Y, Jeong KC, Prosperi M, Tyndall JA, Salemi M, Morris JG. Dynamic Networks of Methicillin-Resistant Staphylococcus aureus in Communities Drive Hospital Transmission. Open Forum Infect Dis 2025; 12:ofaf264. [PMID: 40376189 PMCID: PMC12079653 DOI: 10.1093/ofid/ofaf264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025] Open
Abstract
Background Although methicillin-resistant Staphylococcus aureus (MRSA) transmission has traditionally been viewed separately in hospital and community settings, this distinction is increasingly blurred. We used whole-genome sequencing and epidemiologic analyses to characterize the movement of MRSA across these interfaces in a rural-urban population. Methods Serial cross-sectional sampling of MRSA isolates occurred at a tertiary care hospital between 2010 and 2019. Community-onset MRSA was prospectively isolated from patients presenting to the emergency department with acute skin and soft tissue infections (SSTIs), while hospital-onset MRSA was sampled before (2010), during (2015-2017), and after (2019) this community collection period. MRSA transmission was assessed using a joint application of epidemiological approaches and phylodynamic analysis of whole-genome sequences. Results After whole-genome sequencing on community and hospital MRSA isolates, phylogenetic analysis revealed 2 major clades distinguished by clonal complex (CC) CC8/t008 and CC5/t002 spa types. Multiple independent introductions of MRSA lineages from the community to the hospital were observed. Geographic clustering of community-onset MRSA was uniquely present outside of the urban center. Subjects with rural residence or livestock exposure were more likely to have community-onset MRSA SSTI compared with those with non-MRSA SSTI. Conclusions MRSA transmission in hospital settings was introduced from strains with ancestral origins in community settings. Although community-onset MRSA transmission appears sustained with limited influence from hospital strains, more comprehensive surveillance is required to quantify this relationship. Nosocomial MRSA outbreak prevention strategies should target unique aspects of the community in addition to the hospital, particularly hot spots, risk behaviors, and strain reservoirs.
Collapse
Affiliation(s)
- Scott A Cohen
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Massimiliano S Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicole M Iovine
- Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mattia Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Poudel S, Hyun J, Hefner Y, Monk J, Nizet V, Palsson BO. Interpreting roles of mutations associated with the emergence of S. aureus USA300 strains using transcriptional regulatory network reconstruction. eLife 2025; 12:RP90668. [PMID: 40305082 PMCID: PMC12043316 DOI: 10.7554/elife.90668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.
Collapse
Affiliation(s)
- Saugat Poudel
- University of California, San DiegoLa JollaUnited States
| | - Jason Hyun
- University of California, San DiegoLa JollaUnited States
| | - Ying Hefner
- University of California, San DiegoLa JollaUnited States
| | - Jon Monk
- Palmona PathogenomicsMenlo ParkUnited States
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California San DiegoLa JollaUnited States
| | - Bernhard O Palsson
- University of California, San DiegoLa JollaUnited States
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California San DiegoLa JollaUnited States
| |
Collapse
|
3
|
Di Gregorio S, Weltman G, Fabbri C, Fernández S, Zárate S, Smayevsky J, Power P, Campos J, Llarrull LI, Mollerach M. Genetic and Phenotypic Changes Related to the Development of mec-Independent Oxacillin Non-Susceptibility in ST8 Staphylococcus aureus Recovered after Antibiotic Therapy in a Patient with Bacteremia. Antibiotics (Basel) 2024; 13:554. [PMID: 38927220 PMCID: PMC11200602 DOI: 10.3390/antibiotics13060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The mec-independent oxacillin non-susceptible S. aureus (MIONSA) strains represent a great clinical challenge, as they are not easily detected and can lead to treatment failure. However, the responsible molecular mechanisms are still very little understood. Here, we studied four clinical ST8-MSSA-t024 isolates recovered during the course of antibiotic treatment from a patient suffering successive episodes of bacteremia. The first isolates (SAMS1, SAMS2, and SAMS3) were susceptible to cefoxitin and oxacillin. The last one (SA2) was susceptible to cefoxitin, resistant to oxacillin, lacked mec genes, and had reduced susceptibility to teicoplanin. SA2 showed higher β-lactamase activity than SAMS1. However, β-lactamase hyperproduction could not be linked to oxacillin resistance as it was not inhibited by clavulanic acid, and no genetic changes that could account for its hyperproduction were found. Importantly, we hereby report the in vivo acquisition and coexistence of different adaptive mutations in genes associated with peptidoglycan synthesis (pbp2, rodA, stp1, yjbH, and yvqF/vraT), which is possibly related with the development of oxacillin resistance and reduced susceptibility to teicoplanin in SA2. Using three-dimensional models and PBP binding assays, we demonstrated the high contribution of the SA2 PBP2 Ala450Asp mutation to the observed oxacillin resistance phenotype. Our results should be considered as a warning for physicians and microbiologists in the region, as MIONSA detection and treatment represent an important clinical challenge.
Collapse
Affiliation(s)
- Sabrina Di Gregorio
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Gabriela Weltman
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Carolina Fabbri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
| | - Silvina Fernández
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Soledad Zárate
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Jorgelina Smayevsky
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Pablo Power
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires 1282, Argentina
| | - Leticia Irene Llarrull
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina
| | - Marta Mollerach
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Hofstetter KS, Jacko NF, Shumaker MJ, Talbot BM, Petit RA, Read TD, David MZ. Strain Differences in Bloodstream and Skin Infection: Methicillin-Resistant Staphylococcus aureus Isolated in 2018-2021 in a Single Health System. Open Forum Infect Dis 2024; 11:ofae261. [PMID: 38854395 PMCID: PMC11160326 DOI: 10.1093/ofid/ofae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Staphylococcus aureus is a common cause of skin and soft-tissue infections (SSTIs) and has become the most common cause of bloodstream infections (BSIs) in recent years, but whether the strains causing these two clinical syndromes overlap has not been studied adequately. USA300/500 (clonal complex [CC] 8-sequence type [ST] 8) and USA100 (CC5-ST5) have dominated among methicillin-resistant S aureus (MRSA) strains in the United States since the early 2000s. We compared the genomes of unselected MRSA isolates from 131 SSTIs with those from 145 BSIs at a single US center in overlapping periods in 2018-2021. CC8 MRSA was more common among SSTIs, and CC5 was more common among BSIs, consistent with prior literature. Based on clustering genomes with a threshold of 15 single-nucleotide polymorphisms, we identified clusters limited to patients with SSTI and separate clusters exclusively comprising patients with BSIs. However, we also identified eight clusters that included at least one SSTI and one BSI isolate. This suggests that virulent MRSA strains are transmitted from person to person locally in the healthcare setting or the community and that single lineages are often capable of causing both SSTIs and BSIs.
Collapse
Affiliation(s)
- Katrina S Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brooke M Talbot
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Sesso L, Vanzetti T, Weber J, Vaccani M, Scettrini PR, Sartori C, Ivanovic I, Romanỏ A, Bodmer M, Bacciarini LN, Struchen R, Steiner A, Graber HU. District-Wide Herd Sanitation and Eradication of Intramammary Staphylococcus aureus Genotype B Infection in Dairy Herds in Ticino, Switzerland. J Dairy Sci 2024:S0022-0302(24)00809-9. [PMID: 38788844 DOI: 10.3168/jds.2023-24245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
The present study demonstrates successful herd sanitation and eradication of contagious mastitis caused by Staphylococcus aureus genotype B (S. aureus GTB) in an entire Swiss district (Ticino) including 3,364 dairy cows from 168 farms. Herd sanitation included testing of all cows using a highly GTB specific and sensitive qPCR assay, implementation of related on-farm measures, appropriate antibiotic therapy of GTB-positive cows and culling of therapy-resistant animals, respectively. A treatment index was used as an objective criterion to select GTB-positive cows eligible for culling and replacement payment. 62 herds (37%) were initially GTB-positive with a cow prevalence between 10% and 100% and were submitted to sanitation. Twenty mo after the start of the campaign, all these herds were free from S. aureus GTB, whereby 73% of them were sanitized during the first 7 mo. At the cow level, a total of 343 animals were infected. 50 of them were immediately culled and financially compensated based on their treatment index value. The remaining 293 cows were intramammarily treated with antibiotics either during lactation using the combination of cephalexin-kanamycin or penicillin-gentamicin or at dry-off using cloxacillin. Out of these cows, 275 (93.9%) were treated successfully meaning that their milk was twice GTB-negative by qPCR after therapy. For lactational treatment, control samples were taken ≥10 and ≥20 d after treatment, for dry off treatment ≥14 and ≥24 d after parturition. Neither lactation number nor SCC before treatment of the cow nor the type of therapy were associated with therapeutic cure. Using data of 30 GTB-positive and 71 GTB-negative herds (1855 observations), the impact of GTB sanitation on bulk tank milk SCC (BTSCC) was evaluated applying a linear mixed statistical model. In the year before sanitation, BTSCC was always higher in GTB positive than in GTB negative herds. After the start of the campaign, BTSCC declined rapidly in the herds under GTB sanitation and achieved values that no longer differed statistically from those of GTB-free herds after only 2 mo, remaining very similar for the rest of the campaign. The farmers were very satisfied with the outcome of the campaign as all GTB positive herds could be sanitized rapidly, sanitation was sustainable, and milk quality increased.
Collapse
Affiliation(s)
- L Sesso
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; Institute of Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland
| | - T Vanzetti
- Repubblica e Cantone Ticino, Ufficio del veterinario cantonale, 6500 Bellinzona, Switzerland
| | - J Weber
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland
| | - M Vaccani
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; Repubblica e Cantone Ticino, Ufficio del veterinario cantonale, 6500 Bellinzona, Switzerland
| | - P Riva Scettrini
- Repubblica e Cantone Ticino, Ufficio della consulenza agricola, 6501 Bellinzona, Switzerland
| | - C Sartori
- Agroscope, Food Microbial Systems, 3003 Bern, Switzerland
| | - I Ivanovic
- Agroscope, Food Microbial Systems, 3003 Bern, Switzerland
| | - A Romanỏ
- Agroscope, Food Microbial Systems, 3003 Bern, Switzerland
| | - M Bodmer
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland
| | - L N Bacciarini
- Repubblica e Cantone Ticino, Ufficio del veterinario cantonale, 6500 Bellinzona, Switzerland
| | - R Struchen
- Federal Food Safety and Veterinary Office, 3003 Bern, Switzerland
| | - A Steiner
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland
| | - H U Graber
- Agroscope, Food Microbial Systems, 3003 Bern, Switzerland.
| |
Collapse
|
6
|
Cheney L, Payne M, Kaur S, Lan R. SaLTy: a novel Staphylococcus aureus Lineage Typer. Microb Genom 2024; 10:001250. [PMID: 38739116 PMCID: PMC11165655 DOI: 10.1099/mgen.0.001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus asymptomatically colonises 30 % of humans but can also cause a range of diseases, which can be fatal. In 2017 S. aureus was associated with 20 000 deaths in the USA alone. Dividing S. aureus isolates into smaller sub-groups can reveal the emergence of distinct sub-populations with varying potential to cause infections. Despite multiple molecular typing methods categorising such sub-groups, they do not take full advantage of S. aureus genome sequences when describing the fundamental population structure of the species. In this study, we developed Staphylococcus aureus Lineage Typing (SaLTy), which rapidly divides the species into 61 phylogenetically congruent lineages. Alleles of three core genes were identified that uniquely define the 61 lineages and were used for SaLTy typing. SaLTy was validated on 5000 genomes and 99.12 % (4956/5000) of isolates were assigned the correct lineage. We compared SaLTy lineages to previously calculated clonal complexes (CCs) from BIGSdb (n=21 173). SALTy improves on CCs by grouping isolates congruently with phylogenetic structure. SaLTy lineages were further used to describe the carriage of Staphylococcal chromosomal cassette containing mecA (SCCmec) which is carried by methicillin-resistant S. aureus (MRSA). Most lineages had isolates lacking SCCmec and the four largest lineages varied in SCCmec over time. Classifying isolates into SaLTy lineages, which were further SCCmec typed, allowed SaLTy to describe high-level MRSA epidemiology. We provide SaLTy as a simple typing method that defines phylogenetic lineages (https://github.com/LanLab/SaLTy). SaLTy is highly accurate and can quickly analyse large amounts of S. aureus genome data. SaLTy will aid the characterisation of S. aureus populations and ongoing surveillance of sub-groups that threaten human health.
Collapse
Affiliation(s)
- Liam Cheney
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. Cell Rep 2024; 43:114022. [PMID: 38568806 PMCID: PMC11866565 DOI: 10.1016/j.celrep.2024.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J Maciag
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| |
Collapse
|
8
|
Khatoon A, Hussain SF, Shahid SM, Sidhwani SK, Khan SA, Shaikh OA, Nashwan AJ. Emerging novel sequence types of Staphylococcus aureus in Pakistan. J Infect Public Health 2024; 17:51-59. [PMID: 37992434 DOI: 10.1016/j.jiph.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Despite an increasing incidence of Staphylococcus aureus infection and dissemination in Pakistan, the epidemiology of different Staphylococcus aureus research clones has been the subject of only a small number of investigations. By analyzing the collected data sequence, this study was designed to study the epidemiology of Staphylococcus aureus in the area using multilocus sequence typing (MLST). METHODS A total of 1015 staphylococcus strains collected from the city's tertiary care facilities were biochemically screened, followed by antimicrobial susceptibility testing against a panel of 13 antibiotics. Analyzed methicillin-resistant Staphylococcus aureus (MRSA) was subjected to molecular characterization using multilocus sequence typing (MLST), clonal complex analysis, recombination testing, and phylogenetic analysis. RESULTS Approximately 421 bacteria were verified as Staphylococcus aureus by biochemical analysis. 57% of the isolates exhibited multidrug resistance, of which 89% were found to be methicillin-resistant Staphylococcus aureus (MRSA). MLST results in a total of 39 sequence types (ST) and 5 clonal complexes (CC), out of which twenty-two STs were newly documented worldwide. The most common CC identified was CC8. The direct sequencing data also revealed significant shifts at MLST loci, with point mutations resulting in the aroE-343 and tpi-278 alleles. CONCLUSIONS This study concludes that there is high diversity in the locally circulating clones of Staphylococcus aureus present in nature and that they are defined by their geographic epidemiology. These findings have practical implications for public health, including the need for tailored infection control strategies, antibiotic stewardship, global surveillance, and a deeper understanding of bacterial evolution.
Collapse
Affiliation(s)
- Ambrina Khatoon
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan; Ziauddin University, Karachi, Pakistan.
| | - Syed F Hussain
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan; University of Alberta, Edmonton, AB T6G 2J7, Canada.
| | - Syed M Shahid
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan; School of Health Science, Eastern Institute of Technology (EIT), Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567970. [PMID: 38045275 PMCID: PMC10690190 DOI: 10.1101/2023.11.20.567970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A. Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J. Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C. Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA
| |
Collapse
|
11
|
Cotter CJ, Ferradas C, Ludwig S, Dalton K, Larsen J, Laucks D, Iverson SA, Baron P, Tolomeo PC, Brazil AM, Ferguson JM, Lautenbach E, Rankin SC, Morris DO, Davis MF. Risk factors for meticillin-resistant Staphylococcus aureus (MRSA) carriage in MRSA-exposed household pets. Vet Dermatol 2023; 34:22-27. [PMID: 36331035 PMCID: PMC11168721 DOI: 10.1111/vde.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/03/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Household pets can carry meticillin-resistant Staphylococcus aureus (MRSA) introduced to the home by their human companions. Specific factors promoting pet carriage of this pathogen have not been fully elucidated. OBJECTIVE This study evaluated MRSA cultured from pets and the home environment in households where a human infected with MRSA had been identified, and aimed to determine potential risk factors for pet MRSA carriage. MATERIALS AND METHODS Humans diagnosed with community-associated MRSA (CA-MRSA) skin or soft-tissue infection (SSTI) in the mid-Atlantic United States were identified. One hundred forty-two dogs and cats from 57 affected households were identified of which 134 (94.4%) pets and the household environment were sampled for bacterial culture, PCR confirmation and spa-typing for MRSA strain determination. Samples were obtained 3 months later from 86 pets. RESULTS At baseline, 12 (9.0%) pets carried MRSA. Potential risk factors associated with carriage included pet bed (environmental) MRSA contamination, flea infestation and prior antimicrobial use in the pet. Pets tended to carry human-adapted MRSA strains and spa-types of MRSA isolates cultured from pets were concordant with strains cultured from the home environment in seven of eight homes (87.5%) at baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results may inform risk-based veterinary clinical recommendations and provide evidence for selective pet testing as a possible alternative to early removal of pets from the homes of humans infected with MRSA. MRSA contamination of the home environment is likely an important risk factor for pet MRSA carriage, and household interventions should be considered to reduce risk of MRSA carriage in exposed pets.
Collapse
Affiliation(s)
- Caitlin J Cotter
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cusi Ferradas
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
- School of Veterinary Medicine, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Shanna Ludwig
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathryn Dalton
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jesper Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel Laucks
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sally Ann Iverson
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick Baron
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Health and Human Values, Davidson College, Davidson, North Carolina, USA
| | - Pam C Tolomeo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy M Brazil
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jacqueline M Ferguson
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ebbing Lautenbach
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley C Rankin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel O Morris
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghan F Davis
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Bianco CM, Moustafa AM, O’Brien K, Martin MA, Read TD, Kreiswirth BN, Planet PJ. Pre-epidemic evolution of the MRSA USA300 clade and a molecular key for classification. Front Cell Infect Microbiol 2023; 13:1081070. [PMID: 36761897 PMCID: PMC9902376 DOI: 10.3389/fcimb.2023.1081070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction USA300 has remained the dominant community and healthcare associated methicillin-resistant Staphylococcus aureus (MRSA) clone in the United States and in northern South America for at least the past 20 years. In this time, it has experienced epidemic spread in both of these locations. However, its pre-epidemic evolutionary history and origins are incompletely understood. Large sequencing databases, such as NCBI, PATRIC, and Staphopia, contain clues to the early evolution of USA300 in the form of sequenced genomes of USA300 isolates that are representative of lineages that diverged prior to the establishment of the South American epidemic (SAE) clade and North American epidemic (NAE) clade. In addition, historical isolates collected prior to the emergence of epidemics can help reconstruct early events in the history of this lineage. Methods Here, we take advantage of the accrued, publicly available data, as well as two newly sequenced pre-epidemic historical isolates from 1996, and a very early diverging ACME-negative NAE genome, to understand the pre-epidemic evolution of USA300. We use database mining techniques to emphasize genomes similar to pre-epidemic isolates, with the goal of reconstructing the early molecular evolution of the USA300 lineage. Results Phylogenetic analysis with these genomes confirms that the NAE and SAE USA300 lineages diverged from a most recent common ancestor around 1970 with high confidence, and it also pinpoints the independent acquisition events of the of the ACME and COMER loci with greater precision than in previous studies. We provide evidence for a North American origin of the USA300 lineage and identify multiple introductions of USA300 into South and North America. Notably, we describe a third major USA300 clade (the pre-epidemic branching clade; PEB1) consisting of both MSSA and MRSA isolates circulating around the world that diverged from the USA300 lineage prior to the establishment of the South and North American epidemics. We present a detailed analysis of specific sequence characteristics of each of the major clades, and present diagnostic positions that can be used to classify new genomes.
Collapse
Affiliation(s)
- Colleen M. Bianco
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelsey O’Brien
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael A. Martin
- Division of Infectious Diseases & Department of Human Genetics Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy D. Read
- Division of Infectious Diseases & Department of Human Genetics Emory University School of Medicine, Atlanta, GA, United States
| | - Barry N. Kreiswirth
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Paul J. Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA, United States,American Museum of Natural History, New York, NY, United States,*Correspondence: Paul J. Planet,
| |
Collapse
|
13
|
Thiede SN, Snitkin ES, Trick W, Payne D, Aroutcheva A, Weinstein RA, Popovich KJ. Genomic Epidemiology Suggests Community Origins of Healthcare-Associated USA300 Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2022; 226:157-166. [PMID: 35172338 PMCID: PMC9612791 DOI: 10.1093/infdis/jiac056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hospital-onset (HO) methicillin-resistant Staphylococcus aureus (MRSA) infections have declined over the past decade due to infection control strategies; community-onset (CO) and healthcare-associated community-onset (HACO) MRSA, particularly USA300, has declined less. We examined the role of community strains to explain the difference. METHODS We performed whole-genome sequencing (WGS) on MRSA clinical isolates from Cook County Health patients during 2011-2014. We defined infections as CO, HO, or HACO epidemiologically. We integrated genomic, community exposure, and statewide hospital discharge data to infer MRSA origin. RESULTS Among 1020 individuals with available WGS, most were USA300 wound infections (580 CO, 143 HO, 297 HACO). USA300 HO, CO, and HACO infections were intermixed on the USA300 phylogeny, consistent with common strains circulating across community and healthcare settings. Community exposures (eg, substance abuse, incarceration, homelessness) were associated with HACO and HO infections, and genetically linked individuals from both groups had little overlap in healthcare facilities, supporting community origins. Most repeat infections-over months to years-occurred in individuals persistently carrying their own strains. These individuals were more likely to have genetic linkages, suggesting a role of persistent colonization in transmission. CONCLUSIONS Efforts to reduce presumed nosocomial USA300 spread may require understanding and controlling community sources and transmission networks, particularly for repeat infections.
Collapse
Affiliation(s)
| | | | - William Trick
- Cook County Health, Rush University Medical Center, Chicago, Illinois, USA
| | - Darjai Payne
- Rush University Medical Center, Chicago, Illinois, USA
| | - Alla Aroutcheva
- Rush University Medical Center/Cook County Health, Chicago, Illinois, USA
| | - Robert A Weinstein
- Rush University Medical Center/Cook County Health, Chicago, Illinois, USA
| | - Kyle J Popovich
- Rush University Medical Center/Cook County Health, Chicago, Illinois, USA
| |
Collapse
|
14
|
Hong JS, Kim D, Jeong SH. Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains. Antibiotics (Basel) 2022; 11:antibiotics11070909. [PMID: 35884163 PMCID: PMC9311605 DOI: 10.3390/antibiotics11070909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Methicillin-resistant S. aureus (MRSA) clonal lineages have been classified based on sequence type (ST) and pulsotype associated with human infection. Providing rapid and accurate epidemiological insight is important to address proper infection control in both community-acquired and nosocomial hospital settings. In this regard, this study was performed to evaluate the IR Biotyper® (IRBT®) for strain typing of S. aureus clinical isolates on three media. Methods: A total of 24 S. aureus clinical isolates comprising 15 MRSA isolates (six ST5, three ST72, three ST8, and three ST188 isolates) and nine methicillin-susceptible S. aureus (MSSA) isolates (three ST5, three ST72, and three ST8 isolates) were included for evaluating the IRBT®. Molecular characterization of all S. aureus isolates was performed by conventional PCR and sequencing methods. The IRBT® was evaluated according to manufacturer instructions and a modified sample procedure on commonly used BAP, MHA, and TSA media. Subsequently, the spectra obtained by IRBT® software were compared with dendrograms of PFGE analysis. Results: In this study, the modified sample procedure for reducing the amount of bacteria and bacterial concentration improved the acquisition quality pass rate of the IRBT®. Each spectrum of S. aureus ST5, ST72, and ST188 isolates on all three media could not be clustered by IRBT®. However, the dendrogram obtained from the spectra of S. aureus ST8 isolates on TSA medium were in concordance with that obtained by PFGE analysis. In addition, the visual distribution of S. aureus ST8 isolates on TSA medium in a 2D scatter plot appeared as separated point set from those of S. aureus ST5, ST72, and ST188 isolates. Conclusions: The IRBT® system is a rapid strain typing tool using the FTIR spectroscopic method. This system demonstrated the possibility of discriminating the strain types of S. aureus clinical isolates. Indeed, S. aureus ST8 isolates on TSA medium were successfully differentiated from other strain type isolates.
Collapse
Affiliation(s)
| | - Dokyun Kim
- Correspondence: ; Tel.: +82-10-8523-2692; Fax: +82-2-2019-4890
| | | |
Collapse
|
15
|
Lawal OU, Ayobami O, Abouelfetouh A, Mourabit N, Kaba M, Egyir B, Abdulgader SM, Shittu AO. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front Microbiol 2022; 13:860436. [PMID: 35591993 PMCID: PMC9113548 DOI: 10.3389/fmicb.2022.860436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-associated (HA) and community-associated (CA) infections globally. The multi-drug resistant nature of this pathogen and its capacity to cause outbreaks in hospital and community settings highlight the need for effective interventions, including its surveillance for prevention and control. This study provides an update on the clonal distribution of MRSA in Africa. Methods A systematic review was conducted by screening for eligible English, French, and Arabic articles from November 2014 to December 2020, using six electronic databases (PubMed, EBSCOhost, Web of Science, Scopus, African Journals Online, and Google Scholar). Data were retrieved and analyzed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines (registered at PROSPERO: CRD42021277238). Genotyping data was based primarily on multilocus sequence types (STs) and Staphylococcal Cassette Chromosome mec (SCCmec) types. We utilized the Phyloviz algorithm in the cluster analysis and categorization of the MRSA STs into various clonal complexes (CCs). Results We identified 65 studies and 26 publications from 16 of 54 (30%) African countries that provided sufficient genotyping data. MRSA with diverse staphylococcal protein A (spa) and SCCmec types in CC5 and CC8 were reported across the continent. The ST5-IV [2B] and ST8-IV [2B] were dominant clones in Angola and the Democratic Republic of Congo (DRC), respectively. Also, ST88-IV [2B] was widely distributed across the continent, particularly in three Portuguese-speaking countries (Angola, Cape Verde, and São Tomé and Príncipe). The ST80-IV [2B] was described in Algeria and Egypt, while the HA-ST239/ST241-III [3A] was only identified in Egypt, Ghana, Kenya, and South Africa. ST152-MRSA was documented in the DRC, Kenya, Nigeria, and South Africa. Panton-Valentine leukocidin (PVL)-positive MRSA was observed in several CCs across the continent. The median prevalence of PVL-positive MRSA was 33% (ranged from 0 to 77%; n = 15). Conclusion We observed an increase in the distribution of ST1, ST22, and ST152, but a decline of ST239/241 in Africa. Data on MRSA clones in Africa is still limited. There is a need to strengthen genomic surveillance capacity based on a "One-Health" strategy to prevent and control MRSA in Africa.
Collapse
Affiliation(s)
- Opeyemi Uwangbaoje Lawal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Olaniyi Ayobami
- Unit for Healthcare-Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, AlAlamein International University, Alalamein, Egypt
| | - Nadira Mourabit
- Biotechnology, Environmental Technology and Valorisation of Bio-Resources Team, Department of Biology, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Shima M Abdulgader
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria.,Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
16
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
17
|
Genomic Update of Phenotypic Prediction Rule for Methicillin-Resistant Staphylococcus aureus (MRSA) USA300 Discloses Jail Transmission Networks with Increased Resistance. Microbiol Spectr 2021; 9:e0037621. [PMID: 34287060 PMCID: PMC8552710 DOI: 10.1128/spectrum.00376-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of health care-associated (HA) and community-associated (CA) infections. USA300 strains are historically CA-MRSA, while USA100 strains are HA-MRSA. Here, we update an antibiotic prediction rule to distinguish these two genotypes based on antibiotic resistance phenotype using whole-genome sequencing (WGS), a more discriminatory methodology than pulsed-field gel electrophoresis (PFGE). MRSA clinical isolates collected from 2007 to 2017 underwent WGS; associated epidemiologic data were ascertained. In developing the rule, we examined MRSA isolates that included a population with a history of incarceration. Performance characteristics of antibiotic susceptibility for predicting USA300 compared to USA100, as defined by WGS, were examined. Phylogenetic analysis was performed to examine resistant USA300 clades. We identified 275 isolates (221 USA300, 54 USA100). Combination susceptibility to clindamycin or levofloxacin performed the best overall (sensitivity 80.7%, specificity 75.9%) to identify USA300. The average number of antibiotic classes with resistance was higher for USA100 (3 versus 2, P < 0.001). Resistance to ≤2 classes was predictive for USA300 (area under the curve (AUC) 0.84, 95% confidence interval 0.78 to 0.90). Phylogenetic analysis identified a cluster of USA300 strains characterized by increased resistance among incarcerated individuals. Using a combination of clindamycin or levofloxacin susceptibility, or resistance to ≤2 antibiotic classes, was predictive of USA300 as defined by WGS. Increased resistance was observed among individuals with incarceration exposure, suggesting circulation of a more resistant USA300 clade among at-risk community networks. Our phenotypic prediction rule could be used as an epidemiologic tool to describe community and nosocomial shifts in USA300 MRSA and quickly identify emergence of lineages with increased resistance. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of health care-associated (HA) and community-associated (CA) infections, but the epidemiology of these strains (USA100 and USA300, respectively) now overlaps in health care settings. Although sequencing technology has become more available, many health care facilities still lack the capabilities to perform these analyses. In this study, we update a simple prediction rule based on antibiotic resistance phenotype with integration of whole-genome sequencing (WGS) to predict strain type based on antibiotic resistance profiles that can be used in settings without access to molecular strain typing methods. This prediction rule has many potential epidemiologic applications, such as analysis of retrospective data sets, regional monitoring, and ongoing surveillance of CA-MRSA infection trends. We demonstrate application of this rule to identify an emerging USA300 strain with increased antibiotic resistance among incarcerated individuals that deviates from the rule.
Collapse
|
18
|
Smith JT, Eckhardt EM, Hansel NB, Eliato TR, Martin IW, Andam CP. Genomic epidemiology of methicillin-resistant and -susceptible Staphylococcus aureus from bloodstream infections. BMC Infect Dis 2021; 21:589. [PMID: 34154550 PMCID: PMC8215799 DOI: 10.1186/s12879-021-06293-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023] Open
Abstract
Background Bloodstream infections due to Staphylococcus aureus cause significant patient morbidity and mortality worldwide. Of major concern is the emergence and spread of methicillin-resistant S. aureus (MRSA) in bloodstream infections, which are associated with therapeutic failure and increased mortality. Methods We generated high quality draft genomes from 323 S. aureus blood culture isolates from patients diagnosed with bloodstream infection at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA in 2010–2018. Results In silico detection of antimicrobial resistance genes revealed that 133/323 isolates (41.18%) carry horizontally acquired genes conferring resistance to at least three antimicrobial classes, with resistance determinants for aminoglycosides, beta-lactams and macrolides being the most prevalent. The most common resistance genes were blaZ and mecA, which were found in 262/323 (81.11%) and 104/323 (32.20%) isolates, respectively. Majority of the MRSA (102/105 isolates or 97.14%) identified using in vitro screening were related to two clonal complexes (CC) 5 and 8. The two CCs emerged in the New Hampshire population at separate times. We estimated that the time to the most recent common ancestor of CC5 was 1973 (95% highest posterior density (HPD) intervals: 1966–1979) and 1946 for CC8 (95% HPD intervals: 1924–1959). The effective population size of CC8 increased until the late 1960s when it started to level off until late 2000s. The levelling off of CC8 in 1968 coincided with the acquisition of SCCmec Type IV in majority of the strains. The plateau in CC8 also coincided with the acceleration in the population growth of CC5 carrying SCCmec Type II in the early 1970s, which eventually leveled off in the early 1990s. Lastly, we found evidence for frequent recombination in the two clones during their recent clonal expansion, which has likely contributed to their success in the population. Conclusions We conclude that the S. aureus population was shaped mainly by the clonal expansion, recombination and co-dominance of two major MRSA clones in the last five decades in New Hampshire, USA. These results have important implications on the development of effective and robust strategies for intervention, control and treatment of life-threatening bloodstream infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06293-3.
Collapse
Affiliation(s)
- Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Elissa M Eckhardt
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA
| | - Nicole B Hansel
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA
| | | | - Isabella W Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, 12222, USA.
| |
Collapse
|
19
|
Nour El-Din HT, Yassin AS, Ragab YM, Hashem AM. Phenotype-Genotype Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infect Drug Resist 2021; 14:1557-1571. [PMID: 33907431 PMCID: PMC8071083 DOI: 10.2147/idr.s296000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) presents a profound hazard to public health. MRSA colonizing skin, mucous membranes, and the anterior nares without clinical symptoms is termed "colonizing MRSA". Upon manifestation of clinical symptoms, it is termed "infectious MRSA". Here, we characterize and differentiate colonizing and infectious MRSA, and analyze the phenotypic-genotypic and antibiotic susceptibility correlations. Methodology Clinical MRSA isolates were recovered from intensive care units (ICUs) of two major Egyptian hospitals and their biofilm formation ability was tested. Antibiograms against 16 antibiotics were determined, in addition to the minimum inhibitory concentrations (MICs) of vancomycin and linezolid. The entire collection was typed by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as multi-locus sequence typing (MLST). Representative resistance and virulence genes were detected by PCR amplification. Results Forty-nine isolates were confirmed as MRSA, of which 30 isolates were infectious and 19 were colonizing. Versatile resistance patterns were observed in both groups of isolates. We report a higher tendency for biofilm-formation and borderline minimum inhibitory concentrations among infectious isolates. A Positive antibiotic correlation was observed between susceptibility to protein synthesis inhibitors and cell wall inhibitors. Positive correlations were observed between isolation site and rifampicin resistance: nasal samples were enriched in rifampicin-resistant isolates, while urine and blood samples were enriched in susceptible ones. Furthermore, biofilm formation ability was slightly associated with amikacin resistance, and an association between teicoplanin resistance and the presence of the Panton-Valentine leukocidin gene was the only significant phenotype-genotype correlation observed. Finally, ERIC typing and MLST had congruent results. Conclusion Linezolid and vancomycin are still the most convenient choice for MRSA treatment. ERIC PCR and MLST show promising typing combination that could be easily used periodically for tracking the genotypic changes of MRSA, especially within the healthcare facilities. Several correlations were established between groups of antibiotics and the genotypes/phenotypes of the selected isolates.
Collapse
Affiliation(s)
- Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abdelgawad M Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| |
Collapse
|
20
|
Nørreslet LB, Edslev SM, Clausen ML, Flachs EM, Ebbehøj NE, Andersen PS, Agner T. Hand eczema and temporal variation of Staphylococcus aureus clonal complexes: A prospective observational study. J Am Acad Dermatol 2021; 87:1006-1013. [PMID: 33878413 DOI: 10.1016/j.jaad.2021.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hand eczema (HE) is frequently associated with Staphylococcus aureus; however, its role in the pathogenesis of HE is poorly understood. OBJECTIVE To investigate the temporal variation in S aureus subtypes, ie, clonal complex (CC) types, on the hands and relate it to S aureus colonization in the nose and severity in a cohort of HE patients. METHODS S aureus from the hands and nose of 50 adult HE patients and 50 controls was prospectively identified at 5 visits over 3 weeks. RESULTS S aureus was identified on the hands of 23 (46%) patients at 2 or more visits and on the hands of 1 control once. Of the HE patients with S aureus colonization, 78% had the same S aureus CC type over time. Twenty-one patients had the same S aureus CC type on the hands and in the nose. Persistent colonization was strongly related to an increased disease severity. LIMITATIONS A relatively small S aureus culture-positive population. CONCLUSION The temporal stability of S aureus CC type and high occurrence of the identical subtypes on the hands and in the nose imply that S aureus colonization in patients with HE is of a more permanent nature. Taken together with the finding that persistent colonization and HE severity are clearly related, our results indicate that S aureus may contribute to the perpetuating course of HE.
Collapse
Affiliation(s)
- Line B Nørreslet
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Sofie M Edslev
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Maja-Lisa Clausen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Esben M Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Paal S Andersen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Tove Agner
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Sultan AR, Lattwein KR, Lemmens-den Toom NA, Snijders SV, Kooiman K, Verbon A, van Wamel WJB. Paracetamol modulates biofilm formation in Staphylococcus aureus clonal complex 8 strains. Sci Rep 2021; 11:5114. [PMID: 33664312 PMCID: PMC7933145 DOI: 10.1038/s41598-021-84505-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilms are a major problem in modern healthcare due to their resistance to immune system defenses and antibiotic treatments. Certain analgesic agents are able to modulate S. aureus biofilm formation, but currently no evidence exists if paracetamol, often combined with antibiotic treatment, also has this effect. Therefore, we aimed to investigate if paracetamol can modulate S. aureus biofilm formation. Considering that certain regulatory pathways for biofilm formation and virulence factor production by S. aureus are linked, we further investigated the effect of paracetamol on immune modulator production. The in vitro biofilm mass of 21 S. aureus strains from 9 genetic backgrounds was measured in the presence of paracetamol. Based on biofilm mass quantity, we further investigated paracetamol-induced biofilm alterations using a bacterial viability assay combined with N-Acetylglucosamine staining. Isothermal microcalorimetry was used to monitor the effect of paracetamol on bacterial metabolism within biofilms and green fluorescent protein (GFP) promoter fusion technology for transcription of staphylococcal complement inhibitor (SCIN). Clinically relevant concentrations of paracetamol enhanced biofilm formation particularly among strains belonging to clonal complex 8 (CC8), but had minimal effect on S. aureus planktonic growth. The increase of biofilm mass can be attributed to the marked increase of N-Acetylglucosamine containing components of the extracellular matrix, presumably polysaccharide intercellular adhesion. Biofilms of RN6390A (CC8) showed a significant increase in the immune modulator SCIN transcription during co-incubation with low concentrations of paracetamol. Our data indicate that paracetamol can enhance biofilm formation. The clinical relevance needs to be further investigated.
Collapse
Affiliation(s)
- Andi R Sultan
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole A Lemmens-den Toom
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susan V Snijders
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Popovich KJ, Thiede SN, Zawitz C, Aroutcheva A, Payne D, Janda W, Schoeny M, Green SJ, Snitkin ES, Weinstein RA. Genomic Epidemiology of MRSA During Incarceration at a Large Inner-City Jail. Clin Infect Dis 2021; 73:e3708-e3717. [PMID: 33395473 DOI: 10.1093/cid/ciaa1937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Congregate settings, such as jails, may be a location where colonized detainees transmit MRSA. We examined MRSA acquisition during incarceration and characterized the genomic epidemiology of MRSA entering the jail and isolated during incarceration. METHODS Males incarcerated at the Cook County Jail were enrolled within 72 hours of intake and MRSA surveillance cultures collected. Detainees in jail at Day30 were re-cultured to determine MRSA acquisition. A survey was administered to identify acquisition predictors. Genomic sequencing of surveillance and clinical isolates was integrated with epidemiologic and jail location data to track MRSA transmission pathways. RESULTS 800 males were enrolled; 19% MRSA colonized at intake. Of 184 who reached Day30 visit, 12 acquired MRSA. Heroin use before entering (OR 3.67,p=0.05) and sharing personal items during incarceration (OR=4.92,p=.01) were predictors of acquisition. Sequenced clinical USA300 isolates (n=112) were more genetically similar than diverse intake USA300 strains (p<0.001), suggesting jail transmission. Four acquired colonization isolates were within 20 SNVs of other isolates; 4 were within 20SNVs of an intake isolate, 2 for an acquisition isolate, and 1 for a clinical isolate. Individuals with genetically similar isolates were more likely to have had overlapping stays in the same buildings. CONCLUSION There was a high MRSA burden entering jail. Genomic analysis of acquisition and clinical isolates suggests potential spread of incoming strains and networks of spread during incarceration, with spread often occurring among detainees housed in similar locations. Sharing personal items during incarceration is associated with MRSA acquisition and could be a focus for intervention.
Collapse
Affiliation(s)
- Kyle J Popovich
- Section of Infectious Diseases, Rush University Medical Center/ Cook County Health, Chicago, IL, USA
| | - Stephanie N Thiede
- Department of Microbiology and Immunology, University of Michigan, Chicago, IL, USA
| | - Chad Zawitz
- Section of Infectious Diseases, Stroger Hospital of Cook County/Cermak Health Services, Chicago, IL, USA
| | - Alla Aroutcheva
- Section of Infectious Diseases, Rush University Medical Center/Cook County Health, Chicago, IL, USA
| | - Darjai Payne
- Section of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| | - William Janda
- Department of Pathology, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Michael Schoeny
- College of Nursing, Community Systems and Mental Health Nursing, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- Director, DNA Services Facility, University of SIllinois at Chicago, Chicago, IL, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, University of Michigan, Chicago, IL, USA
| | - Robert A Weinstein
- Section of Infectious Diseases, Rush University Medical Center/Cook County Health, Chicago, IL, USA
| |
Collapse
|
23
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11. [PMID: 32576671 DOI: 10.31234/osf.io/9whp4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11:mBio.00735-20. [PMID: 32576671 PMCID: PMC7315118 DOI: 10.1128/mbio.00735-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Brisset J, Daix T, Tricard J, Evrard B, Vignon P, Barraud O, François B. Spontaneous community-acquired PVL-producing Staphylococcus aureus mediastinitis in an immunocompetent adult - a case report. BMC Infect Dis 2020; 20:354. [PMID: 32429852 PMCID: PMC7236110 DOI: 10.1186/s12879-020-05076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mediastinitis caused by hematogenous spread of an infection is rare. We report the first known case of community-acquired mediastinitis from hematogenous origin in an immunocompetent adult. This rare invasive infection was due to Panton-Valentine Leucocidin-producing (PVL+) methicillin-susceptible Staphylococcus aureus (MSSA). Case presentation A 22-year-old obese man without other medical history was hospitalized for febrile precordial chest pain. He reported a cutaneous back abscess 3 weeks before. CT-scan was consistent with mediastinitis and blood cultures grew for a PVL+ MSSA. Intravenous clindamycin (600 mg t.i.d) and cloxacillin (2 g q.i.d.), secondary changed for fosfomycin (4 g q.i.d.) because of a related toxidermia, was administered. Surgical drainage was performed and confirmed the presence of a mediastinal abscess associated with a fistula between the mediastinum and right pleural space. All local bacteriological samples also grew for PVL+ MSSA. In addition to clindamycin, intravenous fosfomycin was switched to trimethoprim-sulfamethoxazole after 4 weeks for a total of 10 weeks of antibiotics. Conclusions We present the first community-acquired mediastinitis of hematogenous origin with PVL+ MSSA. Clinical evolution was favorable after surgical drainage and 10 weeks of antibiotics. The specific virulence of MSSA PVL+ strains played presumably a key role in this rare invasive clinical presentation.
Collapse
Affiliation(s)
- Josselin Brisset
- Réanimation polyvalente, CHU Dupuytren, 2 avenue Martin Luther King, F-87000, Limoges, France.,Maladies infectieuses, CHU Dupuytren, F-87000, Limoges, France
| | - Thomas Daix
- Réanimation polyvalente, CHU Dupuytren, 2 avenue Martin Luther King, F-87000, Limoges, France. .,Inserm CIC 1435 & UMR 1092, CHU Dupuytren, F-87000, Limoges, France.
| | - Jérémy Tricard
- Chirurgie cardiaque, CHU Dupuytren, F-87000, Limoges, France
| | - Bruno Evrard
- Réanimation polyvalente, CHU Dupuytren, 2 avenue Martin Luther King, F-87000, Limoges, France
| | - Philippe Vignon
- Réanimation polyvalente, CHU Dupuytren, 2 avenue Martin Luther King, F-87000, Limoges, France.,Inserm CIC 1435 & UMR 1092, CHU Dupuytren, F-87000, Limoges, France
| | - Olivier Barraud
- Inserm CIC 1435 & UMR 1092, CHU Dupuytren, F-87000, Limoges, France.,Laboratoire de Bactériologie - Virologie - Hygiène, CHU Dupuytren, F-87000, Limoges, France
| | - Bruno François
- Réanimation polyvalente, CHU Dupuytren, 2 avenue Martin Luther King, F-87000, Limoges, France.,Inserm CIC 1435 & UMR 1092, CHU Dupuytren, F-87000, Limoges, France
| |
Collapse
|
26
|
Archana GJ, Sinha AY, Annamanedi M, Asrith KP, Kale SB, Kurkure NV, Doijad SP, Nagamani K, Hegde NR. Molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from patients at a tertiary care hospital in Hyderabad, South India. Indian J Med Microbiol 2020; 38:183-191. [PMID: 32883932 DOI: 10.4103/ijmm.ijmm_20_151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Infections with methicillin-resistant Staphylococcus aureus (MRSA) greatly influence clinical outcome. Molecular characterisation of MRSA can help to predict their spread and to institute treatment and hospital protocols. Aim The aim of this study is to understand the diversity of MRSA in a tertiary care hospital in Hyderabad, India. Settings and Design Samples collected at Gandhi Medical College, Hyderabad, and designed to assess hospital-or community-associated MRSA (HA-MRSA or CA-MRSA). Subjects and Methods MRSA were subjected to antibiotic susceptibility testing, pulsed-field gel electrophoresis (PFGE), spa typing, multi-locus sequence typing and staphylococcal cassette chromosome-mec (SCCmec) typing. Statistical Analysis Used Discriminatory index and 95% confidence interval. Results Of the 30 MRSA, (a) 18 and 12 were HA-MRSA and CA-MRSA, respectively, and (b) 23.3% and 6.6% displayed induced clindamycin and intermediate vancomycin resistance, respectively. Genetic diversity was evident from the presence of (a) 20 pulsotypes, (b) eight spa types, with the predominance of t064 (n = 9) and (c) seven sequence types (ST), with the preponderance of ST22 and ST8 (9 each). ST22 and ST8 were the most prevalent among HA-MRSA and CA-MRSA, respectively. SCCmec type IV was the most frequent (n = 8). 44.4% of HA-MRSA belonged to SCCmec IV and V, whereas 33.3% of CA-MRSA belonged to SCCmec I and III; 33.3% (5/15) of the isolates harbouring the pvl gene belonged to SCCmec IVC/H. Conclusions ST8 was a dominant type along with other previously reported types ST22, ST239, and ST772 from India. The observations highlight the prevalence of genetically diverse clonal populations of MRSA, suggesting potential multiple origins.
Collapse
Affiliation(s)
- Ganapuram J Archana
- Department of Microbiology, Gandhi Medical College and Hospital, Secunderabad, Telangana, India
| | - Akhauri Yash Sinha
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Telangana, India
| | | | | | - Satyajit B Kale
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, Maharashtra, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, Maharashtra, India
| | - Swapnil P Doijad
- Division of Veterinary Public Health, ICAR Research Complex for Goa, Old Goa, Goa, India
| | - Kammili Nagamani
- Department of Microbiology, Gandhi Medical College and Hospital, Secunderabad, Telangana, India
| | - Nagendra R Hegde
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
27
|
See I, Mu Y, Albrecht V, Karlsson M, Dumyati G, Hardy DJ, Koeck M, Lynfield R, Nadle J, Ray SM, Schaffner W, Kallen AJ. Trends in Incidence of Methicillin-resistant Staphylococcus aureus Bloodstream Infections Differ by Strain Type and Healthcare Exposure, United States, 2005-2013. Clin Infect Dis 2020; 70:19-25. [PMID: 30801635 PMCID: PMC6708714 DOI: 10.1093/cid/ciz158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous reports suggested that US methicillin-resistant Staphylococcus aureus (MRSA) strain epidemiology has changed since the rise of USA300 MRSA. We describe invasive MRSA trends by strain type. METHODS Data came from 5 Centers for Disease Control and Prevention Emerging Infections Program sites conducting population-based surveillance and collecting isolates for invasive MRSA (ie, from normally sterile body sites), 2005-2013. MRSA bloodstream infection (BSI) incidence per 100 000 population was stratified by strain type and epidemiologic classification of healthcare exposures. Invasive USA100 vs USA300 case characteristics from 2013 were compared through logistic regression. RESULTS From 2005 to 2013, USA100 incidence decreased most notably for hospital-onset (6.1 vs 0.9/100 000 persons, P < .0001) and healthcare-associated, community-onset (10.7 vs 4.9/100 000 persons, P < .0001) BSIs. USA300 incidence for hospital-onset BSIs also decreased (1.5 vs 0.6/100 000 persons, P < .0001). However, USA300 incidence did not significantly change for healthcare-associated, community-onset (3.9 vs 3.3/100 000 persons, P = .05) or community-associated BSIs (2.5 vs 2.4/100 000 persons, P = .19). Invasive MRSA was less likely to be USA300 in patients who were older (adjusted odds ratio [aOR], 0.97 per year [95% confidence interval {CI}, .96-.98]), previously hospitalized (aOR, 0.36 [95% CI, .24-.54]), or had central lines (aOR, 0.44 [95% CI, .27-.74]), and associated with USA300 in people who inject drugs (aOR, 4.58 [95% CI, 1.16-17.95]). CONCLUSIONS Most of the decline in MRSA BSIs was from decreases in USA100 BSI incidence. Prevention of USA300 MRSA BSIs in the community will be needed to further reduce burden from MRSA BSIs.
Collapse
Affiliation(s)
- Isaac See
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yi Mu
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | - Susan M Ray
- Emory University School of Medicine, Atlanta, Georgia
| | | | - Alexander J Kallen
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
28
|
Palavecino EL. Clinical, Epidemiologic, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus Infections. Methods Mol Biol 2020; 2069:1-28. [PMID: 31523762 DOI: 10.1007/978-1-4939-9849-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxacillin-resistant Staphylococcus aureus (abbreviated MRSA for historical reasons) is a major pathogen responsible for both hospital- and community-onset disease. Resistance to oxacillin in most clinical isolates of S. aureus is mediated by PBP2a, a penicillin-binding protein with low affinity to beta-lactams, encoded primarily by the mecA gene. Rapid and accurate methods of susceptibility testing of S. aureus isolates to identify MRSA infections are important tools to limit the spread of this organism. This review focuses on the clinical significance of MRSA infections and new approaches for the laboratory diagnosis and epidemiologic typing of MRSA strains.
Collapse
Affiliation(s)
- Elizabeth L Palavecino
- Department of Pathology, Clinical Microbiology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains. Toxins (Basel) 2019; 11:toxins11120734. [PMID: 31861176 PMCID: PMC6950557 DOI: 10.3390/toxins11120734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S.aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host–pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia.
Collapse
|
30
|
Ashraf K, Yasrebi K, Adeniyi ET, Hertlein T, Ohlsen K, Lalk M, Erdmann F, Hilgeroth A. Antistaphylococcal evaluation of indole-naphthalene hybrid analogs. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:275-283. [PMID: 30666089 PMCID: PMC6331074 DOI: 10.2147/dddt.s184965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resistance developments against established antibiotics are an emerging problem for antibacterial therapies. Infections with Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) have become more difficult to treat with standard antibiotics that often fail, especially against MRSA. In consequence, novel antibiotics are urgently needed. Antibiotics from natural sources own complicated structures that cause difficulties for a chemical synthetic production. We developed novel small-molecule antibacterials that are easily accessible in a simple one-pot synthesis. The central indolonaphthalene core is substituted with indole residues at various positions. Both the varied indole substitutions and their positions at the molecular scaffold influence the determined antibacterial activity against the evaluated Staphylococcus strains. Best activities have been found for 5-chloro, -cyano, and -hydroxyl indole substitutions. Therefore, first promising lead compounds could be identified that are nontoxic in human HEK and SH-SY5Y cells and exceed the activity of used standard antibiotics, especially against MRSA.
Collapse
Affiliation(s)
- Kerolos Ashraf
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany,
| | - Kaveh Yasrebi
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany,
| | - Emmanuel Tola Adeniyi
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Michael Lalk
- Institute of Biochemistry, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Frank Erdmann
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany,
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany,
| |
Collapse
|
31
|
Read TD, Petit RA, Yin Z, Montgomery T, McNulty MC, David MZ. USA300 Staphylococcus aureus persists on multiple body sites following an infection. BMC Microbiol 2018; 18:206. [PMID: 30518317 PMCID: PMC6282268 DOI: 10.1186/s12866-018-1336-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND USA300 methicillin-resistant Staphylococcus aureus (MRSA) is a community- and hospital-acquired pathogen that frequently causes infections but also can survive on the human body asymptomatically as a part of the normal microbiota. We devised a comparative genomic strategy to track colonizing USA300 at different body sites after an initial infection. We sampled ST8 S. aureus from subjects at the site of a first known MRSA infection. Within 60 days of this infection and again 12 months later, each subject was tested for asymptomatic colonization in the nose, throat and perirectal region. 93 S. aureus strains underwent whole genome shotgun sequencing. RESULTS Among 28 subjects at the initial sampling time, we isolated S. aureus from the nose, throat and perirectal sites from 15, 11 and 15 of them, respectively. Twelve months later we isolated S. aureus from 9 subjects, with 6, 3 and 3 strains from the nose, throat and perirectal area, respectively. Genome sequencing revealed that 23 patients (ages 0-66 years) carried USA300 intra-subject lineages (ISLs), defined as having an index infection isolate and closely related colonizing strains. Pairwise distance between strains in different ISLs was 48 to 162 single nucleotide polymorphisms (SNPs) across the core regions of the chromosome, whereas within the same ISL it was 0 to 26 SNPs. Strains in ISLs from the same subject differed in plasmid and prophage content, and contained deletions that removed the mecA-containing SCCmec and ACME regions. Five strains contained frameshift mutations in agr toxin-regulating genes. Persistence of an ISL was not associated with clinical or demographic subject characteristics. We inferred that colonization with the ISL occurred about 18 weeks before the first assessment of asymptomatic colonization. CONCLUSIONS Clonal lineages of USA300 may continue to colonize people at one or more anatomic sites up to a year after an initial infection and experience loss of the SCCmec, loss and gain of other mobile genetic elements, and mutations in the agr operon.
Collapse
Affiliation(s)
- Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Robert A. Petit
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Zachary Yin
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago, Chicago, IL USA
| | - Tuyaa Montgomery
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago, Chicago, IL USA
| | - Moira C. McNulty
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL USA
| | - Michael Z. David
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
32
|
Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00426-18. [PMID: 30297357 PMCID: PMC6256015 DOI: 10.1128/jb.00426-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites. The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology. IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.
Collapse
|
33
|
Frisch MB, Castillo-Ramírez S, Petit RA, Farley MM, Ray SM, Albrecht VS, Limbago BM, Hernandez J, See I, Satola SW, Read TD. Invasive Methicillin-Resistant Staphylococcus aureus USA500 Strains from the U.S. Emerging Infections Program Constitute Three Geographically Distinct Lineages. mSphere 2018; 3:e00571-17. [PMID: 29720528 PMCID: PMC5932375 DOI: 10.1128/msphere.00571-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
USA500 isolates are clonal complex 8 (CC8) Staphylococcus aureus strains closely related to the prominent community- and hospital-associated USA300 group. Despite being relatively understudied, USA500 strains cause a significant burden of disease and are the third most common methicillin-resistant S. aureus (MRSA) strains identified in the U.S. Emerging Infections Program (EIP) invasive S. aureus surveillance. To better understand the genetic relationships of the strains, we sequenced the genomes of 539 USA500 MRSA isolates from sterile site infections collected through the EIP between 2005 and 2013 in the United States. USA500 isolates fell into three major clades principally separated by their distribution across different U.S. regions. Clade C1 strains, found principally in the Northeast, were associated with multiple IS256 insertion elements in their genomes and higher levels of antibiotic resistance. C2 was associated with Southern states, and E1 was associated with Western states. C1 and C2 strains all shared a frameshift in the gene encoding AdsA surface-attached surface protein. We propose that the term "USA500" should be used for CC8 strains sharing a recent common ancestor with the C1, C2, and E1 strains but not in the USA300 group.IMPORTANCE In this work, we have removed some of the confusion surrounding the use of the name "USA500," placed USA500 strains in the context of the CC8 group, and developed a strategy for assignment to subclades based on genome sequence. Our new phylogeny of USA300/USA500 will be a reference point for understanding the genetic adaptations that have allowed multiple highly virulent clonal strains to emerge from within CC8 over the past 50 years.
Collapse
Affiliation(s)
- M B Frisch
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - R A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M M Farley
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - S M Ray
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - V S Albrecht
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - B M Limbago
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Hernandez
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - I See
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - T D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|