1
|
Zhang W, Wu S, Jho EH, Chen J, Liu Q, Hu J, Li G, Zhao X, Sun M. From soil to the intestinal tract: The key role of beneficial elements and probiotics in promoting health and longevity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125611. [PMID: 40315655 DOI: 10.1016/j.jenvman.2025.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Although soil quality and gut probiotics have been extensively accepted as critical for human health, the combined effects of soil and fecal bacteria on public health remain underexplored. This study collected soil and human fecal samples from three towns with high, medium, and low proportion of longevous populations in a well-known longevity region in Yangtze River Delta, China. Beneficial elements were detected in all soils, including selenium (0.01-0.05 mg kg-1), germanium (1.07-1.44 mg kg-1), boron (0.42-1.49 mg kg-1), zinc (1.07-1.70 mg kg-1) and manganese (38.78-43.52 mg kg-1). These elements were more abundant in high-proportion region (HP) compared to medium (MP) and low (LP) proportion region (p < 0.05). Similar dominant bacteria were detected in all soils and feces, including Proteobacteria (29.93 %), Acidobacteriota (16.23 %), and Bacillus (2.25 %). Notably, positive correlations were detected between beneficial metal contents and soil bacterial abundance (p < 0.05), suggesting a role in promoting bacterial growth. Moreover, beneficial element metabolic genes, such as zupT (encoding high-affinity zinc transporter for active zinc ion transport) and mntA (encoding manganese ion transporter protein) were significantly enriched in HP soil and fecal bacteria (p < 0.05). Additionally, Source Tracker analysis indicated that 41.13 % of fecal bacteria in HP area originated from HP soil bacteria. Structural equation model indicated that soil beneficial elements significantly enhanced the relative abundance of probiotic associated genes in the dominant fecal bacteria (path coefficients of 0.869 and 0.905, respectively; p < 0.05). Together, soil-borne beneficial elements promote intestinal bacterial functionality, contributing to human health and longevity.
Collapse
Affiliation(s)
- Wen Zhang
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimao Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Junhao Chen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Liu
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China
| | - Jian Hu
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xin Zhao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
3
|
Hu P, Chen P, Zhou G, Hu J, Chen S, Li Y, Yang Y, Ma J. Constructing two bifunctional tooth-targeting antimicrobial peptides for caries management: an in vitro study. Clin Oral Investig 2024; 29:36. [PMID: 39739049 DOI: 10.1007/s00784-024-06139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVES Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management. MATERIALS AND METHODS The minimal inhibitory concentration (MIC100) and minimal biofilm inhibitory concentration (MBIC100) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining. The affinities of the peptides for HA were measured by mass depletion, and the abilities of peptides to inhibit Streptococcus mutans (S. mutans) biofilm formation and kill 3-day-old S. mutans biofilms were evaluated in HA disk and tooth slice biofilm models through confocal laser scanning microscopy. Biocompatibility with human gingival fibroblasts was evaluated via CCK8 assays. RESULTS The best performing peptides, DJK-5@SVA and SVA@DJK-5 exhibited MIC100 and MBIC100 values of 31.25 µg/mL, similar to DJK-5. DJK-5@linker2@YSL had the highest affinity for HA, followed by YSL@DJK-5, DJK-5@linker1@YSL, and DJK-5@SVA. Moreover, the biofilms on HABPs@DJK-5 coated surfaces had more dead bacteria by volume than those in the DJK-5 and SVA groups (p < 0.05). DJK-5@SVA outperformed SVA@DJK-5 and DJK-5 in killing 3-day-old S. mutans biofilms (p < 0.05). With the exception of established biofilms on tooth slices, DJK-5@SVA exhibited greater killing efficiency in the bottom half of the biofilms than in the top half. The CCK-8 assay results confirmed peptides' biocompatibility. CONCLUSIONS DJK-5@SVA with good affinity for HA, has excellent biocompatibility and efficacy against S. mutans biofilms. CLINICAL RELEVANCE HABPs@AMPs with effective inhibitory effects on the growth of S. mutans and biofilm formation, contributing to intraoral targeted application AMPs and providing a new strategy for caries management.
Collapse
Affiliation(s)
- Pei Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Pan Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Gengyu Zhou
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jingyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Surong Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yingjie Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yan Yang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
4
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
5
|
Shen K, Miao W, Zhu L, Hu Q, Ren F, Dong X, Tong H. A 3'UTR-derived small RNA represses pneumolysin synthesis and facilitates pneumococcal brain invasion. Commun Biol 2024; 7:1130. [PMID: 39271946 PMCID: PMC11399405 DOI: 10.1038/s42003-024-06845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Pneumolysin (Ply) of Streptococcus pneumoniae (pneumococcus) at relatively high and low levels facilitates pneumococcal invasion into the lung and brain, respectively; however, the regulatory mechanisms of Ply expression are poorly understood. Here, we find that a small RNA plyT, processed from the 3'UTR of the ply operon, is expressed higher in anaerobically- than in statically-cultured pneumococcus D39. Using bioinformatic, biochemical and genetic approaches, we reveal that PlyT inhibits Ply synthesis and hemolytic activities by pairing with an RBS-embedded intergenic region of the ply operon. The RNA-binding protein SPD_1558 facilitates the pairing. Importantly, PlyT inhibition of Ply synthesis is stronger in anaerobic culture and leads to lower Ply abundance. Deletion of plyT decreases the number of pneumococci in the infected mouse brain and reduces the virulence, demonstrating that PlyT-regulated lower Ply in oxygen-void microenvironments, such as the blood, is important for pneumococcus to cross the blood-brain barrier and invade the brain. PlyT-mediated repression of Ply synthesis at anoxic niches is also verified in pneumococcal serotype 4 and 14 strains; moreover, the ply operon with a 3'UTR-embedded plyT, and the pairing sequences of IGR and plyT are highly conserved among pneumococcal strains, implying PlyT-regulated Ply synthesis might be widely employed by pneumococcus.
Collapse
Affiliation(s)
- Kaiqiang Shen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenshuang Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingqing Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu Ren
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Huichun Tong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Rogers RR, Kesthely CA, Jean-Pierre F, El Hafi B, O'Toole GA. Dpr-mediated H 2O 2 resistance contributes to streptococcus survival in a cystic fibrosis airway model system. J Bacteriol 2024; 206:e0017624. [PMID: 38940597 PMCID: PMC11270861 DOI: 10.1128/jb.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
The cystic fibrosis (CF) lung environment is conducive to the colonization of bacteria as polymicrobial biofilms, which are associated with poor clinical outcomes for persons with CF (pwCF). Streptococcus spp. are highly prevalent in the CF airway, but its role in the CF lung microbiome is poorly understood. Some studies have shown Streptococcus spp. to be associated with better clinical outcomes for pwCF, while others show that high abundance of Streptococcus spp. is correlated with exacerbations. Our lab previously reported a polymicrobial culture system consisting of four CF-relevant pathogens that can be used to study microbial behavior in a more clinically relevant setting. Here, we use this model system to identify genetic pathways that are important for Streptococcus sanguinis survival in the context of the polymicrobial community. We identified genes related to reactive oxygen species as differentially expressed in S. sanguinis monoculture versus growth of this microbe in the mixed community. Genetic studies identified Dpr as important for S. sanguinis survival in the community. We show that Dpr, a DNA-binding ferritin-like protein, and PerR, a peroxide-responsive transcriptional regulator of Dpr, are important for protecting S. sanguinis from phenazine-mediated toxicity in co-culture with Pseudomonas aeruginosa and when exposed to hydrogen peroxide, both of which mimic the CF lung environment. Characterizing such interactions in a clinically relevant model system contributes to our understanding of microbial behavior in the context of polymicrobial biofilm infections. IMPORTANCE Streptococcus spp. are recognized as a highly prevalent pathogen in cystic fibrosis (CF) airway infections. However, the role of this microbe in clinical outcomes for persons with CF is poorly understood. Here, we leverage a polymicrobial community system previously developed by our group to model CF airway infections as a tool to investigate a Pseudomonas-Streptococcus interaction involving reactive oxygen species (ROS). We show that protection against ROS is required for Streptococcus sanguinis survival in a clinically relevant polymicrobial system. Using this model system to study interspecies interactions contributes to our broader understanding of the complex role of Streptococcus spp. in the CF lung.
Collapse
Affiliation(s)
- Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
7
|
Martínez-Lamas L, García-Mato E, Rincón-Quintero A, Rivas-Mundiña B, Diz-Dios P, Álvarez-Fernández M. Mechanism of Action of Streptococcus downii, a New Bacterial Species with Probiotic Potential. Antibiotics (Basel) 2023; 12:1472. [PMID: 37760768 PMCID: PMC10525679 DOI: 10.3390/antibiotics12091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus downii is a recently reported bacterial species of oral origin, with inhibitory capacity against Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula and Aggregatibacter actinomycetemcomitans, which confers upon it the potential of being an oral probiotic. The aim of the present study was to identify the potential mechanisms by which S. downii exerts its inhibitory effect on S. mutans. To this end, the study assessed the consumption of glucose and proteins available in the culture medium, the modification of the pH, the production of short-chain fatty acids, the changes in the protein panel of the inhibition halo, the production of hydrogen peroxide and the effect of proteinase K. There were no differences in the glucose values or in the protein content of the medium, but there was a reduction in pH (with no effect on the growth of S. mutans). Significant increases were detected in the levels of lactic and formic acid (with no effect on the growth of S. mutans), as well as changes in the peptide panel (with no effect on the growth of S. mutans). The inhibitory effect was maintained in the presence of peroxidase but disappeared after adding proteinase K. Based on these results, it is suggested that the main mechanism of inhibition of S. downii against S. mutans is the production of bacteriocins.
Collapse
Affiliation(s)
- Lucía Martínez-Lamas
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Eliane García-Mato
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Anniris Rincón-Quintero
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Berta Rivas-Mundiña
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Pedro Diz-Dios
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Maximiliano Álvarez-Fernández
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| |
Collapse
|
8
|
Chen L, Liu R, Li S, Wu M, Yu H, Ge Q. Metabolism of hydrogen peroxide by Lactobacillus plantarum NJAU-01: A proteomics study. Food Microbiol 2023; 112:104246. [PMID: 36906310 DOI: 10.1016/j.fm.2023.104246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
This study aimed to investigate the time-course effect of Lactobacillus plantarum NJAU-01 in scavenging exogenous hydrogen peroxide (H2O2). The results showed that L. plantarum NJAU-01 at 107 CFU/mL was able to eliminate a maximum of 4 mM H2O2 within a prolonged lag phase and resume to proliferate during the following culture. Redox state in the start-lag phase (0 h, without the addition of H2O2), indicated by glutathione and protein sulfhydryl, was impaired in the lag phase (3 h and 12 h) and then gradually recovered during subsequent growing stages (20 h and 30 h). By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and proteomics analysis, a total of 163 proteins such as PhoP family transcriptional regulator, glutamine synthetase, peptide methionine sulfoxide reductase, thioredoxin reductase, ribosomal proteins, acetolactate synthase, ATP binding subunit ClpX, phosphoglycerate kinase, UvrABC system protein A and UvrABC system protein B were identified as differential proteins across the entire growth phase. Those proteins were mainly involved in H2O2 sensing, protein synthesis, repairing proteins and DNA lesions, amino sugar and nucleotide sugar metabolism. Our data suggest that biomolecules of L. plantarum NJAU-01 are oxidized to passively consume H2O2 and are restored by the enhanced protein and/or gene repair systems.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| | - Suyun Li
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| |
Collapse
|
9
|
Bahadur A, Li T, Sajjad W, Nasir F, Zia MA, Wu M, Zhang G, Liu G, Chen T, Zhang W. Transcriptional and biochemical analyses of Planomicrobium strain AX6 from Qinghai-Tibetan Plateau, China, reveal hydrogen peroxide scavenging potential. BMC Microbiol 2022; 22:265. [PMID: 36335290 PMCID: PMC9636757 DOI: 10.1186/s12866-022-02677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. METHODS We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. RESULTS In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. CONCLUSIONS Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Ting Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun, 130102, Jilin Province, China
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Minghui Wu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
10
|
RNase Z Oxidative Degradation Impedes tRNA Maturation and is Involved in Streptococcal Translation Regulation in Response to Oxidative Stress. Microbiol Spectr 2021; 9:e0116721. [PMID: 34704809 PMCID: PMC8549757 DOI: 10.1128/spectrum.01167-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When encountering oxidative stress, organisms selectively upregulate antioxidant genes and simultaneously suppress the translation of most other proteins. Eukaryotes employ multiple strategies to adjust translation at both the initiation and elongation stages; however, how prokaryotes modulate translation under oxidative stress remains unclear. Here, we report that upon hydrogen peroxide (H2O2) challenge, Streptococcus oligofermentans reduced translation via RNase Z (So-RNaseZ) oxidative degradation, thus hindering tRNA maturation. S. oligofermentans encodes all CCA-less tRNAs that require So-RNaseZ for 3′ end maturation. A combination of nonreducing SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC/MS-MS) assays demonstrated that H2O2 oxidation induced Cys38-Cys149 disulfide linkages in recombinant So-RNaseZ protein, and serine substitution of Cys38 or Cys149 abolished these disulfide linkages. Consistently, redox Western blotting also determined intramolecular disulfide-linked So-RNaseZ in H2O2-treated S. oligofermentans cells. The disulfide-linked So-RNaseZ and monomer were both subject to proteolysis, whereas C149S mutation alleviated oxidative degradation of So-RNaseZ, suggesting that H2O2-mediated disulfide linkages substantially contributed to So-RNaseZ degradation. Accordingly, Northern blotting determined that tRNA precursor accumulation and mature tRNA species decrease in H2O2-treated S. oligofermentans. Moreover, reduced overall protein synthesis, as indicated by puromycin incorporation, and retarded growth of S. oligofermentans occurred in an H2O2 concentration-dependent manner. Overexpression of So-RNaseZ not only elevated tRNA precursor processing and protein synthesis but also partly rescued H2O2-suppressed S. oligofermentans growth. Moreover, So-RNaseZ oxidative degradation-mediated translation repression elevated S. oligofermentans survival under high H2O2 stress. Therefore, this work found that So-RNaseZ oxidative degradation-impeded tRNA maturation contributes to streptococcal translation repression and provides the oxidative stress adaptability for S. oligofermentans. IMPORTANCE Translation regulation is a common strategy used by organisms to reduce oxidative damage. Catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports a novel translation regulation mechanism employed by Streptococcus oligofermentans in response to H2O2 challenge, in which the key tRNA endonuclease So-RNaseZ is oxidized to form Cys38-Cys149 disulfide linkages and both the disulfide-linked So-RNaseZ and monomers are subject to proteolysis; thus, tRNA maturation, protein translation, and growth are all suppressed. Notably, So-RNaseZ oxidative degradation-mediated translation repression offers oxidative adaptability to S. oligofermentans and enhances its survival against high H2O2 challenge. So-RNaseZ orthologs and H2O2-sensitive cysteines (Cys38 and Cys149) are widely distributed in Streptococcus and Lactococcus species genomes, which also encode all CCA-less tRNAs and lack catalase. Therefore, RNase Z oxidative degradation-based translation regulation could be widely employed by these lactic acid bacteria, including pathogenic streptococci, to cope with H2O2.
Collapse
|
11
|
A Novel Aquaporin Subfamily Imports Oxygen and Contributes to Pneumococcal Virulence by Controlling the Production and Release of Virulence Factors. mBio 2021; 12:e0130921. [PMID: 34399618 PMCID: PMC8406300 DOI: 10.1128/mbio.01309-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aquaporins, integral membrane proteins widely distributed in organisms, facilitate the transport of water, glycerol, and other small uncharged solutes across cellular membranes and play important physiological roles in eukaryotes. However, characterizations and physiological functions of the prokaryotic aquaporins remain largely unknown. Here, we report that Streptococcus pneumoniae (pneumococcus) AqpC (Pn-AqpC), representing a new aquaporin subfamily possessing a distinct substrate-selective channel, functions as an oxygen porin by facilitating oxygen movement across the cell membrane and contributes significantly to pneumococcal virulence. The use of a phosphorescent oxygen probe showed that Pn-AqpC facilitates oxygen permeation into pneumococcal and Pn-AqpC-expressing yeast cells. Reconstituting Pn-AqpC into liposomes prepared with pneumococcal and Escherichia coli cellular membranes further verified that Pn-AqpC transports O2 but not water or glycerol. Alanine substitution showed that Pro232 in the substrate channel is key for Pn-AqpC in O2 transport. The deletion of Pn-aqpC significantly reduced H2O2 production and resistance to H2O2 and NO of pneumococci, whereas low-H2O2 treatment helped the ΔPn-aqpC mutant resist higher levels of H2O2 and even NO, indicating that Pn-AqpC-facilitated O2 permeation contributes to pneumococcal resistance to H2O2 and NO. Remarkably, the lack of Pn-aqpC alleviated cell autolysis, thus reducing pneumolysin (Ply) release and decreasing the hemolysis of pneumococci. Accordingly, the ΔPn-aqpC mutant markedly reduced survival in macrophages, decreased damage to macrophages, and significantly reduced lethality in mice. Therefore, the oxygen porin Pn-AqpC, through modulating H2O2 production and pneumolysin release, the two major pneumococcal virulence factors, controls the virulence of pneumococcus. Pn-AqpC orthologs are widely distributed in various pneumococcal serotypes, highlighting that the oxygen porin is important for pneumococcal pathogenicity.
Collapse
|
12
|
Yu H, Ganas P, Schwendicke F. Environment-Specific Probiotic Supernatants Modify the Metabolic Activity and Survival of Streptococcus mutans in vitro. Front Microbiol 2020; 11:1447. [PMID: 32670254 PMCID: PMC7332556 DOI: 10.3389/fmicb.2020.01447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
A range of studies showed probiotics like Streptococcus oligofermentans and Limosilactobacillus reuteri to inhibit the cariogenic activity and survival of Streptococcus mutans, possibly via the production of substances like H2O2, reuterin, ammonia and organic acids. We aimed to assess the environment-specific mechanisms underlying this inhibition. We cultured L. reuteri and S. oligofermentans in various environments; minimal medium (MM), MM containing glucose (MM+Glu), glycerol (MM+Gly), lactic acid (MM+Lac), arginine (MM+Arg) and all four substances (MM+all) in vitro. Culture supernatants were obtained and metabolite concentrations (reuterin, ammonia, H2O2, lactate) measured. S. mutans was similarly cultivated in the above six different MM variation media, with glucose being additionally added to the MM+Gly, MM+Lac, and MM+Arg group, with (test groups) and without (control groups) the addition of the supernatants of the described probiotic cultures. Lactate production by S. mutans was measured and its survival (as colony-forming-units/mL) assessed. L. reuteri environment-specifically produced reuterin, H2O2, ammonia and lactate, as did S. oligofermentans. When cultured in S. oligofermentans supernatants, lactate production by S. mutans was significantly reduced (p < 0.01), especially in MM+Lac+Glu and MM+all, with no detectable lactate production at all (controls means ± SD: 4.46 ± 0.41 mM and 6.00 ± 0.29 mM, respectively, p < 0.001). A similar reduction in lactate production was found when S. mutans was cultured in L. reuteri supernatants (p < 0.05) for all groups except MM+Lac+Glu. Survival of S. mutans cultured in S. oligofermentans supernatants in MM+Lac+Glu and MM+all was significantly reduced by 0.6-log10 and 0.5-log10, respectively. Treatment with the supernatant of L. reuteri resulted in a reduction in the viability of S. mutans in MM+Gly+Glu and MM+all by 6.1-log10 and 7.1-log10, respectively. Probiotic effects on the metabolic activity and survival of S. mutans were environment-specific through different pathways.
Collapse
Affiliation(s)
- Haiyue Yu
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - Petra Ganas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - Falk Schwendicke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| |
Collapse
|