1
|
Paull SH, Spurbeck RR, Hasan NA, Brumfield KD, Catlin LA, Netherland MJ, Smith AK, Thibault KM, Colwell RR. RNA sequencing analysis of viromes of Aedes albopictus and Aedes vexans collected from NEON sites. Proc Natl Acad Sci U S A 2025; 122:e2403591122. [PMID: 40354533 DOI: 10.1073/pnas.2403591122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Climate change is significantly impacting the geographic range of many animal species and their associated microorganisms, hence influencing emergence of vector-borne diseases. Mosquito-borne viruses represent a potential major reservoir of human pathogens, highlighting the need for improved understanding of ecological factors associated with variation in the mosquito viral community (virome). Here, a subtractive hybridization method coupled with RNAseq of individual mosquito specimens was used to profile RNA viromes of individual co-occurring Aedes albopictus and Aedes vexans mosquitoes across a 2,000 km spatial scale. Samples were collected and archived by the National Ecological Observatory Network (NEON) from four ecologically variable sites in the Southeastern United States between 2018 and 2019. Results of multivariate analysis suggest that mosquito species are an important factor in RNA viral community composition. Significantly higher viral diversity was detected in A. albopictus compared to A.vexans. However, season, year, and site of sample collection did not show strong association with virome profiles, supporting the hypothesis that factors unique to the mosquito host species (e.g., larval habitat or vector competence) influence the structure of mosquito viromes.
Collapse
Affiliation(s)
- Sara H Paull
- Battelle, National Ecological Observatory Network, Boulder, CO 80301
| | - Rachel R Spurbeck
- Battelle, Health, Drug Development, and Precision Diagnostics, Columbus, OH 43201
| | | | - Kyle D Brumfield
- Department of Cellular Biology and Molecular Genetics (CBMG), University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, MD 20742
| | - Lindsay A Catlin
- Battelle, National Security-Chemical, Biological, Radiological, Nuclear and Explosives, Columbus, OH 43201
| | | | - Anthony K Smith
- Battelle, National Security-Chemical, Biological, Radiological, Nuclear and Explosives, Columbus, OH 43201
| | | | - Rita R Colwell
- Department of Cellular Biology and Molecular Genetics (CBMG), University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, MD 20742
| |
Collapse
|
2
|
Jansen S, Cadar D, Hey JC, Helms M, Lange U, Horváth B, Jöst H, Pfitzner WP, Schmidt-Chanasit J, Lühken R, Heitmann A. The impact of temperature and insect-specific viruses on the transmission of alphaviruses by Aedes japonicus japonicus. Microbiol Spectr 2025:e0266824. [PMID: 40304470 DOI: 10.1128/spectrum.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Arthropod-borne virus (arbovirus) infections are increasing globally, and invasive mosquito species are spreading. Since the end of the last century, Aedes japonicus has continued to spread in Europe as well as in North America. Aedes japonicus is known to be able to transmit several viruses, but extensive information about the vector competence of Ae. japonicus for alphaviruses is missing. Therefore, we infected field-caught Ae. japonicus mosquitoes from Germany with different alphaviruses that occur in areas with either tropical or moderate temperatures and are clustered as arthritogenic or encephalitic alphaviruses. Additionally, we studied the influence of temperature and natural infections with insect-specific viruses (ISVs) on the vector competence of Ae. japonicus. Transmission of chikungunya virus was exclusively observed at the high-temperature profile of 27° ± 5°C, with a low transmission rate of 2.9%. Transmission of Sindbis virus and western equine encephalitis virus was observed at all investigated temperature profiles with higher transmission rates of 32%-57%. We identified seven different ISVs in the investigated Ae. japonicus mosquitoes, showing that coinfections with ISVs are very common. The interplay between arbovirus infections and concurrent multiple ISV infections is highly complex, and additional research is required to fully elucidate the detailed mechanisms underlying the outcomes of this study. IMPORTANCE The spread of invasive mosquito species like Aedes japonicus poses a significant public health risk, particularly in the context of rising global temperatures and the growing prevalence of arbovirus infections. This study provides critical insights into the ability of Aedes japonicus to transmit alphaviruses such as chikungunya, Sindbis, and western equine encephalitis under different temperature conditions. The identification of multiple insect-specific viruses co-infecting the mosquitoes highlights the complexity of arbovirus transmission and underscores the need for further research. Understanding the interplay between environmental factors like temperature and viral coinfections is essential for predicting and mitigating future outbreaks. This work advances our knowledge of vector competence, which is helpful for developing strategies for risk assessment.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Jana Christina Hey
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Balázs Horváth
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Wolf-Peter Pfitzner
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Speyer, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Becerra-García RE, Hernández-Pelegrín L, Crava CM, Herrero S. Characterization of the Tuta absoluta virome reveals higher viral diversity in field populations. J Invertebr Pathol 2025; 211:108340. [PMID: 40268229 DOI: 10.1016/j.jip.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
A significant number of insect-specific viruses (ISVs) have been discovered in agriculturally important insect pests, facilitated by high-throughput sequencing (HTS). Despite its global impact on tomato crops, the RNA virome of the South American tomato pinworm, Tuta absoluta, remains uncharacterized. In this study, we utilized meta-transcriptomics and bioinformatic approaches to discover the RNA virome of T. absoluta across worldwide populations. We identified ten novel ISVs, classified into eight groups: Nidovirales, Bunyavirales, Mononegavirales, Virgaviridae, Iflaviridae, Nodaviridae, Solemoviridae, and Phasmaviridae. Notably, no core virus was consistently present across the studied populations, and field-collected samples revealed a greater diversity of ISVs compared to those from laboratory samples. In addition, we detected plant-infecting viruses and mycoviruses associated with the pest. This study represents the first description of the RNA virome associated with T. absoluta, providing valuable insights into its biological and ecological interactions. It also lays the foundation for future studies aimed to clarify the biological roles of ISVs.
Collapse
Affiliation(s)
- Rosa Esmeralda Becerra-García
- Department of Genetics and University, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100-Burjassot, Valencia, Spain
| | - Luis Hernández-Pelegrín
- Department of Genetics and University, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100-Burjassot, Valencia, Spain
| | - Cristina M Crava
- Department of Genetics and University, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100-Burjassot, Valencia, Spain
| | - Salvador Herrero
- Department of Genetics and University, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100-Burjassot, Valencia, Spain.
| |
Collapse
|
4
|
Ergunay K, Bourke BP, Linton YM. Exploring the potential of tick transcriptomes for virus screening: A data reuse approach for tick-borne virus surveillance. PLoS Negl Trop Dis 2025; 19:e0012907. [PMID: 40048471 PMCID: PMC11922208 DOI: 10.1371/journal.pntd.0012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/19/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND We set out to investigate the utility of publicly available tick transcriptomic data to identify and characterize known and recently described tick-borne viruses, using de novo assembly and subsequent protein database alignment and taxonomical binning. METHODOLOGY/PRINCIPAL FINDINGS A total of 127 virus contigs were recovered from 35 transcriptomes, originating from cell lines (40%), colony-reared ticks (25.7%) or field-collected ticks (34.2%). Generated virus contigs encompass DNA (n = 2) and RNA (n = 13) virus families, with 3 and 28 taxonomically distinct isolates, respectively. Known human and animal pathogens comprise 32.8% of the contigs, where Beiji nairovirus (BJNV) was the most prevalent tick-borne pathogenic virus, identified in 22.8% of the transcriptomes. Other pathogens included Nuomin virus (NUMV) (2.8%), African swine fever virus (ASFV) (5.7%), African horse sickness virus 3 (AHSV-3) (2.8%) and Alongshan virus (ALSV) (2.8%). CONCLUSIONS Previously generated transcriptome data can be leveraged for detecting tick-borne viruses, as exemplified by new descriptions of ALSV and BJNV in new geographic locations and other viruses previously detailed in screening reports. Monitoring pathogens using publicly available data might facilitate biosurveillance by directing efforts to regions of preliminary spillover and identifying targets for screening. Metadata availability is crucial for further assessments of detections.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
| |
Collapse
|
5
|
Tian D, Ye RZ, Li YY, Wang N, Gao WY, Wang BH, Lin ZT, Zhu WJ, Wang QS, Liu YT, Wei H, Wang YF, Sun Y, Shi XY, Jia N, Jiang JF, Cui XM, Cao WC, Liu ZH. Virome specific to tick genus with distinct ecogeographical distribution. MICROBIOME 2025; 13:57. [PMID: 40022268 PMCID: PMC11869668 DOI: 10.1186/s40168-025-02061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The emergence of tick-borne pathogens poses a serious threat to both human and animal health. There remains controversy about virome diversity in relation to tick genus and ecogeographical factors. RESULTS We conducted the meta‑transcriptomic sequencing of 155 pools of ticks encompassing 7 species of 3 genera collected from diverse geographical fauna of Ningxia Province, China. Two species of Dermacentor genus were distributed in the predominantly grassland areas of the central and eastern regions, with the lowest viral diversity. Two species of Hyalomma ticks were found in the predominantly desert areas of the northern regions, with intermediate viral diversity. Three species of Haemaphysalis ticks were concentrated in the predominantly forested areas of the southern regions, exhibiting the highest viral diversity. We assembled 348 viral genomes of 63 species in 14 orders, including 26 novel viruses. The identified viruses were clearly specific to tick genus: 22 virus species were exclusive to Dermacentor, 12 to Hyalomma, and 27 to Haemaphysalis. CONCLUSIONS The associations between tick genera and geographical distribution, viral richness, and composition provide new insights into tick-virus interactions, offering clues to identify high-risk regions for different tick-borne viruses. Video Abstract.
Collapse
Affiliation(s)
- Di Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu-Yu Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bai-Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Wen-Jie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Qiu-Shi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hua Wei
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wu-Chun Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China.
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhi-Hong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| |
Collapse
|
6
|
Guimarães LDO, Ribeiro GDO, da Couto R, Ramos EDSF, Morais VDS, Telles-de-Deus J, Helfstein VC, dos Santos JM, Deng X, Delwart E, Pandey RP, de Camargo-Neves VLF, da Costa AC, Kirchgatter K, Leal É. Exploring mosquito virome dynamics within São Paulo Zoo: insights into mosquito-virus-environment interactions. Front Cell Infect Microbiol 2025; 14:1496126. [PMID: 39867343 PMCID: PMC11757883 DOI: 10.3389/fcimb.2024.1496126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Background Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the Aedes genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting. Methods In this study, we conducted a comprehensive metagenomic analysis of mosquitoes collected from diverse habitats within the zoo, focusing on the Aedes, Anopheles, and Culex genera. From 1,039 contigs of viral origin, we identified 229 viral species infecting mosquitoes, with the orders Picornavirales, Nodamuvirales and Sobelivirales being the most prevalent and abundant. The difference in virome composition was primarily driven by mosquito host species rather than specific collection sites or trap height. Results Despite environmental disparities, the virome remained remarkably uniform across different areas of the zoo, emphasizing the strong association between mosquito species and their viral communities. Furthermore, we identified a core virome shared among mosquito species, highlighting potential cross-species transmission events and underscoring the need for targeted surveillance and control measures. Conclusion These results contribute to our understanding of the interplay between mosquitoes, the environment, and viruses, providing valuable insights for disease intervention strategies in mosquito-borne diseases.
Collapse
Affiliation(s)
| | - Geovani de Oliveira Ribeiro
- General-Coordination of Public Health Laboratories, Health and Environment Surveillance Secretariat, Ministry of Health, Brasilia, Brazil
- Department of Cellular Biology, University of Brasilia (UNB), Brasilia, Brazil
| | - Roseane da Couto
- Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| | | | - Vanessa dos Santos Morais
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, United States
- Department Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Delwart
- Department Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | | | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karin Kirchgatter
- Instituto Pasteur, São Paulo, SP, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil
| |
Collapse
|
7
|
Pavon JAR, da Silva Neves NA, Pinho JB, de Souza VJ, Patroca da Silva S, Ribeiro Cruz AC, de Almeida Medeiros DB, Teixeira Nunes MR, Slhessarenko RD. Disclosing the virome of Aedes, Anopheles and Culex female mosquitoes, Alto Pantanal of Mato Grosso, Brazil, 2019. Virology 2024; 598:110182. [PMID: 39033587 DOI: 10.1016/j.virol.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.
Collapse
Affiliation(s)
- Janeth Aracely Ramirez Pavon
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Nilvanei Aparecido da Silva Neves
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - João Batista Pinho
- Instituto de Biociências, Laboratório de Ecologia de Aves e Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, CEP 78060-900, Mato Grosso, Brazil
| | - Vilma Juscineide de Souza
- Coordenadoria de Vigilância Ambiental, Secretaria Estadual de Saúde, Centro Político Administrativo de Mato Grosso, Palácio Paiaguás, CEP 78049-902, Cuiabá, Mato Grosso, Brazil
| | | | | | | | - Márcio Roberto Teixeira Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal Do Pará, CEP 66075-110, Belém, Pará, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
8
|
Chathurangika P, Premadasa LS, Perera SSN, De Silva K. Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes. BMC Infect Dis 2024; 24:944. [PMID: 39251932 PMCID: PMC11385510 DOI: 10.1186/s12879-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.
Collapse
Affiliation(s)
- Piyumi Chathurangika
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Lakmini S Premadasa
- International Center for the Advancement of Research and Education (I·CARE), Texas Biomedical Research Institute, San Antonio, 78227, TX, USA
| | - S S N Perera
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Kushani De Silva
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka.
| |
Collapse
|
9
|
Mbigha Donfack KC, De Coninck L, Ghogomu SM, Matthijnssens J. Aedes Mosquito Virome in Southwestern Cameroon: Lack of Core Virome, But a Very Rich and Diverse Virome in Ae. africanus Compared to Other Aedes Species. Viruses 2024; 16:1172. [PMID: 39066334 PMCID: PMC11281338 DOI: 10.3390/v16071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.
Collapse
Affiliation(s)
- Karelle Celes Mbigha Donfack
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Kumar Pradhan S, Morrow JL, Sharpe SR, Karuppannasamy A, Ramasamy E, Bynakal S, Maligeppagol M, Ramasamy A, Riegler M. RNA virus diversity and prevalence in field and laboratory populations of melon fly throughout its distribution. J Invertebr Pathol 2024; 204:108117. [PMID: 38679365 DOI: 10.1016/j.jip.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.
Collapse
Affiliation(s)
- Sanjay Kumar Pradhan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ashok Karuppannasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Ellango Ramasamy
- Computational and Mathematical Biology Centre (CMBC), THSTI- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| | - Shivanna Bynakal
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Manamohan Maligeppagol
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Asokan Ramasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
11
|
Yuan JN, Ye ZX, Chen MN, Ren PP, Ning C, Sun ZT, Chen JP, Zhang CX, Li JM, Mao Q. Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera. INSECTS 2024; 15:394. [PMID: 38921109 PMCID: PMC11203538 DOI: 10.3390/insects15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Collapse
Affiliation(s)
- Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| |
Collapse
|
12
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
13
|
Jitvaropas R, Sawaswong V, Poovorawan Y, Auysawasdi N, Vuthitanachot V, Wongwairot S, Rodkvamtook W, Lindroth E, Payungporn S, Linsuwanon P. Identification of Bacteria and Viruses Associated with Patients with Acute Febrile Illness in Khon Kaen Province, Thailand. Viruses 2024; 16:630. [PMID: 38675971 PMCID: PMC11054472 DOI: 10.3390/v16040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The majority of cases of undifferentiated acute febrile illness (AFI) in the tropics have an undefined etiology. In Thailand, AFI accounts for two-thirds of illnesses reported to the Ministry of Public Health. To characterize the bacterial and viral causes of these AFIs, we conducted molecular pathogen screening and serological analyses in patients who sought treatment in Chum Phae Hospital, Khon Kaen province, during the period from 2015 to 2016. Through integrated approaches, we successfully identified the etiology in 25.5% of cases, with dengue virus infection being the most common cause, noted in 17% of the study population, followed by scrub typhus in 3.8% and rickettsioses in 6.8%. Further investigations targeting viruses in patients revealed the presence of Guadeloupe mosquito virus (GMV) in four patients without other pathogen co-infections. The characterization of four complete genome sequences of GMV amplified from AFI patients showed a 93-97% nucleotide sequence identity with GMV previously reported in mosquitoes. Nucleotide substitutions resulted in amino acid differences between GMV amplified from AFI patients and mosquitoes, observed in 37 positions. However, these changes had undergone purifying selection pressure and potentially had a minimal impact on protein function. Our study suggests that the GMV strains identified in the AFI patients are relatively similar to those previously reported in mosquitoes, highlighting their potential role associated with febrile illness.
Collapse
Affiliation(s)
- Rungrat Jitvaropas
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nutthanun Auysawasdi
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | | | - Sirima Wongwairot
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | - Wuttikon Rodkvamtook
- Analytic Division, Royal Thai Army Component-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand;
| | - Erica Lindroth
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyada Linsuwanon
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| |
Collapse
|
14
|
De Coninck L, Matthijnssens J. The mosquito core virome: beyond the buzz. Trends Parasitol 2024; 40:201-202. [PMID: 38185596 DOI: 10.1016/j.pt.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Affiliation(s)
- Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium.
| |
Collapse
|
15
|
Koh C, Saleh MC. Mosquito core viromes: do they exist? Trends Parasitol 2024; 40:203-204. [PMID: 38267279 DOI: 10.1016/j.pt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| |
Collapse
|
16
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Koh C, Saleh MC. Translating mosquito viromes into vector management strategies. Trends Parasitol 2024; 40:10-20. [PMID: 38065789 DOI: 10.1016/j.pt.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Mosquitoes are best known for transmitting human and animal viruses. However, they also harbour mosquito-specific viruses (MSVs) as part of their microbiota. These are a group of viruses whose diversity and prevalence overshadow their medically relevant counterparts. Although metagenomics sequencing has remarkably accelerated the discovery of these viruses, what we know about them is often limited to sequence information, leaving much of their fundamental biology to be explored. Understanding the biology and ecology of MSVs can enlighten our knowledge of virus-virus interactions and lead to new innovations in the management of mosquito-borne viral diseases. We retrace the history of their discovery and discuss research milestones that would line the path from mosquito virome knowledge to vector management strategies.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| |
Collapse
|
19
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
20
|
Gómez M, Martínez D, Páez-Triana L, Luna N, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Characterizing viral species in mosquitoes (Culicidae) in the Colombian Orinoco: insights from a preliminary metagenomic study. Sci Rep 2023; 13:22081. [PMID: 38086841 PMCID: PMC10716246 DOI: 10.1038/s41598-023-49232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Mohamed Ali S, Rakotonirina A, Heng K, Jacquemet E, Volant S, Temmam S, Boyer S, Eloit M. Longitudinal Study of Viral Diversity Associated with Mosquito Species Circulating in Cambodia. Viruses 2023; 15:1831. [PMID: 37766237 PMCID: PMC10535147 DOI: 10.3390/v15091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and control arbovirus diseases in a country where epidemics occur frequently. The objective of this study was to identify and characterize the viral diversity in mosquitoes collected during a one-year longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a metatranscriptomics approach and detected the presence of chikungunya virus in the collected mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not yet taxonomically identified and provisionally named "unclassified viruses". Interestingly, the taxa detected varied in abundance and composition depending on the mosquito genus, with no significant influence of the collection season. Furthermore, most of the identified viruses were either closely related to viruses found exclusively in insects or represented new viruses belonging to the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to vertebrates remain unknown.
Collapse
Affiliation(s)
- Souand Mohamed Ali
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
| | - Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
| | - Kimly Heng
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
| | - Elise Jacquemet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France (S.V.)
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France (S.V.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
- Ecology and Emergence of Arthropod-Borne Diseases, Institut Pasteur, 75015 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
- Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 94704 Maisons-Alfort, France
| |
Collapse
|
22
|
Abbo SR, de Almeida JPP, Olmo RP, Balvers C, Griep JS, Linthout C, Koenraadt CJM, Silva BM, Fros JJ, Aguiar ERGR, Marois E, Pijlman GP, Marques JT. The virome of the invasive Asian bush mosquito Aedes japonicus in Europe. Virus Evol 2023; 9:vead041. [PMID: 37636319 PMCID: PMC10460169 DOI: 10.1093/ve/vead041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Roenick P Olmo
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Carlijn Balvers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Jet S Griep
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Bruno M Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Rod. Jorge Amado Km 16, Ilhéus 45662-900, Brazil
| | - Eric Marois
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| |
Collapse
|
23
|
Liu Q, Cui F, Liu X, Fu Y, Fang W, Kang X, Lu H, Li S, Liu B, Guo W, Xia Q, Kang L, Jiang F. Association of virome dynamics with mosquito species and environmental factors. MICROBIOME 2023; 11:101. [PMID: 37158937 PMCID: PMC10165777 DOI: 10.1186/s40168-023-01556-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The pathogenic viruses transmitted by mosquitoes cause a variety of animal and human diseases and public health concerns. Virome surveillance is important for the discovery, and control of mosquito-borne pathogenic viruses, as well as early warning systems. Virome composition in mosquitoes is affected by mosquito species, food source, and geographic region. However, the complex associations of virome composition remain largely unknown. RESULTS Here, we profiled the high-depth RNA viromes of 15 species of field-caught adult mosquitoes, especially from Culex, Aedes, Anopheles, and Armigeres in Hainan Island from 2018 to 2020. We detected 57 known and 39 novel viruses belonging to 15 families. We established the associations of the RNA viruses with mosquito species and their foods, indicating the importance of feeding acquisition of RNA viruses in determining virome composition. A large fraction of RNA viruses were persistent in the same mosquito species across the 3 years and different locations, showing the species-specific stability of viromes in Hainan Island. In contrast, the virome compositions of single mosquito species in different geographic regions worldwide are visibly distinct. This is consistent with the differences in food sources of mosquitoes distributed broadly across continents. CONCLUSIONS Thus, species-specific viromes in a relatively small area are limited by viral interspecific competition and food sources, whereas the viromes of mosquito species in large geographic regions may be governed by ecological interactions between mosquitoes and local environmental factors. Video Abstract.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yumei Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wenjing Fang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Biao Liu
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Yang X, Qin S, Liu X, Zhang N, Chen J, Jin M, Liu F, Wang Y, Guo J, Shi H, Wang C, Chen Y. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol Spectr 2023; 11:e0268822. [PMID: 36651764 PMCID: PMC9927462 DOI: 10.1128/spectrum.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjun Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
25
|
Moonen JP, Schinkel M, van der Most T, Miesen P, van Rij RP. Composition and global distribution of the mosquito virome - A comprehensive database of insect-specific viruses. One Health 2023; 16:100490. [PMID: 36817977 PMCID: PMC9929601 DOI: 10.1016/j.onehlt.2023.100490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.
Collapse
|
26
|
Zhou D, Liu S, Guo G, He X, Xing C, Miao Q, Chen G, Chen X, Yan H, Zeng J, Zheng Z, Deng H, Weng S, He J. Virome Analysis of Normal and Growth Retardation Disease-Affected Macrobrachium rosenbergii. Microbiol Spectr 2022; 10:e0146222. [PMID: 36445118 PMCID: PMC9769563 DOI: 10.1128/spectrum.01462-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species in China. Growth retardation disease (GRD) is a common contagious disease in M. rosenbergii, resulting in slow growth and precocious puberty in prawns, and has caused growing economic losses in the M. rosenbergii industry. To investigate the viral diversity of M. rosenbergii and identify potentially high-risk viruses linked to GRD, virome analysis of the GRD-affected and normal M. rosenbergii was carried out using next-generation sequencing (NGS). A total of 327 contigs (>500 bp) were related to viral sequences belonging to 23 families/orders and a group of unclassified viruses. The majority of the viral contigs in M. rosenbergii belonged to the order Picornavirales, with the Solinviviridae family being the most abundant in both the diseased and normal groups. Furthermore, 16 RNA viral sequences with nearly complete genomes were characterized and phylogenetically analyzed, belonging to the families Solinviviridae, Flaviviridae, Polycipiviridae, Marnaviridae, and Dicistroviridae as well as three new clades of the order Picornavirales. Notably, the cross-species transmission of a picorna-like virus was observed between M. rosenbergii and plants. The "core virome" seemed to be present in the diseased and normal prawns. Still, a clear difference in viral abundance was observed between the two groups. These results showed that the broad diversity of viruses is present in M. rosenbergii and that the association between viruses and disease of M. rosenbergii needs to be further investigated. IMPORTANCE Growth retardation disease (GRD) has seriously affected the development and economic growth of the M. rosenbergii aquaculture industry. Our virome analysis showed that diverse viral sequences were present in M. rosenbergii, significantly expanding our knowledge of viral diversity in M. rosenbergii. Some differences in viral composition were noted between the diseased and normal prawns, indicating that some viruses become more abundant in occurrences or outbreaks of diseases. In the future, more research will be needed to determine which viruses pose a risk for M. rosenbergii. Our study provides important baseline information contributing to disease surveillance and risk assessment in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Dandan Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyi He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yan
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenwen Zheng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Deciphering the Tissue Tropism of the RNA Viromes Harbored by Field-Collected Anopheles sinensis and Culex quinquefasciatus. Microbiol Spectr 2022; 10:e0134422. [PMID: 35968979 PMCID: PMC9604083 DOI: 10.1128/spectrum.01344-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arboviruses and insect-specific viruses (ISVs) are two major types of viruses harbored by mosquitoes that are distinguished by the involvement of vertebrate hosts in their transmission cycles. While intensive studies have focused on the transmission, tissue tropism, and evolution of arboviruses, these characteristics are poorly investigated in ISVs, which dominate the mosquito virome. Therefore, in this study, we collected two mosquito species, Anopheles sinensis and Culex quinquefasciatus, in the field and used a metatranscriptomics approach to characterize their RNA viromes in different tissues, such as the midgut, legs, salivary gland, eggs, and the remainder of the carcass. Blood-engorged individuals of these species were captured in 3 locations, and 60 mosquitoes were pooled from each species and location. A total of 40 viral species from diverse viral taxa associated with all viral RNA genome types were identified, among which 19 were newly identified in this study. According to the current viral taxonomy, some of these viruses, such as Yancheng Anopheles associated virus 2 (Narnaviridae) and Jiangsu Anopheles-related virus (Ghabrivirales), were novel. The two investigated mosquito species generally harbored distinct viromes. Nevertheless, the viruses were generally shared among different tissue types to various degrees. Specifically, the eggs possessed a viral community with significantly lower diversity and abundance than those in other tissues, whereas the legs and salivary glands exhibited higher viral abundance. The compositions and distributions of the viromes of different mosquito tissues were demonstrated for the first time in our study, providing important insight into the virome dynamics within individual mosquitoes. IMPORTANCE ISVs are considered to be ancestral to arboviruses. Because of their medical importance, arboviruses have been well studied from the aspects of their transmission mode, evolution of dual-host tropism, and genetic dynamics within mosquito vectors. However, the mode of ISV maintenance is poorly understood, even though many novel ISVs have been identified with the emergence of sequencing technology. In our study, in addition to the identification of a diverse virus community, the tissue tropism of RNA viromes harbored by two field-collected mosquito species was demonstrated for the first time. According to the results, the virus communities of different tissues, such as the salivary glands, midguts, legs, and eggs, can help us understand the evolution, transmission routes, and maintenance modes of mosquito-specific viruses in nature.
Collapse
|
28
|
Andrade PS, Valença IN, Heinisch MRS, Rocha EC, Fernandes LN, Faria NR, Sabino EC, Lima-Camara TN. First Report of Wenzhou sobemo-like virus 4 in Aedes albopictus (Diptera: Culicidae) in Latin America. Viruses 2022; 14:2341. [PMID: 36366436 PMCID: PMC9696862 DOI: 10.3390/v14112341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.
Collapse
Affiliation(s)
- Pâmela S. Andrade
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ian N. Valença
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Marta R. S. Heinisch
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - Esmenia C. Rocha
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Lícia N. Fernandes
- Medical Research Laboratory 49, Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Tamara N. Lima-Camara
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
29
|
Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022; 13:e0102122. [PMID: 36069449 PMCID: PMC9600335 DOI: 10.1128/mbio.01021-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome—and vice versa—is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus–mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.
Collapse
|
30
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Rau J, Werner D, Beer M, Höper D, Kampen H. The microbial RNA metagenome of Aedes albopictus (Diptera: Culicidae) from Germany. Parasitol Res 2022; 121:2587-2599. [PMID: 35857094 PMCID: PMC9378336 DOI: 10.1007/s00436-022-07576-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022]
Abstract
Aedes albopictus is a highly invasive mosquito species that has become widespread across the globe. In addition, it is an efficient vector of numerous pathogens of medical and veterinary importance, including dengue, chikungunya and Zika viruses. Among others, the vector potential of mosquitoes is influenced by their microbiome. However, this influence is very dynamic and can vary between individuals and life stages. To obtain a rough overview on the microbiome of Ae. albopictus populations in Germany, pooled female and pooled male individuals from seven German locations were investigated by total RNA sequencing. The mosquito specimens had been collected as larvae in the field and processed immediately after adult emergence, i.e. without females having fed on blood. RNA fragments with high degrees of identity to a large number of viruses and microorganisms were identified, including, for example, Wolbachia pipientis and Acinetobacter baumannii, with differences between male and female mosquitoes. Knowledge about the natural occurrence of microorganisms in mosquitoes may be translated into new approaches to vector control, for example W. pipientis can be exploited to manipulate mosquito reproduction and vector competence. The study results show how diverse the microbiome of Ae. albopictus can be, and the more so needs to be adequately analysed and interpreted.
Collapse
Affiliation(s)
- Janine Rau
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany.
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
32
|
Truong Nguyen PT, Culverwell CL, Suvanto MT, Korhonen EM, Uusitalo R, Vapalahti O, Smura T, Huhtamo E. Characterisation of the RNA Virome of Nine Ochlerotatus Species in Finland. Viruses 2022; 14:1489. [PMID: 35891469 PMCID: PMC9324324 DOI: 10.3390/v14071489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16-60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date.
Collapse
Affiliation(s)
- Phuoc T. Truong Nguyen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - C. Lorna Culverwell
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- The Natural History Museum, Cromwell Road, South Kensington, London SW5 7BD, UK
| | - Maija T. Suvanto
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin Katu 2, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, HUSLAB, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|
33
|
Konstantinidis K, Dovrolis N, Kouvela A, Kassela K, Rosa Freitas MG, Nearchou A, de Courcy Williams M, Veletza S, Karakasiliotis I. Defining Virus-Carrier Networks that Shape the Composition of the Mosquito Core Virome of a Local Ecosystem. Virus Evol 2022; 8:veac036. [PMID: 35505691 PMCID: PMC9055857 DOI: 10.1093/ve/veac036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses’ relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.
Collapse
Affiliation(s)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adamantia Kouvela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katerina Kassela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Goreti Rosa Freitas
- Laboratório de Mosquitoes Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andreas Nearchou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Stavroula Veletza
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
34
|
Juache-Villagrana AE, Pando-Robles V, Garcia-Luna SM, Ponce-Garcia G, Fernandez-Salas I, Lopez-Monroy B, Rodriguez-Sanchez IP, Flores AE. Assessing the Impact of Insecticide Resistance on Vector Competence: A Review. INSECTS 2022; 13:377. [PMID: 35447819 PMCID: PMC9024519 DOI: 10.3390/insects13040377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023]
Abstract
The primary strategy to avoid adverse impacts from insect-mediated pathogen transmission is the chemical control of vector populations through insecticides; its continued use has led to insecticide resistance and unknown consequences on vector competence. This review aims to systematically analyze and synthesize the research on the influence of insecticide resistance (IR) on vector competence (VC). Thirty studies met the inclusion criteria. Twenty studies, conducted either in laboratory or field settings, described the influence of phenotypic insecticide resistance and mechanisms on VC in vectors of human pathogens. Seven studies showed the effect of exposure to insecticides on VC in vectors of human pathogens. Three studies reported the influence of phenotypic resistance and mechanisms on VC in crop pests. The evidence shows that IR could enhance, impair, or have no direct effect on VC in either field or laboratory-designed studies. Similar positive and negative trends are found in pest vectors in crops and studies of insecticide exposure and VC. Even though there is evidence that exposure to insecticides and IR can enhance VC, thus increasing the risk of pathogen transmission, more investigations are needed to confirm the observed patterns and what implications these factors could have in vector control programs.
Collapse
Affiliation(s)
- Alan E. Juache-Villagrana
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Victoria Pando-Robles
- Centro de Investigacion Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca 62100, Morelos, Mexico;
| | - Selene M. Garcia-Luna
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Ildefonso Fernandez-Salas
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
35
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
36
|
Feng G, Zhang J, Zhang Y, Li C, Zhang D, Li Y, Zhou H, Li N, Xiao P. Metagenomic Analysis of Togaviridae in Mosquito Viromes Isolated From Yunnan Province in China Reveals Genes from Chikungunya and Ross River Viruses. Front Cell Infect Microbiol 2022; 12:849662. [PMID: 35223559 PMCID: PMC8878809 DOI: 10.3389/fcimb.2022.849662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
We collected 5,500 mosquitoes belonging to six species in three locations in China. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The affluent viral sequences that were detected and annotated belong to 22 viral taxonomic families. Then, PCR was performed to confirm the results, followed by phylogenetic analysis. Herein, part of mosquito virome was identified, including chikungunya virus (CHIKV), Getah virus (GETV), and Ross river virus (RRV). After metagenomic analysis, seven CHIKV sequences were verified by PCR amplification, among which CHIKV-China/YN2018-1 had the highest homology with the CHIKV isolated in Senegal, 1983, with a nucleotide (nt) identity of at least 81%, belonging to genotype West Africa viral genes. Five GETV sequences were identified, which had a high homology with the GETV sequences isolated from Equus caballus in Japan, 1978, with a (nt) identity of at least 97%. The newly isolated virus CHIKV-China/YN2018-1 became more infectious after passage of the BHK-21 cell line to the Vero cell line. The newly identified RRV gene had the highest homology with the 2006 RRV isolate from Australia, with a (nt) identity of at least 94%. In addition, numerous known and unknown viruses have also been detected in mosquitoes from Yunnan province, China, and propagation tests will be carried out.
Collapse
Affiliation(s)
- Guanrong Feng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jinyong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | | | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- *Correspondence: Nan Li, ; Pengpeng Xiao,
| |
Collapse
|
37
|
Gilbert C, Belliardo C. The diversity of endogenous viral elements in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 49:48-55. [PMID: 34839030 DOI: 10.1016/j.cois.2021.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
We provide an overview of the currently known diversity of viral sequences integrated into insect genomes. Such endogenous viral elements (EVE) have so far been annotated in at least eight insect orders and can be assigned to at least three families of large double-stranded (ds) DNA viruses, at least 22 families of RNA viruses, and three families of single-stranded DNA viruses. The study of these EVE has already produced important insights into insect-virus interactions, including the discovery of a new form of adaptive antiviral immunity. Insect EVE diversity will continue to increase as new insect genomes and exogenous viruses are sequenced, which will continue to make paleovirology a vibrant research field in this group of animals in the years to come.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, 91198, France.
| | - Carole Belliardo
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, 06903, France; MYCOPHYTO, 540 Avenue de la Plaine, Mougins, 06250, France
| |
Collapse
|
38
|
Calle-Tobón A, Holguin-Rocha AF, Moore C, Rippee-Brooks M, Rozo-Lopez P, Harrod J, Fatehi S, Rua-Uribe GL, Park Y, Londoño-Rentería B. Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front Microbiol 2021; 12:724345. [PMID: 34566927 PMCID: PMC8458951 DOI: 10.3389/fmicb.2021.724345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia
| | | | - Celois Moore
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jania Harrod
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
39
|
Parry R, James ME, Asgari S. Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms 2021; 9:1653. [PMID: 34442732 PMCID: PMC8398489 DOI: 10.3390/microorganisms9081653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes' susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit.
Collapse
Affiliation(s)
- Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maddie E James
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| |
Collapse
|
40
|
Complexity and local specificity of the virome associated with tospovirus-transmitting thrips species. J Virol 2021; 95:e0059721. [PMID: 34232724 PMCID: PMC8513489 DOI: 10.1128/jvi.00597-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frankliniella occidentalis (western flower thrips=WFT) and Thrips tabaci (onion thrips=OT) are insect species that greatly impact horticultural crops through direct damage and their efficient vectoring of tomato spotted wilt virus and iris yellow spot virus. In this study we collected thrips of these species from 12 field populations in various regions in Italy. We also included one field population of Neohydatothrips variabilis (soybean thrips=ST) from the U.S.A. Total RNAseq from high-throughput sequencing (HTS) was used to assemble the virome and then we assigned putative viral contigs to each thrips sample by qRT-PCR. Excluding plant and fungal viruses, we were able to identify 61 viral segments, corresponding to 41 viruses: 14 were assigned to WFT, 17 to OT, one from ST and 9 viruses could not be assigned to any species based on our stringent criteria. All these viruses are putative representative of new species (with only the exception of a sobemo-like virus that is 100% identical to a virus recently characterized in ST) and some belong to new higher-ranking taxa. These additions to the viral phylogeny suggest previously undescribed evolutionary niches. Most of the Baltimore's classes of RNA viruses were present (positive- and minus- strand and dsRNA viruses), but only one DNA virus was identified in our collection. Repeated sampling in a subset of locations in 2019 and 2020 and further virus characterization in a subset of four thrips populations maintained in laboratory allowed us to provide evidence of a locally persistent thrips core virome that characterizes each population. IMPORTANCE Harnessing the insect microbiome can result in new approaches to contain their populations or the damage they cause vectoring viruses of medical, veterinary, or agricultural importance. Persistent insect viruses are a neglected component of their microbiota. Here for the first time, we characterize the virome associated with the two model systems for tospovirus-transmitting thrips species, of utmost importance for the direct and indirect damage they cause to a number of different crops. The thrips virome here characterized includes several novel viruses, that in some cases reveal previously undescribed clades. More importantly, some of the viruses we describe are part of a core virome that is specific and consistently present in distinct geographical locations monitored over the years, hinting at a possible mutualistic symbiotic relationship with their host.
Collapse
|
41
|
Diversity and infectivity of the RNA virome among different cryptic species of an agriculturally important insect vector: whitefly Bemisia tabaci. NPJ Biofilms Microbiomes 2021; 7:43. [PMID: 33986295 PMCID: PMC8119434 DOI: 10.1038/s41522-021-00216-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
A large number of insect-specific viruses (ISVs) have recently been discovered, mostly from hematophagous insect vectors because of their medical importance, but little attention has been paid to important plant virus vectors such as the whitefly Bemisia tabaci, which exists as a complex of cryptic species. Public SRA datasets of B. tabaci and newly generated transcriptomes of three Chinese populations are here comprehensively investigated to characterize the whitefly viromes of different cryptic species. Twenty novel ISVs were confidently identified, mostly associated with a particular cryptic species while different cryptic species harbored one or more core ISVs. Microinjection experiments showed that some ISVs might cross-infect between the two invasive whitefly cryptic species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), but others appeared to have a more restricted host range, reflecting the possibility of distinct long-term coevolution of these ISVs and whitefly hosts. Moreover, analysis of the profiles of virus-derived small-interfering RNAs indicated that some of the ISVs can successfully replicate in whitefly and the antiviral RNAi pathway of B. tabaci is actively involved in response to ISV infections. Our study provides a comprehensive analysis of the RNA virome, the distinct relationships and cross-cryptic species infectivity of ISVs in an agriculturally important insect vector.
Collapse
|
42
|
de Almeida JP, Aguiar ER, Armache JN, Olmo RP, Marques JT. The virome of vector mosquitoes. Curr Opin Virol 2021; 49:7-12. [PMID: 33991759 DOI: 10.1016/j.coviro.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
Mosquitoes are the major vectors for arthropod-borne viruses (arboviruses) of medical importance. Aedes aegypti and A. albopictus are the most prolific and widespread mosquito vectors being responsible for global transmission of dengue, Zika and Chikungunya viruses. Characterizing the collection of viruses circulating in mosquitoes, the virome, has long been of special interest. In addition to arboviruses, mosquitoes carry insect-specific viruses (ISVs) that do not directly infect vertebrates. Mounting evidence indicates that ISVs interact with arboviruses and may affect mosquito vector competence. Here, we review our current knowledge about the virome of vector mosquitoes and discuss the challenges for the field that may lead to novel strategies to prevent outbreaks of arboviruses.
Collapse
Affiliation(s)
- João Pp de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil
| | - Eric Rgr Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil; Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus 45652-900, Brazil
| | - Juliana N Armache
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil
| | - Roenick P Olmo
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg 67084, France
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg 67084, France.
| |
Collapse
|
43
|
Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, Ratnasiri K, Retallack H. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 2021; 10:e68353. [PMID: 33904402 PMCID: PMC8110308 DOI: 10.7554/elife.68353] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.
Collapse
Affiliation(s)
| | - Gytis Dudas
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | | | | | - Lucy M Li
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of MedicineStanfordUnited States
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|