1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Pang L, Liu Y, Yuan C, Ju Y, Wu J, Cheng M, Jin S, Fan Y, Zhang H, Wang Y, Min D. Yi Mai Granule Improves High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice by Regulating Gut Microbiota and Metabolites. Int J Microbiol 2025; 2025:2273986. [PMID: 40166691 PMCID: PMC11955292 DOI: 10.1155/ijm/2273986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/24/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Yi Mai granule (YMG) is a traditional Chinese medicine (TCM) herbal decoction consisting of two TCM formulas: Gua-Lou-Ban-Xia decoction and Si-Jun-Zi decoction. YMG has shown clinical benefit in the treatment of nonalcoholic fatty liver disease (NAFLD), which may be due to its regulatory effects on lipid metabolism. Previous studies have highlighted the importance of the gut microbiota and its metabolites in the use of TCM. However, the effect of YMG on the gut microbiota in the treatment of NAFLD remains unclear. In this study, we established an NAFLD model in ApoE-/- mice and treated them with YMG. High-performance liquid chromatography was adopted to identify the chemical components of YMG. By mapping the candidate targets using network pharmacology, we found that the targets of the main components of YMG were significantly enriched in NAFLD-related pathways. Moreover, 16S rRNA gene sequencing revealed that YMG affected the constitution and metabolism of the gut microbiota in NAFLD model mice, including lipid and carbohydrate metabolism. Similarly, metabolites related to lipid and carbohydrate metabolism in mouse serum were significantly altered by YMG. The correlation heat map and network analyses showed that the gut microbiota and metabolites affected by YMG were closely related to the blood lipid content. Collectively, YMG may exert therapeutic effects by affecting the metabolism of gut microbiota, thus regulating lipid and carbohydrate metabolism. These findings offer novel insight into the pharmacological mechanism of YMG in the treatment of NAFLD and provide theoretical bases for its clinical applications.
Collapse
Affiliation(s)
- Linlin Pang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yongming Liu
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Changbin Yuan
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yetao Ju
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Junpeng Wu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Meijia Cheng
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Sian Jin
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ying Fan
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Huiyong Zhang
- Department of Traditional Chinese Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Krueger ME, Boles JS, Simon ZD, Alvarez SD, McFarland NR, Okun MS, Zimmermann EM, Forsmark CE, Tansey MG. Comparative analysis of Parkinson's and inflammatory bowel disease gut microbiomes reveals shared butyrate-producing bacteria depletion. NPJ Parkinsons Dis 2025; 11:50. [PMID: 40108151 PMCID: PMC11923181 DOI: 10.1038/s41531-025-00894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Epidemiological studies reveal that inflammatory bowel disease (IBD) is associated with an increased risk of Parkinson's disease (PD). Gut dysbiosis has been documented in both PD and IBD, however it is currently unknown whether gut dysbiosis underlies the epidemiological association between both diseases. To identify shared and distinct features of the PD and IBD microbiome, we recruited 54 PD, 26 IBD, and 16 healthy control individuals and performed the first joint analysis of gut metagenomes. Larger, publicly available PD and IBD metagenomic datasets were also analyzed to validate and extend our findings. Depletions in short-chain fatty acid (SCFA)-producing bacteria, including Roseburia intestinalis, Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium rectale, as well depletion in SCFA-synthesis pathways were detected across PD and IBD datasets, suggesting that depletion of these microbes in IBD may influence the risk for PD development.
Collapse
Affiliation(s)
- Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zachary D Simon
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stephan D Alvarez
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher E Forsmark
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Wang L, Zhang Z, Zeng Z, Lin Y, Xiong B, Zheng B, Zhang Y, Pan L. Structural characterization of polysaccharide from an edible fungus Dictyophora indusiata and the remodel function of gut microbiota in inflammatory mice. Carbohydr Polym 2025; 351:123141. [PMID: 39779040 DOI: 10.1016/j.carbpol.2024.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Dictyophora indusiata is an edible fungus, which is known as bamboo fungus. D. indusiata polysaccharide is considered as the most important bioactive component. The aim of this study was to investigate the structure of a polysaccharide fraction from D. indusiata and the effects of D. indusiata polysaccharide on gut microbiota and metabolites in inflammatory mice. Here, the DIP1p, a polysaccharide fraction from D. indusiata, was obtained by isolation and purification using Cellulose DE-52 column and Sephadex G-200 gel column. The results showed that DIP1p is a heteropolysaccharide consisting of glucose, mannose, galactose and xylose in the ratio of 55.2 %, 28.6 %, 10.3 % and 5.9 %, which mainly linked by →3)-Glcp-(1 → glycosidic bonds. In addition, D. indusiata polysaccharide restored the colonic length reduction, modulated the secretion of cytokine and mitigated histological damage. It is remarkable that D. indusiata polysaccharide enhanced the abundance of beneficial bacteria Blautia and Roseburia, and increased the levels of short-chain fatty acids including acetic acid and propionic acid. Our findings indicated that D. indusiata polysaccharide remodeled gut microbiota and enhanced short-chain fatty acids levels to alleviate the inflammation.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Chu D, Zhang H, Shang Z, Liu N, Fu H, Yuan S. Gut Microecology of Four Sympatric Desert Rodents Varies by Diet. Ecol Evol 2025; 15:e70992. [PMID: 40027415 PMCID: PMC11868701 DOI: 10.1002/ece3.70992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The gut microbiome can be one pathway by which a host rapidly acclimates and adapts to its ecological environment. Exploring how the microbiome has evolved to differ between hosts with different diets provides insights into the profound interactions between hosts and microbes within these systems. In this study, we used DNA metabarcoding techniques and macrogenomic prediction techniques to study the gut microbes of four desert rodent species with different feeding strategies in the same habitat. One species is herbivorous (Spermophilus alashanicu)s, one is granivorous (Phodopus roborovskii), another is omnivorous (Dipus sagitta), and the last (Orientallactaga sibirica) has a diet with a relatively high proportion of insects. Diets rich in plants and insects can be challenging to digest due to the abundance of indigestible fiber and stable chitin, respectively. Out of the species studied, the herbivorous Spermophilus alashanicus has the highest density of UCG-005 genes and the highest predicted abundance of genes related to digestive complexity. The composition of Phodopus roborovskii's microbiome has the highest variation between individuals, yet Phodopus roborovskii has the highest predicted abundance of genes associated with simple sugars-reflecting this species' potential adaptability to the starch within plant seeds and its constraints brought about by its smaller body size. The most insectivorous species, Orientallactaga sibirica, exhibits the highest predicted abundance of genes related to chitin degradation. This study has enhanced our understanding of the gut microbiota in the intestines of rodents as they adapt to various dietary strategies.
Collapse
Affiliation(s)
- Dongyang Chu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Haoting Zhang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Zhenghaoni Shang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Nan Liu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Heping Fu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Shuai Yuan
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| |
Collapse
|
6
|
Xu S, Xiong J, Qin X, Ma M, Peng Y, Cheng J, Nie X, Fan X, Deng Y, Ju Y, Liu J, Zhang L, Liu B, Zhang Y, Li L. Association between gut microbiota and perinatal depression and anxiety among a pregnancy cohort in Hunan, China. Brain Behav Immun 2025; 125:168-177. [PMID: 39736365 DOI: 10.1016/j.bbi.2024.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Perinatal depression and anxiety pose significant risks to maternal health and may lead to suicide. The gut microbiota may play a crucial role in perinatal depression and anxiety. However, the relationship between the alterations in gut microbiota and perinatal depression and anxiety remains unclear. This study aimed to investigate the dynamic changes of gut microbiota over various perinatal stages and their associations with perinatal depression and anxiety symptoms, especially suicide ideation. METHODS A total of 177 pregnant and 19 postpartum women were recruited in this study, with 48 of them participating longitudinally. Maternal depression and anxiety symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS), 9-item Patient Health Questionnaire (PHQ-9), and 7-item Generalized Anxiety Disorder Scale (GAD-7). Fecal samples collected during the perinatal period were analyzed using 16S rRNA gene sequencing. RESULTS Significant changes in microbial diversity and multi-taxonomic levels were observed during pregnancy. The random forest regression model showed significant associations of some gut microbial features with depression and anxiety symptoms. Several genera were significantly associated with gestation age and perinatal depression and anxiety, such as Akkermansia, Bifidobacterium and Streptococcus. In addition, Erysipelotrichaceae_UCG-003 and Eubacterium_hallii_group were positively associated with suicidal ideation. The glycine biosynthesis pathway might act as a mediator between Eubacterium_hallii_group and suicidal ideation (ab = 3.27, p < 0.05). CONCLUSION The gut microbiota undergoes a programmed shift during pregnancy, which may play a critical role in perinatal depression and anxiety. Our findings underscore the impact of certain bacterial genera and metabolic pathways on perinatal mental health, which may help to develop new diagnostic tools and targeted interventions to reduce perinatal mental disorders and improve the outcomes for both mothers and infants.
Collapse
Affiliation(s)
- Shuyin Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jintao Xiong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xuemei Qin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Yilin Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xueqing Nie
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Xing Fan
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Yali Deng
- Department of Obstetrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Li Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| |
Collapse
|
7
|
Romaní‐Pérez M, Líebana‐García R, Flor‐Duro A, Bonillo‐Jiménez D, Bullich‐Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní‐Pérez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Rebeca Líebana‐García
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Alejandra Flor‐Duro
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Daniel Bonillo‐Jiménez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Clara Bullich‐Vilarrubias
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Marta Olivares
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| |
Collapse
|
8
|
Koslovsky MD. Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model. BMC Bioinformatics 2025; 26:69. [PMID: 40016656 PMCID: PMC11869466 DOI: 10.1186/s12859-025-06078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
Collapse
|
9
|
Bellanco A, Requena T, Martínez-Cuesta MC. Polysorbate 80 and carboxymethylcellulose: A different impact on epithelial integrity when interacting with the microbiome. Food Chem Toxicol 2025; 196:115236. [PMID: 39778648 DOI: 10.1016/j.fct.2025.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The consumption of dietary emulsifiers, including polysorbate 80 (P80) and sodium carboxymethylcellulose (CMC), has raised safety concerns due to its interaction with the intestinal microbiome. This study demonstrated that increasing concentrations of P80 and CMC added to a dynamic four-stage gut microbiota model (BFBL gut simulator) altered the microbiome composition and impacted epithelial integrity in a dose-dependent manner. 16S rDNA amplicon-based metagenomics analysis revealed that these emulsifiers increased microbial groups with proinflammatory capacities while decreasing microbial taxa known to enhance barrier function. Increasing doses of P80 significantly decreased Bacteroides dorei and Akkermansia, taxa associated with anti-inflammatory potential, while increasing doses of CMC were linked to a higher abundance of Ruminococcus torques and Hungatella, which negatively impact barrier function. Both emulsifiers displayed a different impact on epithelial integrity when interacting with the microbiome. On one hand, supernatants from the BFBL simulator fed with P80 disrupted epithelial integrity to a lesser extent than the additive alone. On the other hand, both the microbiota and the supernatants from the BFBL simulator fed with CMC diminished the epithelial integrity, though the additive itself did not. These findings highlight the need to incorporate the gut microbiome in the risk assessment of these additives.
Collapse
Affiliation(s)
- Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Oyono MG, Kenmoe S, Ebogo Belobo JT, Mbah Ntepe LJ, Kameni M, Kamguia LM, Mpotje T, Nono JK. Diagnostic, prognostic, and therapeutic potentials of gut microbiome profiling in human schistosomiasis: A comprehensive systematic review. PLoS Negl Trop Dis 2025; 19:e0012844. [PMID: 39899616 PMCID: PMC11844881 DOI: 10.1371/journal.pntd.0012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/21/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Several studies have highlighted alteration in the gut microbiome associated with the onset and progression of diseases. Recognizing the potential of gut microbiota as biomarkers, this systematic review seeks to synthesize current data on the intricate relationship between the host gut microbiome profiles and their usefulness for the development of diagnostic, prognostic and therapeutic approaches to control human schistosomiasis. METHODS A systematic literature review was carried out by searching for relevant studies published until date, that is May 2024, using Medline, Embase, Global Health, Web of Science, and Global Index Medicus databases. The keywords used to select articles were "Gut microbiome", "Gut Microbiota", "Schistosomiasis", "Bilharziasis ", and "Human". Extracted data were analysed qualitatively from the selected articles. RESULTS Of the 885 articles retrieved and screened, only 13 (1.47%) met the inclusion criteria and were included in this review. Of the included studies, 6 (46.2%) explored alterations of gut microbiome in schistosome-infected patients, 4 (30.7%) in patients with liver pathologies, and 3 (23.1%) in patients treated with praziquantel. Bacteria from the genera Bacteroides, Faecalibacterium, Blautia and Megasphaera were associated with S. japonicum and S. haematobium infection in school-aged children, whereas infection with S. mansoni rather associated with Klebsiella and Enterobacter. The gut microbiota signature in patient with schistosomiasis-induced liver pathology was reported only for S. japonicum, and the genus Prevotella appeared as a non-invasive biomarker of S. japonicum-associated liver fibrosis. For S. mansoni-infected school-aged children, it further appeared that the treatment outcome following praziquantel administration associated with the abundance in the gut microbiome of bacteria from the classes Fusobacteriales, Rickettsiales and Neisseriales. CONCLUSION The host gut microbiome appears to be a valuable, non-invasive, but still poorly utilized, source of host biomarkers potentially informative for better diagnosing, prognosing and treating schistosomiasis. Further studies are therefore needed to comprehensively define such gut microbial biomarkers of human schistosomiasis and catalyse the informed development of gut microbiome-based tools of schistosomiasis control.
Collapse
Affiliation(s)
- Martin Gael Oyono
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo Belobo
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Leonel Javeres Mbah Ntepe
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Mireille Kameni
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Bamenda, Bamenda, Cameroon
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Thabo Mpotje
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
| | - Justin Komguep Nono
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Luo Y, Li M, Luo D, Tang B. Gut Microbiota: An Important Participant in Childhood Obesity. Adv Nutr 2025; 16:100362. [PMID: 39733798 PMCID: PMC11786877 DOI: 10.1016/j.advnut.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication. The gut microbiota is increasingly acknowledged to play a crucial role in human health, as certain beneficial bacteria have been scientifically proven to possess the capacity to reduce body fat content and enhance intestinal barrier function and their metabolic products to exhibit anti-inflammatory effect. Examples of such microbes include bifidobacteria, Akkermansia muciniphila, and Lactobacillus reuteri. In contrast, an increase in Enterobacteriaceae and propionate-producing bacteria (Prevotellaceae and Veillonellaceae) has been implicated in the induction of low-grade systemic inflammation and disturbances in lipid metabolism, which can predispose individuals to obesity. Studies have demonstrated that modulating the gut microbiota through diet, lifestyle changes, prebiotics, probiotics, or fecal microbiota transplantation may contribute to gut homeostasis and the management of obesity and its associated comorbidities. This review aimed to elucidate the impact of alterations in gut microbiota composition during early life on childhood obesity and explores the mechanisms by which gut microbiota contributes to the pathogenesis of obesity and specifically focused on recent advances in using short-chain fatty acids for regulating gut microbiota and ameliorating obesity. Additionally, it aimed to discuss the therapeutic strategies for childhood obesity from the perspective of gut microbiota, aiming to provide a theoretical foundation for interventions targeting pediatric obesity based on gut microbiota.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maojun Li
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binzhi Tang
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Prattico C, Gonzalez E, Dridi L, Jazestani S, Low KE, Abbott DW, Maurice CF, Castagner B. Identification of novel fructo-oligosaccharide bacterial consumers by pulse metatranscriptomics in a human stool sample. mSphere 2025; 10:e0066824. [PMID: 39699190 PMCID: PMC11774028 DOI: 10.1128/msphere.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic. Despite being well studied, we do not yet have a complete picture of all FOS-consuming gut bacterial taxa. To identify new bacterial consumers, we used a short exposure of microbial communities in a stool sample to FOS or galactomannan as the sole carbon source to induce glycan metabolism genes. We then performed metatranscriptomics, paired with whole metagenomic sequencing, and 16S amplicon sequencing. The short incubation was sufficient to cause induction of genes involved in carbohydrate metabolism, like carbohydrate-active enzymes (CAZymes), including glycoside hydrolase family 32 genes, which hydrolyze fructan polysaccharides like FOS and inulin. Interestingly, FOS metabolism transcripts were notably overexpressed in Blautia species not previously reported to be fructan consumers. We therefore validated the ability of different Blautia species to ferment fructans by monitoring their growth and fermentation in defined media. This pulse metatranscriptomics approach is a useful method to find novel consumers of prebiotics and increase our understanding of prebiotic metabolism by CAZymes in the gut microbiota. IMPORTANCE Complex carbohydrates are key contributors to the composition of the human gut microbiota and play an essential role in the microbiota's effects on host health. Understanding which bacteria consume complex carbohydrates, or glycans, provides a mechanistic link between dietary prebiotics and their beneficial health effects, an essential step for their therapeutic application. Here, we used a pulse metatranscriptomics pipeline to identify bacterial consumers based on glycan metabolism induction in a human stool sample. We identified novel consumers of fructo-oligosaccharide among Blautia species, expanding our understanding of this well-known glycan. Our approach can be applied to identify consumers of understudied glycans and expand our prebiotic repertoire. It can also be used to study prebiotic glycans directly in stool samples in distinct patient populations to help delineate the prebiotic mechanism.
Collapse
Affiliation(s)
- Catherine Prattico
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Lharbi Dridi
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Shiva Jazestani
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kristin E. Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
Shang X, Fu Y, Wang Y, Yan S. Ramulus Mori (Sangzhi) alkaloids ameliorate high-fat diet induced obesity in rats by modulating gut microbiota and bile acid metabolism. Front Endocrinol (Lausanne) 2024; 15:1506430. [PMID: 39758340 PMCID: PMC11695234 DOI: 10.3389/fendo.2024.1506430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Objective The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders. Methods In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects. Liver lipid status was visualized through H&E and Oil Red O. Gut microbiota composition was elucidated using metagenomics. The LC-MS-targeted metabolomics approach was utilized to define the fecal BA profiles. Furthermore, the lipid metabolomics of adipose tissue samples was investigated using an LC-MS analysis platform. The expression levels of the BA receptor were determined by western blotting. Additionally, serum insulin (INS), glucagon-like peptide-1 (GLP-1), and inflammatory cytokines were quantified using an ELISA kit. The integrity of the colonic epithelial barrier was assessed using immunofluorescence. Results SZ-A notably decreased BW and blood lipid levels in obese rats while also alleviating liver injury. Additionally, SZ-A reduced the serum levels of leptin (LEP), INS, and GLP-1, indicating its potential to modulate key metabolic hormones. Most notably, SZ-A substantially improved gut microbiota composition. Specifically, it reshaped the gut microbiota structure in HFD-fed rats by increasing the relative abundance of beneficial bacteria, such as Bacteroides, while decreasing the populations of potentially harmful bacteria, such as Dorea and Blautia. At the BA level, SZ-A decreased the levels of harmful BAs, including hyodeoxycholic acid (HDCA), deoxycholic acid (DCA), 12-keto lithocholic acid (12-KLCA), lithocholic acid (LCA), and muricholic acid (MDCA). Between the model group and SZ-A, 258 differentially abundant metabolites were detected, with 72 upregulated and 186 downregulated. Furthermore, these BAs are implicated in the activation of the FXR-FGF15 and TGR5-GLP-1 pathways in the intestine. This activation helps to alleviate HFD-fed intestinal inflammation and restore intestinal barrier damage by modulating inflammatory cytokines and bolstering the intestinal barrier's capabilities. Conclusions Our findings indicate that SZ-A effectively modulates BW, serum lipid profiles, and liver function in HFD-fed rats. Moreover, SZ-A exerts a positive influence on inflammatory cytokines, thereby mitigating inflammation and promoting the restoration of the intestinal barrier. Significantly, our research indicates that adjusting the gut microbiome and BA levels could serve as an effective approach for both preventing and treating obesity and related metabolic dyslipidemia.
Collapse
Affiliation(s)
- Xin Shang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Zhang J, Chen Y, Li L, Liu R, Li P. MNAM enhances Blautia abundance and modulates Th17/Treg balance to alleviate diabetes in T2DM mice. Biochem Pharmacol 2024; 230:116593. [PMID: 39454734 DOI: 10.1016/j.bcp.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the therapeutic effects of N1-Methylnicotinamide (MNAM), a metabolic derivative, on T2DM mice induced by a high-fat diet and streptozotocin (STZ), focusing on its impact on the gut microbiome and immune modulation. MNAM significantly reduced hyperglycemia and enhanced insulin secretion, effects that were dependent on the presence of gut microbiota. It also mitigated STZ-induced weight loss and improved islet cell morphology, reducing islet cell mortality and increasing insulin (INS) levels. Flow cytometry analysis showed a decrease in T helper 17 cells (Th17) and an increase in Treg cells after MNAM treatment, corresponding to the upregulation of Treg markers [interleukin (IL)-10, forkhead box P3 (FOXP3)] and downregulation of Th17 markers [IL17A, RAR-related orphan receptor gamma (RORγt)]. Additionally, MNAM raised anti-inflammatory IL-10 levels while reducing pro-inflammatory cytokines [IL-17α, tumor necrosis factor (TNF-α), IL-6]. Microbiome analysis revealed decreased diversity and increased Blautia abundance post-MNAM administration. Treatment with Blautia not only reversed diabetes indicators but also modulated the Th17/Treg balance and reduced inflammation, with its metabolite sodium acetate mimicking these effects through the G protein-coupled receptor 43 (GPR43) pathway. These findings suggest that MNAM's mitigation of diabetes operates through modulation of the gut microbiota and immune regulation, highlighting Blautia and its metabolite as potential therapeutic agents and providing a theoretical foundation for novel treatment strategies in T2DM.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Mice
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Mice, Inbred C57BL
- Male
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/immunology
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Niacinamide/pharmacology
- Niacinamide/analogs & derivatives
- Clostridiales/drug effects
- Clostridiales/physiology
Collapse
Affiliation(s)
- Jingfan Zhang
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China.
| | - Yu Chen
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ruiqi Liu
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Yang D, Lv G, Wu Y, Guo W, Wang Y, Hu J, Li N, Zheng F, Dai Y, Pi Z, Yue H. Licorice-regulated gut-joint axis for alleviating collagen-induced rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156203. [PMID: 39510013 DOI: 10.1016/j.phymed.2024.156203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is partially affected by the integrity of the intestinal barrier. Licorice (GC), a medicinal and food-related herb, exhibits potent anti-inflammatory activity; however, studies on its mechanisms of action in RA are limited. METHOD Using a bovine type-II collagen-induced arthritis rat model, this study examined how GC influences the gut-joint axis to decrease RA. The Th17/Treg cell ratios in the blood, colon, and joints were also measured. Metabolomics and 16S rRNA sequencing were applied to explore the effects of variations in gut flora and metabolites. RESULTS The arthropathological slices, inflammation markers, and joint inflammation index scores in the GC treatment group significantly differed from those in the CIA group. Studies on the effect of GC on the gut-joint axis showed changes in the levels of lipopolysaccharide and diamine oxidase, both directly associated with intestinal permeability. ZO-1, occludin, and claudin-1, three intestinal tight-junction proteins, may express themselves more when exposed to GC. By maintaining an appropriate Th17/Treg cell ratio in the blood, colon, and joints, GC may reduce impaired to the intestinal barrier. An imbalance in the intestinal microenvironment, caused by modifications in gut flora and endogenous substances, can damage the intestinal barrier. GC may modify the relative abundances of Papillibacter, Clostridium, Eubacterium, Helicobacter, Provotella, and Barnesiella during RA treatment by repairing the intestinal barrier. The metabolic differences were mainly related to primary bile acid biosynthesis, pyrimidine metabolism, steroid biosynthesis, biotin metabolism, and sphingolipid metabolism. A fecal microbiota transplantation experiment confirmed the involvement of the gut microbiota and its metabolites in GC-mediated RA therapy. CONCLUSION The results demonstrated that GC repairs the intestinal barrier and adjusts the gut-joint axis to manage immunological imbalance in RA.
Collapse
Affiliation(s)
- Di Yang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Wentao Guo
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Jiannan Hu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Nian Li
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| |
Collapse
|
16
|
Naghibi M, Pont-Beltran A, Lamelas A, Llobregat L, Martinez-Blanch JF, Rojas A, Álvarez B, López Plaza B, Arcos Castellanos L, Chenoll E, Vijayakumar V, Day R. Effect of Postbiotic Bifidobacterium longum CECT 7347 on Gastrointestinal Symptoms, Serum Biochemistry, and Intestinal Microbiota in Healthy Adults: A Randomised, Parallel, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2024; 16:3952. [PMID: 39599737 PMCID: PMC11597252 DOI: 10.3390/nu16223952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES A randomised, double-blind, placebo-controlled pilot trial was conducted to assess the effect of heat-treated Bifidobacterium longum CECT 7347 (HT-ES1) in healthy adults with mild to moderate digestive symptoms. A total of 60 participants were recruited and received either HT-ES1 or an identical placebo for 8 weeks with a further follow-up at week 10. METHODS This study monitored changes in the total Gastrointestinal Symptom Rating Scale for IBS score (GSRS-IBS), Irritable Bowel Syndrome Symptom Severity Scale (IBS-SSS), IBS Quality of Life index (IBS-QoL), gut microbiome using 16S rRNA sequencing, and the Visceral Sensitivity Index, as well as a range of biochemical markers, anthropometric parameters, and adverse events. RESULTS While minimal changes were observed in gastrointestinal (GI) symptoms, the HT-ES1 group showed a significant decrease in total and non-HDL cholesterol compared to the placebo. The intervention group also exhibited a significant increase in the abundance of the genera Faecalibacterium and Anaerobutyricum, both of which were positively correlated with butyrate concentrations. Faecal calprotectin significantly increased over time in the placebo group but remained stable in the HT-ES1 group. CONCLUSIONS Overall, these findings suggest that HT-ES1 may promote gut health by increasing butyrate-producing bacteria in the gut, maintaining normal levels of faecal calprotectin and reducing serum cholesterol.
Collapse
Affiliation(s)
- Malwina Naghibi
- Medical Department, ADM Health & Wellness, London SE1 7NT, UK
| | - Adria Pont-Beltran
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Araceli Lamelas
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Laura Llobregat
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Juan F. Martinez-Blanch
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Antonia Rojas
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Beatriz Álvarez
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Bricia López Plaza
- Food, Nutrition and Health Platform, Hospital La Paz Institzonulute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Lucia Arcos Castellanos
- Food, Nutrition and Health Platform, Hospital La Paz Institzonulute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Empar Chenoll
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | | | - Richard Day
- Medical Department, ADM Health & Wellness, London SE1 7NT, UK
| |
Collapse
|
17
|
Vuralli D, Ceren Akgor M, Dagidir HG, Onat P, Yalinay M, Sezerman U, Bolay H. Microbiota alterations are related to migraine food triggers and inflammatory markers in chronic migraine patients with medication overuse headache. J Headache Pain 2024; 25:192. [PMID: 39516813 PMCID: PMC11546420 DOI: 10.1186/s10194-024-01891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Chronic migraine (CM) patients with medication overuse headache (MOH) were recently shown to be associated with leaky gut and inflammation. We aimed to investigate gut microbiota profiles of CM patients with MOH, and their correlations with inflammatory serum parameters, migraine food triggers, and comorbid anxiety and depression. MATERIALS AND METHODS The study included women participants (32 CM patients with NSAID overuse headache, and 16 healthy non-headache sufferers). Migraine duration, monthly migraine headache days, presence of irritable bowel syndrome symptoms, and HADS-D and HADS-A scores were recorded. Serum samples were collected to measure circulating LPS, HMGB1, HIF-1α, and IL-6. The gut microbiota profiles of the patients were evaluated using fecal samples. RESULTS Serum LPS, HMGB1, HIF-1α, and IL-6 levels were significantly higher in the CM + MOH group compared to the healthy controls. HADS-A and HADS-D scores were considerably higher in the CM + MOH group compared to the healthy controls. In the microbiota analysis, alpha and beta diversities were similar between the two groups. The class Clostridia, the order Eubacteriales, and the genus Ruminococcus were less abundant in the CM + NSAID overuse headache group compared to the control group. At the genus level Desulfovibrio, Gemmiger, and Dialister and at the species level, Clostridium fessum, Blautia luti, Dorea longicatena, Eubacterium coprostanoligenes, and Gemmiger formicilis were more abundant in the CM + NSAID overuse headache group compared to the control group. Desulfovibrio, Gemmiger, Dialister, Ethanoligenens harbinense, Eubacterium coprostanoligenes, Dorea longicatena, and Thermoclostridium stercorarium showed positive correlations and Clostridia bacteria showed negative correlations with migraine food triggers. Positive correlations were found between LPS and Hapalosiphonaceae, HMGB1 and Melghirimyces, HIF1-α and Rouxeilla and Blautia luti, IL-6 and Melghirimyces and Ruminococcus. CONCLUSION In CM patients with MOH, we have revealed the presence of dysbiosis towards an inflammatory state, and positive correlations were shown between altered gut microbiota and inflammatory serum parameters and migraine food triggers.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Merve Ceren Akgor
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Hale Gok Dagidir
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Pınar Onat
- Epigenetiks Genetic Bioinformatics Software Inc., Istanbul, Türkiye
| | - Meltem Yalinay
- Department of Clinical Microbiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University Faculty of Medicine, Istanbul, Türkiye
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye.
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye.
| |
Collapse
|
18
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
19
|
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life (Basel) 2024; 14:1397. [PMID: 39598196 PMCID: PMC11595618 DOI: 10.3390/life14111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
There is still a pressing need for further investigation to bridge the gap in understanding the differences in gut microbiota composition between female runners and their male counterparts. We aimed to determine the gut microbiota composition in competitive non-professional female and male runners and to correlate the gut bacteria to performance. Our study included 40 subjects, of which 22 were runners (13 males and 9 females) and 18 control subjects (9 males and 9 females, representing the general population who perform light physical activity with a weekly running volume of ≤5 km per week). Fecal specimens were collected and analyzed for taxonomic profiling to compare species' relative abundances between males and females based on the results of 16SrRNA analysis. Bacterial alpha and beta diversity were assessed to determine the differences in microbial composition between runners and controls, and between sexes. Each participant underwent a maximal oxygen consumption test and a time-to-exhaustion test at 85% of the measured VO2max. Blood lactate was collected every 5 min during the tests. Bacterial alpha diversity showed a significant difference (p = 0.04) between runners and controls. Taxonomic analysis of gut microbiota composition showed a lower Enterobacteriaceae abundance and a higher Methanosphaera abundance in runners compared with the control group. Ten different bacteria (Methanosphaera, Mitsuokella, Prevotellaceae, Megamonas, Rothia, Oscillospira, Bacteroides, Odoribacter, Blautia massiliensis, Butyricicoccus_pullicaecorum) were positively correlated with exercise (VO2max, lactate blood levels, time to exhaustion, and weekly training volume). We found no significant differences in the gut microbiota composition between male and female runners. Gut microbiota composition positively correlates with sports performance in competitive non-professional female and male runners, and female runners show similar gut microbiome diversity to male runners.
Collapse
Affiliation(s)
- Guy Shalmon
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Meitar Grad
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rani Shlayem
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ilan Youngster
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Pediatric Infectious Diseases Unit, The Center for Microbiome Research, Shamir Medical Center, Tel Aviv 6997801, Israel
| | - Mickey Scheinowitz
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
20
|
Abughazaleh N, Smith H, Seerattan RA, Hart DA, Reimer RA, Herzog W. Development of shoulder osteoarthritis and bone lesions in female and male rats subjected to a high fat/sucrose diet. Sci Rep 2024; 14:25871. [PMID: 39468197 PMCID: PMC11519393 DOI: 10.1038/s41598-024-76703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Oligofructose prebiotic fiber supplementation has been reported to mitigate the effects of a high fat/high sucrose diet and reduce knee joint degeneration in male rats. However, few studies investigated the development of osteoarthritis and bone lesions as a function of sex and in joints other than the knee. This study was aimed at to quantifying the effect of a HFS diet and prebiotic fiber supplementation on shoulder joint health in male and female Sprague-Dawley rats. Rats were randomized into 6 groups: 2 groups fed a chow diet: Chow-Male n = 11, Chow-female n = 12; 2 groups fed a HFS diet: HFS-Male n = 11, HFS-Female n = 12; and 2 groups fed a prebiotic fiber supplement in addition to the HFS diet: Fiber-Male n = 6, Fiber- Female n = 12. After 12 weeks, shoulder joints were histologically assessed for OA. Body composition, serum lipid profile, insulin resistance and fecal microbiota were also assessed. Shoulders in male and female rats appear to be protected against degeneration when exposed to a HFS diet. Male rats developed bone lesions while females did not. Fiber supplementation was more effective in males than in females suggesting that fiber supplementation may have sex-specific effects on the gut microbiota.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Hannah Smith
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Xiang Q, Yu M, Cai Q, Hu M, Rao B, Liang X, Liu Z, Xie Y, Cen K, Zhang R, Xu H, Liu Y. Multi-omics insights into the microbiota-gut-brain axis and cognitive improvement post-bariatric surgery. J Transl Med 2024; 22:945. [PMID: 39420319 PMCID: PMC11484437 DOI: 10.1186/s12967-024-05757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Although numerous studies have shown that bariatric surgery results in sustained weight loss and modifications in gut microbiota composition and cognitive function, the exact underlying mechanisms are unclear. This study aimed to investigate the effects of bariatric surgery on cognitive function through the microbiota-gut-brain axis (MGBA). METHODS Demographic data, serum samples, fecal samples, cognitive assessment scales, and resting-state functional connectivity magnetic resonance imaging (rs-fMRI) scans were obtained from 39 obese patients before and after (6 months) laparoscopic sleeve gastrectomy (LSG). PCA analysis, OPLS-DA analysis, and permutation tests were used to conduct fecal 16 S microbiota profiling, serum metabolomics, and neuroimaging analyses, and a bariatric surgery-specific rs-fMRI brain functional connectivity network was constructed. Spearman correlation analysis and Co-inertia analysis were employed to correlate significant alterations in cognitive assessment scales and resting-state functional connectivity difference networks with differential serum metabolites and 16 S microbiota data to identify key gut microbiota and serum metabolic factors. RESULTS LSG significantly reduced the weight of obese patients, with reductions of up to 28%. Furthermore, cognitive assessment scale measurements revealed that LSG enhanced cognitive functions, including memory (HVLT, p = 0.000) and executive function (SCWT, p = 0.008). Also, LSG significantly altered gut microbiota composition (p = 0.001), with increased microbial abundance and diversity (p < 0.05). Moreover, serum metabolite levels were significantly altered, revealing intergroup differences in 229 metabolites mapped to 72 metabolic pathways (p < 0.05, VIP > 1). Spearman correlation analysis among cognitive assessment scales, gut microbiota species, and serum metabolites revealed correlations with 68 gut microbiota species and 138 serum metabolites (p < 0.05). Furthermore, pairwise correlations were detected between gut microbiota and serum metabolites (p < 0.05). Functional neuroimaging analysis revealed that LSG increased functional connectivity in cognitive-related frontotemporal networks (FPN, p < 0.01). Additionally, normalization of the default mode network (DMN) and salience network (SN) connectivity was observed after LSG (p < 0.001). Further canonical correlation and correlation analysis suggested that the cognitive-related brain network changes induced by LSG were associated with key gut microbiota species (Akkermansia, Blautia, Collinsella, Phascolarctobacterium, and Ruminococcus, p < 0.05) and neuroactive metabolites (Glycine, L-Serine, DL-Dopa, SM (d18:1/24:1(15Z), p < 0.05). CONCLUSION These findings indicate the pathophysiological role of the microbiota-gut-brain axis in enhancing cognitive function after bariatric surgery, and the study provides a basis for clinical dietary adjustments, probiotic supplementation, and guidance for bariatric surgery, but further research is still needed. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2100049403. Registered 02 August 2021, https://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Qiaoyuan Xiang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Cai
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Mengjie Hu
- Department of Hepatobiliary, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Liang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Zhenxing Liu
- Department of Neurology, Yiling Hospital of Yichang City, Yichang, Hubei, China
| | - Yu Xie
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Kuan Cen
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Renwei Zhang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yumin Liu
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China.
| |
Collapse
|
22
|
Yu T, Gao S, Jin F, Yan B, Wang W, Wang Z. Characteristics of the vaginal microbiota and vaginal metabolites in women with cervical dysplasia. Front Cell Infect Microbiol 2024; 14:1457216. [PMID: 39450338 PMCID: PMC11499233 DOI: 10.3389/fcimb.2024.1457216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Emerging evidence suggests that the vaginal microbiota is closely associated with cervical cancer. However, little is known about the relationships among the vaginal microbiota, vaginal metabolites, and cervical lesion progression in women undergoing cervical dysplasia. Methods In this study, to understand vaginal microbiota signatures and vaginal metabolite changes in women with cervical lesions of different grades and cancer, individuals with normal or cervical dysplasia were recruited and divided into healthy controls (HC) group, low-grade squamous intraepithelial lesions (LSIL) group, high-grade squamous intraepithelial lesions (HSIL) group, and cervical cancer (CC) group. Vaginal secretion samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics, and integrated analysis. Results The results demonstrated that bacterial richness and diversity were greater in the CC group than the other three groups. Additionally, Lactobacillus was found to be negatively associated with bacterial diversity and bacterial metabolic functions, which increased with the degree of cervical lesions and cancer. Metabolomic analysis revealed that distinct metabolites were enriched in these metabolite pathways, including tryptophan metabolism, retinol metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, as well as citrate cycle (TCA cycle). Correlation analysis revealed positive associations between CC group-decreased Lactobacillus abundance and CC group-decreased metabolites. Lactobacillus iners was both negative to nadB and kynU genes, the predicted abundance of which was significantly higher in the CC group. The linear regression model showed that the combination of the vaginal microbiota and vaginal metabolites has good diagnostic performance for cervical cancer. Discussion Our results indicated a clear difference in the vaginal microbiota and vaginal metabolites of women with cervical dysplasia. Specifically altered bacteria and metabolites were closely associated with the degree of cervical lesions and cancer, indicating the potential of the vaginal microbiota and vaginal metabolites as modifiable factors and therapeutic targets for preventing cervical cancer.
Collapse
Affiliation(s)
- Tiantian Yu
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Shan Gao
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Fen Jin
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Bingbing Yan
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Wendong Wang
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhongmin Wang
- Female Pelvic Floor Urinary Reconstructive Center, Dalian Women and Children’s Medical Group, Dalian, China
| |
Collapse
|
23
|
Horwell E, Vittoria M, Hong HA, Bearn P, Cutting SM. A Family of Cyclic Lipopeptides Found in Human Isolates of Bacillus Ameliorates Acute Colitis via Direct Agonism of Toll-Like Receptor 2 in a Murine Model of Inflammatory Bowel Disease. Dig Dis Sci 2024; 69:3729-3741. [PMID: 39110366 PMCID: PMC11489211 DOI: 10.1007/s10620-024-08534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND The Bacillus-derived cyclic lipopeptides (surfactin, iturin, and fengycin) form potent Heterogeneous Lipopeptide Micelle (HeLM) complexes. HeLM is a small molecule that has been shown to have immunomodulatory effects. However, how HeLM regulates inflammation is not clear, moreover its application to Inflammatory Bowel Disease (IBD), specifically Ulcerative Colitis (UC), has not been tested before. AIMS To use a murine model of IBD and determine the effects of HeLM and related molecular mechanisms of action. METHODS Colitis was induced in mice by administration of 4% Dextran Sodium Sulfate. Three preparations were tested against negative and positive controls: Purified HeLM, the wild-type strain that produces it, and an isogenic mutant that does not produce HeLM. Clinical, biochemical, and histological scoring systems were used to assess the severity of colitis. RT-qPCR and cell cultures were used to determine the levels of molecular signaling. Fecal samples were processed for metagenomic analysis. RESULTS Purified HeLM, and the wild-type strain, significantly decreased the severity of colitis as determined by the disease activity index (DAI), mouse colitis histology index (MCHI), fecal calprotectin, and colonic length. This effect was not seen in the mutant. HeLM was found to be an agonist to TLR-2, seemingly activating the Toll-Like Receptor 2/IL-10 pathway, with subsequent downregulation of inflammatory cytokines (TNF-α, IL-1β, and IL-6). At higher concentrations HeLM inhibited lipopolysaccharide ligands from activating TLR-4. The reduction in colitis was not due to microbiome modulation, as had previously been hypothesized. CONCLUSION Our results indicate that HeLM ameliorates colitis by TLR-2-induced IL-10 production and possibly via the inhibition of lipopolysaccharide.
Collapse
Affiliation(s)
- Edward Horwell
- Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, Egham, TW20 0EX, UK
- The Department of Colorectal Surgery, Ashford and Saint Peter's NHS Foundation Trust (UK), Surrey, UK
| | - Maria Vittoria
- Department of Biology, University of Naples Federico II (Italy), Naples, Italy
| | - Huynh A Hong
- Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Philip Bearn
- The Department of Colorectal Surgery, Ashford and Saint Peter's NHS Foundation Trust (UK), Surrey, UK
| | - Simon M Cutting
- Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, Egham, TW20 0EX, UK
| |
Collapse
|
24
|
Rui W, Li X, Wang L, Tang X, Yang J. Potential Applications of Blautia wexlerae in the Regulation of Host Metabolism. Probiotics Antimicrob Proteins 2024; 16:1866-1874. [PMID: 38703323 DOI: 10.1007/s12602-024-10274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Blautia wexlerae (B. wexlerae) is a strong candidate with the potential to become a next-generation probiotics (NGPs) and has recently been shown for the first time to exhibit potential in modulating host metabolic levels and alleviating metabolic diseases. However, the factors affecting the change in abundance of B. wexlerae and the pattern of its abundance change in the associated indications remain to be further investigated. Here, we summarize information from published studies related to B. wexlerae; analyze the effects of food source factors such as prebiotics, probiotics, low protein foods, polyphenols, vitamins, and other factors on the abundance of B. wexlerae; and explore the patterns of changes in the abundance of B. wexlerae in metabolic diseases, neurological diseases, and other diseases. At the same time, the development potential of B. wexlerae was evaluated in the direction of functional foods and special medical foods.
Collapse
Affiliation(s)
- Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China
| | - Lijun Wang
- Department of Endodontology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, China.
| |
Collapse
|
25
|
Sato S, Iino C, Sasada T, Soma G, Furusawa K, Yoshida K, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Epidemiological Study on the Interaction between the PNPLA3 (rs738409) and Gut Microbiota in Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 15:1172. [PMID: 39336763 PMCID: PMC11430940 DOI: 10.3390/genes15091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Many factors are associated with the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD); however, genetics and gut microbiota are representative factors. Recent studies have highlighted the link between host genes and the gut microbiota. Although there have been many studies on the separate effects of single nucleotide polymorphisms (SNPs) and gut bacteria on MASLD, few epidemiological studies have examined how SNPs and gut bacteria interact in the development and progression of MASLD. This study aimed to investigate the association between PNPLA3 rs738409, a representative MASLD-related SNP, and gut bacteria in MASLD using a cross-sectional study of the general population. The 526 participants (318 normal and 208 MASLD groups) were grouped into the PNPLA3 rs738409 SNP, CC, CG, and GG genotypes, and the differences in the gut microbiota were investigated in each group. The PNPLA3 rs738409 CC and CG genotypes were associated with decreased Blautia and Ruminococcaceae in the MASLD group. They were negatively correlated with controlled attenuation parameter levels, body mass index, serum blood glucose, and triglycerides. In contrast, there was no association between the normal and MASLD groups and the gut bacteria in the PNPLA3 rs738409, the GG genotype group. This finding implies that dietary interventions and probiotics may be more effective in preventing and treating MASLD in individuals with the PNPLA3 rs738409 CC and CG genotypes. In contrast, their efficacy may be limited in those with the GG genotype.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Go Soma
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Keisuke Furusawa
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kenta Yoshida
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology, Hematology, and Clinical Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
26
|
Bohn B, Tilves C, Chen Y, Doyon M, Bouchard L, Perron P, Guérin R, Massé É, Hivert MF, Mueller NT. Associations of gut microbiota features and circulating metabolites with systemic inflammation in children. BMJ Open Gastroenterol 2024; 11:e001470. [PMID: 39209769 PMCID: PMC11367355 DOI: 10.1136/bmjgast-2024-001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Gut microbes and microbe-dependent metabolites (eg, tryptophan-kynurenine-serotonin pathway metabolites) have been linked to systemic inflammation, but the microbiota-metabolite-inflammation axis remains uncharacterised in children. Here we investigated whether gut microbiota features and circulating metabolites (both microbe-dependent and non-microbe-dependent metabolites) associated with circulating inflammation markers in children. METHODS We studied children from the prospective Gen3G birth cohort who had data on untargeted plasma metabolome (n=321 children; Metabolon platform), gut microbiota (n=147; 16S rRNA sequencing), and inflammation markers (plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1, and tumour necrosis factor-α) measured at 5-7 years. We examined associations of microbial taxa and metabolites-examining microbe-dependent and non-microbe-dependent metabolites separately-with each inflammatory marker and with an overall inflammation score (InfSc), adjusting for key confounders and correcting for multiple comparisons. We also compared the proportion of significantly associated microbe-dependent versus non-microbe-dependent metabolites, identified a priori (Human Microbial Metabolome Database), with each inflammation marker. RESULTS Of 335 taxa tested, 149 were associated (qFDR<0.05) with at least one inflammatory marker; 10 of these were robust to pseudocount choice. Several bacterial taxa involved in tryptophan metabolism were associated with inflammation, including kynurenine-degrading Ruminococcus, which was inversely associated with all inflammation markers. Of 1037 metabolites tested, 315 were previously identified as microbe dependent and were more frequently associated with PAI-1 and the InfSc than non-microbe dependent metabolites. In total, 87 metabolites were associated (qFDR<0.05) with at least one inflammation marker, including kynurenine (positively), serotonin (positively), and tryptophan (inversely). CONCLUSION A distinct set of gut microbes and microbe-dependent metabolites, including those involved in the tryptophan-kynurenine-serotonin pathway, may be implicated in inflammatory pathways in childhood.
Collapse
Affiliation(s)
- Bruno Bohn
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Curtis Tilves
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yingan Chen
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, Québec, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Renée Guérin
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, Québec, Canada
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Noel T Mueller
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics Section of Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
27
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Liang T, Shi H, Cui H, Cui Y, Zhao Z, Wang Y, Shi D, Tian P. Causal relationships between gut microbiota, immune cell, and Henoch-Schönlein Purpura: a two-step, two-sample Mendelian randomization study. Front Immunol 2024; 15:1450544. [PMID: 39206187 PMCID: PMC11349531 DOI: 10.3389/fimmu.2024.1450544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Regulating the immune system is a crucial measure of gut microbiota (GM) that influences the development of diseases. The causal role of GM on Henoch-Schönlein Purpura (HSP) and whether it can be mediated by immune cells is still unknown. Methods We performed a two-sample Mendelian randomization study using an inverse variance weighted (IVW) method to examine the causal role of GM on HSP and the mediation effect of immune cells between the association of GM and HSP. Results We demonstrated the causal relationships between 14 axas and 6 pathways with HSP. Additionally, we identified 9 immune cell characteristics associated with HSP. Importantly, through mediation MR analysis, we identified several immune cell characteristics that mediate the impact of GM on HSP. For instance, Genus_Blautia affects HSP via Monocyte (HLA DR on CD14+ CD16- monocyte) and Monocyte (HLA DR on monocyte). The proportion of mediation effects further elucidated the complex dynamics between GM exposure, immune markers, and their combined impact on HSP. Conclusion The study suggested a causal relationship between GM and HSP, which may be mediated by immune cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peichao Tian
- Department of Pediatric Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Wang D, Wang X, Han J, You C, Liu Z, Wu Z. Effect of Lacticaseibacillus casei LC2W Supplementation on Glucose Metabolism and Gut Microbiota in Subjects at High Risk of Metabolic Syndrome: A Randomized, Double-blinded, Placebo-controlled Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10312-5. [PMID: 38954305 DOI: 10.1007/s12602-024-10312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Metabolic syndrome (MetS) is a global epidemic complex and will cause serious metabolic comorbidities without treatment. A prevention strategy for MetS development has been proposed to modulate gut microbiota by probiotic administration to improve intestinal dysbiosis and benefit the host. Lacticaseibacillus casei LC2W has exhibited positive effects in preventing colitis and anti-hypertension in vivo. However, the effect of L. casei LC2W on subjects at high risk of MetS is unknown. Here, a randomized, double-blinded, placebo-controlled study was conducted on 60 subjects with high risk of MetS, and the hypoglycemic and hypolipidemic activity and possible pathways of L. casei LC2W were inferred from the correlation analysis with gut microbiome composition, function, and clinical phenotypic indicators. The results showed that oral administration of L. casei LC2W could exert significant benefits on weight control, glucose and lipid metabolism, inflammatory and oxidative stress parameters, and SCFA production, as well as modulate the composition of gut microbiota. The relative abundance of Lacticaseibacillus, Bifidobacterium, Dorea, and Blautia was enriched, and their interaction with other gut microbes was strengthened by oral administration of L. casei LC2W, which was beneficial in ameliorating gut inflammation, promoting glucose and lipids degradation pathways, thus alleviated MetS. The present study confirmed the prevention effects of L. casei LC2W towards MetS from aspects of clinical outcomes and microflora modulation, providing an alternative strategy for people at high risk of MetS.Trial registration: The study was proactively registered in ClinicalTrial.gov with the registration number of ChiCTR2000031833 on April 09, 2020.
Collapse
Affiliation(s)
- Danqi Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China.
| |
Collapse
|
30
|
Yaşar A, Ryu HJ, Esen E, Sarıoğlan İ, Deemer D, Çetin B, Yoo SH, Lindemann SR, Lee BH, Tunçil YE. The branching ratio of enzymatically synthesized α-glucans impacts microbiome and metabolic outcomes of in vitro fecal fermentation. Carbohydr Polym 2024; 335:122087. [PMID: 38616077 DOI: 10.1016/j.carbpol.2024.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The aim of this study was to evaluate the impacts of enzymatically synthesized α-glucans possessing α-1,4- and α-1,6-glucose linkages, and varying in branching ratio, on colonic microbiota composition and metabolic function. Four different α-glucans varying in branching ratio were synthesized by amylosucrase from Neisseria polysaccharea and glycogen branching enzyme from Rhodothermus obamensis. The branching ratios were found to range from 0 % to 2.8 % using GC/MS. In vitro fecal fermentation analyses (n = 8) revealed that the branching ratio dictates the short-chain fatty acid (SCFA) generation by fecal microbiota. Specifically, slightly branched (0.49 %) α-glucan resulted in generation of significantly (P < 0.05) higher amounts of propionate, compared to more-branched counterparts. In addition, the amount of butyrate generated from this α-glucan was statistically (P > 0.05) indistinguishable than those observed in resistant starches. 16S rRNA sequencing revealed that enzymatically synthesized α-glucans stimulated Lachnospiraceae and Ruminococcus related OTUs. Overall, the results demonstrated metabolic function of colonic microbiota can be manipulated by altering the branching ratio of enzymatically synthesized α-glucans, providing insights into specific structure-function relationships between dietary fibers and the colonic microbiome. Furthermore, the slightly branched α-glucans could be used as functional carbohydrates to stimulate the beneficial microbiota and SCFAs in the colon.
Collapse
Affiliation(s)
- Arife Yaşar
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - Hye-Jung Ryu
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Emine Esen
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - İhsan Sarıoğlan
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye
| | - Dane Deemer
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA
| | - Bülent Çetin
- Food Engineering Department, Agricultural Faculty, Atatürk University, Erzurum, 25100, Turkiye
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, 47907, IN, USA; Department of Nutrition Science, Purdue University, West Lafayette 47907, IN, USA; Department of Biological Sciences, Purdue University, West Lafayette 47907, IN, USA
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yunus E Tunçil
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkiye; Medical and Cosmetic Plants Application and Research Center, Necmettin Erbakan University, Konya 42090, Turkiye.
| |
Collapse
|
31
|
Bao W, Sun Y, Wang J, Wei S, Mao L, Zheng J, Liu P, Yang X, Chen Z. Relationship Between the Gut Microbiota and Neurological Deficits in Patients With Cerebral Ischemic Stroke. Neurorehabil Neural Repair 2024; 38:527-538. [PMID: 38752465 DOI: 10.1177/15459683241252608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
OBJECTIVE The aim of the paper was to investigate the composition and structure of intestinal flora in patients with cerebral ischemic stroke (CIS), and to investigate the relationship between gut microbiota (GM) and different levels of stroke severity. METHODS In this study, 47 CIS patients (16 mild, 21 moderate, and 10 severe) and 15 healthy controls were included. General information, clinical data, and behavioral scores of the enrolled subjects were collected. Deoxyribonucleic acid in fecal intestinal flora was extracted and detected using high-throughput Illumina 16S ribosomal ribonucleic acid sequencing technology. Finally, the correlation between the community composition of intestinal microbiota and National Institutes of Health Stroke Scale (NIHSS) score in CIS patients was analyzed. RESULTS Compared with healthy controls, there was no statistically significant difference in Alpha diversity among CIS patients, but the principal coordinate analysis showed significant differences in the composition of the GM among stroke patients with different degrees of severity and controls. In CIS patients, Streptococcus was significantly enriched, and Eshibacter-Shigella, Bacteroides, and Agathobacter were significantly down-regulated (P < .05). In addition, the relative abundance of Blautia was negatively correlated with the NIHSS score. CONCLUSIONS Our results show that different degrees of CIS severity exert distinct effects on the intestinal microbiome. This study reveals the intestinal microecological changes after brain injury from the perspective of brain-gut axis. Intestinal microorganisms not only reveal the possible pathological process and indicate the severity of neurologic impairment, but also make targeted therapy possible for CIS patients.
Collapse
Affiliation(s)
- Wangxiao Bao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Sun
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juehan Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjin Zheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Selma-Royo M, Dubois L, Manara S, Armanini F, Cabrera-Rubio R, Valles-Colomer M, González S, Parra-Llorca A, Escuriet R, Bode L, Martínez-Costa C, Segata N, Collado MC. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding during the first year. Cell Host Microbe 2024; 32:996-1010.e4. [PMID: 38870906 PMCID: PMC11183301 DOI: 10.1016/j.chom.2024.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
The composition and maturation of the early-life microbiota are modulated by a number of perinatal factors, whose interplay in relation to microbial vertical transmission remains inadequately elucidated. Using recent strain-tracking methodologies, we analyzed mother-to-infant microbiota transmission in two different birth environments: hospital-born (vaginal/cesarean) and home-born (vaginal) infants and their mothers. While delivery mode primarily explains initial compositional differences, place of birth impacts transmission timing-being early in homebirths and delayed in cesarean deliveries. Transmission patterns vary greatly across species and birth groups, yet certain species, like Bifidobacterium longum, are consistently vertically transmitted regardless of delivery setting. Strain-level analysis of B. longum highlights relevant and consistent subspecies replacement patterns mainly explained by breastfeeding practices, which drive changes in human milk oligosaccharide (HMO) degrading capabilities. Our findings highlight how delivery setting, breastfeeding duration, and other lifestyle preferences collectively shape vertical transmission, impacting infant gut colonization during early life.
Collapse
Affiliation(s)
- Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Léonard Dubois
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Serena Manara
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain; Diet Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Anna Parra-Llorca
- Health Research Institute La Fe, Neonatal Research Group, Division of Neonatology, Valencia, Spain
| | - Ramon Escuriet
- Gerencia de Procesos Integrales de Salud. Area Asistencial, Servicio Catalan de la Salud, Generalitat de Catalunya, Centre for Research in Health and Economics, Universidad Pompeu Fabra, Barcelona, Spain
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Cecilia Martínez-Costa
- Department of Pediatrics, Hospital Clínico Universitario, University of Valencia, Spain; Nutrition Research Group of INCLIVA, Valencia, Spain
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
33
|
Yan L, Wang X, Yu T, Qi Z, Li H, Nan H, Wang K, Luo D, Hua F, Wang W. Characteristics of the gut microbiota and serum metabolites in postmenopausal women with reduced bone mineral density. Front Cell Infect Microbiol 2024; 14:1367325. [PMID: 38912210 PMCID: PMC11190063 DOI: 10.3389/fcimb.2024.1367325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Emerging evidence suggests that the gut microbiota is closely associated with bone homeostasis. However, little is known about the relationships among the bone mineral density (BMD) index, bone turnover markers, and the gut microbiota and its metabolites in postmenopausal women. Methods In this study, to understand gut microbiota signatures and serum metabolite changes in postmenopausal women with reduced BMD, postmenopausal individuals with normal or reduced BMD were recruited and divided into normal and OS groups. Feces and serum samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics and integrated analysis. Results The results demonstrated that bacterial richness and diversity were greater in the OS group than in the normal group. Additionally, distinguishing bacteria were found among the two groups and were closely associated with the BMD index and bone turnover markers. Metabolomic analysis revealed that the expression of serum metabolites, such as etiocholanolone, testosterone sulfate, and indole-3-pyruvic acid, and the corresponding signaling pathways, especially those involved in tryptophan metabolism, fatty acid degradation and steroid hormone biosynthesis, also changed significantly. Correlation analysis revealed positive associations between normal group-enriched Bacteroides abundance and normal group-enriched etiocholanolone and testosterone sulfate abundances; in particular, Bacteroides correlated positively with BMD. Importantly, the tryptophan-indole metabolism pathway was uniquely metabolized by the gut bacteria-derived tnaA gene, the predicted abundance of which was significantly greater in the normal group than in the control group, and the abundance of Bacteroides was strongly correlated with the tnaA gene. Discussion Our results indicated a clear difference in the gut microbiota and serum metabolites of postmenopausal women. Specifically altered bacteria and derived metabolites were closely associated with the BMD index and bone turnover markers, indicating the potential of the gut microbiota and serum metabolites as modifiable factors and therapeutic targets for preventing osteoporosis.
Collapse
Affiliation(s)
- Litao Yan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xianfeng Wang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Tiantian Yu
- Department of Gynaecology and Obstetrics, Dalian Municipal Woman and Children’s Medical Center, Dalian, China
| | - Zhiming Qi
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| | - Huan Li
- Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Nan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kun Wang
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Di Luo
- Department of Clinical Laboratory, The Second People’s Hospital of Dalian, Dalian, China
| | - Fei Hua
- Department of Endocrinology and Metabolism, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wendong Wang
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| |
Collapse
|
34
|
Ma G, Yan H, Tye KD, Tang X, Luo H, Li Z, Xiao X. Effect of probiotic administration during pregnancy on the functional diversity of the gut microbiota in healthy pregnant women. Microbiol Spectr 2024; 12:e0041324. [PMID: 38687069 PMCID: PMC11237737 DOI: 10.1128/spectrum.00413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Our study aims to investigate the impact of probiotic consumption during pregnancy on gut microbiota functional diversity in healthy pregnant women. Thirty-two pregnant women were randomly assigned to two groups. The probiotic group (PG) consisted of pregnant women who consumed triple viable Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus tablets from the 32nd week of pregnancy until delivery. The functional profiles of the gut microbiota were predicted through high-throughput 16S rRNA sequencing results using PICRUSt software and referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the gut microbiota of the PG, the genera Blautia and Ruminococcus, as well as the species Subdoligranulum, showed significantly higher relative abundances compared to the control group (CG) (P < 0.05). At Level 1 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Organismal Systems in the PG (P < 0.05). In Level 2 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Infectious Disease in the PG (P < 0.05). In Level 3 of the KEGG signaling pathways, the PG exhibited a significant increase in the functional genes of the gut microbiota involved in ABC transporters, Oxidative phosphorylation, Folate biosynthesis, and Biotin metabolism (P < 0.05). The CG showed a significant increase in the functional genes related to Cysteine and methionine metabolism, Vitamin B6 metabolism, Tuberculosis, and Vibrio cholerae pathogenic cycle (P < 0.05). In conclusion, our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism in healthy pregnant women. IMPORTANCE Probiotics are considered beneficial to human health. There is limited understanding of how probiotic consumption during pregnancy affects the functional diversity of the gut microbiota. The aim of our study is to investigate the impact of probiotic consumption during pregnancy on the functional diversity of the gut microbiota. Our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism. This could potentially open up new avenues for preventing various pregnancy-related complications. This also provides new insights into the effects of probiotic consumption during pregnancy on the gut microbiota and offers a convenient method for exploring the potential mechanisms underlying the impact of probiotics on the gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Tang X, Zhou Y, Liu F, Wang B, Mao B, Zhang Q, Zhao J, Chen W, Cui S. A Pueraria lobata root extract alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating the gut microbiota and associated metabolites. FOOD BIOSCI 2024; 59:103746. [DOI: 10.1016/j.fbio.2024.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Zhang P, Li J, Miao Y, Zhao X, Zhu L, Yao J, Wan M, Tang W. Sheng-Jiang powder ameliorates NAFLD via regulating intestinal microbiota in mice. Front Microbiol 2024; 15:1387401. [PMID: 38860223 PMCID: PMC11163104 DOI: 10.3389/fmicb.2024.1387401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Background Intestinal microbiota have been demonstrated to be involved in the development of NAFLD, while the relationship between the severity of NAFLD and intestinal microbiota is still not fully elucidated. Sheng-Jiang Powder (SJP) showed exact efficacy in treating SFL and great potential in regulating intestinal microbiota, but the effects need to be further addressed in NASH and liver fibrosis. Objectives To investigate the differences in intestinal microbiota of NAFLD with different severity and the effect of SJP on liver damage and intestinal microbiota. Design NAFLD mice models with different severity were induced by high-fat diet (HFD) or choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) feeding and then treated with SJP/normal saline. Methods Biochemical blood tests, H&E/Masson/Oil Red O/IHC staining, Western blot, and 16SrDNA sequencing were performed to explore intestinal microbiota alteration in different NAFLD models and the effect of SJP on liver damage and intestinal microbiota. Results Intestinal microbiota alteration was detected in all NAFLD mice. SJP induced increased expression of Pparγ and alleviated liver lipid deposition in all NAFLD mice. Microbiome analysis revealed obvious changes in intestinal microbiota composition, while SJP significantly elevated the relative abundance of Roseburia and Akkermansia, which were demonstrated to be beneficial for improving inflammation and intestinal barrier function. Conclusion Our results demonstrated that SJP was effective in improving lipid metabolism in NAFLD mice, especially in mice with SFL. The potential mechanism may be associated with the regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Emergency Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Wang L, Li Y, Zhang YJ, Peng LH. Intestinal microecological transplantation for a patient with chronic radiation enteritis: A case report. World J Gastroenterol 2024; 30:2603-2611. [PMID: 38817661 PMCID: PMC11135409 DOI: 10.3748/wjg.v30.i19.2603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The gut microbiota is strongly associated with radiation-induced gut damage. This study aimed to assess the effectiveness and safety of intestinal microecological transplantation for treating patients with chronic radiation enteritis. CASE SUMMARY A 64-year-old female with cervical cancer developed abdominal pain, diarrhea, and blood in the stool 1 year after radiotherapy. An electronic colonoscopy was performed to diagnose chronic radiation enteritis. Two courses of intestinal microecological transplantation and full-length 16S rRNA microbiological analysis were performed. The patient experienced short- and long-term relief from symptoms without adverse effects. Whole 16S rRNA sequencing revealed significant differences in the intestinal flora's composition between patient and healthy donors. Pathogenic bacteria, such as Escherichia fergusonii and Romboutsia timonensis, were more in the patient. Beneficial bacteria such as Faecalibacterium prausnitzii, Fusicatenibacter saccharivorans, Ruminococcus bromii, and Bifidobacterium longum were more in the healthy donors. Intestinal microbiota transplantation resulted in a significant change in the patient's intestinal flora composition. The composition converged with the donor's flora, with an increase in core beneficial intestinal bacteria, such as Eubacterium rectale, and a decrease in pathogenic bacteria. Changes in the intestinal flora corresponded with the patients' alleviating clinical symptoms. CONCLUSION Intestinal microecological transplantation is an effective treatment for relieving the clinical symptoms of chronic radiation enteritis by altering the composition of the intestinal flora. This study provides a new approach for treating patients with chronic radiation enteritis.
Collapse
Affiliation(s)
- Lin Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology and Hepatology, Chinese PLA Medical School, Beijing 100853, China
| | - Yan Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu-Jing Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology and Hepatology, Chinese PLA Medical School, Beijing 100853, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Liang L, Su X, Guan Y, Wu B, Zhang X, Nian X. Correlation between intestinal flora and GLP-1 receptor agonist dulaglutide in type 2 diabetes mellitus treatment-A preliminary longitudinal study. iScience 2024; 27:109784. [PMID: 38711446 PMCID: PMC11070333 DOI: 10.1016/j.isci.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1 RA) are presently used as the first-line drugs for the clinical treatment of type 2 diabetes mellitus (T2DM). It can regulate blood glucose by stimulating insulin secretion and lowering glucagon levels. We used 16S rRNA amplicon sequencing to detect structural changes in the composition of the intestinal flora of newly diagnosed T2DM after 1 and 48 weeks of dulaglutide administration. Our research found no significant changes in the intestinal flora after the administration of dulaglutide for 1 week to subjects with newly diagnosed T2DM. Nevertheless, after 48 weeks of dulaglutide administration, the composition of the intestinal flora changed significantly, with a significant reduction in the abundance of intestinal flora. Furthermore, we found that fasting glucose levels, fasting c-peptide levels, HbA1c levels, and BMI are also closely associated with intestinal flora. This reveals that intestinal flora may be one of the mechanisms by which dulaglutide treats T2DM.
Collapse
Affiliation(s)
- Lei Liang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Endocrinology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - XiaoYun Su
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Wu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Bellanco A, Celcar Š, Martínez-Cuesta MC, Requena T. The food additive xylitol enhances the butyrate formation by the child gut microbiota developed in a dynamic colonic simulator. Food Chem Toxicol 2024; 187:114605. [PMID: 38537869 DOI: 10.1016/j.fct.2024.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
The gut microbiota should be included in the scientific processes of risk assessment of food additives. Xylitol is a sweetener that shows low digestibility and intestinal absorption, implying that a high proportion of consumed xylitol could reach the colonic microbiota. The present study has evaluated the dose-dependent effects of xylitol intake on the composition and the metabolic activity of the child gut-microbiota. The study was conducted in a dynamic simulator of the colonic microbiota (BFBL Gut Simulator) inoculated with a child pooled faecal sample and supplemented three times per day, for 7 days, with increasing xylitol concentrations (1 g/L, 3 g/L and 5 g/L). Sequencing of 16S rRNA gene amplicons and group-specific quantitative PCR indicated a xylitol dose-response effect on the abundance of Lachnospiraceae, particularly the genera Blautia, Anaerostipes and Roseburia. The microbial changes observed with xylitol corresponded with a dose-dependant effect on the butyrate concentration that, in parallel, favoured an increase in epithelial integrity of Caco-2 cells. The study represents a detailed observation of the bacterial taxa that are the main contributors to the metabolism of xylitol by the child gut microbiota and the results could be relevant in the risk assessment re-evaluation of xylitol as a sweetener.
Collapse
Affiliation(s)
- Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Špela Celcar
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain.
| |
Collapse
|
40
|
Manafu Z, Zhang Z, Malajiang X, Abula S, Guo Q, Wu Y, Wusiman A, Bake B. Effects of Alhagi camelorum Fisch polysaccharide from different regions on growth performance and gastrointestinal microbiota of sheep lambs. Front Pharmacol 2024; 15:1379394. [PMID: 38746008 PMCID: PMC11091474 DOI: 10.3389/fphar.2024.1379394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Polysaccharides derived from Alhagi camelorum Fisch possess diverse activities, making them a potential prebiotic candidates for enhancing lamb health. This study investigated the immunomodulatory effects of Alhagi camelorum Fisch polysaccharides from Aksu (AK) and Shanshan (SS) regions on sheep lambs. The results showed that sheep lambs in the SS group exhibited significantly increased (p < 0.05) average daily gain, levels of growth hormone (GH), insulin (INS), IgA and IgM, and cytokines IL-4, IL-10, IL-17, TNF-α and IFN-γ compared to those in the control check (CK) group. Moreover, the SS treatment significantly increased the diversity and abundance of beneficial bacteria, while concurrently diminishing the prevalence of harmful bacteria. Additionally, it modulated various metabolic pathways, promoted lamb growth, improved immunity, reduced the risk of gastrointestinal disease and improved the composition of gastrointestinal microbiota. In summary, our findings highlight the potential of SS treatment in enhancing gastrointestinal health of sheep lambs by improving intestinal function, immunity, and gut microbiome. Consequently, these results suggest that Alhagi camelorum Fisch polysaccharides derived from Shanshan regions holds promising potential as a valuable intervention for optimizing growth performance in sheep lambs.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhenping Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xieraili Malajiang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Adelijaing Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Batur Bake
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
41
|
Yu J, Zhang Y, Wells JCK, Wei Z, Bajaj-Elliott M, Nielsen DS, Fewtrell MS. A Stress Reduction Intervention for Lactating Mothers Alters Maternal Gut, Breast Milk, and Infant Gut Microbiomes: Data from a Randomized Controlled Trial. Nutrients 2024; 16:1074. [PMID: 38613107 PMCID: PMC11013067 DOI: 10.3390/nu16071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This secondary analysis of data from a randomized controlled trial (RCT) investigated how the maternal gut, breast milk, and infant gut microbiomes may contribute to the effects of a relaxation intervention, which reduced maternal stress and promoted infant weight gain. METHODS An RCT was undertaken in healthy Chinese primiparous mother-infant pairs (340/7-376/7gestation weeks). Mothers were randomly allocated to either the intervention group (IG, listening to relaxation meditation) or the control group (CG). Outcomes were the differences in microbiome composition and the diversity in the maternal gut, breast milk, and infant gut at 1 (baseline) and 8 weeks (post-intervention) between IG and CG, assessed using 16S rRNA gene amplicon sequencing of fecal and breastmilk samples. RESULTS In total, 38 mother-infant pairs were included in this analysis (IG = 19, CG = 19). The overall microbiome community structure in the maternal gut was significantly different between the IG and CG at 1 week, with the difference being more significant at 8 weeks (Bray-Curtis distance R2 = 0.04 vs. R2 = 0.13). Post-intervention, a significantly lower α-diversity was observed in IG breast milk (observed features: CG = 295 vs. IG = 255, p = 0.032); the Bifidobacterium genera presented a higher relative abundance. A significantly higher α-diversity was observed in IG infant gut (observed features: CG = 73 vs. IG = 113, p < 0.001). CONCLUSIONS The findings were consistent with the hypothesis that the microbiome might mediate observed relaxation intervention effects via gut-brain axis and entero-mammary pathways; but confirmation is required.
Collapse
Affiliation(s)
- Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Yan Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Zhuang Wei
- Department of Child Healthcare, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Mona Bajaj-Elliott
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | | | - Mary S. Fewtrell
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| |
Collapse
|
42
|
Hu X, Yu C, He Y, Zhu S, Wang S, Xu Z, You S, Jiao Y, Liu SL, Bao H. Integrative metagenomic analysis reveals distinct gut microbial signatures related to obesity. BMC Microbiol 2024; 24:119. [PMID: 38580930 PMCID: PMC10996249 DOI: 10.1186/s12866-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.
Collapse
Affiliation(s)
- Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Songling Zhu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| |
Collapse
|
43
|
Shen W, Chen Q, Lin R, Hu Z, Luo M, Ren Y, Huang K, Wang L, Chen S, Wang L, Ruan Y, Feng L. Imbalance of gut microbiota in gestational diabetes. BMC Pregnancy Childbirth 2024; 24:226. [PMID: 38561737 PMCID: PMC10983739 DOI: 10.1186/s12884-024-06423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
AIM To investigate the differences in gut microbiota composition among nonpregnant women of reproductive age, healthy pregnant women, and gestational diabetes (GD) patients. METHODS A total of 45 outpatients were enrolled and divided into three groups: nonpregnant women of reproductive age (control group, n = 23), healthy pregnant women (normal group, n = 10), and GD patients (GD group, n = 12). Faecal samples were collected and sequenced using 16S rRNA gene sequencing to analyse the microbial composition. RESULTS (1) Pregnant patients exhibited an increase in the abundance of Streptococcus (Pnormal = 0.01286, PGD = 0.002965) and Blautia (Pnormal = 0.0003924, PGD = 0.000246) but a decrease in the abundance of Roseburia (Pnormal = 0.0361, PGD = 0.007075), Phascolarctobacterium (Pnormal = 0.0003906, PGD = 0.02499) and Lachnoclostridium (Pnormal = 0.0003906, PGD = 0.03866). (2) Compared with healthy pregnant women, GD patients had an excessive increase in Streptococcus abundance and decrease in Roseburia abundance. The increase in Blautia abundance and the decrease in Phascolarctobacterium and Lachnoclostridium abundance in GD patients were less than those in healthy pregnant women. (3) The abundance of Faecalibacterium prausnitzii decreased significantly in GD patients (PGD = 0.02985) but not in healthy pregnant patients (Pnormal = 0.1643). CONCLUSIONS Abnormal increases and decreases in the abundances of gut microbiota components, especially Faecalibacterium prausnitzii, were observed in GD patients. TRIAL REGISTRATION The cross-sectional research was conducted in accordance with the Declaration of Helsinki, and approved by Sir Run Run Shaw Hospital Clinical Trials and Biomedical Ethics Committee. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR1900026164, 24/09/2019, http://www.chictr.org.cn/showproj.aspx?proj=43,455 ).
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Qianyi Chen
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Renbin Lin
- Department of Gastroenterology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medicine University, Hangzhou, 310005, Zhejiang Province, China
| | - Zhefang Hu
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Man Luo
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Yanwei Ren
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Keren Huang
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Li Wang
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Yu Ruan
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Lijun Feng
- Department of Nutriology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
44
|
Sheng D, Li P, Xiao Z, Li X, Liu J, Xiao B, Liu W, Zhou L. Identification of bidirectional causal links between gut microbiota and narcolepsy type 1 using Mendelian randomization. Sleep 2024; 47:zsae004. [PMID: 38174762 DOI: 10.1093/sleep/zsae004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1), characterized by cataplexy and orexin deficiency, is a rare and frequently debilitating neurological disorder. It has been noted to have connections with the gut microbiota, yet the exact causal relationships remain unclear. METHODS We conducted a comprehensive bidirectional Mendelian randomization (MR) study to rigorously investigate the causal links between the gut microbiota and NT1, utilizing genetic datasets from the MiBioGen consortium and FinnGen consortium, respectively. The inverse-variance weighted (IVW) method was employed to obtain the primary MR estimates, supplemented by several alternative methods as well as sensitivity analyses including Cochran's Q, MR-Egger, MR pleiotropy residual sum and outlier, leave-one-out, and genetic colocalization. RESULTS Our findings indicated that an increased relative abundance of five genera including Blautia (p = 4.47E-5), Collinsella (p = 0.036), Gordonibacter (p = 0.047), Hungatella (p = 0.015), and Lachnospiraceae UCG010 (p = 0.027) may be associated with a decreased risk of NT1. Conversely, an increased relative abundance of class Betaproteobacteria (p = 0.032), genus Alloprevotella (p = 0.009), and genus Ruminiclostridium6 (p = 0.029) may potentially heighten the risk of NT1. The onset of NT1 may lead to a decrease in the relative abundance of genus Eubacterium eligens group (p = 0.022), while a increase in the family Family XI (p = 0.009), genus Hungatella (p = 0.005), genus Prevotella (p = 0.013), and unknown genus id.2001 (p = 0.019). These findings remained robust under all sensitivity analyses. CONCLUSIONS Our results offer robust evidence for the bidirectional causal links between particular gut microbial taxa and NT1, underscoring the significance of the microbiota-gut-brain axis in the pathological process of NT1.
Collapse
Affiliation(s)
- Dandan Sheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Xinru Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiping Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
46
|
Chen J, Zhang Y, Min H, Zhi J, Ma S, Dong H, Yan J, Chi X, Zhang X, Yang Y. Dynamic changes in the gut microbiota after bismuth quadruple therapy and high-dose dual therapy for Helicobacter pylori eradication. Helicobacter 2024; 29:e13077. [PMID: 38682268 DOI: 10.1111/hel.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.
Collapse
Affiliation(s)
- Jing Chen
- Medical School of Chinese PLA, Beijing, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanchen Min
- Medical School of Chinese PLA, Beijing, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junli Zhi
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyun Ma
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongxia Dong
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Xiaoyan Chi
- Medical School of Chinese PLA, Beijing, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Gilley SP, Zarate MA, Zheng L, Jambal P, Yazza DN, Chintapalli SV, MacLean PS, Wright CJ, Rozance PJ, Shankar K. Metabolic and fecal microbial changes in adult fetal growth restricted mice. Pediatr Res 2024; 95:647-659. [PMID: 37935884 PMCID: PMC10899111 DOI: 10.1038/s41390-023-02869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Fetal growth restriction (FGR) increases risk for development of obesity and type 2 diabetes. Using a mouse model of FGR, we tested whether metabolic outcomes were exacerbated by high-fat diet challenge or associated with fecal microbial taxa. METHODS FGR was induced by maternal calorie restriction from gestation day 9 to 19. Control and FGR offspring were weaned to control (CON) or 45% fat diet (HFD). At age 16 weeks, offspring underwent intraperitoneal glucose tolerance testing, quantitative MRI body composition assessment, and energy balance studies. Total microbial DNA was used for amplification of the V4 variable region of the 16 S rRNA gene. Multivariable associations between groups and genera abundance were assessed using MaAsLin2. RESULTS Adult male FGR mice fed HFD gained weight faster and had impaired glucose tolerance compared to control HFD males, without differences among females. Irrespective of weaning diet, adult FGR males had depletion of Akkermansia, a mucin-residing genus known to be associated with weight gain and glucose handling. FGR females had diminished Bifidobacterium. Metabolic changes in FGR offspring were associated with persistent gut microbial changes. CONCLUSION FGR results in persistent gut microbial dysbiosis that may be a therapeutic target to improve metabolic outcomes. IMPACT Fetal growth restriction increases risk for metabolic syndrome later in life, especially if followed by rapid postnatal weight gain. We report that a high fat diet impacts weight and glucose handling in a mouse model of fetal growth restriction in a sexually dimorphic manner. Adult growth-restricted offspring had persistent changes in fecal microbial taxa known to be associated with weight, glucose homeostasis, and bile acid metabolism, particularly Akkermansia, Bilophilia and Bifidobacteria. The gut microbiome may represent a therapeutic target to improve long-term metabolic outcomes related to fetal growth restriction.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Miguel A Zarate
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deaunabah N Yazza
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Clyde J Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul J Rozance
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
48
|
Liu Y, Li Z, Sun T, Li Z, Manyande A, Xiang H, He Z. Gut microbiota regulates hepatic ischemia-reperfusion injury-induced cognitive dysfunction via the HDAC2-ACSS2 axis in mice. CNS Neurosci Ther 2024; 30:e14610. [PMID: 38334013 PMCID: PMC10853894 DOI: 10.1111/cns.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication. METHODS C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized. RESULTS The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus. CONCLUSION These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Anne Manyande
- School of Human and Social SciencesUniversity of West LondonLondonUK
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
49
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
50
|
Hoisington AJ, Stearns-Yoder KA, Stamper CE, Simonetti JA, Oslin DW, Brenner LA. Longitudinal Influence of Prescribed Antidepressants on Fecal and Oral Microbiomes Among Veterans With Major Depressive Disorder. J Neuropsychiatry Clin Neurosci 2024; 36:151-159. [PMID: 38258376 PMCID: PMC11420931 DOI: 10.1176/appi.neuropsych.20220221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the influence of a new course of antidepressant monotherapy on gut and oral microbiomes and the relationship to depressive symptoms. METHODS Longitudinal microbiome samples obtained from 10 U.S. veterans were analyzed. Baseline samples were taken before a new course of antidepressant monotherapy (either switching from a previous treatment or starting a new treatment). Targeted genomic sequencing of the microbiome samples was used to analyze changes in taxonomy and diversity across participants, medications, and medication class. Associations between these changes and Patient Health Questionnaire-9 (PHQ-9) scores were analyzed. RESULTS Taxonomic variability was observed across participants, with the individual being the main microbial community driver. In terms of the fecal microbiome, antidepressants were associated with shifts toward Bacteroides being less abundant and Blautia, Pseudomonas, or Faecalibacterium being more abundant. Likewise, the composition of the oral microbiome was variable, with individual participants being the primary drivers of community composition. In the oral samples, the relative abundance of Haemophilus decreased after antidepressants were started. Increases in Blautia and decreases in Bacteroides were associated with lower PHQ-9 scores. CONCLUSIONS Antidepressants were found to influence fecal and oral microbiomes such that a new course of antidepressant monotherapy was associated with taxonomic alterations toward healthier states in both fecal and oral microbiomes, which were associated with decreases in depressive symptoms. Additional longitudinal research is required to increase understanding of microbiomes and symptom-based changes, with a particular focus on potential differences between medication classes and underlying mechanisms.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| | - Christopher E Stamper
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| | - Joseph A Simonetti
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| | - David W Oslin
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Simonetti, Brenner); Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colo. (Hoisington, Stearns-Yoder, Stamper, Brenner); Department of Physical Medicine and Rehabilitation (Hoisington, Stearns-Yoder, Stamper, Brenner), Division of Hospital Medicine, Department of Medicine (Simonetti), and Departments of Psychiatry and Neurology (Brenner), University of Colorado Anschutz Medical Campus, Aurora, Colo.; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (Hoisington); Veterans Integrated Services Network 4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia (Oslin); Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Oslin)
| |
Collapse
|