1
|
Huang H, Duan M, Wei J, Liu Y, Xu S, Huang M, Tu Y, Xie J, Du W. Fibroblast growth factor 8 (FGF8) induces mitochondrial remodeling in chondrocytes via ERK/AMPK signaling pathway. FASEB J 2025; 39:e70501. [PMID: 40162651 DOI: 10.1096/fj.202500186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is a disease characterized by articular cartilage degeneration, and its pathogenic mechanisms are associated with mitochondrial homeostasis disorders. Fibroblast growth factor 8 (FGF8) is a multipotent protein ligand which is upregulated in OA cartilage. However, the molecular mechanisms by which FGF8 regulates mitochondria in chondrocytes are not yet fully understood. Here, we treated chondrocytes with FGF8 and detected the effects of FGF8 on mitochondrial morphology in the cytoplasm using transmission electron and confocal laser scanning microscopy. ATP levels were measured to determine the cellular energy status. Western blotting and immunofluorescence staining experiments were employed to detect the fusion-fission proteins mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), and related signaling pathways. The FGF receptor (FGFR) inhibitor, AZD4547, and the ERK inhibitor, U0126, were used to verify the specific effects of the FGFR and ERK pathways. We found that FGF8 regulated mitochondrial morphology and dynamics in chondrocytes by inducing mitochondrial elongation. While it upregulated fusion proteins MFN1, MFN2, and OPA1, FGF8 downregulated fission proteins DRP1 and FIS1. ERK and AMPK pathways were activated in chondrocytes after FGF8 treatment. In contrast, both AZD4547 and U0126 inhibitors abolished mitochondrial elongation as well as the alteration of fusion-fission proteins induced by FGF8, and U0126 also inhibited the FGF8-triggered activation of AMPK. This study is the first to reveal that FGF8 remodels mitochondria through ERK/AMPK signaling in chondrocytes, offering novel insights into the potential role of FGF8 in OA.
Collapse
Affiliation(s)
- Hongcan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Santos SAAR, Damasceno MDBMV, Sessle BJ, Vieira-Neto AE, de Oliveira Leite G, Magalhães FEA, Tavares KCS, Benevides SC, Campos AR. Sex differences in the orofacial antinociceptive effect of metformin and the role of transient receptor potential channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3775-3788. [PMID: 39356320 DOI: 10.1007/s00210-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Metformin is classified as a biguanide and is used in the treatment of type 2 diabetes. It is used worldwide and has been investigated in drug repositioning. The present study aims to investigate whether there is sexual dimorphism in the orofacial antinociceptive effect of metformin and the participation of TRP channels. Acute nociceptive behavior was induced by administering cinnamaldehyde or capsaicin to the upper lip. Nociceptive behavior was assessed through orofacial rubbing, and the effects of pre-treatment with metformin (125 or 250 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The chronic pain model involved infraorbital nerve transection (IONX) was evaluated using Von Frey electronic filaments. Trpv1 gene expression was analyzed in the nerve ganglion. Docking experiments were performed. Metformin, but not the vehicle, produced antinociception (p < 0.0001) in all acute nociceptive behaviors in both sexes, and these effects were attenuated by the TRPV1 antagonist capsazepine and the TRPA1 antagonist HC-030031. In IONX with better (**p < 0.01, ****p < 0.0001 vs. control) results in females. TRPV1 gene expression was observed in the metformin treated group (*p < 0.05 vs. control). Docking experiments revealed that metformin may interact with TRPV1 and TRPA1 channels. Metformin promotes orofacial antinociception in both sexes in acute pain and is more effective in chronic pain in females than in males, through the modulation of TRPV1 and TRPA1 channels. These preclinical findings suggest a potential repositioning of metformin as an analgesic agent in acute and chronic orofacial pain states.
Collapse
Affiliation(s)
| | | | - Barry John Sessle
- Department of Physiology and Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Department of Nutrition and Health, State University of Ceará, Fortaleza, Brazil
| | | | | | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil.
- Universidade de Fortaleza Núcleo de Biologia Experimental, Av. Washington Soares, 1321 Edson Queiroz, Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Henry ÓC, O'Neill LAJ. Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. Eur J Immunol 2025; 55:e202451381. [PMID: 40170391 PMCID: PMC11962241 DOI: 10.1002/eji.202451381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Metabolic reprogramming of stromal cells, including fibroblast-like synoviocytes (FLS) and chondrocytes, as well as osteoclasts (OCs), are involved in the inflammatory and degenerative processes underlying rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, FLS exhibit mTOR activation, enhanced glycolysis and reduced oxidative phosphorylation, fuelling inflammation, angiogenesis, and cartilage degradation. In OA, chondrocytes undergo metabolic rewiring, characterised by mTOR and NF-κB activation, mitochondrial dysfunction, and increased glycolysis, which promotes matrix metalloproteinase production, extracellular matrix (ECM) degradation, and angiogenesis. Macrophage-derived immunometabolites, including succinate and itaconate further modulate stromal cell function, acting as signalling molecules that modulate inflammatory and catabolic processes. Succinate promotes inflammation whilst itaconate is anti-inflammatory, suppressing inflammatory joint disease in models. Itaconate deficiency also correlates inversely with disease severity in RA in humans. Emerging evidence highlights the potential of targeting metabolic processes as promising therapeutic strategies for connective tissue disorders.
Collapse
Affiliation(s)
- Órlaith C. Henry
- Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | | |
Collapse
|
4
|
Zhu Z, Tu B, Peng C, Xu X, Lu P, Ning R. Integrated bioinformatics and clinical data identify three novel biomarkers for osteoarthritis diagnosis and synovial immune. Sci Rep 2025; 15:10987. [PMID: 40164659 PMCID: PMC11958655 DOI: 10.1038/s41598-025-95837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that can be aggravated by synovitis and synovial immune disorders (SID). However, the role of synovial SID-related genes in OA synovium remains poorly understood. OA synovial and peripheral blood datasets were obtained from the GEO database ( https://www.ncbi.nlm.nih.gov/ ). Immune-related genes ( https://reactome.org/ ) showing differential expression in peripheral blood were identified as immune disorder genes. Subsequently, differentially expressed immune disorder genes in OA synovium were further identified as SID genes. The Venn diagram, random forest, SVM-RFE algorithm, and multivariate analysis were employed to determine SID-related hub genes in OA synovium. Using the identified hub genes, we constructed and validated a diagnostic model for predicting OA occurrence. The correlation between hub gene expression and immune-related modules was explored using CIBERSORT and MCP-counter analyses. We identified three SID-related hub genes (ACAT1, SPHK1, and ACACB) in OA synovium. The diagnostic model incorporating these hub genes demonstrated reliable predictive accuracy (AUC = 0.939). Through qPCR analysis, we quantitated the expression levels of the hub genes and confirmed that three hub genes could serve as novel biomarkers for OA patients (AUC = 0.960). Furthermore, we observed a significant correlation between the expression of these hub genes and immune cell infiltration, as well as inflammatory cytokine levels in OA synovium. Our findings suggest that three SID-related hub genes have the potential to serve as diagnostic biomarkers for OA patients. These genes are associated with immune disorder and contribute to immune alterations within the OA synovium.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Bizhi Tu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Xun Xu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Peizhi Lu
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, 390 Huaihe Road, Hefei, 230061, Anhui, China.
| |
Collapse
|
5
|
Yin H, Ruan Z, Wan TF, Lin ZR, Chen CY, Wang ZX, Cao J, Wang YY, Jin L, Liu YW, Zhu GQ, Gong JS, Zou JT, Luo Y, Hu Y, Li ZH, Luo H, Liu YQ, Long C, Zhao SS, Zhu Y, Xie H. Metformin ameliorates osteoporosis by enhancing bone angiogenesis via the YAP1/TAZ-HIF1α axis. Mol Med 2025; 31:122. [PMID: 40159493 PMCID: PMC11955141 DOI: 10.1186/s10020-025-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Osteoporosis, resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation, affects millions globally. Recent studies have identified type H vessels (CD31hiEMCNhi) as a specialized subset of bone blood vessels that positively regulate bone formation. This study aims to investigate the effects of metformin on bone mass, strength, and angiogenesis in osteoporotic mice, and to elucidate the underlying molecular mechanisms, particularly focusing on the YAP1/TAZ-HIF1α axis. METHODS Osteoporotic mice were administered metformin, and bone mass and strength were measured. In vivo and in vitro angiogenesis assays were performed under hypoxic conditions. Expression levels of YAP1/TAZ and HIF1α were assessed in femoral metaphysis and hypoxia-cultured human microvascular endothelial cells (HMECs). Small interfering RNA was used to interfere with HIF1α or YAP1/TAZ expression in hypoxia-cultured HMECs. Additionally, we employed AAV-mediated overexpression of YAP1/TAZ in vivo to determine whether elevated YAP1/TAZ levels alter metformin's effects on bone mass and angiogenesis. RESULTS Metformin significantly enhanced bone mass and strength in osteoporotic mice. It also promoted angiogenesis under hypoxia conditions both in vivo and in vitro. Metformin reduced YAP1/TAZ expression while increasing HIF1α expression in both the femoral metaphysis of osteoporotic mice and hypoxia-cultured HMECs. Interference with HIF1α or YAP1/TAZ confirmed that metformin enhances HIF1α and its target genes primarily by inhibiting YAP1/TAZ. Furthermore, overexpression of YAP1/TAZ partially reversed the bone-protective effect of metformin, leading to reduced HIF1α levels and diminished type H vessel formation. CONCLUSION Our findings suggest that metformin holds promise as a therapeutic agent for osteoporosis by enhancing type H vessel formation through the inhibition of the YAP1/TAZ-HIF1α axis.
Collapse
Affiliation(s)
- Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhe Ruan
- Department of Orthopedics, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Teng-Fei Wan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhi-Rou Lin
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yin Hu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhao-Hui Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hao Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shu-Shan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Guo Q, Nan R, Du Y, Wang R, Xie M, Li X, Li K, Xiang T, Zhou S. Hyaluronic acid composite hydrogel with enhanced lubrication and controllable drug release for the mitigation of osteoarthritis. Int J Biol Macromol 2025; 308:142677. [PMID: 40164244 DOI: 10.1016/j.ijbiomac.2025.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Excessive inflammation, overexpressed reactive oxygen species (ROS), degradation of the extracellular matrix, and high friction aggravate osteoarthritis (OA). Intra-articular injection for local drug delivery in the joint cavity enhances drug retention duration for OA treatment. Nevertheless, it remains a challenge to attenuate OA by thoroughly modulating the joint microenvironment, achieving controlled drug release, and enhancing lubrication. This study develops hyaluronic acid (HA) composite hydrogels, infused with gelatin microspheres containing a drug, utilizing dynamic interactions between phenylboronic acid and catechol to modulate the microenvironment by scavenging ROS, facilitating controlled drug release, and improving lubrication to mitigate OA. The composite hydrogels can be injected by intra-articular injection due to the shear-thinning properties, demonstrating broad ROS scavenging capacity and matrix metalloproteinase-9 responsive drug release. Both the in vitro and in vivo experiments prove the protective efficacy of the composite hydrogels against the degradation of cartilage matrix. Additionally, the hydrogels can offer efficient lubrication and effectively attenuate OA. Thus, the injectable HA composite hydrogels demonstrated potential in the management of OA.
Collapse
Affiliation(s)
- Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Nan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuxiao Du
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meiming Xie
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu 610031, China
| | - Xilin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kezhou Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
7
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
8
|
Madsen KS, Henriksen M, Døssing A, Poulsen AS, Oscar R, Kragstrup T, Ellegaard K, Knop FK, Boesen M, Hunter DJ, Christensen R, Bliddal H. Metformin treatment for patients with hand osteoarthritis: protocol for the multicentre, randomised, placebo-controlled METRO trial. BMJ Open 2025; 15:e093831. [PMID: 40139705 PMCID: PMC11950932 DOI: 10.1136/bmjopen-2024-093831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Hand osteoarthritis (OA) is a prevalent joint disorder with limited treatment options. Accumulating evidence suggests that the antidiabetic drug metformin has beneficial effects on knee OA and may likewise be beneficial for hand OA. The objective of this randomised, double-blinded, placebo-controlled trial is to investigate the effect of metformin 1000 mg two times a day, or maximum tolerated dose, compared with placebo on reducing finger joint pain after 16 weeks of treatment. METHODS AND ANALYSIS The participants will be enrolled from the OA clinic at the Parker Institute at Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark and from the Department of Rheumatology, Hospitalsenhed Midt, Silkeborg, Denmark. 150 participants with painful hand OA according to the American College of Rheumatology criteria will be randomly allocated in a 1:1 ratio to receive either metformin or a matching placebo for 16 weeks. The initial dose of 500 mg of metformin or placebo once daily is increased by 500 mg every week until the target dose of 1000 mg two times a day, or the maximum tolerated dose, is reached. The participants will have clinical visits every 4 weeks, except the week 12 visit, which is by telephone. The primary endpoint is the between-group difference in least squares means for the change in the Visual Analogue Scale (VAS) finger joint pain scores between the metformin and placebo groups at 16 weeks. The main analysis will be conducted on the intention-to-treat population, comprising all participants assessed and randomly assigned at baseline. Least squares means and the differences between them, along with their respective 95% CIs, will be derived from a mixed-effects model for repeated measurements (outcomes collected at baseline and at weeks 4, 8, 12 and 16). Adverse events will be registered systematically. ETHICS AND DISSEMINATION Approval has been obtained from the European Medicines Agency (EudraCT: 2023-509181-38-00), which also includes approval from the local health research ethics committee. Written informed consent will be obtained from all participants. Study findings will be published in international peer-reviewed journals and will be presented in relevant media and at international scientific conferences. TRIAL REGISTRATION NUMBER EudraCT, 2023-509181-38-00; ClinicalTrials.gov, NCT06367283.
Collapse
Affiliation(s)
- Kasper Staberg Madsen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | - Marius Henriksen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | - Anna Døssing
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | - Asbjørn S Poulsen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | - Rasmus Oscar
- Medical Diagnostic Center, Regional Hospital Silkeborg, Silkeborg, Denmark
| | - Tue Kragstrup
- Medical Diagnostic Center, Regional Hospital Silkeborg, Silkeborg, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karen Ellegaard
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk A/S, Søborg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Boesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Bispebjerg, Copenhagen, Denmark
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Robin Christensen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Henning Bliddal
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Lu J, Cai J, Zhou Z, Ma J, Han T, Lu N, Zhu L. Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis. Biomaterials 2025; 321:123283. [PMID: 40222260 DOI: 10.1016/j.biomaterials.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study investigates the role of Gelatin-Catalase (Gel@CAT)-L hydrogel in mediating reactive oxygen species (ROS) production and maintaining mitochondrial homeostasis through SIRT3-mediated unfolded protein response (UPRmt), while exploring its involvement in the molecular mechanism of osteoarthritis (OA). METHODS Self-assembled Gel@CAT-L hydrogels were fabricated and characterized using transmission electron microscopy, mechanical testing, external release property evaluation, and oxygen production measurement. Biocompatibility was assessed via live/dead cell staining and CCK8 assays. An OA mouse model was established using destabilization of the medial meniscus (DMM) surgery. X-ray and micro-CT imaging were employed to evaluate the structural integrity of the mouse knee joints, while histological staining was used to assess cartilage degeneration. Immunohistochemistry was performed to analyze the expression of proteins including Col2a1, Aggrecan, MMP13, ADAMTS5, SIRT3, PINK1, and Parkin. Multi-omics analyses-encompassing high-throughput sequencing, proteomics, and metabolomics-were conducted to identify key genes and metabolic pathways targeted by Gel@CAT-L hydrogel intervention in OA. Immunofluorescence techniques were utilized to measure ROS levels, mitochondrial membrane potential, and the expression of SIRT3, PINK1, Parkin, LYSO, LC3B, Col2a1, and MMP13 in primary mouse chondrocytes and mouse knee joints. Flow cytometry was applied to quantify ROS-positive cells. RT-qPCR analysis was conducted to determine mRNA levels of Aggrecan, Col2a1, ADAMTS5, MMP13, SIRT3, mtDNA, HSP60, LONP1, CLPP, and Atf5 in primary mouse chondrocytes, mouse knee joints, and human knee joints. Western blotting was performed to measure protein expression levels of SIRT3, HSP60, LONP1, CLPP, and Atf5 in both primary mouse chondrocytes and mouse knee joints. Additionally, 20 samples each from the control (CON) and OA groups were collected for analysis. Hematoxylin and eosin staining was used to evaluate cartilage degeneration in human knee joints. The Mankin histological scoring system quantified the degree of cartilage degradation, while immunofluorescence analyzed SIRT3 protein expression in human knee joints. RESULTS In vitro experiments demonstrated that self-assembled Gel@CAT-L hydrogels exhibited excellent biodegradability and oxygen-releasing capabilities, providing a stable three-dimensional environment conducive to cell viability and proliferation while reducing ROS levels. Multi-omics analysis identified SIRT3 as a key regulatory gene in mitigating OA and revealed its central role in the UPRmt pathway. Furthermore, Gel@CAT-L was confirmed to regulate mitochondrial homeostasis. Both in vitro experiments and in vivo mouse model studies confirmed that Gel@CAT-L significantly reduced ROS levels and regulated mitochondrial autophagy by activating the SIRT3-mediated UPRmt pathway, thereby improving the pathological state of OA. Clinical trials indicated downregulation of SIRT3 and UPRmt-related proteins in OA patients. CONCLUSION Gel@CAT-L hydrogel activates SIRT3-mediated UPRmt to regulate ROS and mitochondrial homeostasis, providing potential therapeutic benefits for OA.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Jiao Cai
- Department of Medical Administration, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China
| | - Jun Ma
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China; Department of Orthopaedic Trauma, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200001, China
| | - Tianyu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China.
| |
Collapse
|
10
|
Halabitska I, Petakh P, Kamyshnyi O. Metformin as a disease-modifying therapy in osteoarthritis: bridging metabolism and joint health. Front Pharmacol 2025; 16:1567544. [PMID: 40176893 PMCID: PMC11962732 DOI: 10.3389/fphar.2025.1567544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Osteoarthritis (OA) and impaired glucose tolerance (IGT) frequently coexist, leading to compounded clinical and metabolic challenges. This study investigates the effects of metformin in improving both clinical outcomes (pain, stiffness, physical function) and metabolic parameters (inflammatory markers, lipid profile, BMI) in patients with knee OA and IGT. Methods The study included 60 patients diagnosed with knee OA and IGT. Participants were divided into two groups: 26 patients received standard OA treatment without metformin (Without Metf), while 34 received metformin (500 mg twice daily) for 3 months, in addition to standard treatment (With Metf). Clinical assessments (WOMAC, Lequesne Algofunctional Index, KOOS, VAS) and metabolic markers (CRP, NLR, SOD, lipid profile, BMI) were measured before treatment, after 1 month, and after 3 months. Results The With Metf group showed significantly greater improvements in pain, stiffness, physical function, and quality of life compared to the Without Metf group. Metformin also led to significant reductions in inflammatory markers and improvements in lipid profiles and metabolic health indicators. The With Metf group demonstrated enhanced BMI, waist-to-hip ratio, and waist-to-height ratio. Furthermore, the need for increased NSAID doses was predicted by factors such as pain severity and inflammatory markers. Conclusion Metformin effectively alleviates osteoarthritis symptoms and improves metabolic health in patients with both OA and IGT. Further research is needed to explore its long-term effects on joint health, inflammatory markers, and its potential role in OA management in patients without IGT.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
11
|
Da W, Deng X, Chen Q, Yang Y, Jiang S, Chen X, Lu G, Shen B. Metformin-Loaded Tannic Acid Nanoparticles Attenuate Osteoarthritis by Promoting Chondrocyte Mitochondria Homeostasis Based on Mitocytosis. Biomacromolecules 2025; 26:1507-1519. [PMID: 39910414 DOI: 10.1021/acs.biomac.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The oxidative stress microenvironment and mitochondrial dysfunction in chondrocytes are key mechanisms in the development of osteoarthritis (OA). Metformin (Met) has demonstrated multiple effects on mitochondria and is regarded as a potential therapeutic agent for OA. The low blood flow characteristics in the joint cavity make targeted local delivery of metformin crucial for its clinical application. In this study, tannic acid (TA), with its natural antioxidant and anti-inflammatory properties, was used to prepare self-assemble Met-loaded TA nanoparticles (NPs). The NPs exhibit excellent reactive oxygen scavenging capability, stability in various media, and an acid-responsive release of Met. In Vitro experiments showed that NPs possess excellent biocompatibility, effectively protecting chondrocyte viability in OA's pathological environment and preventing the senescence phenotype. In addition, NPs promoted the expression of antioxidant elements in chondrocytes, restored mitochondrial membrane potential, and enhanced mitocytosis to improve mitochondrial quality. In vivo experiments further confirmed that intra-articular injection of NPs in rats with post-traumatic OA improves cartilage matrix degradation, osteophyte formation, and subchondral bone sclerosis over 8 weeks. Tissue staining further confirmed the protective effects of NPs on chondrocyte mitochondria. Importantly, both in vivo and in vitro experiments revealed that NPs provided superior cellular protection compared to TA or Met alone. Overall, this study demonstrates that NPs effectively against OA cartilage degeneration, with the advantages of easy preparation, high efficiency, and biosafety.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangtian Deng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Yang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Shenghu Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gonggong Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Jacobs CA, Jones MH, Collins JE, Waddell LM, Li X, Winalski CS, Pietrosimone B, Kraus VB, Otero M, Wellsandt E, Schmitt LC, Spindler KP, Anderson DD, Rodeo SA, Magnussen RA, Wolf BR, Hart JM, Stone AV, Conley CE, Golightly YM, Myer GD, Snyder-Mackler L, Lotz MK, Kim JS, McLeod MM, Huebner JL, Lisee C, Selzer F, Katz JN, Long K, Frier KC, Betensky DJ, Felson DT, Losina E. The PIKASO trial (Preventing Injured Knees from Osteoarthritis: Severity Outcomes): Rationale and design features for a randomized controlled trial. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100563. [PMID: 39867299 PMCID: PMC11758201 DOI: 10.1016/j.ocarto.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Objective Given the high burden and increasing prevalence of post-traumatic osteoarthritis (PTOA), identifying clinically beneficial strategies to prevent or delay its onset could improve the quality of life of those at high risk of developing the disease. Methods Preventing Injured Knees from OsteoArthritis: Severity Outcomes (PIKASO) is a multicenter blinded, parallel, two-arm randomized controlled trial of 512 individuals aged 18-45 years undergoing anterior cruciate ligament reconstruction (ACLR). This study is designed to evaluate the efficacy of a 12-month intervention of oral metformin vs. placebo in decreasing the rate of structural knee changes and pain. Participants will be asked to take up to 1500 mg/day of either metformin or placebo as tolerated. The primary outcomes are Knee injury and Osteoarthritis Outcome Score (KOOS) Pain subscale scores averaged between 12 and 24 months after randomization, and MRI derived cartilage structural change at 24 months. The trial will be deemed successful if at least one of the two primary outcomes reaches the preplanned effect size with sufficient statistical certainty. In this paper, we describe PIKASO elements according to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines. Results Our multidisciplinary team developed the methods and statistical analysis plan for a placebo controlled, randomized clinical trial to determine whether metformin alters pain and early osteoarthritic changes after ACLR. Discussion This manuscript outlines the rationale, study design, and implementation of the PIKASO trial aiming to prevent the onset of PTOA after ACLR. Trial registration clinicaltrials.gov NCT06096259.
Collapse
Affiliation(s)
- Cale A. Jacobs
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Morgan H. Jones
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jamie E. Collins
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Xiaojuan Li
- Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | - Scott A. Rodeo
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | | | | | - Joe M. Hart
- University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Faith Selzer
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey N. Katz
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kyna Long
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Elena Losina
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - for PIKASO Team
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cleveland Clinic Foundation, Cleveland, OH, USA
- University of North Carolina, Chapel Hill, NC, USA
- Duke University School of Medicine, Durham, NC, USA
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- University of Nebraska Medical Center, Omaha, NE, USA
- Ohio State University, Columbus, OH, USA
- University of Iowa, Iowa City, IA, USA
- University of Kentucky, Lexington, KY, USA
- Emory University, Atlanta, GA, USA
- University of Delaware, Newark, DE, USA
- Scripps Research, La Jolla, CA, USA
- Arthritis Foundation, Atlanta, GA, USA
- University of Georgia, Athens, GA, USA
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Yang CT, Katz JN, Selzer F, Conley CW, Lemaster NG, Stone AV, Kumara MT, Matzkin EG, Kim JS, Jacobs CA, Losina E, Jones MH. Prospective Preference Assessment of a Pharmacological Clinical Trial to Alter the Progression of Posttraumatic Osteoarthritis After ACL Reconstruction. Orthop J Sports Med 2025; 13:23259671241311906. [PMID: 40078595 PMCID: PMC11898237 DOI: 10.1177/23259671241311906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 03/14/2025] Open
Abstract
Background Understanding the factors contributing to willingness to participate in randomized clinical trials (RCTs) after anterior cruciate ligament reconstruction (ACLR) is crucial to optimizing recruitment and understanding whether interested participants represent the patient population that may benefit from the studied treatment. Purpose To understand patients' willingness to participate in a future RCT of an oral medication to prevent posttraumatic osteoarthritis (PTOA) after ACLR. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 103 patients aged 18 to 45 years who were either planning to undergo ACLR in the next 4 months or had undergone ACLR within 1 year of the screening date were recruited from 2 institutions. The patients viewed a video explaining the trial and completed a questionnaire that included demographic characteristics, pain intensity, activity level, willingness to participate in the hypothetical trial, and their perceived risk (on a scale of 0%-100%) of developing knee PTOA (next 10 years or lifetime). Results Within the cohort, 31% stated they were "definitely willing," 38% were "probably willing," 17% were "unsure," and 14% were "unwilling" to participate in a hypothetical trial. Willingness did not differ by pain or activity level; however, younger patients stated they were less willing to participate. The most common reasons for unwillingness to participate included not wanting to take a medication daily (59%) and concerns about medication risks or side effects (59%). Respondents who indicated a definite willingness to participate in the trial had higher perceptions of their own PTOA risk over the next 10 years than those who indicated they would not participate (70% vs 50%). Conclusion In this prospective preference assessment, 69% of survey respondents expressed a willingness to participate in an RCT involving an oral medication to potentially alter the progression of PTOA after ACLR. The results suggest that an RCT in this study should include clear and concise information on the risk of developing PTOA after ACLR and the safety and tolerability of study medications in the recruitment materials.
Collapse
Affiliation(s)
- Catherine T. Yang
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeffrey N. Katz
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Faith Selzer
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin W. Conley
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Nicole G. Lemaster
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahima T. Kumara
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Elena Losina
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan H. Jones
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Dong S, Li X, Xu G, Chen L, Zhao J. Quercetin attenuates the symptoms of osteoarthritis in vitro and in vivo by suppressing ferroptosis via activation of AMPK/Nrf2/Gpx4 signaling. Mol Med Rep 2025; 31:60. [PMID: 39717946 PMCID: PMC11711930 DOI: 10.3892/mmr.2024.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 12/25/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder involving the cartilage and other joint tissues. Quercetin (QCT) serves a protective role in the development of OA. However, to the best of our knowledge, the regulatory mechanisms of QCT in the progression of OA have not yet been fully elucidated. In order to mimic a model of OA in vitro, IL‑1β was used to stimulate chondrocytes. Furthermore, an in vivo animal model of OA was induced by anterior cruciate ligament transection (ACLT). 5‑Ethynyl‑2'‑deoxyuridine assays, TUNEL assays, ELISAs, western blotting and immunohistochemical assays were conducted to assess the chondroprotective properties of QCT in the development of OA. The results revealed that 100 µM QCT significantly promoted the proliferation, reduced the apoptosis and inflammation, and inhibited the extracellular matrix (ECM) degradation in IL‑1β‑stimulated chondrocytes. Additionally, QCT attenuated the IL‑1β‑induced ferroptosis of chondrocytes, as demonstrated by the reduced lipid reactive oxygen species and Fe2+ levels. Conversely, the inhibitory effects of QCT on the apoptosis and inflammatory responses were reversed by the activation of ferroptosis by erastin in IL‑1β‑stimulated chondrocytes. Furthermore, QCT significantly elevated the level of phosphorylated (p‑)5' AMP‑activated protein kinase (AMPK) and the levels of two negative regulators of ferroptosis [nuclear factor erythroid 2‑related factor 2 (Nrf2) and glutathione peroxidase 4 (Gpx4)] in IL‑1β‑stimulated chondrocytes. The AMPK inhibitor compound C notably reversed the promoting effects of QCT on phosphorylated‑AMPK, Nrf2 and Gpx4 expression in IL‑1β‑stimulated chondrocytes. Additionally, QCT markedly ameliorated the destruction and degradation of articular cartilage, and elevated the p‑AMPK, Nrf2 and Gpx4 levels in the mouse model of ACLT‑induced OA. Overall, the present study demonstrated that QCT inhibited the development of OA by suppressing ferroptosis via the activation of the AMPK/Nrf2/Gpx4 signaling pathway. These findings provide novel insights into the regulatory mechanisms of QCT for the treatment of patients with OA.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Xiaoliang Li
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Genrong Xu
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Liming Chen
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Jiyang Zhao
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| |
Collapse
|
15
|
Cheng J, Solomon T, Estee M, Cicuttini FM, Lim YZ. Effect of glucagon-like peptide-1 receptor agonists in osteoarthritis: A systematic review of pre-clinical and human studies. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100567. [PMID: 39995585 PMCID: PMC11849622 DOI: 10.1016/j.ocarto.2025.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/04/2025] [Indexed: 02/26/2025] Open
Abstract
Objective There is significant interest in the potential of glucagon-like peptide 1 receptor agonists (GLP-1A) to improve outcomes in osteoarthritis. We systematically reviewed the evidence from pre-clinical and human studies for effect of glucagon-like peptide 1 receptor agonists (GLP-1A) in osteoarthritis. Method Ovid Medline, Embase and CINAHL were searched (inception to November 2024) using MeSH terms and key words to identify studies examining the association between GLP-1A use and outcomes related to osteoarthritis. Risk of bias assessment and data extraction were conducted by three reviewers independently. Qualitative evidence synthesis was performed and prospectively registered on PROSPERO (CRD42024522782 and CRD42024522787). Results This systematic review included 11 (7 pre-clinical; 4 human studies) studies. In pre-clinical studies, GLP-1A was assessed for its effect on structural (n = 6); immunomodulation (n = 7); analgesia (n = 1) and molecular pathways in osteoarthritis (n = 5). For human studies, GLP-1A were assessed for structural (n = 1) and symptomatic (n = 4) effects in osteoarthritis. Pre-clinical studies consistently demonstrated favourable chondroprotective and immunomodulatory effects of GLP-1A in osteoarthritis, with a dose-dependent effect, primarily driven by inhibition of NF-κB pathway. Limited human studies supported these findings in osteoarthritis. Conclusion There are consistent signals across limited pre-clinical and human studies to support a potential favourable structural protective, immunomodulatory and analgesic effects of GLP-1A in osteoarthritis. With the growing burden of obesity, high-quality trials are needed to determine the role of GLP-1A in osteoarthritis.
Collapse
Affiliation(s)
| | - Tia Solomon
- Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Mahnuma Estee
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Flavia M. Cicuttini
- Alfred Hospital, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuan Z. Lim
- Alfred Hospital, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
16
|
He H, Huang C, Huang H, Lan N, Liu S, Luo Y, Zheng L, Liu G, Qin Z, Zhao J. Zn 2+-driven metformin conjugated with siRNA attenuates osteoarthritis progression by inhibiting NF-κB signaling and activating autophagy. Biomaterials 2025; 319:123210. [PMID: 40037209 DOI: 10.1016/j.biomaterials.2025.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Osteoarthritis (OA) is a type of joint disease that influences millions of individuals. Regrettably, effective treatment for OA is currently unavailable. The challenge lies in the deep location of chondrocytes within the dense cartilage matrix that hinders the delivery and efficiency of clinical OA drugs. To overcome this obstacle, the present study proposed a hybrid nanodrug by Zinc(II) metal-drug coordination-driven self-assembly as highly efficient delivery system. This nano-assembly formulations possessed the ability to deliver two types of drugs, namely metformin (Met) and therapeutic genes (p65 siRNA). Results showed that this nano-assembly not only exhibited positive charge-driven anchoring to the cartilage matrix and effective drug delivery capacity, but also synergistically inhibited NF-κB activity and activates autophagy of OA chondrocytes, thus safeguarding the cartilage. The successful achievement of this project not only contribute to the advancement of research on bio-nanomaterials for treating OA, but also establish a robust theoretical foundation for realizing promising and functional integration of nanomedicine targeting OA.
Collapse
Affiliation(s)
- Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Chanting Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Siyi Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Yan Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Gang Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
17
|
Chele D, Sirbu CA, Mitrica M, Toma M, Vasiliu O, Sirbu AM, Authier FJ, Mischianu D, Munteanu AE. Metformin's Effects on Cognitive Function from a Biovariance Perspective: A Narrative Review. Int J Mol Sci 2025; 26:1783. [PMID: 40004246 PMCID: PMC11855408 DOI: 10.3390/ijms26041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of metformin on brain functions focusing on the variability of the results reported in the literature. While some studies suggest that metformin may have neuroprotective effects in diabetic patients, others report an insignificant impact of metformin on cognitive function, or even a negative effect. We propose that this inconsistency may be due to intrinsic cellular-level variability among individuals, which we term "biovariance". Biovariance persists even in demographically homogeneous samples due to complex and stochastic biological processes. Additionally, the complex metabolic actions of metformin, including its influence on neuroenergetics and neuronal survival, may produce different effects depending on individual metabolic characteristics.
Collapse
Affiliation(s)
- Dimitrie Chele
- Department of Neurology, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Carmen-Adella Sirbu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
| | - Mihai Toma
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| | - Octavian Vasiliu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Department of Psychiatry, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Anca-Maria Sirbu
- National Institute of Medical Expertise and Recovery of Work Capacity, Panduri 22, 050659 Bucharest, Romania
| | - Francois Jerome Authier
- Neuromuscular Reference Center, Henri Mondor University Hospital, Assistance Publique–Hôpitaux de Paris, 94000 Créteil, France
- INSERM U955-Team Relaix, Faculty of Health, Paris Est-Creteil University, 94010 Créteil, France
| | - Dan Mischianu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department No. 3, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Alice Elena Munteanu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| |
Collapse
|
18
|
Lai Y, Qiu J, Zheng K, Li X, Lin Y, Li Z, Sun H. Metformin-induced mitophagy suppresses auditory hair cell apoptosis via AMPK pathway. Brain Res Bull 2025; 221:111214. [PMID: 39826756 DOI: 10.1016/j.brainresbull.2025.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Hearing loss is a pervasive issue affecting numerous individuals, and its etiology and categorization are multifaceted. Among these, sensorineural hearing loss (SNHL) emerges as the most prevalent variant among these. The primary causative factor underlying SNHL resides in the depletion of auditory hair cells within the cochlea, yet the pursuit of efficacious therapeutic interventions remains an ongoing challenge. Previous investigations have illuminated the role of mitochondrial dysfunction in precipitating cellular apoptosis, and mitophagy has emerged as a promising mechanism to ameliorate such dysfunction. Additionally, it has been noted that metformin possesses the specific ability to induce mitophagy. Herein, our objective is to explore the protective effects of metformin-induced mitophagy against apoptosis in auditory hair cells (HEI-OC1 cells) and explore its potential mechanisms. Our results revealed that metformin effectively triggered mitophagy in HEI-OC1 cells. Moreover, metformin treatment showed the ability to prevent tert-butyl hydroperoxide (TBHP) induced mitochondrial dysfunction and intrinsic apoptotic pathways. Mechanistically, we discovered that metformin activates AMP-activated protein kinase (AMPK) signaling in HEI-OC1 cells stimulated by TBHP, thereby triggering mitophagy. Overall, our results suggest that metformin may represent a promising and innovative therapeutic strategy for mitigating the onset of hearing loss.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Qiu
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kuang Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinuo Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Zhengzheng Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Haiqiu Sun
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Wang J, Sun T, Zhang R, Wang T, Li Y. GelMA@APPA microspheres promote chondrocyte regeneration and alleviate osteoarthritis via Fgfr2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156176. [PMID: 39787690 DOI: 10.1016/j.phymed.2024.156176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND In the context of osteoarthritis (OA), a condition marked by joint degeneration, there is a notable absence of efficacious approaches to promote regenerative healing in chondrocytes. Novel therapeutic strategies like nanomicelles-hydrogel microspheres loaded with Astragalus polysaccharide (GelMA@APPA) offer promising avenues for promoting chondrocyte regeneration and mitigating OA progression. METHODS Astragalus polysaccharide (APS) has been shown to induce chondrocyte proliferation and promote cartilage matrix secretion, demonstrating biological activity associated with chondrocyte regeneration. However, the clinical efficacy of APS remains uncertain. Therefore, this investigation validated the beneficial impact of APS on reducing knee joint damage severity induced by destabilization of the medial meniscus (DMM) in mice. The application of bioinformatics analysis and in vitro experimentation revealed that fibroblast growth factor receptor 2 (Fgfr2) in chondrocytes is a key target protein for APS in ameliorating OA-induced cartilage injury, as the deletion of chondrocyte Fgfr2 resulted in the complete loss of the therapeutic effect of APS. To enhance the efficacy of APS, we incorporated APS into nanoparticle-laden hydrogel microspheres to further bolster its potential in chondrocyte regeneration therapy. Subsequently, we developed GelMA@APPA, which exhibited no significant cytotoxic effects on normal chondrocytes in vitro and could be efficiently internalized by chondrocytes. Following subsequent in vitro and in vivo experiments, we affirmed the beneficial effects of GelMA@APPA on OA mice and cartilage cells damaged by OA, as well as its enhancement of the therapeutic effects of APS. RESULTS APS significantly improved knee joint injuries in OA mice. Bioinformatics and in vitro analyses identified Fgfr2 as a critical target protein for APS's regenerative effects. Disruption of Fgfr2 negated APS's benefits. GelMA@APPA demonstrated good biocompatibility, effective internalization by chondrocytes, and enhanced the therapeutic efficacy of APS in experiments conducted both in vitro and in vivo, improving chondrocyte proliferation and reducing apoptosis. CONCLUSIONS This study demonstrates that GelMA@APPA microspheres effectively promote chondrocyte regeneration and OA treatment by activating Fgfr2. These findings suggest a novel therapeutic mechanism for OA and lay the groundwork for future clinical utilization of GelMA@APPA in regenerative medicine.
Collapse
Affiliation(s)
- Jiakai Wang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Rong Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Tingting Wang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Yishuo Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
20
|
Zhang Z, Li H, Qian M, Zheng Y, Bao L, Cui W, Wang D. Up IGF-I via high-toughness adaptive hydrogels for remodeling growth plate of children. Regen Biomater 2025; 12:rbaf004. [PMID: 40078882 PMCID: PMC11897792 DOI: 10.1093/rb/rbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 03/14/2025] Open
Abstract
The growth plate is crucial for skeletal growth in children, but research on repairing growth plate damage and restoring growth is limited. Here, a high-toughness adaptive dual-crosslinked hydrogel is designed to mimic the growth plate's structure, supporting regeneration and bone growth. Composed of aldehyde-modified bacterial cellulose (DBNC), methacrylated gelatin (GelMA) and sodium alginate (Alg), the hydrogel is engineered through ionic bonding and Schiff base reactions, creating a macroporous structure. This structure can transform into a denser form by binding with calcium ions. In vitro, the loose macroporous structure of the hydrogels can promote chondrogenic differentiation, and when it forms a dense structure by binding with calcium ions, it also can activate relevant chondrogenic signaling pathways under the influence of insulin-like growth factor I (IGF-1), further inhibiting osteogenesis. In vivo experiments in a rat model of growth plate injury demonstrated that the hydrogel promoted growth plate cartilage regeneration and minimized bone bridge formation by creating a hypoxic microenvironment that activates IGF-1-related pathways. This environment encourages chondrogenic differentiation while preventing the undesired formation of bone tissue within the growth plate area. Overall, the dual-crosslinked hydrogel not only mimics the growth plate's structure but also facilitates localized IGF-1 expression, effectively reshaping the growth plate's function. This approach represents a promising therapeutic strategy for treating growth plate injuries, potentially addressing challenges associated with skeletal growth restoration in pediatric patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Haodong Li
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Manning Qian
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Yiming Zheng
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Luhan Bao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Dahui Wang
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| |
Collapse
|
21
|
Huang JX, Xu SZ, Tian T, Wang J, Jiang LQ, He T, Meng SY, Ni J, Pan HF. Genetic Links Between Metabolic Syndrome and Osteoarthritis: Insights From Cross-Trait Analysis. J Clin Endocrinol Metab 2025; 110:e461-e469. [PMID: 38482593 DOI: 10.1210/clinem/dgae169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 01/22/2025]
Abstract
CONTEXT Previous observational studies have indicated a bidirectional association between metabolic syndrome (MetS) and osteoarthritis (OA). However, it remains unclear whether these bidirectional associations reflect causal relationships or shared genetic factors, and the underlying biological mechanisms of this association are not fully understood. OBJECTIVE We aimed to explore the genetic connection between MetS and OA using genome-wide association study (GWAS) summary data. METHODS Leveraging summary statistics from GWAS conducted by the UK Biobank and the Glucose and Insulin-related Traits Consortium (MAGIC), we performed global genetic correlation analyses, genome-wide cross-trait meta-analyses, and a bidirectional two-sample Mendelian randomization analyses using summary statistics from GWAS to comprehensively assess the relationship of MetS and OA. RESULTS We first detected an extensive genetic correlation between MetS and OA (rg = 0.393, P = 1.52 × 10-18), which was consistent in 4 MetS components, including waist circumference, triglycerides, hypertension, and high-density lipoprotein cholesterol and OA with rg ranging from -0.229 to 0.490. We then discovered 32 variants jointly associated with MetS and OA through Multi-Trait Analysis of GWAS (MTAG). Co-localization analysis found 12 genes shared between MetS and OA, with functional implications in several biological pathways. Finally, Mendelian randomization analysis suggested genetic liability to MetS significantly increased the risk of OA, but no reverse causality was found. CONCLUSION Our results illustrate a common genetic architecture, pleiotropic loci, as well as causality between MetS and OA, potentially enhancing our knowledge of high comorbidity and genetic processes that overlap between the 2 disorders.
Collapse
Affiliation(s)
- Ji-Xiang Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Shi-Yin Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
22
|
Zhang B, Xiao Y, Su D, Li C, Zhang S, Long J, Weng R, Liu H, Chen Y, Liao Z, Zhu X, Huang J, Chen S, Zhou T, Ma Y, Xu C. M13, an anthraquinone compound isolated from Morinda officinalis alleviates the progression of the osteoarthritis via the regulation of STAT3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156329. [PMID: 39706062 DOI: 10.1016/j.phymed.2024.156329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, leading to joint pain and functional impairment. OA severely impacts quality of life and presents a substantial societal burden. Currently, effective treatment options remain limited. Morinda officinalis (MO), a traditional Chinese herb, is commonly used to treat rheumatoid arthritis and alleviate joint pain. M13, an anthraquinone extracted from MO, has shown significant anti-inflammatory properties, making it a promising candidate for the treatment of OA. However, its role in inhibiting OA progression and the mechanisms involved remain poorly understood. PURPOSE The objective of this study is to examine the impact of M13 on osteoarthritis and uncover the mechanisms. METHODS The effects of M13 on OA were assessed using TNF-α induced chondrocyte models and mice with destabilization of the medial meniscus (DMM). Celecoxib was used as a positive control. We evaluated the expression of factors related to chondrocyte degeneration and inflammation through qRT-PCR, immunoblotting, and immunofluorescence. Chondrocyte viability was measured using CCK-8 assays, EdU staining, and flow cytometry. Molecular docking, molecular dynamics simulations and isothermal titration calorimetry (ITC) were performed to evaluate the binding efficacy of target proteins. Additionally, the therapeutic effects of M13 in OA mice were confirmed through in vivo experiments. RESULTS In primary murine chondrocytes, M13 rescued TNF-α-induced matrix degradation and loss of vitality while suppressing ROS generation. Mechanistically, STAT3 was identified as a target protein of M13, through which M13 mitigated OA by inhibiting the STAT3 signaling pathway. Further in vivo experiments demonstrated that M13 reduced the scores of the Osteoarthritis Research Society International (OARSI), alleviating cartilage impairment. M13 enhanced levels of collagen II and aggrecan in cartilage tissue while decreasing the amounts of cartilage-degrading proteins ADAMTS-5 and MMP13. CONCLUSION This is the first study to validate that M13 mitigates the inflammation and damage in cartilage tissue by blocking the STAT3 signaling pathway. These findings hold promise for enhancing innovative clinical interventions targeting OA.
Collapse
Affiliation(s)
- Baolin Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Xiao
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Deying Su
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Li
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Shun Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Long
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Ricong Weng
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Hengyu Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yingtong Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xu Zhu
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830002, China
| | - Junming Huang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuqing Chen
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Taifeng Zhou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan Ma
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830002, China.
| | - Caixia Xu
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Zeng D, Umar M, Zhu Z, Pan H, Lu WW, Xiao G, Chen Y, Tong L, Chen D. Development of novel osteoarthritis therapy by targeting AMPK-β-catenin-Runx2 signaling. Genes Dis 2025; 12:101247. [PMID: 39552787 PMCID: PMC11566674 DOI: 10.1016/j.gendis.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 11/19/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating chronic joint disease affecting large populations of patients, especially the elderly. The pathological mechanisms of OA are currently unknown. Multiple risk factors are involved in OA development. Among these risk factors, alterations of mechanical loading in the joint leading to changes in biological signaling pathways have been known as a key event in OA development. The importance of AMPK-β-catenin-Runx2 signaling in the initiation and progression of OA has been recognized in recent years. In this review, we discuss the recent progress in understanding the role of this signaling pathway and the underlying interaction mechanisms during OA development. We also discuss the drug development aiming to target this signaling pathway for OA treatment.
Collapse
Affiliation(s)
- Daofu Zeng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haobo Pan
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, Guangdong 518071, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Ruan H, Zhu T, Ma T, Liu Y, Zheng J. Short-term high-fat diet post-ACLT surgery activates chondrocyte AMPK pathway and slows articular cartilage degeneration in rats. J Funct Foods 2025; 124:106609. [DOI: 10.1016/j.jff.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
25
|
Wang S, Duan Z, Li Z, Yang D, Lu H, Zhang Y, Fu Y, Guan Y, Li G, Qian F, Xu T. The effect of Miya on skeletal muscle changes by regulating gut microbiota in rats with osteoarthritis through AMPK pathway. BMC Musculoskelet Disord 2024; 25:1081. [PMID: 39736635 DOI: 10.1186/s12891-024-08203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The study aimed to explore whether Miya (MY), a kind of Clostridium butyricum, regulated osteoarthritis (OA) progression through adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway. METHODS The OA rats were orally given MY daily for 4 weeks and were intramuscularly injected with AMPK inhibitor once a week for 4 weeks. Hematoxylin eosin (HE) staining was used to observe the histological morphology of the knee joint. The levels of succinate dehydrogenase (SDH) and muscle glycogen (MG) in the tibia muscle of rats were detected by the corresponding kits, as well as the expression of related genes/proteins were assessed by real-time quantitative PCR (RT-qPCR) and western blot. RESULTS HE staining suggested that MY suppressed the symptoms of OA, which was abolished by AMPK inhibitor. Furthermore, the SDH and MG contents in the OA + MY + AMPK inhibitor group were lower than in the OA + MY group. At last, the levels of AMPK, PI3K, AKT1, Ldh, Myod, Chrna1, and Chrnd were notably decreased after AMPK inhibitor treatment, while the levels of Lcad and Mcad were up-regulated by AMPK inhibitor. Furthermore, their protein expression levels detected by western blot were consistent with those from RT-qPCR. CONCLUSION MY may partially regulate skeletal muscle changes and prevente OA development through the AMPK pathway.
Collapse
Affiliation(s)
- Sen Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Zhengwei Duan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Zihua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Hengli Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Yuesong Fu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Yonghao Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China
| | - Feng Qian
- Department of Orthopedics, Bengbu First People's Hospital, Bengbu, Anhui, 233000, China
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Rd, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
26
|
Chen H, Wang Z, Du N, Oh J, Xu J, Liu R, Song J, Zhang J, Kang C. Association between life's simple 7 (LS7) and arthritis: the mediating role of body fat percentage (BFP). Lipids Health Dis 2024; 23:415. [PMID: 39707467 DOI: 10.1186/s12944-024-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Life's Simple 7 (LS7), developed by the American Heart Association, addresses seven key health behaviors and relationship factors. Although LS7 has been studied in relation to various chronic diseases, its association with arthritis remains unclear. This study seeks to investigate the association between LS7 and arthritis, with particular emphasis on the mediating role of body fat percentage (BFP). METHODS Data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES), including 16,332 adult participants, were analyzed. The connection between LS7 and arthritis was evaluated using multivariable logistic regression, smooth curve fitting, and subgroup analysis. Mediation analysis assessed the role of BFP in this relationship. Additionally, ROC curve analysis was used to assess the predictive performance of the model, and the Boruta algorithm identified the influential factors associated with arthritis. RESULTS After adjusting for relevant covariables, each standard deviation increase in LS7 was linked to a 13% lower likelihood of arthritis [OR = 0.87, 95% CI: 0.84, 0.89]. Participants in the highest LS7 tertile (T3) exhibited a 50% reduced likelihood of developing arthritis compared to those in the lowest tertile (T1) [OR = 0.50, 95% CI: 0.43, 0.60]. Mediation analysis confirmed that BFP significantly mediated the LS7-arthritis relationship. Furthermore, the Boruta algorithm identified LS7 and BFP as key variables associated with arthritis. CONCLUSION Elevated LS7 scores were associated with a lower likelihood of arthritis, with BFP serving as a mediating factor. Improving LS7 scores and managing body fat may help prevent arthritis. Due to the study's cross-sectional design, causality cannot be confirmed. Future research should use longitudinal studies to verify these findings and target high-risk groups.
Collapse
Affiliation(s)
- Huan Chen
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Cosmetic Dermatology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao Wang
- Department of Orthopedic of Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ning Du
- Department of Psychiatry, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jinseok Oh
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jing Xu
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Rongcan Liu
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Junlong Song
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Junsheng Zhang
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Chan Kang
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
27
|
AboTaleb HA, Alghamdi BS. Metformin and fibromyalgia pathophysiology: current insights and promising future therapeutic strategies. Mol Biol Rep 2024; 52:60. [PMID: 39692938 DOI: 10.1007/s11033-024-10159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Fibromyalgia (FM) is a complex, chronic pain syndrome characterized by widespread musculoskeletal pain, fatigue, and cognitive disturbances. Despite its prevalence, the pathophysiology of FM remains poorly understood, with current treatments often providing limited relief. Recent studies have suggested that metformin, a widely used antidiabetic drug, may have potential therapeutic benefits for chronic pain conditions, including FM. This review aims to provide current insights into the role of metformin in FM pathophysiology, focusing on its neurotransmitter-modulating and anti-inflammatory effects. Metformin has been shown to mitigate neuroinflammation, protect neural tissues, and modulate key neurotransmitters involved in pain and mood regulation. These effects are particularly evident in animal models, where metformin has been observed to reduce pain sensitivity, improve mood-related behaviors, and decrease levels of pro-inflammatory cytokines like interleukin 1-beta (IL-1β). Additionally, the ability of metformin to influence serotonin, norepinephrine, and glutamate levels suggests a potential mechanism for its analgesic and mood-stabilizing effects. However, the current evidence is largely preclinical, and further research is needed to confirm these findings in human studies. This review aims to encourage researchers to explore the association between metformin and FM more deeply, with the hope of uncovering new therapeutic strategies that could offer relief to FM patients.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
30
|
Griffin TM, Lopes EBP, Cortassa D, Batushansky A, Jeffries MA, Makosa D, Jopkiewicz A, Mehta-D'souza P, Komaravolu RK, Kinter MT. Sexually dimorphic metabolic effects of a high fat diet on knee osteoarthritis in mice. Biol Sex Differ 2024; 15:103. [PMID: 39639386 PMCID: PMC11619521 DOI: 10.1186/s13293-024-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Women have a higher risk of developing osteoarthritis (OA) than men, including with obesity. To better understand this disparity, we investigated sex differences in metabolic and inflammatory factors associated with OA using a diet-induced mouse model of obesity. We hypothesized that 20 weeks of high-fat diet (HFD) would induce sexually dimorphic changes in both systemic and local risk factors of knee OA. METHODS Male and female C57BL/6J mice were fed Chow or HFD from 6 to 26 weeks of age (n = 12 per diet and sex). We performed broad metabolic phenotyping, 16 S gut microbiome analysis, targeted gene expression analysis of synovium-infrapatellar fat tissue, targeted gene expression and proteomic analysis of articular cartilage, chondrocyte metabolic profiling, and OA histopathology. Two-way ANOVA statistics were utilized to determine the contribution of sex and diet and their interaction on outcomes. RESULTS Mice fed HFD weighed 1.76-fold (p < 0.0001) and 1.60-fold (p < 0.0001) more than male and female Chow cohorts, respectively, with both sexes reaching similar body fat levels (male: 43.9 ± 2.2%; female: 44.1 ± 3.8%). HFD caused greater cartilage pathology (p < 0.024) and synovial hyperplasia (p < 0.038) versus Chow in both sexes. Cartilage pathology was greater in male versus female mice (p = 0.048), and only male mice developed osteophytes with HFD (p = 0.044). Both sexes exhibited metabolic inflexibility on HFD, but only male mice developed glucose intolerance (p < 0.0001), fatty liver (p < 0.0001), and elevated serum amylase (p < 0.0001) with HFD versus Chow. HFD treatment caused sex-dependent differences in gut microbiota beta diversity (p = 0.01) and alteration in specific microbiome clades, such as a HFD-dependent reduction in abundance of Bifidobacterium only in male mice. In knee synovium and infrapatellar fat tissue, HFD upregulated the expression of pro-inflammatory and pro-fibrotic genes predominantly in female mice. In cartilage, lipid metabolism proteins were more abundant with HFD in male mice, whereas proteins involved in glycolysis/gluconeogenesis and biosynthesis of amino acids were greater in cartilage of female mice. Sex-dependent metabolic differences were observed in cartilage from young, healthy mice prior to pubertal maturation, but not in primary juvenile chondrocytes studied in vitro. CONCLUSIONS HFD induced numerous sex differences in metabolic and inflammatory outcomes, especially in joint tissues, suggesting that sex-specific cellular processes are involved during development of early-stage OA with obesity.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Labcorp Drug Development, Indianapolis, IN, USA
| | - Dominic Cortassa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- VA Oklahoma City Health Care, Oklahoma City, OK, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Matlock A Jeffries
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Dawid Makosa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- University of Western Australia, Perth, Western Australia, Australia
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Panier Group, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
31
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
32
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
33
|
Lee Y, Kim HE, Kwak JS, Park CS, Chun JS. The cereblon-AMPK (AMP-activated protein kinase) axis in chondrocytes regulates the pathogenesis of osteoarthritis. Osteoarthritis Cartilage 2024; 32:1579-1590. [PMID: 39218203 DOI: 10.1016/j.joca.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) dysregulation is implicated in osteoarthritis (OA), but the mechanisms underlying this dysregulation remain unclear. We investigated the role of cereblon, a substrate-recognition protein within the E3-ligase ubiquitin complex, in AMPK dysregulation and OA pathogenesis. METHODS Cereblon expression was examined in human (n = 5) and mouse (n = 10) OA cartilage. The role of cereblon was investigated through its adenoviral overexpression (n = 10) or knockout (KO, n = 15) in the destabilization of the medial meniscus (DMM)-operated mice. The therapeutic potentials of the chemical cereblon degrader, TD-165, and the AMPK activator, metformin, were assessed through intra-articular (IA) injection to mice (n = 15). RESULTS Immunostaining revealed that cereblon is upregulated in human and mouse OA cartilage. In DMM model mice, cartilage destruction was exacerbated by overexpression of cereblon in mouse joint tissues (OARSI grade; 1.11 [95% CI: 0.50 to 2.75]), but inhibited in global (-2.50 [95% CI: -3.00 to -1.17]) and chondrocyte-specific (-2.17 [95% CI: -3.14 to -1.06]) cereblon KO mice. The inhibitory effects were more pronounced in mice fed a high-fat diet compared to a regular diet. The degradation of cereblon through IA injection of TD-165 inhibited OA cartilage destruction (-2.47 [95% CI: -3.22 to -1.56]). Mechanistically, cereblon exerts its catabolic effects by negatively modulating AMPK activity within chondrocytes. Consistently, activation of AMPK by IA injection of metformin inhibited posttraumatic OA cartilage destruction (-1.20 ([95% CI: -1.89 to -0.45]). CONCLUSIONS The cereblon-AMPK axis acts as a catabolic regulator of OA pathogenesis and seems to be a promising therapeutic target in animal models of OA.
Collapse
Affiliation(s)
- Yeon Lee
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyo-Eun Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Sun Kwak
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
34
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
35
|
AboTaleb HA, Alturkistani HA, Abd El-Aziz GS, Hindi EA, Halawani MM, Al-Thepyani MA, Alghamdi BS. The Antinociceptive Effects and Sex-Specific Neurotransmitter Modulation of Metformin in a Mouse Model of Fibromyalgia. Cells 2024; 13:1986. [PMID: 39682734 PMCID: PMC11640190 DOI: 10.3390/cells13231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Fibromyalgia (FM) is a chronic and debilitating condition characterized by diffuse pain, often associated with symptoms such as fatigue, cognitive disturbances, and mood disorders. Metformin, an oral hypoglycemic agent, has recently gained attention for its potential benefits beyond glucose regulation. It has shown promise in alleviating neuropathic and inflammatory pain, suggesting that it could offer a novel approach to managing chronic pain conditions like FM. This study aimed to further explore metformin's analgesic potential by evaluating its effects in an experimental FM model induced by reserpine in both male and female mice. After the administration of 200 mg/kg metformin to male and female mice, the FM-related symptoms were assessed, including mechanical allodynia, thermal hyperalgesia, and depressive-like behaviors. A histological examination of the thalamus, hippocampus, and spinal cord was conducted using haematoxylin and eosin staining. The neurotransmitter and proinflammatory cytokines levels were measured in the brains and spinal cords. Our results have shown that metformin treatment for seven days significantly reversed these FM-like symptoms, reducing pain sensitivity and improving mood-related behaviors in both the male and female mice. Additionally, metformin exhibited neuroprotective effects, mitigating reserpine-induced damage in the hippocampus, thalamus, and spinal cord. It also significantly lowered the levels of the proinflammatory cytokine interleukin 1-beta (IL-1β) in the brain and spinal cord. Notably, metformin modulated the neurotransmitter levels differently between the sexes, decreasing glutamate and increasing serotonin and norepinephrine in the male mice, but not in the females. These findings underscore metformin's potential as an alternative therapy for FM, with sex-specific differences suggesting distinct mechanisms of action.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
| | - Hani A. Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Emad A. Hindi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Mervat M. Halawani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (H.A.A.); (G.S.A.E.-A.)
| | - Mona Ali Al-Thepyani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.M.H.); (M.A.A.-T.)
| |
Collapse
|
36
|
Wang J, Peng L, Yang M, Wang J, Feng R, Xu K, Xu P. Is there a genetic relationship between blood glucose and osteoarthritis? A mendelian randomization study. Diabetol Metab Syndr 2024; 16:274. [PMID: 39543708 PMCID: PMC11562302 DOI: 10.1186/s13098-024-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE The relationship between blood glucose levels and osteoarthritis (OA) is unclear. This study aimed to investigate the genetic causal relationship between blood glucose-related traits and OA. METHODS We first performed univariate Mendelian randomization (UVMR) analyses using published genome-wide association study (GWAS) datasets with fasting glucose (FG), 2 h-glucose post-challenge glucose (2hGlu), and glycosylated hemoglobin (HbA1c) as exposures, and hip osteoarthritis (HOA) and knee osteoarthritis (KOA) as outcomes; then, we performed inverse analyses of them. We used Inverse-variance weighted (IVW) analysis as the primary analysis, and sensitivity analyses were performed. Moreover, we performed multivariate Mendelian randomization (MVMR) to estimate the independent effect of exposure on outcome after adjusting for body mass index (BMI). Summarized data for blood glucose-related traits were obtained from the MAGIC Consortium study of the glucose trait genome and for OA from the UK Biobank and arcOGEN. Summarized data for BMI were obtained from the GIANT Consortium meta-analysis of individuals of European ancestry. A two-sided p value < 0.05 in UVMR was considered suggestive of significance when p < 0.0167 (Bonferroni correction p = 0.05/3 exposures) was considered statistically significant. RESULTS We found significant negative genetic causality of FG for HOA and KOA, and these associations remained significant after we adjusted for the effect of BMI [odds ratios (ORs) of 0.829 (0.687-0.999, p = 0.049) and 0.741 (0.570-0.964, p = 0.025)]. HbA1c also had an independent negative genetic causal effect on HOA after adjustment for BMI [0.665 (0.463-0.954, p = 0.027)]. At the same time, there was no evidence of reverse genetic causality of OA on blood glucose-related traits. CONCLUSION We further elucidated the relationship between blood glucose-related traits and OA by adjusting for the effect of BMI from a genetic causal perspective. This study provides new insights to further clarify the relationship between blood glucose levels and OA, as well as the pathogenesis, etiology and genetics of OA.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Leixuan Peng
- Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ruoyang Feng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
37
|
Xu D, Zhang L, Song C, Zhang D, Xing C, Lv J, Bian H, Zhu M, Han M, Yu Y, Su L. Acacetin targets STING to alleviate the destabilization of the medial meniscus-induced osteoarthritis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8863-8878. [PMID: 38856915 DOI: 10.1007/s00210-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Osteoarthritis (OA) is a common joint disorder affecting about 7% of the global population, primarily characterized by the gradual loss of articular cartilage. This degeneration results from local inflammation, matrix depletion, and direct cartilage damage. A critical element in this process is the activation of the stimulator of the interferon genes (STING) pathway. Emerging evidence highlights its potential as a therapeutic target, with natural products showing promise as inhibitors. Our study centers on Acacetin, a basic unit of polyketides known for its anti-inflammatory properties. Prior research has highlighted its potential interaction with STING based on the structure. Thus, this study aimed to assess the effectiveness of Acacetin as a STING inhibitor and its protective role against OA. In vitro experiments showed that Acacetin pretreatment not only mitigated interleukin-1β (IL-1β)-induced cytotoxicity but also decreased the inflammatory response and degeneration in chondrocytes stimulated IL-1β. In vivo studies revealed that Acacetin administration significantly reduced articular cartilage destruction, abnormal bone remodeling, and osteophyte formation in a model of OA induced by destabilization of the medial meniscus (DMM). Mechanistically, Acacetin was found to interact directly with STING, and inhibit IL-1β-induced activation of STING, along with the subsequent phosphorylation of the TBK1/NF-κB pathway in chondrocytes. In conclusion, our findings establish Acacetin as an effective inhibitor of STING that protects chondrocytes from IL-1β-induced damage and slows the progression of OA in mice.
Collapse
Affiliation(s)
- Dingjun Xu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Linjie Zhang
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chenyu Song
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Dinglei Zhang
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Minyu Zhu
- Department of Spine Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minxuan Han
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| |
Collapse
|
38
|
Liu L, Yao Z, Zhang H, Wu C, Guo X, Lin Y, Zhang H, Zeng C, Bai X, Cai D, Lai P. Deapi-platycodin D3 attenuates osteoarthritis development via suppression of PTP1B. J Bone Miner Res 2024; 39:1673-1687. [PMID: 39298571 DOI: 10.1093/jbmr/zjae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Dysregulated chondrocyte metabolism is an essential risk factor for osteoarthritis (OA) progression. Maintaining cartilage homeostasis represents a promising therapeutic strategy for the treatment of OA. However, no effective disease-modifying therapy is currently available to OA patients. To discover potential novel drugs for OA, we screened a small-molecule natural product drug library and identified deapi-platycodin D3 (D-PDD3), which was subsequently tested for its effect on extracellular matrix (ECM) properties and on OA progression. We found that D-PDD3 promoted the generation of ECM components in cultured chondrocytes and cartilage explants and that intra-articular injection of D-PDD3 delayed disease progression in a trauma-induced mouse model of OA. To uncover the underlying molecular mechanisms supporting these observed functions of D-PDD3, we explored the targets of D-PDD3 via screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry. The results suggested that D-PDD3 targeted tyrosine-protein phosphatase non-receptor type 1 (PTP1B), deletion of which restored chondrocyte homeostasis and markedly attenuated destabilization of the medial meniscus induced OA. Further cellular and molecular analyses showed that D-PDD3 maintained cartilage homeostasis by directly binding to PTP1B and consequently suppressing the PKM2/AMPK pathway. These findings demonstrated that D-PDD3 was a potential therapeutic drug for the treatment of OA and that PTP1B served as a protein target for the development of drugs to treat OA. This study provided significant insights into the development of therapeutics for OA treatment, which, in turn, helped to improve the quality of life of OA patients and to reduce the health and economic burden.
Collapse
Affiliation(s)
- Liangliang Liu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zihao Yao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunyu Wu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiongtian Guo
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhi Lin
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
39
|
Sun Z, Tang J, You T, Zhang B, Liu Y, Liu J. lncRNA OIP5-AS1 promotes mitophagy to alleviate osteoarthritis by upregulating PPAR-γ to activate the AMPK/Akt/mTOR pathway. Mod Rheumatol 2024; 34:1265-1276. [PMID: 38441253 DOI: 10.1093/mr/roae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/21/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common chronic joint degenerative disease. Herein, we investigated long non-coding RNA Opa-interacting protein 5-antisense transcript 1's (OIP5-AS1) in regulating mitophagy during OA. METHODS RNA immunoprecipitation and RNA pull-down verified the relationship between molecules. Cell counting kit-8 detected cell viability. Enzyme-linked immunosorbent assay evaluated inflammatory cytokines secretion. Flow cytometry measured the contents of reactive oxygen species (ROS) and calcium. Immunofluorescence staining analysed TOMM20 and LC3B levels. JC-1 staining was adopted to measure mitochondrial membrane potential. The changes of mitophagy were analysed by transmission electron microscopy. RESULTS Lipopolysaccharide (LPS) treatment contributed to the decrease of chondrocyte viability, and calcium level and inhibited mitochondrial membrane potential, while elevating the secretion of inflammatory factors, ROS, and TOMM20 expression. OIP5-AS1 overexpression inhibited LPS-induced chondrocyte injury and activated mitophagy. OIP5-AS1 upregulated the peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA level to regulate adenosine monophosphate-activated protein kinase (AMPK)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) signalling by interacting with FUS. PPAR-γ overexpression alleviated LPS-induced chondrocyte injury by activating AMPK/Akt/mTOR signalling. PPAR-γ knockdown reversed the promotion of OIP5-AS1 upregulation on mitophagy. CONCLUSIONS OIP5-AS1 promotes PPAR-γ expression to activate the AMPK/Akt/mTOR signalling, thereby enhancing mitophagy and alleviating OA progression.
Collapse
Affiliation(s)
- Zhilu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jie Tang
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Bihong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| |
Collapse
|
40
|
Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway. Nanomedicine (Lond) 2024; 19:2357-2373. [PMID: 39360651 PMCID: PMC11492688 DOI: 10.1080/17435889.2024.2403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.Materials & methods: In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and ex vivo cultured human OA cartilage explants.Results: We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.Conclusion: Altogether, our findings demonstrated GDN hold great potential for OA treatment.
Collapse
Affiliation(s)
- Yiming Zeng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Lin Lu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chen Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
41
|
Zhang Y, Zhou Y. Advances in targeted therapies for age-related osteoarthritis: A comprehensive review of current research. Biomed Pharmacother 2024; 179:117314. [PMID: 39167845 DOI: 10.1016/j.biopha.2024.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that disproportionately impacts the elderly population on a global scale. As aging is a significant risk factor for OA, there is a growing urgency to develop specific therapies that target the underlying mechanisms of aging associated with this condition. This summary seeks to offer a thorough introduction of ongoing research efforts aimed at developing therapies to combat senescence in the context of OA. Cellular senescence plays a pivotal role in both the deterioration of cartilage integrity and the perpetuation of chronic inflammation and tissue remodeling. Consequently, targeting SnCs has emerged as a promising therapeutic approach to alleviate symptoms and hinder the progression of OA. This review examines a range of approaches, including senolytic drugs targeting SnCs, senomorphics that modulate the senescence-associated secretory phenotype (SASP), and interventions that enhance immune system clearance of SnCs. Novel methodologies, such as utilizing novel materials for exosome delivery and administering anti-aging medications with precision, offer promising avenues for the precise treatment of OA. Accumulating evidence underscores the potential of targeting senescence in OA management, potentially facilitating the development of more effective and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China.
| |
Collapse
|
42
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
43
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
44
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
45
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
46
|
Bai L, Zhang X, Han Z, Yang X, Hao Y. Injectable porous microspheres for articular cartilage regeneration through in situ stem cell recruitment and macrophage polarization. Acta Biomater 2024; 185:429-440. [PMID: 38997077 DOI: 10.1016/j.actbio.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
In situ mesenchymal stem cells (MSCs) regenerative therapy holds promising potential for treating osteoarthritis. However, MSCs engraftment and intra-articular inflammation limit the therapeutic efficacy of this approach. This study introduces porous microspheres (PMs) composed of aldehyde-modified poly(lactic-co-glycolic acid), that encapsulate platelet derived growth factor-AB and kartogenin. Metformin (Met) is also incorporated onto the microsphere through a Schiff base reaction to create PMs@Met. In vitro, in vivo and ex experiments revealed that PMs@Met can be injected into the joint cavity, effectively recruiting endogenous MSCs in situ. This approach creates a favorable environment for MSCs proliferation. It also controls the intra-articular inflammatory environment by modulating the polarization of synovial macrophages, ultimately promoting cartilage repair. In summary, our study presents an innovative tissue engineering strategy for the treatment of osteoarthritis-induced articular cartilage injuries. STATEMENT OF SIGNIFICANCE: Cell therapy using autologous mesenchymal stem cells (MSCs) has potential to slow the progression of osteoarthritis (OA). Nonetheless, there are some disadvantages to adopting in situ MSCs therapy, including difficulties with MSC engraftment into cartilage-deficient regions, the effect of intra-articular inflammation on MSC therapeutic efficacy, and attaining selective chondrogenic MSC differentiation. We created injectable PLGA microspheres (PMs) that were loaded with PDGF-AB and KGN. Metformin was bonded to the surface of microspheres using a Schiff base reaction. The microspheres can recruit intra-articular MSCs and encourage their development into chondrocytes. The microspheres actively modulate the inflammatory joint environment by altering synovial macrophage polarization, thereby supporting MSCs in effective cartilage treatment. To summarize, microspheres hold great potential in the treatment of OA.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Xiaoyu Zhang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Zeyu Han
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China
| | - Xing Yang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China.
| | - Yuefeng Hao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China; Gusu School, Nanjing Medical University,458 Shizi Road, Suzhou 215006, China.
| |
Collapse
|
47
|
Fu K, Si S, Jin X, Zhang Y, Duong V, Cai Q, Li G, Oo WM, Zheng X, Boer CG, Zhang Y, Wei X, Zhang C, Gao Y, Hunter DJ. Exploring antidiabetic drug targets as potential disease-modifying agents in osteoarthritis. EBioMedicine 2024; 107:105285. [PMID: 39153411 PMCID: PMC11378937 DOI: 10.1016/j.ebiom.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of disability, and disease-modifying osteoarthritis drugs (DMOADs) could represent a pivotal advancement in treatment. Identifying the potential of antidiabetic medications as DMOADs could impact patient care significantly. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian Randomization (MR) (genetic proxies for antidiabetic drug targets), summary-based MR (SMR) (for mRNA), and colocalisation (for drug-target genes) to assess their causal relationship with 12 osteoarthritis phenotypes. Summary statistics from the largest genome-wide association meta-analysis (GWAS) of osteoarthritis and gene expression data from the eQTLGen consortium were utilised. FINDINGS Seven out of eight major types of clinical antidiabetic medications were identified, resulting in fourteen potential drug targets. Sulfonylurea targets ABCC8/KCNJ11 were associated with increased osteoarthritis risk at any site (odds ratio (OR): 2.07, 95% confidence interval (CI): 1.50-2.84, P < 3 × 10-4), while PPARG, influenced by thiazolidinediones (TZDs), was associated with decreased risk of hand (OR: 0.61, 95% CI: 0.48-0.76, P < 3 × 10-4), finger (OR: 0.50, 95% CI: 0.35-0.73, P < 3 × 10-4), and thumb (OR: 0.49, 95% CI: 0.34-0.71, P < 3 × 10-4) osteoarthritis. Metformin and GLP1-RA, targeting GPD1 and GLP1R respectively, were associated with reduced risk of knee and finger osteoarthritis. In the SMR analyses, gene expression of KCNJ11, GANAB, ABCA1, and GSTP1, targeted by antidiabetic drugs, was significantly linked to at least one osteoarthritis phenotype and was replicated across at least two gene expression datasets. Additionally, increased KCNJ11 expression was related to decreased osteoarthritis risk and co-localised with at least one osteoarthritis phenotype. INTERPRETATION Our findings suggest a potential therapeutic role for antidiabetic drugs in treating osteoarthritis. The results indicate that certain antidiabetic drug targets may modify disease progression, with implications for developing targeted DMOADs. FUNDING This study was funded by the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (2022), the Shanghai Municipal Health Commission Health Industry Clinical Research Project (Grant No. 20224Y0139), Beijing Natural Science Foundation (Grant No. 7244458), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20230130).
Collapse
Affiliation(s)
- Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xinzhong Jin
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Vicky Duong
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Qianying Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia; Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine Mandalay, Mandalay, Myanmar
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, Rotterdam, the Netherlands
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xiaojuan Wei
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - David J Hunter
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Luo Q, Zhang S, Yang Q, Deng Y, Yi H, Li X. Causal factors for osteoarthritis risk revealed by mendelian randomization analysis. Aging Clin Exp Res 2024; 36:176. [PMID: 39172202 PMCID: PMC11341639 DOI: 10.1007/s40520-024-02812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Osteoarthritis (OA), a prevalent chronic disease among the elderly, presents a complex pathogenesis and currently lacks effective treatment. Traditional observational studies are time-consuming, labor-intensive, susceptible to confounding factors, and cannot establish causal relationships. Mendelian randomization (MR) analysis, leveraging genetic variation to assess causal associations between exposures and outcomes, offers a cost-effective and efficient alternative. Over the past decade, large-scale genome-wide association studies have identified numerous genetic variants linked to OA risk factors, facilitating MR study design. In this review, we systematically identified 52 MR studies meeting specific criteria and evaluated their quality, exploring the impact of lifestyle, nutrition, comorbidities, circulating metabolites, plasma proteins, and other health factors on OA risk. We discuss the results and potential mechanisms of MR findings, addressing conflicting evidence based on existing literature and our prior research. With the ongoing expansion of genome-wide association data, we anticipate MR's role in future OA studies to broaden, particularly in drug development research using targeted MR approaches. We thus aim for this paper to offer valuable insights for researchers and clinicians in related fields.
Collapse
Affiliation(s)
- Qingfeng Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shiyong Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qiyuan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuyi Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hengjing Yi
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xingsheng Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
49
|
Zhou F, Qian HY, Wang K, Gu YJ, Liu PL, Zhang L, Chen L, Song Y, Chen YN, Zhang HL. Metformin relieves bone cancer pain by reducing TGFβRI-TRPV1 signaling in rats. Heliyon 2024; 10:e34991. [PMID: 39157315 PMCID: PMC11328085 DOI: 10.1016/j.heliyon.2024.e34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Common cancer complications include bone cancer pain (BCP), which was not sufficiently alleviated by traditional analgesics. More safe and effective therapy was urgent needed. Metformin relieved osteoarthritis pain, but the analgesia of Metformin in BCP was not well studied. The study aimed to explore the Metformin-mediated analgesic effect and its molecular mechanisms in BCP rats. We demonstrated that Walker 256 cell transplantation into the medullary cavity of the tibia worsened mechanical allodynia in BCP rats, increased the expression of TGFβ1 in the metastatic bone tissue, and raised the expression of TGFβRI and TRPV1 in the L4-6 dorsal root ganglion (DRG) of BCP rats. While, selectively blockade of TGFβRI by SD208 could obviously elevated the paw withdraw threshold (PWT) of BCP rats, together with decreased TRPV1 expression in L4-6 DRG. Notably, continuous Metformin treatment reduced TGFβ1, TGFβRI and TRPV1 expression, and relieved mechanical allodynia of BCP rats in a long-term effect. In conclusion, these results illustrated that Metformin ameliorated bone cancer pain, and the downregulation of TGFβ1-TGFβRI-TRPV1 might be a potential mechanism of Metformin-mediated analgesia in BCP.
Collapse
Affiliation(s)
- Fang Zhou
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - He-Ya Qian
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yong-Juan Gu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Pei-Lin Liu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ya-Nan Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Lee H, Choe J, Son MH, Lee IH, Lim MJ, Jeon J, Yang S. A Novel BD2-Selective Inhibitor of BRDs Mitigates ROS Production and OA Pathogenesis. Antioxidants (Basel) 2024; 13:943. [PMID: 39199189 PMCID: PMC11352053 DOI: 10.3390/antiox13080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jihye Choe
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min-Hee Son
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - In-Hyun Lee
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min Ju Lim
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea;
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|