1
|
Watts LM, Sparkes PC, Dewhurst HF, Guilfoyle SE, Pollard AS, Komla-Ebri D, Butterfield NC, Williams GR, Bassett JHD. The GWAS candidate far upstream element binding protein 3 (FUBP3) is required for normal skeletal growth, and adult bone mass and strength in mice. Bone 2025; 195:117472. [PMID: 40139337 DOI: 10.1016/j.bone.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Bone mineral density (BMD) and height are highly heritable traits for which hundreds of genetic loci have been linked through genome wide association studies (GWAS). FUBP3 is a DNA and RNA binding protein best characterised as a transcriptional regulator of c-Myc, but little is known about its role in vivo. Single nucleotide polymorphisms in FUBP3 at the 9q34.11 locus have been associated with BMD, fracture and height in multiple GWAS, but FUBP3 has no previously established role in the skeleton. We analysed Fubp3-deficient mice to determine the consequence of FUBP3 deficiency in vivo. Mice lacking Fubp3 had reduced survival to adulthood and impaired skeletal growth. Bone mass was decreased, most strikingly in the vertebrae, with altered trabecular micro-architecture. Fubp3 deficient bones were also weak. These data provide the first functional demonstration that Fubp3 is required for normal skeletal growth and development and maintenance of adult bone structure and strength, indicating that FUBP3 contributes to the GWAS association of 9q34.11 with variation in height, BMD and fracture.
Collapse
Affiliation(s)
- Laura M Watts
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Xiong Y, Liu B, Li W, Chen J. Causal association between female reproductive factors and periodontitis: evidence from Mendelian randomization study. Clin Oral Investig 2025; 29:293. [PMID: 40347226 DOI: 10.1007/s00784-025-06359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/26/2025] [Indexed: 05/12/2025]
Abstract
OBJECTIVES To evaluate the causal relationship between female reproductive factors and periodontitis, and identify potential mediators underlying these associations. MATERIALS AND METHODS The genome-wide association study (GWAS) summary statistics from different consortiums was used to search for single nucleotide polymorphisms (SNPs) strongly associated with exposures as instrumental variables (IVs). The causality between female reproductive factors and periodontitis was measured by univariable mendelian randomization (UVMR). The mediation analysis was conducted by two-step mendelian randomization (Two-Step MR). The reverse MR was utilized to examine potential reverse causality. RESULTS The age of menarche (β 0.1328; 95%CI 0.0454-0.2203; p 0.0029) and the age of first birth (β 0.1222; 95%CI 0.171-0.2247; p 0.0227) were positively correlated with chronic periodontitis. And the mediation analysis suggested that the heel bone mineral density (BMD) mediated the correlation between the age of menarche and chronic periodontitis. CONCLUSIONS The age of menarche and the age of first birth have causal relationships with the infection risk of chronic periodontitis. Further clinical and laboratory researches are needed to clarify the mechanism behind the newly found causality. CLINICAL RELEVANCE This study suggested that the later the age of menarche and first labor, the higher the susceptibility to chronic periodontitis, which may help the clinicians strengthen the prevention and treatment of periodontitis in women.
Collapse
Affiliation(s)
- Yichen Xiong
- Xiangya School of Stomatology, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Academician Workstation for Oral-maxillofacial and Regenerative Medicine, Changsha, 410000, China
| | - Binjie Liu
- Xiangya School of Stomatology, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Academician Workstation for Oral-maxillofacial and Regenerative Medicine, Changsha, 410000, China
- Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China
| | - Wenjie Li
- Xiangya School of Stomatology, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Academician Workstation for Oral-maxillofacial and Regenerative Medicine, Changsha, 410000, China
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China
| | - Jun Chen
- Xiangya School of Stomatology, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine, Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Academician Workstation for Oral-maxillofacial and Regenerative Medicine, Changsha, 410000, China.
- Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
3
|
Wu Z, Yang J, Zhu Y, Li J, Xu K, Li Y, Zhong G, Xu Y, Guo Y, Zhang Y. Causal Associations of Inflammatory Cytokines With Osteosarcopenia: Insights From Mendelian Randomization and Single Cell Analysis. Mediators Inflamm 2025; 2025:6005225. [PMID: 40224485 PMCID: PMC11986192 DOI: 10.1155/mi/6005225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Osteosarcopenia, the coexistence of osteoporosis and sarcopenia, poses significant challenges in aging populations due to its dual impact on bone and muscle health. Inflammation, mediated by specific cytokines, is thought to play a crucial role in the development of osteosarcopenia, though the underlying mechanisms are not fully understood. Objective: This study aimed to clarify the causal role of circulating cytokines in the pathogenesis of osteosarcopenia by employing mendelian randomization (MR) and single-cell RNA sequencing (scRNA-seq) to identify cell-specific cytokine expression patterns. The ultimate objective was to uncover potential pathological mechanisms and therapeutic targets for treating osteosarcopenia. Methods: A two-sample MR approach was employed, leveraging publicly available genome-wide association study (GWAS) data from multiple cohorts. A total of 91 circulating cytokines were examined using genetic instruments, and their causal effects on traits related to osteoporosis and sarcopenia were evaluated. Various complementary and sensitivity analyses were performed to ensure robust findings. Additionally, scRNA-seq datasets from human muscle and bone marrow were analyzed to validate the single-cell expression profiles of candidate cytokines. Results: MR analysis identified several cytokines with causal effects on osteosarcopenia traits, including LTA, CD40, CXCL6, CXCL10, DNER (delta and notch-like epidermal growth factor-related receptor), and VEGFA (vascular endothelial growth factor A). LTA and CD40 were protective for both bone and muscle, while VEGFA posed a risk. Other cytokines demonstrated opposite effects on bone and muscle. Single cell analysis revealed distinct expression patterns, with LTA highly expressed in lymphocytes, CD40 in immune cells, and VEGFA in various musculoskeletal cell types. Age-related differences in cytokine expression were also noted, with LTA more highly expressed in younger individuals, and VEGFA in older individuals. Conclusion: This study offers preliminary insights into the inflammatory mechanisms potentially driving osteosarcopenia, identifying key cytokines that may be involved in its pathogenesis. By integrating MR and scRNA-seq data, we highlight potential therapeutic targets, though further research is needed to confirm these findings and their implications for musculoskeletal health.
Collapse
Affiliation(s)
- Zugui Wu
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Jiyong Yang
- Department of Orthopaedic, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
- Department of Orthopaedic, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Yue Zhu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Jiao Li
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Kang Xu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Yuanlong Li
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Guoqing Zhong
- Department of Bone Tumor, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Yanfei Xu
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Ying Guo
- Department of Orthopaedic, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650000, Yunnan, China
| | - Yu Zhang
- Department of Bone Tumor, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
4
|
Patiño-Salazar JD, Ovejero D, Gabernet M, Martínez-Gil N, Alcaide-Consuegra E, Mellibovsky L, Nogués X, Grinberg D, Balcells S, Rabionet R, Garcia-Giralt N. Identifying rare variants in genes related to bone phenotypes in a cohort of postmenopausal women. Osteoporos Int 2025; 36:637-644. [PMID: 39915337 DOI: 10.1007/s00198-025-07413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/24/2025] [Indexed: 05/10/2025]
Abstract
Rare genetic variants in genes previously described to be involved in bone monogenic disorders were identified in postmenopausal women split into two groups according to extreme bone mineral density (BMD) values and lumbar spine Z-scores. A pathogenic variant in COL1A2 gene found in a woman with low BMD highlights the overlap between osteogenesis imperfecta and osteoporosis, which may share their genetic etiology. Other variants were not clearly associated with the extreme BMD, suggesting that there is little contribution of rare variants to postmenopausal osteoporosis. PURPOSE We aimed to evaluate whether extreme values of bone mineral density (BMD) in a population-based cohort of postmenopausal women (BARCOS) could be determined by rare genetic variants in genes related to monogenic bone disorders. METHODS A panel of 127 genes related to different skeletal phenotypes was designed. Massive sequencing by targeted capture of these genes was performed in 104 DNA samples from those women of the BARCOS cohort that exhibited the highest (HZ group) and lowest (LZ group) LS Z-scores, ranging from + 0.70 to + 3.80 and from - 2.35 to - 4.26, respectively. 5'UTR, 3'UTR, splice region, missense, nonsense, and short indel variants with MAF < 0.01 were annotated with CADD version 1.6 and considered in the analysis. RESULTS After filtering those variants with CADD > 25 and present only in one of the groups (either LZ or HZ), six variants were detected, most of which (5/6) were in the LZ group in TCIRG1, COL1A2, SEC24D, LRP4, and ANO5 genes, while only one, in the LMNA gene, was in the HZ group. According to the ClinVar database, the COL1A2 variant, causative of a recessive form of osteogenesis imperfecta, is described as pathogenic, while the other variants are considered of uncertain significance (VUS). CONCLUSION The variant identified in COL1A2 in a woman from the LZ group highlights the genetic overlap between monogenic diseases such as osteogenesis imperfecta and complex diseases like osteoporosis. However, the other variants were not clearly associated with the extreme BMD, suggesting that there is little contribution of rare variants to postmenopausal osteoporosis.
Collapse
Affiliation(s)
- J D Patiño-Salazar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - D Ovejero
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - M Gabernet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - N Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - E Alcaide-Consuegra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - L Mellibovsky
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - X Nogués
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - D Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - S Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain.
| | - R Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - N Garcia-Giralt
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| |
Collapse
|
5
|
Martínez-Gil N, Herrera-Ubeda C, Gritti N, Roca-Ayats N, Ugartondo N, Garcia-Giralt N, Ovejero D, Nogués X, Garcia-Fernàndez J, Grinberg D, Balcells S. Regulation of WNT16 in bone may involve upstream enhancers within CPED1. Sci Rep 2025; 15:9607. [PMID: 40113825 PMCID: PMC11926113 DOI: 10.1038/s41598-025-93259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
WNT16 stands up as an essential gene for bone homeostasis. Here, we present new evidence of the functional role of a particular region within WNT16. Performing 4 C chromatin conformation analysis in three osteoblast-related cells (the human fetal osteoblast hFOB 1.19 cell line, Saos 2 osteosarcoma cell line and mesenchymal Stem Cells -MSC-), we identify physical interactions between the proximal part of WNT16 intron 2, shown here to be an active promoter in Saos 2 osteosarcoma cells, and several putative regulatory regions within CPED1. Analysis of previously published RNA-seq data from hFOB cells disclosed low expression of a region located downstream of this promoter. Our results suggest a novel regulatory mechanism of WNT16 in bone, mediated by physical interaction with various enhancer regions within CPED1.
Collapse
Affiliation(s)
- N Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - C Herrera-Ubeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - N Gritti
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003, Barcelona, Spain
| | - N Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - N Ugartondo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - N Garcia-Giralt
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - D Ovejero
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - X Nogués
- Musculoskeletal Research Group, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - J Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III , Madrid, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain.
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III , Madrid, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain.
| |
Collapse
|
6
|
Wang J, Shan L, Hang J, Li H, Meng Y, Cao W, Gu C, Dai J, Tao L. Development and validation of a novel prediction model for osteoporosis : from serotonin to fat-soluble vitamins. Bone Joint Res 2025; 14:111-123. [PMID: 39963851 PMCID: PMC11833741 DOI: 10.1302/2046-3758.142.bjr-2023-0409.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Aims We aimed to develop and validate a novel prediction model for osteoporosis based on serotonin, fat-soluble vitamins, and bone turnover markers to improve prediction accuracy of osteoporosis. Methods Postmenopausal women aged 55 to 65 years were recruited and divided into three groups based on DXA (normal, osteopenia, and osteoporosis). A total of 109 participants were included in this study and split into healthy (39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis groups (35/109, 32.1%). Serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers of participants were measured. Stepwise discriminant analysis was performed to identify efficient predictors for osteoporosis. The prediction model was developed based on Bayes and Fisher's discriminant functions, and validated via leave-one-out cross-validation. Normal and empirical volume under the receiver operating characteristic (ROC) surface (VUS) tests were used to evaluate predictive effects of variables in the prediction model. Results Significant variables including oestrogen (E2), total procollagen type 1 amino-terminal propeptide (TP1NP), parathyroid hormone (PTH), BMI, vitamin K, serotonin, osteocalcin (OSTEOC), vitamin A, and vitamin D3 were used for the development of the prediction model. The training accuracy for normal, osteopenia, and osteoporosis is 74.4% (29/39), 80.0% (28/35), and 85.7% (30/35), respectively, while the total training accuracy is 79.8% (87/109). The internal validation showed excellent performance with 72.5% testing accuracy (72/109). Among these variables, serotonin and vitamin K exert important roles in the prediction of osteoporosis. Conclusion We successfully developed and validated a novel prediction model for osteoporosis based on serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers. In addition, interactive communication between serotonin and fat-soluble vitamins was observed to be critical for bone health in this study.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lianfeng Shan
- Department of Intelligent Computing, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongyang Li
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Wenhai Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Chunjian Gu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinna Dai
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Mass Spectrometry Precision Medicine Research Center, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Palomino Lago E, Ross AKC, McClellan A, Guest DJ. Identification of a global gene expression signature associated with the genetic risk of catastrophic fracture in iPSC-derived osteoblasts from Thoroughbred horses. Anim Genet 2025; 56:e13504. [PMID: 39801206 PMCID: PMC11726005 DOI: 10.1111/age.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk. RNA-sequencing on iPSC-derived osteoblasts revealed 112 genes that were significantly differentially expressed. Forty-three of these genes have known roles in bone, 27 are not yet annotated in the equine genome and 42 currently have no described role in bone. However, many of the proteins encoded by the known and unknown genes have reported interactions. Functional enrichment analyses revealed that the differentially expressed genes were overrepresented in processes regulating the extracellular matrix and pathways known to be involved in bone remodelling and bone diseases. Gene set enrichment analysis also detected numerous biological processes and pathways involved in glycolysis with the associated genes having a higher expression in the iPSC-osteoblasts from horses with low polygenic risk scores for fracture. Therefore, the differentially expressed genes may be relevant for maintaining bone homeostasis and contribute to fracture risk. A deeper understanding of the consequences of mis-regulation of these genes and the identification of the DNA variants which underpin their differential expression may reveal more about the molecular mechanisms which are involved in equine bone health and fracture risk.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Amy K. C. Ross
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| | - Alyce McClellan
- Animal Health TrustNewmarketUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative MedicineThe Royal Veterinary CollegeHatfieldHertsUK
| |
Collapse
|
8
|
Zhou W, van de Laarschot DM, van Rooij JGJ, Koedam M, Nguyen HH, Uitterlinden AG, Ebeling PR, Thakker RV, Geusens P, van der Eerden BCJ, Verkerk AJMH, Zillikens MC. Family-based whole-exome sequencing implicates a variant in lysyl oxidase like 4 in atypical femur fractures. J Bone Miner Res 2024; 40:69-78. [PMID: 39485938 DOI: 10.1093/jbmr/zjae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Atypical femur fractures (AFFs) are rare adverse events associated with bisphosphonate use, having unclear pathophysiology. AFFs also cluster in families and have occurred in patients with monogenetic bone diseases sometimes without bisphosphonate use, suggesting an underlying genetic susceptibility. Our aim was to identify a genetic cause for AFF in a Caucasian family with 7 members affected by osteoporosis, including 3 siblings with bisphosphonate-associated AFFs. Using whole-exome sequencing, we identified a rare pathogenic variant c.G1063A (p.Gly355Ser) in lysyl oxidase like 4 (LOXL4) among 64 heterozygous rare, protein-altering variants shared by the 3 siblings with AFFs. The same variant was also found in a fourth sibling with a low-trauma femur fracture above the knee, not fulfilling all the ASBMR criteria of AFF and in 1 of 73 unrelated European AFF patients. LOXL4 is involved in collagen cross-linking and may be relevant for microcrack formation and bone repair mechanisms. Preliminary functional analysis showed that skin fibroblast-derived osteoblasts from the unrelated patient with the LOXL4 variant expressed less collagen type I and elastin, while osteogenic differentiation and mineralization were enhanced compared with 2 controls. In conclusion, this LOXL4 variant may underlie AFF susceptibility possibly due to abnormal collagen metabolism, leading to increased formation of microdamage or compromised healing of microcracks in the femur.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Denise M van de Laarschot
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX3 9DU, United Kingdom
| | - Piet Geusens
- Biomedical Research Institute, University Hasselt, Diepenbeek, 3500, Belgium
- Department of Internal Medicine, Maastricht University, Maastricht, 6211 LK, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
9
|
Khashayar P, Rad FF, Tabatabaei-Malazy O, Golabchi SM, Khashayar P, Mohammadi M, Ebrahimpour S, Larijani B. Hypoglycemic agents and bone health; an umbrella systematic review of the clinical trials' meta-analysis studies. Diabetol Metab Syndr 2024; 16:310. [PMID: 39716250 DOI: 10.1186/s13098-024-01518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND No clear consensus exists regarding the safest anti-diabetic drugs with the least adverse events on bone health. This umbrella systematic review therefore aims to assess the published meta-analysis studies of randomized controlled trials (RCTs) conducted in this field. METHODS All relevant meta-analysis studies of RCTs assessing the effects of anti-diabetic agents on bone health in patients with diabetes mellitus (DM) were collected in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). English articles published until 15 March 2023 were collected through the search of Cochrane Library, Scopus, ISI Web of Sciences, PubMed, and Embase using the terms "Diabetes mellitus", "anti-diabetic drugs", "Bone biomarker", "Bone fracture, "Bone mineral density" and their equivalents. The methodological and evidence quality assessments were performed for all included studies. RESULTS From among 2220 potentially eligible studies, 71 meta-analyses on diabetic patients were included. Sodium-glucose cotransporter-2 inhibitors (SGLT-is) showed no or equivalent effect on the risk of fracture. Dipeptidyl peptidase-4 inhibitors (DPP-4is) and Glucagon-like peptide-1 receptor agonists (GLP-1Ras) were reported to have controversial effects on bone fracture, with some RCTs pointing out the bone protective effects of certain members of these two medication classes. Thiazolidinediones (TZDs) were linked with increased fracture risk as well as higher concentrations of C-terminal telopeptide of type I collagen (CTx), a bone resorption marker. CONCLUSION The present systematic umbrella review observed varied results on the association between the use of anti-diabetic drugs and DM-related fracture risk. The clinical efficacy of various anti-diabetic drugs, therefore, should be weighed against their risks and benefits in each patient.
Collapse
Affiliation(s)
- Pouria Khashayar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Farid Farahani Rad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara MohammadHosseinzadeh Golabchi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000, Gent, Belgium.
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Davey Smith G, Ebrahim S. Erroneous epidemiological findings on vitamins: coming full circle after two decades of Mendelian randomization? Int J Epidemiol 2024; 54:dyae179. [PMID: 39919301 DOI: 10.1093/ije/dyae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Affiliation(s)
- George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Shah Ebrahim
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
11
|
Pemmasani SK, R G S, V S, Bhattacharyya R, Patel C, Gupta AK, Acharya A. Genetic variants associated with longevity in long-living Indians. NPJ AGING 2024; 10:51. [PMID: 39567526 PMCID: PMC11579347 DOI: 10.1038/s41514-024-00179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10-4. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.
Collapse
Affiliation(s)
| | | | - Suraj V
- Mapmygenome India Limited, Hyderabad, India
| | | | - Chetan Patel
- SRISTI - Society for Research and Initiatives for Sustainable Technologies and Institutions, Ahmedabad, India
| | - Anil Kumar Gupta
- SRISTI - Society for Research and Initiatives for Sustainable Technologies and Institutions, Ahmedabad, India
| | | |
Collapse
|
12
|
Miao J, Wu Y, Sun Z, Miao X, Lu T, Zhao J, Lu Q. Valid inference for machine learning-assisted genome-wide association studies. Nat Genet 2024; 56:2361-2369. [PMID: 39349818 PMCID: PMC11972620 DOI: 10.1038/s41588-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Machine learning (ML) has become increasingly popular in almost all scientific disciplines, including human genetics. Owing to challenges related to sample collection and precise phenotyping, ML-assisted genome-wide association study (GWAS), which uses sophisticated ML techniques to impute phenotypes and then performs GWAS on the imputed outcomes, have become increasingly common in complex trait genetics research. However, the validity of ML-assisted GWAS associations has not been carefully evaluated. Here, we report pervasive risks for false-positive associations in ML-assisted GWAS and introduce Post-Prediction GWAS (POP-GWAS), a statistical framework that redesigns GWAS on ML-imputed outcomes. POP-GWAS ensures valid and powerful statistical inference irrespective of imputation quality and choice of algorithm, requiring only GWAS summary statistics as input. We employed POP-GWAS to perform a GWAS of bone mineral density derived from dual-energy X-ray absorptiometry imaging at 14 skeletal sites, identifying 89 new loci and revealing skeletal site-specific genetic architecture. Our framework offers a robust analytic solution for future ML-assisted GWAS.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yixuan Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinran Miao
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Lovegrove CE, Howles SA, Furniss D, Holmes MV. Causal inference in health and disease: a review of the principles and applications of Mendelian randomization. J Bone Miner Res 2024; 39:1539-1552. [PMID: 39167758 PMCID: PMC11523132 DOI: 10.1093/jbmr/zjae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Mendelian randomization (MR) is a genetic epidemiological technique that uses genetic variation to infer causal relationships between modifiable exposures and outcome variables. Conventional observational epidemiological studies are subject to bias from a range of sources; MR analyses can offer an advantage in that they are less prone to bias as they use genetic variants inherited at conception as "instrumental variables", which are proxies of an exposure. However, as with all research tools, MR studies must be carefully designed to yield valuable insights into causal relationships between exposures and outcomes, and to avoid biased or misleading results that undermine the validity of the causal inferences drawn from the study. In this review, we outline Mendel's laws of inheritance, the assumptions and principles that underlie MR, MR study designs and methods, and how MR analyses can be applied and reported. Using the example of serum phosphate concentrations on liability to kidney stone disease we illustrate how MR estimates may be visualized and, finally, we contextualize MR in bone and mineral research including exemplifying how this technique could be employed to inform clinical studies and future guidelines concerning BMD and fracture risk. This review provides a framework to enhance understanding of how MR may be used to triangulate evidence and progress research in bone and mineral metabolism as we strive to infer causal effects in health and disease.
Collapse
Affiliation(s)
- Catherine E Lovegrove
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Michael V Holmes
- Medical Research Council, Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, United Kingdom
| |
Collapse
|
14
|
Wang W, Wang H, Lei S, He P. Cystatin C is associated with osteoporosis and fractures: An observational study based on Mendelian randomization analysis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1622-1632. [PMID: 40074311 PMCID: PMC11897978 DOI: 10.11817/j.issn.1672-7347.2024.240147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Osteoporosis is characterized by decreased bone mass and damaged bone microstructure, often leading to fragility fractures. Low bone mineral density is a key risk factor for fractures. Serum cystatin C (CysC), an endogenous marker of glomerular filtration rate, is negatively correlated with bone mineral density and may be a potential risk factor for osteoporosis. This study aims to investigate the association and potential pathogenic mechanisms between CysC and osteoporosis and fractures in the general population by combining cohort analysis and Mendelian randomization (MR) analysis. METHODS Large-scale prospective cohort data from the UK Biobank and summary statistics from genome-wide association study (GWAS) in European populations were utilized, with strict exclusion criteria applied (excluding non-white individuals, those with thyroid diseases, gastrointestinal dysfunction, kidney diseases, rheumatoid diseases, malignant tumors, chronic infections or inflammatory diseases, diabetes, hypertension, and individuals taking medications that affect bone metabolism). Multivariable linear regression, logistic regression, and Cox proportional hazards models were used to analyze the relationship between CysC and bone mineral density, osteoporosis, and fracture risk. All analyses were performed using three sequential models to adjust for confounding factors: Model 1 adjusted for demographic characteristics and lifestyle factors; Model 2 further adjusted for renal function based on Model 1; and Model 3 further adjusted for physical activity based on Model 2. Restricted cubic spline models were used to explore non-linear relationships, and MR analysis was conducted to assess the causal associations between CysC and osteoporosis and fractures. RESULTS Multivariate analysis showed that after adjusting for basic variables (Model 1), there was no correlation between CysC and estimated bone mineral density (eBMD) in the overall study population; however, when stratified by gender, both males and females exhibited a significant negative correlation (P<0.001). After further adjustment for renal function (Model 2) and physical activity level (Model 3), CysC became negatively correlated with eBMD in the overall population (P<0.001). Moreover, multivariable logistic regression consistently demonstrated that CysC concentration was significantly positively associated with osteoporosis risk (P<0.01), and this association remained stable across all models. In all populations and models, multivariate Cox regression analysis indicated that subjects in the highest quartile (Q4) of CysC had a significantly increased risk of developing osteoporosis (P<0.001). In the overall population, the positive association between Q4 CysC levels and fractures was observed only in Models 2 and 3, with a hazard ratio of 1.118 (both P<0.001); however, after gender stratification, this association disappeared in males (P>0.05). Additionally, restricted cubic spline regression analyses revealed a significant non-linear relationship between CysC and the incidence of osteoporosis and fractures (P<0.05). MR analysis, using 167 single nucleotide polymorphisms (SNPs) as instrumental variables, showed no direct causal relationship between CysC and osteoporosis or fractures (P≥0.05), a finding that differs from previous studies in special populations. CONCLUSIONS Elevated levels of CysC are significantly associated with an increased risk of osteoporosis and fractures, and this association is more pronounced in females. Renal function and physical activity levels may be important factors influencing this relationship. The link between CysC and osteoporosis and fractures may be mediated by several mechanisms: Eelevated CysC may lead to abnormalities in vitamin D and mineral metabolism, thereby inhibiting bone formation; renal dysfunction may exacerbate inflammation, affecting bone resorption; or in the osteoporosis state, increased osteoclast differentiation may result in elevated CysC levels. These findings support the potential use of CysC as a biomarker for predicting the risk of osteoporosis.
Collapse
Affiliation(s)
- Wenhui Wang
- Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.
| | - Han Wang
- Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.
| | - Shufeng Lei
- Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China
| | - Pei He
- Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.
| |
Collapse
|
15
|
Abbondanza F, Wang CA, Schmitz J, Marianski K, Pennell CE, Whitehouse AJO, Paracchini S. A GWAS for grip strength in cohorts of children-Advantages of analysing young participants for this trait. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70003. [PMID: 39377282 PMCID: PMC11459231 DOI: 10.1111/gbb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024]
Abstract
Grip strength (GS) is a proxy measure for muscular strength and a predictor for bone fracture risk among other diseases. Previous genome-wide association studies (GWASs) have been conducted in large cohorts of adults focusing on scores collected for the dominant hand, therefore increasing the likelihood of confounding effects by environmental factors. Here, we perform the first GWAS meta-analyses on maximal GS with the dominant (GSD) and non-dominant (GSND) hand in two cohorts of children (ALSPAC, N = 5450; age range = 10.65-13.61; Raine Study, N = 1162, age range: 9.42-12.38 years). We identified a novel significant association for GSND (rs9546244, LINC02465, p = 3.43e-08) and replicated associations previously reported in adults including with a HOXB3 gene marker that shows an expression quantitative trait locus (eQTL) effect. Despite a much smaller sample (~3%) compared with the UK Biobank we replicated correlation analyses previously reported in this much larger adult cohort, such as a negative correlation with coronary artery disease. Although the results from the polygenic risk score (PRS) analyses did not survive multiple testing correction, we observed nominally significant associations between GS and risk of overall fracture, as previously reported, as well ADHD which will require further investigations. Finally, we observed a higher SNP-heritability (24%-41%) compared with previous studies (4%-24%) in adults. Overall, our results suggest that cohorts of children might be better suited for genetic studies of grip strength, possibly due to the shorter exposure to confounding environmental factors compared with adults.
Collapse
Affiliation(s)
| | - Carol A. Wang
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Mothers and Babies Research CentreHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Judith Schmitz
- School of MedicineUniversity of St AndrewsSt AndrewsScotland
| | | | - Craig E. Pennell
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Mothers and Babies Research CentreHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | | | | |
Collapse
|
16
|
Qiu S, Liu Z, Wang CT, Sun XD, Liu ZQ, Liu W. The potential protective effect of 3-Hydroxybutyrate against aortic dissection: a mendelian randomization analysis. Nutr Metab (Lond) 2024; 21:75. [PMID: 39304912 DOI: 10.1186/s12986-024-00853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND 3-Hydroxybutyrate, also called β-hydroxybutyrate, is a significant constituent of ketone bodies. Previous observational and experimental studies have suggested that ketogenic diet, especially 3-hydroxybutyrate, may have a protective effect against cardiovascular disease. However, the relationship between ketone bodies, especially 3-hydroxybutyrate, and aortic dissection remains uncertain. MATERIALS AND METHODS Publicly accessible data from genome-wide association study (GWAS) was utilized to obtain information on ketone bodies, including 3-hydroxybutyrate, acetoacetate and acetone as exposure respectively, while GWAS data on aortic dissection was used as outcome. Subsequently, two-sample Mendelian randomization (MR) analysis was conducted to examine the potential relationship between ketone bodies and aortic dissection. Then, reverse and multivariate Mendelian randomization analyses were performed. Additionally, sensitivity tests were conducted to assess the robustness of MR study. RESULTS The inverse-variance weighted (IVW) method of Mendelian randomization analysis of gene prediction observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection (OR 0.147, 95% CI 0.053-0.410). Furthermore, consistent findings were obtained through the implementation of the weighted median, simple mode, Mendelian randomization-Egger (MR-Egger), and weighted mode methods. After adjusting acetoacetate (OR 0.143, 95% CI 0.023-0.900) or acetone (OR 0.100, 95% CI 0.025-0.398), MR analysis of gene prediction still observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection. No indications of heterogeneity or pleiotropy among the SNPs were detected. CONCLUSION The findings from the MR analysis demonstrated that genetically predicted 3-hydroxybutyrate exhibits a protective effect against aortic dissection.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Cardiac Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Chun-Ting Wang
- Department of Cardiac Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-di Sun
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Zeng-Qiang Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China
| | - Wen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shangdong, 250033, People's Republic of China.
| |
Collapse
|
17
|
Tang X, Liu P, Luo N, Wen J, Li H, Zhao G, An B. Mining Candidate Genes and Identifying Risk Factors for Leg Disease in Broilers: A Mendelian Randomization Study. Int J Mol Sci 2024; 25:8890. [PMID: 39201575 PMCID: PMC11354539 DOI: 10.3390/ijms25168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Clinical investigations have highlighted disruptions in bone metabolic processes and abnormal fluctuations in serum indicator levels during the onset of leg disease (LD) in broilers. However, the presence of a genetic causal relationship for this association remains undetermined. Therefore, the aim of this study is to discern the risk factors underlying LD development using 1235 sequenced white-feathered broilers. We employed Mendelian randomization (MR) analysis to assess the associations of bone strength (BS), bone mineral density (BMD), tibial bone weight (TBW), tibial bone length (TBL), tibial bone diameter (TBD), bone ash (BA), ash calcium (Ash Ca), ash phosphorus (Ash P), serum calcium (Ca), serum phosphorus (P), serum alkaline phosphatase (ALP), and serum osteoprotegerin (OPG) with the incidence of LD. Compelling evidence underscores a causal link between the risk of developing LD and decreased BMD (odds ratio (OR) = 0.998; 95% CI: 0.983, 0.993; P < 0.001) and narrower TBD (OR = 0.985, 95% CI: 0.975, 0.994, P = 0.002). Additionally, serum OPG concentrations (OR: 0.995, 95% CI: 0.992, 0.999, P = 0.008) were associated with BMD (OR = 0.0078, 95% CI = 0.0043 to 0.0140, P < 0.001), indicating a robust genetic relationship between ALP concentrations (OR: 0.988, 95% CI: 0.984, 0.993, P < 0.001) and TBD (OR = 0.0046, 95% CI = 0.0026, 0.0083, P < 0.001). Moreover, elevated serum Ca (OR: 0.564, 95% CI: 0.487, 0.655, P < 0.001) and P (OR: 0.614, 95% CI: 0.539, 0.699, P < 0.001) levels were associated with a narrower TBD. Elevated serum levels of Ca, P, ALP, and OPG contribute to disturbances in bone metabolism, while decreased BMD and narrower TBD are associated with a greater risk of developing LD in broilers. This discovery elucidates the metabolic risk factors for LD in broilers and could provide information on LDs, such as osteoporosis, in humans.
Collapse
Affiliation(s)
- Xinxin Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Peihao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
| | - Bingxing An
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (X.T.); (P.L.); (N.L.); (J.W.)
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
18
|
Grahnemo L, Kambur O, Lahti L, Jousilahti P, Niiranen T, Knight R, Salomaa V, Havulinna AS, Ohlsson C. Associations between gut microbiota and incident fractures in the FINRISK cohort. NPJ Biofilms Microbiomes 2024; 10:69. [PMID: 39143108 PMCID: PMC11324742 DOI: 10.1038/s41522-024-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oleg Kambur
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
19
|
Guo S, Zhang J, Li H, Cheng CK, Zhang J. Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study. Bioengineering (Basel) 2024; 11:797. [PMID: 39199755 PMCID: PMC11351150 DOI: 10.3390/bioengineering11080797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Background: Total joint arthroplasty (TJA) is an orthopedic procedure commonly used to treat damaged joints. Despite the efficacy of TJA, postoperative complications, including aseptic prosthesis loosening and infections, are common. Moreover, the effects of individual genetic susceptibility and modifiable risk factors on these complications are unclear. This study analyzed these effects to enhance patient prognosis and postoperative management. Methods: We conducted an extensive genome-wide association study (GWAS) and Mendelian randomization (MR) study using UK Biobank data. The cohort included 2964 patients with mechanical complications post-TJA, 957 with periprosthetic joint infection (PJI), and a control group of 398,708 individuals. Genetic loci associated with postoperative complications were identified by a GWAS analysis, and the causal relationships of 11 modifiable risk factors with complications were assessed using MR. Results: The GWAS analysis identified nine loci associated with post-TJA complications. Two loci near the PPP1R3B and RBM26 genes were significantly linked to mechanical complications and PJI, respectively. The MR analysis demonstrated that body mass index was positively associated with the risk of mechanical complications (odds ratio [OR]: 1.42; p < 0.001). Higher educational attainment was associated with a decreased risk of mechanical complications (OR: 0.55; p < 0.001) and PJI (OR: 0.43; p = 0.001). Type 2 diabetes was suggestively associated with mechanical complications (OR, 1.18, p = 0.02), and hypertension was suggestively associated with PJI (OR, 1.41, p = 0.008). Other lifestyle factors, including smoking and alcohol consumption, were not causally related to postoperative complications. Conclusions: The genetic loci near PPP1R3B and RBM26 influenced the risk of post-TJA mechanical complications and infections, respectively. The effects of genetic and modifiable risk factors, including body mass index and educational attainment, underscore the need to perform personalized preoperative assessments and the postoperative management of surgical patients. These results indicate that integrating genetic screening and lifestyle interventions into patient care can improve the outcomes of TJA and patient quality of life.
Collapse
Affiliation(s)
- Sijia Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiping Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiwu Li
- Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China;
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (S.G.); (J.Z.)
- Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingwei Zhang
- Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China;
| |
Collapse
|
20
|
Austin TR, Nethander M, Fink HA, Törnqvist AE, Jalal DI, Buzkova P, Barzilay JI, Carbone L, Gabrielsen ME, Grahnemo L, Lu T, Hveem K, Jonasson C, Kizer JR, Langhammer A, Mukamal KJ, Gerszten RE, Psaty BM, Robbins JA, Sun YV, Skogholt AH, Kanis JA, Johansson H, Åsvold BO, Valderrabano RJ, Zheng J, Richards JB, Coward E, Ohlsson C. A plasma protein-based risk score to predict hip fractures. NATURE AGING 2024; 4:1064-1075. [PMID: 38802582 PMCID: PMC11333168 DOI: 10.1038/s43587-024-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Trøndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53-1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined.
Collapse
Grants
- U01HL130114 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01 HL080295 NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01HL144483 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC85086 NHLBI NIH HHS
- KAW 2015.0317 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- LU2021-0096 IngaBritt och Arne Lundbergs Forskningsstiftelse (Ingabritt and Arne Lundberg Research Foundation)
- N01HC85083 NHLBI NIH HHS
- 2020-01392 Vetenskapsrådet (Swedish Research Council)
- N01HC85080 NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- N01HC55222 NHLBI NIH HHS
- U01HL080295 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201200036C NHLBI NIH HHS
- R01 HL144483 NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- N01HC85082 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-720331 and ALFGBG-965235)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | U.S. Department of Health and Human Services, Administration for Community Living | National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR)
Collapse
Affiliation(s)
- Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, US
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics and Data Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, US
- Department of Medicine, University of Minnesota, Minneapolis, MN, US
| | - Anna E Törnqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana I Jalal
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, Iowa City, IA, US
- Iowa City VA Medical Center, Iowa City, IA, US
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Atlanta, GA, US
| | - Laura Carbone
- Charlie Norwood VAMC, Augusta, GA, US
- Division of Rheumatology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, US
| | - Maiken E Gabrielsen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, NTNU, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Christian Jonasson
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Health Care System, San Francisco, CA, US
- Department of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, US
| | - Arnulf Langhammer
- HUNT Research Centre, NTNU, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, US
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, US
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, US
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, US
| | - John A Robbins
- Department of Medicine, University of California, Davis, CA, US
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, US
| | - Anne Heidi Skogholt
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Helena Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rodrigo J Valderrabano
- Research Program in Men's Health, Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Twin Research, King's College London, London, UK
| | - Eivind Coward
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
21
|
Han X, Yang Q, Lu Y, Xu M, Tao Q, Jiang S, He X, Bai Y, Zhang T, Bai L, Hu J, Zhu Y, Liu H, Li L. Genome-wide association study reveals the candidate genes of humerus quality in laying duck. Poult Sci 2024; 103:103851. [PMID: 38806002 PMCID: PMC11154710 DOI: 10.1016/j.psj.2024.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Bone plays a crucial role in poultry's health and production. However, during the selection and cage farming, there has been a decline in bone quality. As the development of breeding theory, researchers find that it's possible to enhance bone quality through selective breeding.This study measure 8 humerus quality in 260 samples of the 350-day-old female duck. By descripting the basic characteristic traits, mechanical property traits we found that all the bone quality traits had a large variable coefficient, especially mechanical properties trait (20-70%), indicating that there was a large difference in bone health status among laying ducks. The phenotypic correlations showed a high correlation between weight and density, diameter and perimeter, breaking and toughness (r = 0.52-0.68). And then, we performed the Genome-wide association study (GWAS) to reveal the candidate genes of humerus quality in ducks. Seven candidate protein-coding genes were identified with perimeter trait, and 52 protein-coding genes were associated with toughness trait. We also analysed the candidate region and performed KEGG and GO analyse for 75 candidate genes. Furthermore, the expression analyse of the above candidate genes in different stage of humerus and different tissues were performed. Finally, AP2A2, SMAD3, SMNDC1, NFIA, EPHB2, PMEPA1, UNC5C, ESR1, VAV3, NFATC2 deserve further focus. The obtained results can contribute to new insight into bone quality and provide new genetic biomarkers for application in duck breeding programs.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuanchun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
22
|
Zelzer S, Meinitzer A, Enko D, Markis K, Tournis S, Trifonidi I, Chronopoulos E, Spanou L, Alonso N, Keppel M, Herrmann M. Vitamin D and vitamin K status in postmenopausal women with normal and low bone mineral density. Clin Chem Lab Med 2024; 62:1402-1410. [PMID: 38158723 DOI: 10.1515/cclm-2023-1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Vitamin D and K are believed to promote bone health, but existing evidence is controversial. This study aimed to measure several metabolites of both vitamins by liquid chromatography tandem mass spectrometry (LC-MS/MS) in a cohort of postmenopausal women with low and normal bone mineral density (BMD). METHODS Vitamin metabolites (25-hydroxyvitamin D (25[OH]D), 24,25-dihydroxyvitamin D (24,25(OH)2D), phylloquinone (K1), menaquinone-4 (MK-4) and MK-7) were measured in 131 serum samples by LC-MS/MS. The vitamin D metabolite ratio (VMR) was calculated. Parathyroid hormone (PTH), type I procollagen-N-terminal-peptide (PINP) and C-terminal telopeptides of type I collagen (CTX-I) were measured by immunoassay. Dual X-ray absorptiometry was performed to identify participants with normal (T-score>-1) and low (T-score<-1) BMD. RESULTS Mean age was 58.2±8.5 years. BMD was normal in 68 and low in 63 women. Median (interquartile range) for 25(OH)D and total vitamin K concentrations were 53.5 (39.6-65.9) nmol/L and 1.33 (0.99-2.39) nmol/L. All vitamin metabolites were comparable in individuals with normal and low BMD. Furthermore, BMD and trabecular bone score were comparable in participants with adequate and inadequate vitamin status (at least one criterion was met: 25(OH)D <50 nmol/L, 24,25(OH)2D <3 nmol/L, VMR <4 %, total vitamin K <0.91 nmol/L). PTH, but not PINP or CTX-I, was inversely correlated with 25(OH)D, 24,25(OH)2D and VMR. Synergistic effects between vitamin D and K were not observed. CONCLUSIONS Vitamin D and K status is not related to BMD and trabecular bone quality in postmenopausal women. Inverse associations were only seen between vitamin D metabolites and PTH.
Collapse
Affiliation(s)
- Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Konstantinos Markis
- Clinical Biochemistry Department, KAT General Hospital, Athens, Greece
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Ioulia Trifonidi
- Clinical Biochemistry Department, KAT General Hospital, Athens, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Loukia Spanou
- Endocrinology Department, Athens Red Cross Hospital, Athens Greece
| | - Nerea Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Martin Keppel
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Nilsson KH, Henning P, Wu J, Sjögren K, Lerner UH, Ohlsson C, Movérare-Skrtic S. GREM2 inactivation increases trabecular bone mass in mice. Sci Rep 2024; 14:12967. [PMID: 38839844 PMCID: PMC11153596 DOI: 10.1038/s41598-024-63439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.
Collapse
Affiliation(s)
- Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jianyao Wu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Yuan Y, Gan C, Wang M, Zou J, Wang Z, Li S, Lv H. Association of serum trimethylamine N-oxide levels and bone mineral density in type 2 diabetes mellitus. Endocrine 2024; 84:958-968. [PMID: 38285411 DOI: 10.1007/s12020-024-03699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE The relationship between trimethylamine N-oxide (TMAO) and bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) is unclear. We explore the relationship between TMAO levels and BMD in T2DM. METHODS This is a cross-sectional study. 254 T2DM patients were enrolled and divided into three groups by TMAO tertiles, and the clinical data were collected. BMD was determined by dual-energy X-ray absorptiometry (DXA) and serum TMAO levels was determined by stable isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). RESULTS Patients in the highest tertile of TMAO levels (TMAO > 6.72 μmol/L) showed relatively low BMD and a higher number of fracture history, osteoporosis (OP) than those in the lower tertiles. Spearman correlation analysis showed that serum TMAO was negatively correlated with BMD of whole body (WB), lumbar spine (LS) and femoral neck (FN), while TMAO was positive correlated with osteoporotic fracture (p < 0.05). Logistic regression models showed that TMAO was an independent influencing factor of fracture history after adjusting for confounders in TMAO > 6.72 μmol/L group. CONCLUSIONS There is a significant linear correlation between TMAO levels and BMD in T2DM patients. Especially in TMAO > 6.72 μmol/L group, TMAO was negatively correlated with WB, LS, and FN BMD, and was positive correlated with osteoporotic fracture in T2DM patients. The findings suggest that elevated TMAO levels are associated with OP and osteoporotic fracture in T2DM patients.
Collapse
Affiliation(s)
- Yue Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Gan
- Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Mengke Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingyi Zou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuyun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Haihong Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
25
|
Busse E, Lee B, Nagamani SCS. Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Curr Osteoporos Rep 2024; 22:308-317. [PMID: 38600318 DOI: 10.1007/s11914-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis. RECENT FINDINGS Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment. Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.
Collapse
Affiliation(s)
- Emily Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
26
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Fang A, Zhao Y, Yang P, Zhang X, Giovannucci EL. Vitamin D and human health: evidence from Mendelian randomization studies. Eur J Epidemiol 2024; 39:467-490. [PMID: 38214845 DOI: 10.1007/s10654-023-01075-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
We summarized the current evidence on vitamin D and major health outcomes from Mendelian randomization (MR) studies. PubMed and Embase were searched for original MR studies on vitamin D in relation to any health outcome from inception to September 1, 2022. Nonlinear MR findings were excluded due to concerns about the validity of the statistical methods used. A meta-analysis was preformed to synthesize study-specific estimates after excluding overlapping samples, where applicable. The methodological quality of the included studies was evaluated according to the STROBE-MR checklist. A total of 133 MR publications were eligible for inclusion in the analyses. The causal association between vitamin D status and 275 individual outcomes was examined. Linear MR analyses showed genetically high 25-hydroxyvitamin D (25(OH)D) concentrations were associated with reduced risk of multiple sclerosis incidence and relapse, non-infectious uveitis and scleritis, psoriasis, femur fracture, leg fracture, amyotrophic lateral sclerosis, anorexia nervosa, delirium, heart failure, ovarian cancer, non-alcoholic fatty liver disease, dyslipidemia, and bacterial pneumonia, but increased risk of Behçet's disease, Graves' disease, kidney stone disease, fracture of radium/ulna, basal cell carcinoma, and overall cataracts. Stratified analyses showed that the inverse association between genetically predisposed 25(OH)D concentrations and multiple sclerosis risk was significant and consistent regardless of the genetic instruments GIs selected. However, the associations with most of the other outcomes were only pronounced when using genetic variants not limited to those in the vitamin D pathway as GIs. The methodological quality of the included MR studies was substantially heterogeneous. Current evidence from linear MR studies strongly supports a causal role of vitamin D in the development of multiple sclerosis. Suggestive support for a number of other health conditions could help prioritize conditions where vitamin D may be beneficial or harmful.
Collapse
Affiliation(s)
- Aiping Fang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yue Zhao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ping Yang
- School of Nursing, Peking University, Beijing, China
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
28
|
Zhao P, Sheng Z, Xu L, Li P, Xiao W, Yuan C, Xu Z, Yang M, Qian Y, Zhong J, Gu J, Karasik D, Zheng HF. Deciphering the complex relationship between type 2 diabetes and fracture risk with both genetic and observational evidence. eLife 2024; 12:RP89281. [PMID: 38591545 PMCID: PMC11003741 DOI: 10.7554/elife.89281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The 'diabetic bone paradox' suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.
Collapse
Affiliation(s)
- Pianpian Zhao
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, ChinaHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Zhifeng Sheng
- Health Management Center, The Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lin Xu
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Peng Li
- Department of Geratology, The Third People's Hospital of HangzhouHangzhouChina
| | - Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese MedicineHangzhouChina
| | - Zhanwei Xu
- Central Health Center of Mashenqiao TownTianjinChina
| | - Mengyuan Yang
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Yu Qian
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiadong Zhong
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiaxuan Gu
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan UniversitySafedIsrael
| | - Hou-Feng Zheng
- The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake UniversityHangzhouChina
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, ChinaHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
29
|
Razi F, Ostovar A, Fahimfar N, M. Amoli M, Fana SE, Dimai HP, Obermayer-Pietsch B, Luegger B, Rivadeneira F, Nabipour I, Larijani B, Khashayar P. Protocol for preliminary, multicenteric validation of "PoCOsteo device": A point of care tool for proteomic and genomic study of osteoporosis. Biol Methods Protoc 2024; 9:bpae006. [PMID: 38559752 PMCID: PMC10978377 DOI: 10.1093/biomethods/bpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
One of the goals of the HORIZON 2020 project PoCOsteo was to develop a medical device, which would measure and/or quantify proteomic as well as genomic factors as present in whole blood samples collected through finger prick. After validating the tool in the clinical setting, the next step would be its clinical validation based on the existing guidelines. This article presents the protocol of a validation study to be carried out independently at two different centers (Division of Endocrinology and Diabetology at the Medical University of Graz as a clinic-based cohort, and the Endocrinology and Metabolism Research Institute at the Tehran University of Medical Sciences as a population-based cohort). It aims to assess the tool according to the Clinical & Laboratory Standards Institute guidelines, confirming if the proteomics and genomics measurements provided by the tool are accurate and reproducible compared with the existing state-of-the-art tests. This is the first time that such a detailed protocol for lab validation of a medical tool for proteomics and genomic measurement is designed based on the existing guidelines and thus could be used as a template for clinical validation of future point-of-care tools. Moreover, the multicentric cohort design will allow the study of a large number of diverse individuals, which will improve the validity and generalizability of the results for different settings.
Collapse
Affiliation(s)
- Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center (MDRC), Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Luegger
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | | | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Zwijnaarde, Gent, Belgium
| |
Collapse
|
30
|
Austin TR, Fink HA, Jalal DI, Törnqvist AE, Buzkova P, Barzilay JI, Lu T, Carbone L, Gabrielsen ME, Grahnemo L, Hveem K, Jonasson C, Kizer JR, Langhammer A, Mukamal KJ, Gerszten RE, Nethander M, Psaty BM, Robbins JA, Sun YV, Skogholt AH, Åsvold BO, Valderrabano RJ, Zheng J, Richards JB, Coward E, Ohlsson C. Large-scale circulating proteome association study (CPAS) meta-analysis identifies circulating proteins and pathways predicting incident hip fractures. J Bone Miner Res 2024; 39:139-149. [PMID: 38477735 PMCID: PMC11070286 DOI: 10.1093/jbmr/zjad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 03/14/2024]
Abstract
Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.
Collapse
Affiliation(s)
- Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, United States
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, 56401, United States
| | - Diana I Jalal
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, Iowa City, IA, 52242, United States
- Iowa City VA Medical Center, Iowa City, IA, 52246, United States
| | - Anna E Törnqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, United States
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Atlanta, GA, 30339, United States
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, H3G 0B1, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, H3Y 2W4, Canada
| | - Laura Carbone
- Charlie Norwood VAMC, Augusta, GA, 30901, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Maiken E Gabrielsen
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- HUNT Research Centre, NTNU, 7600, Levanger, Norway
| | - Christian Jonasson
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Health Care System, San Francisco, CA, 94121, United States
- Department of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, United States
| | - Arnulf Langhammer
- HUNT Research Centre, NTNU, 7600, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, 7600, Levanger, Norway
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, 2446, United States
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, 2446, United States
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Bioinformatics and Data Center, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, United States
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, 98195, United States
| | - John A Robbins
- Department of Medicine, University of California, Davis, CA, 95817, United States
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, United States
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Bjørn Olav Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7491, Trondheim, Norway
| | - Rodrigo J Valderrabano
- Research Program in Men’s Health, Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, 2130, United States
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, 200025, China
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai Digital Medicine Innovation Center, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, 200025, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Bristol, BS8 2BN, United Kingdom
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, H3Y 2W4, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Twin Research, King’s College London, London, SE1 7EH, United Kingdom
| | - Eivind Coward
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
31
|
Mou X, Sun M, Chen X. Causal effect of education on bone mineral density: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37435. [PMID: 38489681 PMCID: PMC10939692 DOI: 10.1097/md.0000000000037435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Education level may have some association with the incidence of osteoporosis, but it is elusive if this association is causal. This two-sample Mendelian randomization analysis focused on the causal effect of education level on femoral neck bone mineral density (FN-BMD), forearm BMD, lumbar spine BMD, and heel BMD. Twelve single nucleotide polymorphisms were used as instrumental variables. The results suggested that high education level was associated with improved FN-BMD (beta-estimate: 0.406, 95% confidence interval: 0.061 to 0.751, standard error: 0.176, P-value = .021). There were null association between education and other sites of bone mineral density. Our results found the causal effect of high education level on improved FN-BMD, and improved educational attainment may be beneficial to prevent osteoporosis.
Collapse
Affiliation(s)
- Xiaoqing Mou
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingqi Sun
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Xiaojun Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
32
|
Chen XF, Duan YY, Jia YY, Dong QH, Shi W, Zhang Y, Dong SS, Li M, Liu Z, Chen F, Huang XT, Hao RH, Zhu DL, Jing RH, Guo Y, Yang TL. Integrative high-throughput enhancer surveying and functional verification divulges a YY2-condensed regulatory axis conferring risk for osteoporosis. CELL GENOMICS 2024; 4:100501. [PMID: 38335956 PMCID: PMC10943593 DOI: 10.1016/j.xgen.2024.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qian-Hua Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Fei Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
33
|
Yuan C, Yu XT, Wang J, Shu B, Wang XY, Huang C, Lv X, Peng QQ, Qi WH, Zhang J, Zheng Y, Wang SJ, Liang QQ, Shi Q, Li T, Huang H, Mei ZD, Zhang HT, Xu HB, Cui J, Wang H, Zhang H, Shi BH, Sun P, Zhang H, Ma ZL, Feng Y, Chen L, Zeng T, Tang DZ, Wang YJ. Multi-modal molecular determinants of clinically relevant osteoporosis subtypes. Cell Discov 2024; 10:28. [PMID: 38472169 PMCID: PMC10933295 DOI: 10.1038/s41421-024-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).
Collapse
Affiliation(s)
- Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xia Lv
- Hudong Hospital of Shanghai, Shanghai, China
| | - Qian-Qian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhang
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Si-Jia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhen-Dong Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai-Tao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin-Hao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Hudong Hospital of Shanghai, Shanghai, China
| | | | - Yuan Feng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China.
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
34
|
Formosa MM, Christou MA, Mäkitie O. Bone fragility and osteoporosis in children and young adults. J Endocrinol Invest 2024; 47:285-298. [PMID: 37668887 PMCID: PMC10859323 DOI: 10.1007/s40618-023-02179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Osteoporosis is a metabolic bone disorder which increases fragility fracture risk. Elderly individuals, especially postmenopausal women, are particularly susceptible to osteoporosis. Although rare, osteoporosis in children and young adults is becoming increasingly evident, highlighting the need for timely diagnosis, management and follow-up. Early-onset osteoporosis is defined as the presence of a low BMD (Z-score of ≤ -2.0 in individuals aged < 20 years; T-score of ≤ -2.5 in those aged between 20 to 50 years) accompanied by a clinically significant fracture history, or the presence of low-energy vertebral compression fractures even in the absence of osteoporosis. Affected children and young adults should undergo a thorough diagnostic workup, including collection of clinical history, radiography, biochemical investigation and possibly bone biopsy. Once secondary factors and comorbidities are excluded, genetic testing should be considered to determine the possibility of an underlying monogenic cause. Defects in genes related to type I collagen biosynthesis are the commonest contributors of primary osteoporosis, followed by loss-of-function variants in genes encoding key regulatory proteins of canonical WNT signalling (specifically LRP5 and WNT1), the actin-binding plastin-3 protein (encoded by PLS3) resulting in X-linked osteoporosis, and the more recent sphingomyelin synthase 2 (encoded by SGMS2) which is critical for signal transduction affecting sphingomyelin metabolism. Despite these discoveries, genetic causes and underlying mechanisms in early-onset osteoporosis remain largely unknown, and if no causal gene is identified, early-onset osteoporosis is deemed idiopathic. This calls for further research to unravel the molecular mechanisms driving early-onset osteoporosis that consequently will aid in patient management and individualised targeted therapy.
Collapse
Affiliation(s)
- M M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M A Christou
- Department of Endocrinology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - O Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Xu Z, Shi Y, Wei C, Li T, Wen J, Du W, Yu Y, Zhu T. Causal relationship between glycemic traits and bone mineral density in different age groups and skeletal sites: a Mendelian randomization analysis. J Bone Miner Metab 2024; 42:90-98. [PMID: 38157037 DOI: 10.1007/s00774-023-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Previous research has confirmed that patients with type 2 diabetes mellitus tend to have higher bone mineral density (BMD), but it is unknown whether this pattern holds true for individuals without diabetes. This Mendelian randomization (MR) study aims to investigate the potential causal relationship between various glycemic trait (including fasting glucose, fasting insulin, 2-h postprandial glucose, and glycated hemoglobin) and BMD in non-diabetic individuals. The investigation focuses on different age groups (15-30, 30-45, 45-60, and 60 + years) and various skeletal sites (forearm, lumbar spine, and hip). MATERIALS AND METHODS We utilized genome-wide association study data from large population-based cohorts to identify robust instrumental variables for each glycemic traits parameter. Our primary analysis employed the inverse-variance weighted method, with sensitivity analyses conducted using MR-Egger, weighted median, MR-PRESSO, and multivariable MR methods to assess the robustness and potential horizontal pleiotropy of the study results. RESULTS Fasting insulin showed a negative modulating relationship on both lumbar spine and forearm. However, these associations were only nominally significant. No significant causal association was observed between blood glucose traits and BMD across the different age groups. The direction of fasting insulin's causal effects on BMD showed inconsistency between genders, with potentially decreased BMD in women with high fasting insulin levels and an increasing trend in BMD in men. CONCLUSIONS In the non-diabetic population, currently available evidence does not support a causal relationship between glycemic traits and BMD. However, further investigation is warranted considering the observed gender differences.
Collapse
Affiliation(s)
- Zhangmeng Xu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yushan Shi
- Department of Medical Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Changhong Wei
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
| | - Tao Li
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Jiang Wen
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Wanli Du
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yaming Yu
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China.
- Department of preventive treatment, Sichuan Province Orthopaedic Hospital, No. 132 West 1st Section, 1st Ring Road in Chengdu, Chengdu, Sichuan, China.
| | - Tianmin Zhu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Su Y, Zhou B, Kwok T. Fracture risk prediction in old Chinese people-a narrative review. Arch Osteoporos 2023; 19:3. [PMID: 38110842 DOI: 10.1007/s11657-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
With aging, the burden of osteoporotic fracture (OF) increases substantially, while China is expected to carry the greatest part in the future. The risk of fracture varies greatly across racial groups and geographic regions, and systematically organized evidence on the potential predictors for fracture risk is needed for Chinese. This review briefly introduces the epidemiology of OF and expands on the predictors and predictive tools for the risk of OF, as well as the challenges for their potential translation in the old Chinese population. There are regional differences of fracture incidence among China. The fracture incidences in Hong Kong and Taiwan have decreased in recent years, while it is still increasing in mainland China. Although the application of dual-energy X-ray absorptiometry (DXA) is limited among old Chinese in the mainland, bone mineral density (BMD) by DXA has a predictive value similar to that worldwide. Other non-DXA modalities, especially heel QUS, are helpful in assessing bone health. The fracture risk assessment tool (FRAX) has a good discrimination ability for OFs, especially the FRAX with BMD. And some clinical factors have added value to FRAX, which has been verified in old Chinese. In addition, although the application of the osteoporosis self-assessment tool for Asians (OSTA) in Chinese needs further validation, it may help identify high-risk populations in areas with limited resources. Moreover, the translation use of the muscle quality and genetic or serum biomarkers in fracture prediction needs further works. More applicable and targeted fracture risk predictors and tools are still needed for the old Chinese population.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bei Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Timothy Kwok
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
37
|
Zahn G, Baukmann HA, Wu J, Jordan J, Birkenfeld AL, Dirckx N, Schmidt MF. Targeting Longevity Gene SLC13A5: A Novel Approach to Prevent Age-Related Bone Fragility and Osteoporosis. Metabolites 2023; 13:1186. [PMID: 38132868 PMCID: PMC10744747 DOI: 10.3390/metabo13121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.
Collapse
Affiliation(s)
- Grit Zahn
- Eternygen GmbH, Westhafenstrasse 1, 13353 Berlin, Germany
| | | | - Jasmine Wu
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147 Cologne, Germany;
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, Life Sciences and Medicine, Cardiovascular Medicine and Sciences, Kings College London, London WC2R 2LS, UK
| | - Naomi Dirckx
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Marco F. Schmidt
- biotx.ai GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany (M.F.S.)
| |
Collapse
|
38
|
Penner-Goeke S, Bothe M, Rek N, Kreitmaier P, Pöhlchen D, Kühnel A, Glaser LV, Kaya E, Krontira AC, Röh S, Czamara D, Ködel M, Monteserin-Garcia J, Diener L, Wölfel B, Sauer S, Rummel C, Riesenberg S, Arloth-Knauer J, Ziller M, Labeur M, Meijsing S, Binder EB. High-throughput screening of glucocorticoid-induced enhancer activity reveals mechanisms of stress-related psychiatric disorders. Proc Natl Acad Sci U S A 2023; 120:e2305773120. [PMID: 38011552 DOI: 10.1073/pnas.2305773120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 11/29/2023] Open
Abstract
Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Melissa Bothe
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Nils Rek
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg 85764, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Ezgi Kaya
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Jose Monteserin-Garcia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura Diener
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Christine Rummel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stephan Riesenberg
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Janine Arloth-Knauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Department of Psychiatry, University of Muenster, Muenster 48149, Germany
| | - Marta Labeur
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Sebastiaan Meijsing
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| |
Collapse
|
39
|
Sun K, Ming Y, Xu J, Wu Y, Zeng Y, Wu L, Li M, Shen B. Assessing the Casual Association between Sex Hormone Levels and Fracture Risk: A Two-Sample Mendelian Randomization Study. Orthop Surg 2023; 15:3065-3074. [PMID: 37771125 PMCID: PMC10694015 DOI: 10.1111/os.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE Prior observational studies have reported that levels of sex hormones constitute a risk factor for the fracture. The aim of this study was to ascertain whether there is a causal relationship between the levels of sex hormones and the risk of fracture through Mendelian randomization (MR). METHODS Single-nucleotide polymorphisms (SNPs) associated with two indicators of sex hormone levels, circulating sex hormone-binding globulin (SHBG) and bioavailable testosterone levels, as exposures were selected from a large genome-wide association study (GWAS) from UK Biobank. The summary statistics for 11 different types of fracture as outcomes from the FinnGen consortium. This study employed the two-sample MR approach. For the main analysis, the inverse-variance-weighted (IVW) method was utilized. To assess the heterogeneity of MR results, the IVW method and MR-Egger method were utilized. To evaluate potential pleiotropy, MR-Egger regression was conducted. Additionally, a leave-one-SNP-out test was performed to assess the robustness of MR results to the exclusion of any individual SNP. RESULTS The MR analyses demonstrated a conspicuous impact of SHBG on the risk of pathological fracture with osteoporosis (OP). We found that an increase of one standard deviation (SD) in SHBG correspondingly increased the risk of pathological fracture with OP [odds ratio (OR) 2.42, 95% confidence interval (CI), 1.52-3.85; p = 1.93 × 10-4 ]. The bioavailable testosterone showed the negative casual genetic associations with fractures of foot and forearm. An increase of one SD in the genetically predetermined bioavailable testosterone was associated with a reduction of 37% in the risk of fracture of foot (OR 0.63, 95% Cl 0.49 to 0.81; p = 3.37 × 10-4 ), as well as a 39% decrease in the risk of fracture of forearm (OR 0.61, 95% Cl 0.50 to 0.76; p = 5.40 × 10-6 ). CONCLUSIONS Our study confirms that individuals experiencing elevated SHBG concentrations showed a major causal effect on pathological fracture with OP. High bioavailable testosterone levels play an important role in preventing the fractures of foot and forearm. Although increasing bioavailable testosterone and decreasing SHBG levels had no casual effect on most fractures in the general population, they are likely to have the most clinically relevant effect on certain fracture risk reduction.
Collapse
Affiliation(s)
- Kaibo Sun
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease‐related Molecular NetworksWest China Hospital, Sichuan UniversityChengduChina
| | - Jiawen Xu
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Yuangang Wu
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Yi Zeng
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Limin Wu
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Mingyang Li
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Bin Shen
- Department of Orthopaedics SurgeryOrthopedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
40
|
Kaya S, Alliston T, Evans DS. Genetic and Gene Expression Resources for Osteoporosis and Bone Biology Research. Curr Osteoporos Rep 2023; 21:637-649. [PMID: 37831357 PMCID: PMC11098148 DOI: 10.1007/s11914-023-00821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| |
Collapse
|
41
|
Ben-Zvi I, Karasik D, Ackert-Bicknell CL. Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies. Curr Osteoporos Rep 2023; 21:650-659. [PMID: 37971665 DOI: 10.1007/s11914-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model. RECENT FINDINGS The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the "long" bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account. Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Collapse
Affiliation(s)
- Inbar Ben-Zvi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | |
Collapse
|
42
|
Nethander M, Movérare-Skrtic S, Kämpe A, Coward E, Reimann E, Grahnemo L, Borbély É, Helyes Z, Funck-Brentano T, Cohen-Solal M, Tuukkanen J, Koskela A, Wu J, Li L, Lu T, Gabrielsen ME, Mägi R, Hoff M, Lerner UH, Henning P, Ullum H, Erikstrup C, Brunak S, Langhammer A, Tuomi T, Oddsson A, Stefansson K, Pettersson-Kymmer U, Ostrowski SR, Pedersen OBV, Styrkarsdottir U, Mäkitie O, Hveem K, Richards JB, Ohlsson C. An atlas of genetic determinants of forearm fracture. Nat Genet 2023; 55:1820-1830. [PMID: 37919453 PMCID: PMC10632131 DOI: 10.1038/s41588-023-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
Collapse
Grants
- Wellcome Trust
- IngaBritt och Arne Lundbergs Forskningsstiftelse (Ingabritt and Arne Lundberg Research Foundation)
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-720331 and ALFGBG-965235)
- the Hungarian Brain research Program 3.0, Hungarian National Research, Development and Innovation Office (OTKA K- 138046, OTKA FK-137951, TKP2021-EGA-16), New National Excellence Program of the Ministry for Innovation and Technology (ÚNKP-22-5-PTE-1447), János Bolyai János Scholarship (BO/00496/21/5) of the Hungarian Academy of Sciences, Eotvos Lorad Research Network, National Laboratory for Drug Research and Development.
- Vetenskapsrådet (Swedish Research Council)
- Svenska Läkaresällskapet (Swedish Society of Medicine)
- Kempestiftelserna (Kempe Foundations)
- the Swedish Sports Research Council (87/06) the Medical Faculty of Umeå University (ALFVLL:968:22-2005, ALFVLL: 937-2006, ALFVLL:223:11-2007, ALFVLL:78151-2009) the county council of Västerbotten (Spjutspetsanslag VLL:159:33-2007)
Collapse
Affiliation(s)
- Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ene Reimann
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Thomas Funck-Brentano
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Martine Cohen-Solal
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Jianyao Wu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Hoff
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Rheumatology, St Olavs Hospital, Trondheim, Norway
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen Hospital Biobank Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | | | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, and Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
43
|
Himič V, Syrmos N, Ligarotti GKI, Kato S, Fehlings MG, Ganau M. The role of genetic and epigenetic factors in determining the risk of spinal fragility fractures: new insights in the management of spinal osteoporosis. Quant Imaging Med Surg 2023; 13:7632-7645. [PMID: 37969626 PMCID: PMC10644129 DOI: 10.21037/qims-23-513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
Osteoporosis predisposes patients to spinal fragility fractures. Imaging plays a key role in the diagnosis and prognostication of these osteoporotic vertebral fractures (OVF). However, the current imaging knowledge base for OVF is lacking sufficient standardisation to enable effective risk prognostication. OVF have been shown to be more prevalent in Caucasian patient cohorts in comparison to the Eastern Asian population. These population-based differences in risk for developing OVF suggest that there could be genetic and epigenetic factors that drive the pathogenesis of osteoporosis, low bone mineral density (BMD) and OVF. Several genetic loci have been associated with a higher vertebral fracture risk, although at varying degrees of significance. The present challenge is clarifying whether these associations are specific to vertebral fractures or osteoporosis more generally. Furthermore, these factors could be exploited for diagnostic interpretation as biomarkers [including novel long non-coding (lnc)RNAs, micro (mi)RNAs and circular (circ)RNAs]. The extent of methylation of genes, alongside post-translational histone modifications, have shown to affect several interlinked pathways that converge on the regulation of bone deposition and resorption, partially through their influence on osteoblast and osteoclast differentiation. Lastly, in addition to biomarkers, several exciting new imaging modalities could add to the established dual-energy X-ray absorptiometry (DXA) method used for BMD assessment. New technologies, and novel sequences within existing imaging modalities, may be able to quantify the quality of bone in addition to the BMD and bone structure; these are making progress through various stages of development from the pre-clinical sphere through to deployment in the clinical setting. In this mini review, we explore the literature to clarify the genetic and epigenetic factors associated with spinal fragility fractures and delineate the causal genes, pathways and interactions which could drive different risk profiles. We also outline the cutting-edge imaging modalities which could transform diagnostic protocols for OVF.
Collapse
Affiliation(s)
- Vratko Himič
- Department of Neurosurgery, Oxford University Hospitals NHS FT, Oxford, UK
| | - Nikolaos Syrmos
- Department of Neurosurgery, Aristotle University of Thessaloniki, Macedonia, Greece
| | | | - So Kato
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Michael G. Fehlings
- Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Canada
| | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS FT, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Kragl A, Hannemann A, Nauck M, Völker U, Siggelkow H, Teumer A, Tzvetkov MV. Genetic Variants in WNT16 and PKD2L1 Locus Affect Heel Ultrasound Bone Stiffness: Analyses from the General Population and Patients Evaluated for Osteoporosis. Calcif Tissue Int 2023; 113:540-551. [PMID: 37831088 PMCID: PMC10618371 DOI: 10.1007/s00223-023-01141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis, a complex chronic disease with increasing prevalence, is characterised by reduced bone mineral density (BMD) and increased fracture risk. The high heritability of BMD suggests substantial impact of the individual genetic disposition on bone phenotypes and the development of osteoporosis. In the past years, genome-wide association studies (GWAS) identified hundreds of genetic variants associated with BMD or osteoporosis. Here, we analysed 1103 single nucleotide polymorphisms (SNPs), previously identified as associated with estimated BMD (eBMD) in the UK Biobank. We assessed whether these SNPs are related to heel stiffness index obtained by quantitative ultrasound in 5665 adult participants of the Study of Health in Pomerania (SHIP). We confirmed 45 significant associations after correction for multiple testing. Next, we analysed six selected SNPs in 631 patients evaluated for osteoporosis [rs2707518 (CPED1/WNT16), rs3779381 (WNT16), rs115242848 (LOC101927709/EN1), rs10239787 (JAZF1), rs603424 (PKD2L1) and rs6968704 (JAZF1)]. Differences in minor allele frequencies (MAF) of rs2707518 and rs3779381 between SHIP participants (higher MAF) and patients evaluated for osteoporosis (lower MAF) indicated a protective effect of the minor allele on bone integrity. In contrast, differences in MAF of rs603424 indicated a harmful effect. Co-localisation analyses indicated that the rs603424 effect may be mediated via stearoyl-CoA desaturase (SCD) expression, an enzyme highly expressed in adipose tissue with a crucial role in lipogenesis. Taken together, our results support the role of the WNT16 pathway in the regulation of bone properties and indicate a novel causal role of SCD expression in adipose tissue on bone integrity.
Collapse
Affiliation(s)
- Angelique Kragl
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Heide Siggelkow
- MVZ Endokrinologikum Goettingen, Goettingen, Germany
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
45
|
Tran TS, Ho-Le TP, Bliuc D, Center JR, Blank RD, Nguyen TV. Prevention of Hip Fractures: Trade-off between Minor Benefits to Individuals and Large Benefits to the Community. J Bone Miner Res 2023; 38:1594-1602. [PMID: 37638688 DOI: 10.1002/jbmr.4907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Goeffrey Rose postulated that a population-based measure bringing a small benefit to each individual can yield large benefits to the community. We aimed to test this axiom by quantifying the relationship between change in bone mineral density (BMD) and hip fracture incidence between two prospective cohorts separated by ~10 years. In this prospective population-based Dubbo Osteoporosis Epidemiology Study (DOES), the participants aged 60+ were recruited in two waves: the initial cohort (1311 women, 842 men) in 1989 to 1992 and the second cohort (974 women, 544 men) in 1999 to 2001. The incident hip fracture was radiologically ascertained. Femoral neck BMD was measured biannually. Multivariable-adjusted Cox's proportional hazards models were adjusted for the predefined covariates such as age, BMI, lifestyle factors, falls, and prior fracture. Compared with the initial cohort, the second cohort had a higher femoral neck BMD by ~0.04 g/cm2 in women and 0.03 g/cm2 in men. However, the prevalence of osteoporosis in the second cohort was halved (prevalence ratio 0.51, 95% CI 0.36 to 0.73 in women; 0.45, 0.24 to 0.84 in men), and its hip fracture incidence was significantly reduced (hazard ratio 0.54, 95% CI, 0.38 to 0.78 in women; 0.39, 0.19 to 0.80 in men). Sensitivity analyses indicated that the "effect" was unlikely due to unmeasured confounders. These findings suggest that a population-wide strategy aimed at enhancing BMD across the entire population could lead to a substantial decrease in the incidence of hip fractures. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Thach S Tran
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Thao P Ho-Le
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
- Ha Tinh University, Ha Tinh, Vietnam
| | - Dana Bliuc
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Jacqueline R Center
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, NSW, Australia
| | - Robert D Blank
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Tuan V Nguyen
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, NSW, Australia
- Tam Anh Research Institute (TAMRI), Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Elzamzami FD, Samal A, Arun AS, Dharmaraj T, Prasad NR, Rendon-Jonguitud A, DeVine L, Walston JD, Cole RN, Wilson KL. Native lamin A/C proteomes and novel partners from heart and skeletal muscle in a mouse chronic inflammation model of human frailty. Front Cell Dev Biol 2023; 11:1240285. [PMID: 37936983 PMCID: PMC10626543 DOI: 10.3389/fcell.2023.1240285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Clinical frailty affects ∼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
Collapse
Affiliation(s)
- Fatima D. Elzamzami
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arushi Samal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adith S. Arun
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neeti R. Prasad
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex Rendon-Jonguitud
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
47
|
Zhang X, Huangfu Z, Wang S. Review of mendelian randomization studies on age at natural menopause. Front Endocrinol (Lausanne) 2023; 14:1234324. [PMID: 37766689 PMCID: PMC10520463 DOI: 10.3389/fendo.2023.1234324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause marks the end of the reproductive phase of life. Based on epidemiological studies, abnormal age at natural menopause (ANM) is thought to contribute to a number of adverse outcomes, such as osteoporosis, cardiovascular disease, and cancer. However, the causality of these associations remains unclear. A powerful epidemiological method known as Mendelian randomization (MR) can be used to clarify the causality between ANM and other diseases or traits. The present review describes MR studies that included ANM as an exposure, outcome and mediator. The findings of MR analyses on ANM have revealed that higher body mass index, poor educational level, early age at menarche, early age at first live birth, early age at first sexual intercourse, and autoimmune thyroid disease appear to be involved in early ANM etiology. The etiology of late ANM appears to be influenced by higher free thyroxine 4 and methylene tetrahydrofolate reductase gene mutations. Furthermore, early ANM has been found to be causally associated with an increased risk of osteoporosis, fracture, type 2 diabetes mellitus, glycosylated hemoglobin, and the homeostasis model of insulin resistance level. In addition, late ANM has been found to be causally associated with an increased systolic blood pressure, higher risk of breast cancer, endometrial cancer, endometrioid ovarian carcinoma, lung cancer, longevity, airflow obstruction, and lower risk of Parkinson's disease. ANM is also a mediator for breast cancer caused by birth weight and childhood body size. However, due to the different instrumental variables used, some results of studies are inconsistent. Future studies with more valid genetic variants are needed for traits with discrepancies between MRs or between MR and other types of epidemiological studies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Lai B, Jiang H, Gao Y, Zhou X. Identification of ROCK1 as a novel biomarker for postmenopausal osteoporosis and pan-cancer analysis. Aging (Albany NY) 2023; 15:8873-8907. [PMID: 37683138 PMCID: PMC10522383 DOI: 10.18632/aging.205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a prevalent bone disorder with significant global impact. The elevated risk of osteoporotic fracture in elderly women poses a substantial burden on individuals and society. Unfortunately, the current lack of dependable diagnostic markers and precise therapeutic targets for PMOP remains a major challenge. METHODS PMOP-related datasets GSE7429, GSE56814, GSE56815, and GSE147287, were downloaded from the GEO database. The DEGs were identified by "limma" packages. WGCNA and Machine Learning were used to choose key module genes highly related to PMOP. GSEA, DO, GO, and KEGG enrichment analysis was performed on all DEGs and the selected key hub genes. The PPI network was constructed through the GeneMANIA database. ROC curves and AUC values validated the diagnostic values of the hub genes in both training and validation datasets. xCell immune infiltration and single-cell analysis identified the hub genes' function on immune reaction in PMOP. Pan-cancer analysis revealed the role of the hub genes in cancers. RESULTS A total of 1278 DEGs were identified between PMOP patients and the healthy controls. The purple module and cyan module were selected as the key modules and 112 common genes were selected after combining the DEGs and module genes. Five Machine Learning algorithms screened three hub genes (KCNJ2, HIPK1, and ROCK1), and a PPI network was constructed for the hub genes. ROC curves validate the diagnostic values of ROCK1 in both the training (AUC = 0.73) and validation datasets of PMOP (AUC = 0.81). GSEA was performed for the low-ROCK1 patients, and the top enriched field included protein binding and immune reaction. DCs and NKT cells were highly expressed in PMOP. Pan-cancer analysis showed a correlation between low ROCK1 expression and SKCM as well as renal tumors (KIRP, KICH, and KIRC). CONCLUSIONS ROCK1 was significantly associated with the pathogenesis and immune infiltration of PMOP, and influenced cancer development, progression, and prognosis, which provided a potential therapy target for PMOP and tumors. However, further laboratory and clinical evidence is required before the clinical application of ROCK1 as a therapeutic target.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
49
|
Foessl I, Dimai HP, Obermayer-Pietsch B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol 2023; 19:520-533. [PMID: 37464088 DOI: 10.1038/s41574-023-00866-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Osteoporosis is a skeletal disorder that causes impairment of bone structure and strength, leading to a progressively increased risk of fragility fractures. The global prevalence of osteoporosis is increasing in the ageing population. Owing to the chronic character of osteoporosis, years or even decades of preventive measures or therapy are required. The long-term use of bone-specific pharmacological treatment options, including antiresorptive and/or osteoanabolic approaches, has raised concerns around adverse effects or potential rebound phenomena after treatment discontinuation. Imaging options, risk scores and the assessment of bone turnover during initiation and monitoring of such therapies could help to inform individualized treatment strategies. Combination therapies are currently used less often than 'sequential' treatments. However, all patients with osteoporosis, including those with secondary and rare causes of osteoporosis, as well as specific patient populations (for example, young adults, men and pregnant women) require new approaches for long-term therapy and disease monitoring. New pathophysiological aspects of bone metabolism might therefore help to inform and revolutionize the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ines Foessl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Hans P Dimai
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
50
|
Ortiz M, Jauset-Rubio M, Trummer O, Foessl I, Kodr D, Acero JL, Botero ML, Biggs P, Lenartowicz D, Trajanoska K, Rivadeneira F, Hocek M, Obermayer-Pietsch B, O’Sullivan CK. Generic Platform for the Multiplexed Targeted Electrochemical Detection of Osteoporosis-Associated Single Nucleotide Polymorphisms Using Recombinase Polymerase Solid-Phase Primer Elongation and Ferrocene-Modified Nucleoside Triphosphates. ACS CENTRAL SCIENCE 2023; 9:1591-1602. [PMID: 37637735 PMCID: PMC10450878 DOI: 10.1021/acscentsci.3c00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 08/29/2023]
Abstract
Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.
Collapse
Affiliation(s)
- Mayreli Ortiz
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Olivia Trummer
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Ines Foessl
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - David Kodr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ 16610 Prague 6, Czech Republic
| | - Josep Lluís Acero
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Mary Luz Botero
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Phil Biggs
- Labman
Automation
Ltd., Seamer Hill, Stokesley, North Yorkshire, TS9 5NQ U.K.
| | - Daniel Lenartowicz
- Labman
Automation
Ltd., Seamer Hill, Stokesley, North Yorkshire, TS9 5NQ U.K.
| | - Katerina Trajanoska
- Department
of Internal Medicine, Erasmus MC, 40 3015 Rotterdam, The Netherlands
| | | | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ 16610 Prague 6, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Barbara Obermayer-Pietsch
- Division
of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Ciara K. O’Sullivan
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|