1
|
Roeske J, Long X, Perdue MV, Long M, Geeraert B, Ghasoub M, Yeates KO, Lebel C. Sex differences in maturational timing of amygdala and prefrontal cortex volumes and white matter tract microstructure. Dev Cogn Neurosci 2025; 74:101568. [PMID: 40381249 DOI: 10.1016/j.dcn.2025.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
The developmental mismatch hypothesis (DMH) proposes that a mismatch in maturational timing of the amygdala and prefrontal cortex (PFC) drives adolescent sensation-seeking behaviour. While some studies provide support for the DMH, few have evaluated sex differences or examined both grey and white matter. Here, we used T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) to examine amygdala and PFC macrostructure and amygdala-PFC white matter microstructure development across 606 MRI sessions from 148 typically developing children and adolescents (76 females) aged 1.95-17.71 years. Using generalized additive mixed effects models, we evaluated the maturational timing of amygdala volume, four PFC subregion volumes, and fractional anisotropy and mean diffusivity of the uncinate fasciculus and amygdala-PFC white matter tracts. Amygdala and PFC maturation was consistent with the DMH in males but less so in females. Relative to males, females exhibited less amygdala development and shorter periods of PFC development. In contrast to gray matter volumes, white matter changed continuously from early childhood to late adolescence, but ended earlier in females than in males. Our findings show different amygdala-PFC maturation patterns and that the amygdala-PFC neural system reaches maturity earlier in females than in males. These important differences may underlie sex differences in sensation-seeking behaviour.
Collapse
Affiliation(s)
- Jamie Roeske
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Xiangyu Long
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada; Department of Radiology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Meaghan V Perdue
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada; Department of Radiology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Madison Long
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Bryce Geeraert
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada; Department of Radiology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Mohammad Ghasoub
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada; Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Calgary, Alberta, T3B 6A8 Canada; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada; Department of Radiology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 Canada.
| |
Collapse
|
2
|
Onicas A, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Dennis EL, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL, Pediatric Emergency Research Canada A-CAP Study Group. Brain Network Functional Connectivity in Children With a Concussion. Neurology 2025; 104:e213502. [PMID: 40168632 PMCID: PMC11962048 DOI: 10.1212/wnl.0000000000213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Pediatric concussion can disrupt functional brain network connectivity, but prospective longitudinal research is needed to clarify recovery and identify moderators of change. This study investigated network functional connectivity (FC) up to 6 months after pediatric concussion. METHODS This prospective longitudinal concurrent cohort observational study consecutively recruited children (aged 8 to 17 years) at 5 Canadian pediatric hospital emergency departments within 48 hours of sustaining a concussion or mild orthopaedic injury (OI). Children completed 3T MRI scanning postacutely (2 to 33 days) and at either 3 or 6 months after injury (randomly assigned at the postacute visit). Reliable change between retrospective preinjury (based on parent report) and 1-month postinjury symptom ratings based on parent and child report was used to classify concussion with or without persisting symptoms. Within-network and between-network FC was computed for 8 brain networks from resting-state fMRI scans and analyzed using linear mixed-effects models, with multiple comparison correction. RESULTS Groups (385 with concussion/198 with OI; 59% male; 69% White; age 12.42 ± 2.29 years) did not differ in within-network FC. Relative to OI, connectivity between the visual and ventral attention networks was lower after concussion, d (95% CI) = -0.46 (-0.79 to -0.14), across time. Connectivity between the visual and default mode networks was lower at 6 months after concussion, -0.60 (-0.92 to -0.27). At 3 months after concussion, connectivity between the frontoparietal and ventral attention networks was lower in younger children, -0.98 (-1.58 to -0.37), but higher in older children, 0.81 (0.20 to 1.42). For symptom groups based on parent report, connectivity between the dorsal and ventral attention networks was higher in female children at 3 months after concussion without persisting symptoms relative to concussion with persisting symptoms, 1.25 (2.05 to 0.46), and OI, 0.87 (0.25 to 1.49). DISCUSSION Time after injury, age at injury, biological sex, and persistent symptom status are important moderators of FC after pediatric concussion for children seen in emergency department settings. Postacute FC may not enhance clinical diagnosis. Although within-network connectivity is preserved, between-network connectivity differences emerge after most children clinically recover and persist up to 6 months after pediatric concussion, providing a potential objective biomarker for lasting changes in brain function.
Collapse
Affiliation(s)
- Adrian Onicas
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Stephanie Deighton
- Department of Psychology, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Keith O Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Kirk Graff
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montréal & CHU Sainte-Justine Hospital Research Center, Québec, Canada
| | - Christian Beaulieu
- Department of Radiology and Diagnostic Imaging, and Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montréal and CHU Sainte-Justine Research Center, Québec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Québec, Canada
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine, University of Montréal, Québec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Pediatrics, University of Ottawa, Ontario, Canada; and
| | - Ashley L Ware
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Georgia State University, Atlanta
| | | |
Collapse
|
3
|
Wilson R, Jackson J, Birnie K, Ijaz S, Booker M, Burrell A, Haythornthwaite G, Hong J, Lyttle MD, Pocock L, Scott LJ, Williams C, Wright I, Savovic J, Mytton J, Redaniel MT. Predictors of persisting symptoms after concussion in children following a traumatic brain injury: a longitudinal retrospective cohort study. BMJ Paediatr Open 2025; 9:e003036. [PMID: 40187758 PMCID: PMC11973773 DOI: 10.1136/bmjpo-2024-003036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/22/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVES To identify predictors of persisting symptoms after concussion (PSaC) in children, following any medically attended traumatic brain injury (TBI). DESIGN Retrospective cohort study. SETTING Linked primary and secondary care data from UK Clinical Practice Research Datalink and Hospital Episode Statistics. PARTICIPANTS Children aged 1-17 years with a medically attended TBI between 2013 and 2017. MAIN OUTCOME MEASURE A binary indicator of PSaC or suspected PSaC, measured using either a clinical code for PSaC or medical attendances for one or more PSaC symptoms 3-12 months after TBI. RESULTS We identified 137 873 children with a TBI; 4620 (3.4%) had PSaC or suspected PSaC. More females (3.8%) had PSaC than males (3.1%). Those with PSaC were older at the time of TBI compared with those without PSaC (8 vs 5.5 years). In a multivariable logistic regression model, older age (OR =1.02 per year increase in age, 95% CI 1.01 to 1.03), female sex (OR=1.20, 95% CI 1.13 to 1.28), being Asian (OR=1.37, 95% CI 1.22 to 1.54) or mixed ethnicity (OR=1.18, 95% CI 1.01 to 1.37) (compared with white ethnicity), having a history of headaches (OR=3.52, 95% CI 3.13 to 3.95), learning disabilities (OR=2.06, 95% CI 1.69 to 2.52), ADHD (OR=2.41, 95% CI 1.91 to 3.04), anxiety (OR=2.58, 95% CI 2.18 to 3.05), depression (OR=4.00, 95% CI 3.28 to 4.89) or sleep disorders (OR=2.35, 95% CI 1.99 to 2.78) were associated with increased odds of PSaC. CONCLUSIONS These results may be used to identify children more likely to develop PSaC following a TBI and those who may benefit from targeted healthcare for PSaC symptoms. Identifying cases of PSaC in primary care data was challenging as perhaps many children do not attend services for suspected PSaC or, if they did, are not diagnosed with PSaC. Furthermore, the clinical predictors are a measure of healthcare access for these symptoms; thus, results could be influenced by patient or carer's health-seeking behaviour.
Collapse
Affiliation(s)
- Rebecca Wilson
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Joni Jackson
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Kate Birnie
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Sharea Ijaz
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Matthew Booker
- Centre for Academic Primary Care, University of Bristol Medical School, Bristol, UK
| | - Alex Burrell
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Jialan Hong
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Mark D Lyttle
- Bristol Royal Hospital for Children Paediatric Emergency Department, Bristol, UK
- Research in Emergency Care Avon Collaborative Hub (REACH), University of the West of England, Bristol, UK
| | - Lucy Pocock
- Centre for Academic Primary Care, University of Bristol Medical School, Bristol, UK
| | - Lauren J Scott
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Cathy Williams
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Ingram Wright
- University of Bristol School of Clinical Science, Bristol, UK
| | - Jelena Savovic
- NIHR ARC West, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Julie Mytton
- Centre for Public Health and Wellbeing, University of the West of England, Bristol, UK
| | - Maria Theresa Redaniel
- Population Health Sciences, University of Bristol, Bristol, UK
- National Cancer Registry, Cork, Ireland
| |
Collapse
|
4
|
Dharsee S, Laliberté Durish C, Tang K, Brooks BL, Noel M, Ware AL, Beauchamp MH, Craig W, Doan Q, Freedman SB, Goodyear BG, Gravel J, Zemek R, Yeates KO. Association of Psychological Resilience, Cognitive Reserve, and Brain Reserve with Post-Concussive Symptoms in Children with Mild Traumatic Brain Injury and Orthopedic Injury: An A-CAP Study. J Neurotrauma 2025; 42:731-744. [PMID: 38874919 DOI: 10.1089/neu.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Protective factors, including psychological resilience, cognitive reserve, and brain reserve, may be positively associated with recovery after pediatric mild traumatic brain injury (mTBI) but are yet to be studied concurrently. We sought to examine these factors as moderators of post-concussive symptoms (PCS) in pediatric mTBI compared with mild orthopedic injury (OI). Participants included 967 children (633 mTBI, 334 OI) aged 8-16.99 years, recruited from 5 Canadian pediatric emergency departments as part of a prospective longitudinal cohort study. At 10 days post-injury, psychological resilience was measured using the Connor-Davidson Resilience Scale and brain reserve was measured using total brain volume derived from structural magnetic resonance imaging. Cognitive reserve was measured at 3 months post-injury using IQ scores from the Wechsler Abbreviated Scale of Intelligence-Second Edition. Cognitive and somatic PCS were measured using child and parent ratings on the Health and Behavior Inventory, completed weekly for 3 months and biweekly to 6 months. Analyses involved generalized least-squares regression models using restricted cubic splines. Covariates included age at injury, sex, racialized identity, material and social deprivation, pre-injury migraine and concussion history, and retrospective pre-injury PCS. Psychological resilience moderated group differences in parent-reported PCS. At 30 days post-injury, estimated group differences in parent-reported cognitive and somatic PCS (mTBI > OI) were larger at higher (75th percentile) resilience scores (Est = 2.25 [0.87, 3.64] and Est = 2.38 [1.76, 3.00], respectively) than at lower (25th percentile) resilience scores (Est = 1.44 [0.01, 2.86] and Est = 2.08 [1.45, 2.71], respectively). Resilience did not moderate group differences in child-reported PCS but was negatively associated with child-reported PCS in both groups (ps ≤ 0.001). Brain reserve (i.e., total brain volume [TBV]) also moderated group differences, but only for parent-reported somatic PCS (p = 0.018). Group difference (mTBI > OI) at 30 days was larger at smaller (25th percentile) TBV (Est = 2.78 [2.17, 3.38]) than at larger (75th percentile) TBV (Est = 1.95 [1.31, 2.59]). TBV was not associated with parent-reported cognitive PCS or child-reported PCS. IQ did not moderate PCS in either group but had a significant non-linear association in both groups with child-reported somatic PCS (p = 0.018) and parent-reported PCS (p < 0.001), with higher PCS scores at both lower and higher IQs. These findings suggest that higher resilience predicts fewer PCS, but less strongly after mTBI than OI; greater brain reserve may reduce the effect of mTBI on somatic PCS; and cognitive reserve has an unexpected curvilinear association with PCS across injury types. The results highlight the importance of protective factors as predictors of recovery and potential targets for intervention following pediatric mTBI.
Collapse
Affiliation(s)
- Safira Dharsee
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | - Ken Tang
- Independent Statistical Consulting, Richmond, British Columbia, Canada
| | - Brian L Brooks
- Departments of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital Research Institute, University of Calgary; Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Melanie Noel
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley L Ware
- Department of Psychology, Georgia State University, Georgia, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Cumming School of Medicine, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Beauchamp MH, Tang K, Ledoux AA, Harris AD, Kowalski KA, Craig WR, Gravel J, Doan Q, Freedman SB, Zemek RL, Yeates KO. Optimal Recovery Following Pediatric Concussion. JAMA Netw Open 2025; 8:e251092. [PMID: 40105842 PMCID: PMC11923687 DOI: 10.1001/jamanetworkopen.2025.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 03/20/2025] Open
Abstract
Importance Pediatric concussion affects millions and results in heterogeneous outcomes and recovery trajectories. Given favorable outcome for most children, it is useful to understand characteristics of positive outcome to promote full recovery in all children. Objective To document the timeframe of recovery to optimal functioning, defined comprehensively across motor-physical, cognitive, socioemotional, and resilience-support domains, after concussion among children ages 8 to 16 years. Design, Setting, and Participants For this prospective cohort study, children ages 8 to 16.99 years with a concussion or orthopedic injury (OI) were recruited between September 2016 and July 2019 from 5 Pediatric Emergency Research Canada emergency departments and assessed approximately 10 days, 3 months, and 6 months after their injury. Data were analyzed from January 29, 2024, to January 11, 2025. Exposure Concussion. Main Outcomes and Measures Participants completed self-report and direct assessment measures of postconcussive symptoms, physical activity and function, balance, cognitive function, quality of life, resilience, and social support. The main outcome was optimal functioning, which was derived from 11 variables and criteria indicative of absence of impairment and average or above functioning in each domain (overall score, 0-11; higher score indicates better function). A longitudinal, multivariable, cumulative probability ordinal regression model was fitted to examine factors associated with optimal functioning. Results A total of 967 children (median [IQR] age, 12.3 [10.5-14.3] years; 562 [58.1%] male) were enrolled, including 633 children with a concussion and 334 children with an OI. The median (IQR) optimal functioning scores for the OI group were 6.0 (4.0-8.0) at 10 days, 7.0 (5.0-9.0) at 3 months, and 7 (5.0-9.0) at 6 months, compared with 4.0 (2.0-6.0) at 10 days, 6.0 (4.0-9.0) at 3 months, and 7.0 (4.0-9.0) at 6 months in the concussion group. The 3 main variables (time, sex, and group) were significantly associated with optimal functioning, as were all 2-way interactions. Time was the strongest factor associated with optimal functioning (Wald χ258 = 485.11; P < .001), followed by group (Wald χ26 = 95.10; P < .001), and sex (Wald χ26 = 23.19; P < .001). At the 10-day follow-up, concussion was associated with lower optimal functioning than OI among females (odds ratio [OR], 0.24 [95% CI, 0.16-0.36]) and males (OR, 0.37 [95% CI, 0.26-0.53]). This difference persisted for females at 3 months (OR, 0.57 [95% CI, 0.35-0.93]) but not for males. Optimal functioning was comparable at 6 months. Conclusions and Relevance In this prospective cohort study of children with concussion, achieving optimal functioning levels across physical, cognitive, socioemotional, and resilience domains took 3 months or more, especially for girls with concussion. Multiple domains of outcome need to be taken into account when considering full recovery and optimal function after pediatric concussion.
Collapse
Affiliation(s)
- Miriam H. Beauchamp
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Ste-Justine Hospital Azrieli Research Center, Montreal, Quebec, Canada
| | - Ken Tang
- Independent statistical consultant, Richmond, British Columbia, Canada
| | - Andrée-Anne Ledoux
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | | | - William R. Craig
- Department of Pediatrics, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Jocelyn Gravel
- Ste-Justine Hospital Azrieli Research Center, Montreal, Quebec, Canada
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B. Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roger L. Zemek
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Salberg S, Smith MJ, Lamont R, Chen Z, Beauchamp MH, Craig W, Doan Q, Gravel J, Zemek R, Lannin NA, Yeates KO, Mychasiuk R. Shorter Telomere Length Is Associated With Older Age, Poor Sleep Hygiene, and Orthopedic Injury, but Not Mild Traumatic Brain Injury, in a Cohort of Canadian Children. J Head Trauma Rehabil 2025; 40:E154-E162. [PMID: 39019487 DOI: 10.1097/htr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Predicting recovery following pediatric mild traumatic brain injury (mTBI) remains challenging. The identification of objective biomarkers for prognostic purposes could improve clinical outcomes. Telomere length (TL) has previously been used as a prognostic marker of cellular health in the context of mTBI and other neurobiological conditions. While psychosocial and environmental factors are associated with recovery outcomes following pediatric mTBI, the relationship between these factors and TL has not been investigated. This study sought to examine the relationships between TL and psychosocial and environmental factors, in a cohort of Canadian children with mTBI or orthopedic injury (OI). METHODS Saliva was collected at a postacute (median 7 days) timepoint following injury to assess TL from a prospective longitudinal cohort of children aged 8 to 17 years with either mTBI (n = 202) or OI (n = 90), recruited from 3 Canadian sites. Questionnaires regarding psychosocial and environmental factors were obtained at a postacute follow-up visit and injury outcomes were assessed at a 3-month visit. Univariable associations between TL and psychosocial, environmental, and outcome variables were assessed using Spearman's correlation. Further adjusted analyses of these associations were performed by including injury group, age, sex, and site as covariates in multivariable generalized linear models with a Poisson family, log link function, and robust variance estimates. RESULTS After adjusting for age, sex, and site, TL in participants with OI was 7% shorter than those with mTBI (adjusted mean ratio = 0.93; 95% confidence interval, 0.89-0.98; P = .003). As expected, increasing age was negatively associated with TL (Spearman's r = -0.14, P = .016). Sleep hygiene at 3 months was positively associated with TL (adjusted mean ratio = 1.010; 95% confidence interval, 1.001-1.020; P = .039). CONCLUSION The relationships between TL and psychosocial and environmental factors in pediatric mTBI and OI are complex. TL may provide information regarding sleep quality in children recovering from mTBI or OI; however, further investigation into TL biomarker validity should employ a noninjured comparison group.
Collapse
Affiliation(s)
- S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia (Drs Salberg, Smith, Lannin, Mychasiuk and Chen); Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (Dr Lamont); Department of Psychology, Montreal University, Montreal, Quebec, Canada, and Sainte-Justine Hospital Research Center, Montrea, Quebec, Canada (Dr Beauchamp); Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada (Dr Craig); Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada (Dr Doan); Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada, and Université de Montreal, Montreal, Quebec, Canada (Dr Gravel); Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada (Dr Zemek); Alfred Health, Melbourne, Australia (Dr Lannin); and Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada (Dr Yeates)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dharsee S, Hassan A, Noel M, Bender AM, Beauchamp MH, Craig W, Doan Q, Freedman SB, Gravel J, Zemek R, Yeates KO. Cross-Lagged Associations Among Sleep, Headache, and Pain in Pediatric Mild Traumatic Brain Injury: An A-CAP Study. J Head Trauma Rehabil 2025:00001199-990000000-00234. [PMID: 39919247 DOI: 10.1097/htr.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
OBJECTIVE To test cross-lagged associations among sleep, headache, and pain in pediatric mild traumatic brain injury (mTBI). SETTING, PARTICIPANTS, DESIGN Children and adolescents aged 8.0 to 16.9 years who sustained a mTBI and presented to 1 of 5 pediatric emergency departments across Canada completed assessments at 1-week, 3 months, and 6 months post-injury as part of a larger prospective cohort study. MAIN MEASURES Sleep disturbance was measured using 7 sleep items from the Child Behaviour Checklist. Sleep duration was measured using average weekday and weekend sleep from the Healthy Lifestyle Behaviours Questionnaire. Pain intensity was measured using an 11-point numerical rating scale. Headache severity and associated functional impairment were measured using the Headache Impact Test and 1 item from the Health and Behaviour Inventory. Analyses included trivariate-indicator random-intercept cross-lagged panel models. RESULTS Of 633 recruited children, 563 were included in the current study. Headache showed significant within-person, bidirectional, cross-lagged associations with sleep disturbance and duration, as well as with pain intensity. More specifically, worse headache predicted greater sleep disturbance (1-week to 3 months and 3 months to 6 months: Bs = .47, Ps ≤ .013) and shorter sleep duration (1-week to 3 months: B = -.21, P = .006), while greater sleep disturbance predicted worse headache (1-week to 3 months: B = .08, P = .001). Worse headache also predicted higher pain intensity (1-week to 3 months & 3 months to 6 months: Bs ≥ 1.27, P s < .001), while higher pain intensity predicted worse headache (3 months to 6 months: Bs ≥ .03, Ps ≤ .042). No cross-lagged associations involving sleep disturbance or duration with pain intensity were significant. CONCLUSIONS Significant bi-directional, cross-lagged associations exist between headache and both sleep and pain. The findings suggest that early intervention for headaches may help prevent later sleep disturbance and pain after pediatric mTBI.
Collapse
Affiliation(s)
- Safira Dharsee
- Author Affiliations: Department of Psychology (Ms Dharsee), Department of Psychology (Dr Noel), Faculty of Kinesiology (Dr Bender), Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine (Dr Freedman), Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute (Dr Yeates), University of Calgary, Calgary, Alberta, Canada; Department of Radiology and Diagnostic Imaging (Mr Hassan), University of Alberta, Edmonton, Alberta, Canada; Department of Psychology, Université de Montréal and CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada; Department of Pediatrics (Dr Craig), University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada; Department of Pediatrics (Dr Doan), University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatric Emergency Medicine, Department of Pediatrics (Dr Gravel), CHU Sainte-Justine Hospital Research Center, Université de Montréal, Montréal, Québec, Canada; Departments of Pediatrics and Emergency Medicine (Dr Zemek), University of Ottawa and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Luszawski CA, Plourde V, Sick SR, Galarneau JM, Eliason PH, Brooks BL, Mrazik M, Debert CT, Lebrun C, Babul S, Hagel BE, Dukelow SP, Schneider KJ, Emery CA, Yeates KO. Psychosocial Factors Associated With Time to Recovery After Concussion in Adolescent Ice Hockey Players. Clin J Sport Med 2024; 34:256-265. [PMID: 37707392 DOI: 10.1097/jsm.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE To investigate the association between psychosocial factors and physician clearance to return to play (RTP) in youth ice hockey players after sport-related concussion. DESIGN Prospective cohort study, Safe to Play (2013-2018). SETTING Youth hockey leagues in Alberta and British Columbia, Canada. PARTICIPANTS Three hundred fifty-three ice hockey players (aged 11-18 years) who sustained a total of 397 physician-diagnosed concussions. INDEPENDENT VARIABLES Psychosocial variables. MAIN OUTCOME MEASURES Players and parents completed psychosocial questionnaires preinjury. Players with a suspected concussion were referred for a study physician visit, during which they completed the Sport Concussion Assessment Tool (SCAT3/SCAT5) and single question ratings of distress and expectations of recovery. Time to recovery (TTR) was measured as days between concussion and physician clearance to RTP. Accelerated failure time models estimated the association of psychosocial factors with TTR, summarized with time ratios (TRs). Covariates included age, sex, body checking policy, days from concussion to the initial physician visit, and symptom severity at the initial physician visit. RESULTS Self-report of increased peer-related problems on the Strengths and Difficulties Questionnaire (TR, 1.10 [95% CI, 1.02-1.19]), higher ratings of distress about concussion outcomes by participants (TR, 1.06 [95% CI, 1.01-1.11]) and parents (TR, 1.05 [95% CI, 1.01-1.09]), and higher parent ratings of distress about their child's well-being at the time of injury (TR, 1.06 [95% CI, 1.02-1.09]) were associated with longer recovery. CONCLUSIONS Greater pre-existing peer-related problems and acute distress about concussion outcomes and youth well-being predicted longer TTR. Treatment targeting these psychosocial factors after concussion may promote recovery.
Collapse
Affiliation(s)
- Caroline A Luszawski
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Vickie Plourde
- School of Psychology, Université de Moncton, Moncton, New Brunswick, Canada
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Sherbrooke, New Brunswick, Canada
- Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Stacy R Sick
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Paul H Eliason
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian L Brooks
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital, Neurosciences Program, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Martin Mrazik
- Department of Educational Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Constance Lebrun
- Glen Sather Sports Medicine Clinic, Department of Family Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shelina Babul
- Department of Pediatrics, Faculty of Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brent E Hagel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Kathryn J Schneider
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Dharsee S, Tang K, Beauchamp MH, Craig W, Doan Q, Freedman SB, Gravel J, Zemek R, Yeates KO. Do preinjury life events moderate the outcomes of mild traumatic brain injuries in children? An A-CAP Study. J Pediatr Psychol 2024; 49:195-206. [PMID: 38457314 DOI: 10.1093/jpepsy/jsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE To examine preinjury life events as moderators of postconcussive symptoms (PCS) and quality of life (QoL) in children with pediatric mild traumatic brain injury (mTBI) versus orthopedic injury (OI). METHODS Participants were 633 children with mTBI and 334 with OI, ages 8-16.99, recruited from 5 pediatric emergency departments and followed for 6 months postinjury as part of a prospective cohort study. Preinjury life events were measured retrospectively using the Child and Adolescent Survey of Experiences, PCS using the Health and Behavior Inventory (HBI) and Post-Concussion Symptom Interview (PCS-I), and QoL using the Pediatric Quality of Life Inventory (PedsQL). Analyses involved longitudinal regression using restricted cubic splines, with group, positive and negative life events, and time as primary predictors. Covariates included age, sex, race, socioeconomic status, preinjury history (i.e., headache, migraine, previous concussion), and parent-rated retrospective PCS-I, HBI, and PedsQL scores. RESULTS PCS and QoL were worse after mTBI than OI, but group differences declined with time (all p < .001). Group differences in PCS were larger at higher levels of positive life events, which predicted lower PCS (p= .03 to p < .001) and higher QoL (p = .048) after OI but not after mTBI. Negative life events predicted worse PCS and QoL in both groups (p = .002 to p < .001). CONCLUSIONS Preinjury positive life events moderate outcomes after pediatric injury, with a protective effect seen in OI but not in mTBI. Negative life events are consistently associated with worse outcomes regardless of injury type.
Collapse
Affiliation(s)
- Safira Dharsee
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ken Tang
- Independent Statistical Consulting, Vancouver, BC, Canada
| | - Miriam H Beauchamp
- Department of Psychology, Université de Montréal and CHU Sainte-Justine Hospital Research Center, Montréal, QC, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Stephen B Freedman
- Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Onicas AI, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL. Longitudinal Functional Connectome in Pediatric Concussion: An Advancing Concussion Assessment in Pediatrics Study. J Neurotrauma 2024; 41:587-603. [PMID: 37489293 DOI: 10.1089/neu.2023.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.
Collapse
Affiliation(s)
- Adrian I Onicas
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, LU, Italy
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków, Poland. Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie Deighton
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kirk Graff
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Department of Pediatric Emergency Medicine, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashley L Ware
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA, and Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
La PL, Walker R, Bell TK, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Longitudinal changes in brain metabolites following pediatric concussion. Sci Rep 2024; 14:3242. [PMID: 38331924 PMCID: PMC10853495 DOI: 10.1038/s41598-024-52744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Concussion is commonly characterized by a cascade of neurometabolic changes following injury. Magnetic Resonance Spectroscopy (MRS) can be used to quantify neurometabolites non-invasively. Longitudinal changes in neurometabolites have rarely been studied in pediatric concussion, and fewer studies consider symptoms. This study examines longitudinal changes of neurometabolites in pediatric concussion and associations between neurometabolites and symptom burden. Participants who presented with concussion or orthopedic injury (OI, comparison group) were recruited. The first timepoint for MRS data collection was at a mean of 12 days post-injury (n = 545). Participants were then randomized to 3 (n = 243) or 6 (n = 215) months for MRS follow-up. Parents completed symptom questionnaires to quantify somatic and cognitive symptoms at multiple timepoints following injury. There were no significant changes in neurometabolites over time in the concussion group and neurometabolite trajectories did not differ between asymptomatic concussion, symptomatic concussion, and OI groups. Cross-sectionally, Choline was significantly lower in those with persistent somatic symptoms compared to OI controls at 3 months post-injury. Lower Choline was also significantly associated with higher somatic symptoms. Although overall neurometabolites do not change over time, choline differences that appear at 3 months and is related to somatic symptoms.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Robyn Walker
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Miriam H Beauchamp
- Department of Psychology, Ste Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
12
|
Hassan A, Brooks BL, McArthur BA, Beauchamp MH, Craig W, Doan Q, Zemek R, Yeates KO. Dynamic Relations Between Psychological Resilience and Post-Concussion Symptoms in Children With Mild Traumatic Brain Injury Versus Orthopedic Injury: An A-CAP Study. J Neurotrauma 2024; 41:135-146. [PMID: 37485612 DOI: 10.1089/neu.2023.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Higher psychological resilience is correlated with less severe post-concussion symptoms (PCS) after mild traumatic brain injury (mTBI) in children, but the directional nature of this relationship remains uncertain. Although traditionally regarded as a stable, trait-like construct, resilience may be malleable and potentially influenced by mTBI and post-concussive symptoms. The current study sought to examine the stability of resilience, elucidate the dynamic nature of the resilience-PCS relation, and determine whether resilience-symptom associations are specific to mTBI or applicable to traumatic injury in general. Participants were children aged 8-16.99 years with either mTBI (n = 633) or orthopedic injury (OI; n = 334) recruited to participate in a prospective cohort study after presenting acutely to five Canadian pediatric emergency departments (EDs). Symptoms and psychological resilience were assessed at 1 week, 3 months, and 6 months post-injury. Group differences in resilience over time were examined using a mixed linear model, and associations between resilience and symptoms over time were examined using random intercepts cross-lagged panel modeling (RI-CLPM). The mTBI group reported significantly lower resilience than the OI group, but the difference was significantly larger 1 week post-injury (d = 0.50) than at 3 months (d = 0.08) and 6 months (d = 0.10). Cross-lagged panel models indicated that resilience had both stable and dynamic aspects, and both affected and was affected by PCS, although their association varied by time post-injury, symptom measure, and reporter (parent vs. child). Higher parent-reported cognitive symptom severity at 1 week was significantly associated with higher resilience at 3 months (β = 0.23, p = 0.001). Higher resilience at 3 months was associated with lower levels of parent-reported somatic symptom severity (β = -0.14, p = 0.004) and fewer total symptoms (β = -0.135, p = 0.029) at 6 months. Higher resilience at 3 months was associated with fewer child-reported symptoms at 6 months (β = -0.11, p = 0.030) and, reciprocally, fewer child-reported symptoms at 3 months were associated with higher resilience at 6 months (β = -0.22, p = 0.001). Notably, injury group was not a significant moderator in cross-lagged models, suggesting that resilience-symptom associations are not specific to mTBI. Psychological resilience and symptoms have bidirectional relationships after injury. Interventions designed to foster resilience have the potential to promote recovery after mTBI specifically and injury more generally.
Collapse
Affiliation(s)
- Ali Hassan
- Department of Psychology, University of Calgary, Calgary, Canada
| | - Brian L Brooks
- Departments of Pediatrics, Clinical Neurosciences, and Psychology, and Alberta Children's Hospital Research Institute, University of Calgary, Alberta Children's Hospital, Neurosciences Program, Calgary, Alberta, Canada
| | - Brae Anne McArthur
- Departments of Psychology and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta, and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Davis GA, Schneider KJ, Anderson V, Babl FE, Barlow KM, Blauwet CA, Bressan S, Broglio SP, Emery CA, Echemendia RJ, Gagnon I, Gioia GA, Giza CC, Leddy JJ, Master CL, McCrea M, McNamee MJ, Meehan WP, Purcell L, Putukian M, Moser RS, Takagi M, Yeates KO, Zemek R, Patricios JS. Pediatric Sport-Related Concussion: Recommendations From the Amsterdam Consensus Statement 2023. Pediatrics 2024; 153:e2023063489. [PMID: 38044802 DOI: 10.1542/peds.2023-063489] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 12/05/2023] Open
Abstract
The 6th International Consensus Conference on Concussion in Sport, Amsterdam 2022, addressed sport-related concussion (SRC) in adults, adolescents, and children. We highlight the updated evidence-base and recommendations regarding SRC in children (5-12 years) and adolescents (13-18 years). Prevention strategies demonstrate lower SRC rates with mouthguard use, policy disallowing bodychecking in ice hockey, and neuromuscular training in adolescent rugby. The Sport Concussion Assessment Tools (SCAT) demonstrate robustness with the parent and child symptom scales, with the best diagnostic discrimination within the first 72 hours postinjury. Subacute evaluation (>72 hours) requires a multimodal tool incorporating symptom scales, balance measures, cognitive, oculomotor and vestibular, mental health, and sleep assessment, to which end the Sport Concussion Office Assessment Tools (SCOAT6 [13+] and Child SCOAT6 [8-12]) were developed. Rather than strict rest, early return to light physical activity and reduced screen time facilitate recovery. Cervicovestibular rehabilitation is recommended for adolescents with dizziness, neck pain, and/or headaches for greater than 10 days. Active rehabilitation and collaborative care for adolescents with persisting symptoms for more than 30 days may decrease symptoms. No tests and measures other than standardized and validated symptom rating scales are valid for diagnosing persisting symptoms after concussion. Fluid and imaging biomarkers currently have limited clinical utility in diagnosing or assessing recovery from SRC. Improved paradigms for return to school were developed. The variable nature of disability and differences in evaluating para athletes and those of diverse ethnicity, sex, and gender are discussed, as are ethical considerations and future directions in pediatric SRC research.
Collapse
Affiliation(s)
- Gavin A Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Neurosurgery, Austin Health, Melbourne, Victoria, Australia
- Neurosurgery, Cabrini Health, Melbourne, Victoria, Australia
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology
- Hotchkiss Brain Institute
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
- Departments of Paediatrics and Critical Care, University of Melbourne, Victoria, Australia
| | - Karen M Barlow
- University of Queensland, Children's Hospital and Health Services,Brisbane, Queensland, Australia
| | - Cheri A Blauwet
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital/Harvard Medical School, Boston, Massachusetts
| | | | | | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology
- Hotchkiss Brain Institute
| | - Ruben J Echemendia
- University Orthopedics Concussion Care Clinic, State College, Pennsylvania
- University of Missouri - Kansas City, Kansas City, Missouri
| | - Isabelle Gagnon
- McGill University, Montreal, Quebec, Canada
- Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | - John J Leddy
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Christina L Master
- University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | - Laura Purcell
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Keith Owen Yeates
- Hotchkiss Brain Institute
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Beauchamp MH, Dégeilh F, Rose SC. Improving outcome after paediatric concussion: challenges and possibilities. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:728-740. [PMID: 37734775 DOI: 10.1016/s2352-4642(23)00193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023]
Abstract
The term concussion has permeated mainstream media and household vocabulary mainly due to awareness regarding the risks of concussion in professional contact sports, yet it occurs across a variety of settings and ages. Concussion is prevalent in infants, preschoolers, children, and adolescents, and is a common presentation or reason for referral to primary care providers, emergency departments, and specialised trauma clinics. Its broad range of symptoms and sequelae vary according to multiple individual, environmental, and clinical factors and can lead to health and economic burden. More than 20 years of research into risk factors and consequences of paediatric concussion has revealed as many questions as answers, and scientific work and clinical cases continue to expose its complexity and heterogeneity. In this Review, we present empirical evidence for improving outcome after paediatric concussion. We consider work pertaining to both sports and other injury mechanisms to provide a perspective that should be viewed as complementary to publications focused specifically on sports concussion. Contemporary challenges in prevention, diagnosis, prognosis, and intervention are discussed alongside pathways and future directions for improving outcome.
Collapse
Affiliation(s)
- Miriam H Beauchamp
- Sainte-Justine Research Center, University of Montreal, Montréal, QC, Canada; Department of Psychology, University of Montreal, Montréal, QC, Canada.
| | - Fanny Dégeilh
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN ERL U-1228, Rennes, France
| | - Sean C Rose
- Pediatric Neurology, Nationwide Children's Hospital, Columbus, OH, USA; Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
15
|
Newcombe V, Richter S, Whitehouse DP, Bloom BM, Lecky F. Fluid biomarkers and neuroimaging in mild traumatic brain injury: current uses and potential future directions for clinical use in emergency medicine. Emerg Med J 2023; 40:671-677. [PMID: 37438096 DOI: 10.1136/emermed-2023-213111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Mild traumatic brain injury is a common presentation to the emergency department, with current management often focusing on determining whether a patient requires a CT head scan and/or neurosurgical intervention. There is a growing appreciation that approximately 20%-40% of patients, including those with a negative (normal) CT, will develop ongoing symptoms for months to years, often termed post-concussion syndrome. Owing to the requirement for improved diagnostic and prognostic mechanisms, there has been increasing evidence concerning the utility of both imaging and blood biomarkers.Blood biomarkers offer the potential to better risk stratify patients for requirement of neuroimaging than current clinical decisions rules. However, improved assessment of the clinical utility is required prior to wide adoption. MRI, using clinical sequences and advanced quantitative methods, can detect lesions not visible on CT in up to 30% of patients that may explain, at least in part, some of the ongoing problems. The ability of an acute biomarker (be it imaging, blood or other) to highlight those patients at greater risk of ongoing deficits would allow for greater personalisation of follow-up care and resource allocation.We discuss here both the current evidence and the future potential clinical usage of blood biomarkers and advanced MRI to improve diagnostic pathways and outcome prediction following mild traumatic brain injury.
Collapse
Affiliation(s)
- Virginia Newcombe
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sophie Richter
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel P Whitehouse
- Emergency and Urgent Care Research in Cambridge (EURECA), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Fiona Lecky
- Health Services Research, The University of Sheffield, Sheffield, South Yorkshire, UK
- Emergency Department /TARN, Salford and Trafford Health Authority, Manchester, UK
| |
Collapse
|
16
|
Ware AL, Lebel C, Onicas A, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO. Longitudinal Gray Matter Trajectories in Pediatric Mild Traumatic Brain Injury. Neurology 2023; 101:e728-e739. [PMID: 37353339 PMCID: PMC10437012 DOI: 10.1212/wnl.0000000000207508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.
Collapse
Affiliation(s)
- Ashley L Ware
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada.
| | - Catherine Lebel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Adrian Onicas
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Nishard Abdeen
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Christian Beaulieu
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bruce H Bjornson
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - William Craig
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Mathieu Dehaes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Quynh Doan
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Sylvain Deschenes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Stephen B Freedman
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bradley G Goodyear
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Jocelyn Gravel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Andrée-Anne Ledoux
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Roger Zemek
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Keith Owen Yeates
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| |
Collapse
|
17
|
Ware AL, McLarnon MJW, Lapointe AP, Brooks BL, Bacevice A, Bangert BA, Beauchamp MH, Bigler ED, Bjornson B, Cohen DM, Craig W, Doan Q, Freedman SB, Goodyear BG, Gravel J, Mihalov HLK, Minich NM, Taylor HG, Zemek R, Yeates KO, Pediatric Emergency Research Canada A-CAP Study Group. IQ After Pediatric Concussion. Pediatrics 2023; 152:e2022060515. [PMID: 37455662 PMCID: PMC10389777 DOI: 10.1542/peds.2022-060515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES This study investigated IQ scores in pediatric concussion (ie, mild traumatic brain injury) versus orthopedic injury. METHODS Children (N = 866; aged 8-16.99 years) were recruited for 2 prospective cohort studies from emergency departments at children's hospitals (2 sites in the United States and 5 in Canada) ≤48 hours after sustaining a concussion or orthopedic injury. They completed IQ and performance validity testing postacutely (3-18 days postinjury; United States) or 3 months postinjury (Canada). Group differences in IQ scores were examined using 3 complementary statistical approaches (linear modeling, Bayesian, and multigroup factor analysis) in children performing above cutoffs on validity testing. RESULTS Linear models showed small group differences in full-scale IQ (d [95% confidence interval] = 0.13 [0.00-0.26]) and matrix reasoning (0.16 [0.03-0.30]), but not in vocabulary scores. IQ scores were not related to previous concussion, acute clinical features, injury mechanism, a validated clinical risk score, pre- or postinjury symptom ratings, litigation, or symptomatic status at 1 month postinjury. Bayesian models provided moderate to very strong evidence against group differences in IQ scores (Bayes factor 0.02-0.23). Multigroup factor analysis further demonstrated strict measurement invariance, indicating group equivalence in factor structure of the IQ test and latent variable means. CONCLUSIONS Across multisite, prospective study cohorts, 3 complementary statistical models provided no evidence of clinically meaningful differences in IQ scores after pediatric concussion. Instead, overall results provided strong evidence against reduced intelligence in the first few weeks to months after pediatric concussion.
Collapse
Affiliation(s)
- Ashley L. Ware
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Department of Neurology, University of Utah, Salt Lake City, Utah
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew J. W. McLarnon
- Department of General Management and Human Resources, Bissett School of Business, Mount Royal University, Calgary, Alberta, Canada
| | - Andrew P. Lapointe
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian L. Brooks
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Neurosciences Program, Alberta Children’s Hospital, Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ann Bacevice
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Barbara A. Bangert
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Miriam H. Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Erin D. Bigler
- Department of Neurology, University of Utah, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Bruce Bjornson
- Division of Neurology
- Department of Pediatrics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Daniel M. Cohen
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - William Craig
- University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B. Freedman
- Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine; CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Montréal, Québec, Canada
| | - H. Leslie K. Mihalov
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Nori Mercuri Minich
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
- Rainbow Babies & Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
18
|
Doan Q, Chadwick L, Tang K, Brooks BL, Beauchamp M, Zemek R, Craig W, Gravel J, Yeates KO. A Prospective Cohort Study of the Association Between Preinjury Psychosocial Function and Postconcussive Symptoms in Pediatric Mild Traumatic Brain Injury: An A-CAP Study. J Head Trauma Rehabil 2023; 38:294-307. [PMID: 36602261 DOI: 10.1097/htr.0000000000000853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE We evaluated the moderating effect of preinjury psychosocial function on postconcussion symptoms for children with mild traumatic brain injury (mTBI). DESIGN, SETTING, AND POPULATION We conducted a prospective cohort study of children ages 8.0 to 16.9 years with mTBI ( n = 633) or orthopedic injury (OI; n = 334), recruited from 5 pediatric emergency departments from September 2016 to December 2018. MAIN MEASURES Participants completed baseline assessments within 48 hours of injury, and postconcussion symptoms assessments at 7 to 10 days, weekly to 3 months, and biweekly to 6 months post-injury. Preinjury psychosocial function was measured using parent ratings on the Pediatric Quality of Life Inventory (PedsQL) and the Strengths and Difficulties Questionnaire (SDQ), retrospectively evaluating their child's status prior to the injury. Parent and child ratings on the Health and Behavior Inventory (HBI) (cognitive and somatic subscales) and the Post-Concussion Symptom Interview (PCS-I) were used as measures of postconcussion symptoms. We fitted 6 longitudinal regression models, which included 747 to 764 participants, to evaluate potential interactions between preinjury psychosocial function and injury group as predictors of child- and parent-reported postconcussion symptoms. RESULTS Preinjury psychosocial function moderated group differences in postconcussion symptoms across the first 6 months post-injury. Higher emotional and conduct problems were significantly associated with more severe postconcussion symptoms among children with mTBI compared with OI. Wald's χ 2 for interaction terms (injury group × SDQ subscales) ranged from 6.3 to 10.6 ( P values <.001 to .043) across parent- and child-reported models. In contrast, larger group differences (mTBI > OI) in postconcussion symptoms were associated with milder hyperactivity (Wald's χ 2 : 15.3-43.0, all P < .001), milder peer problems (Wald's χ 2 : 11.51, P = .003), and higher social functioning (Wald's χ 2 : 12.435, P = .002). CONCLUSIONS Preinjury psychosocial function moderates postconcussion symptoms in pediatric mTBI, highlighting the importance of assessing preinjury psychosocial function in children with mTBI.
Collapse
Affiliation(s)
- Quynh Doan
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada (Dr Doan); Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (Ms Chadwick and Dr Yeates); Independent Statistical Consultant, Vancouver, Canada (Dr Tang); Departments of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada (Dr Brooks); Department of Psychology, University of Montreal & Ste-Justine Hospital Research Center, Montreal, Canada (Dr Beauchamp); Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada (Dr Zemek); Department of Pediatrics, University of Alberta, and Stollery Children's Hospital, Edmonton, Alberta, Canada (Dr Craig); and Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Université de Montréal, Montreal, Canada (Dr Gravel)
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yeates KO, Räisänen AM, Premji Z, Debert CT, Frémont P, Hinds S, Smirl JD, Barlow K, Davis GA, Echemendia RJ, Feddermann-Demont N, Fuller C, Gagnon I, Giza CC, Iverson GL, Makdissi M, Schneider KJ. What tests and measures accurately diagnose persisting post-concussive symptoms in children, adolescents and adults following sport-related concussion? A systematic review. Br J Sports Med 2023; 57:780-788. [PMID: 37316186 DOI: 10.1136/bjsports-2022-106657] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To determine what tests and measures accurately diagnose persisting post-concussive symptoms (PPCS) in children, adolescents and adults following sport-related concussion (SRC). DESIGN A systematic literature review. DATA SOURCES MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and SPORTDiscus through March 2022. ELIGIBILITY CRITERIA Original, empirical, peer-reviewed findings (cohort studies, case-control studies, cross-sectional studies and case series) published in English and focused on SRC. Studies needed to compare individuals with PPCS to a comparison group or their own baseline prior to concussion, on tests or measures potentially affected by concussion or associated with PPCS. RESULTS Of 3298 records screened, 26 articles were included in the qualitative synthesis, including 1016 participants with concussion and 531 in comparison groups; 7 studies involved adults, 8 involved children and adolescents and 11 spanned both age groups. No studies focused on diagnostic accuracy. Studies were heterogeneous in participant characteristics, definitions of concussion and PPCS, timing of assessment and the tests and measures examined. Some studies found differences between individuals with PPCS and comparison groups or their own pre-injury assessments, but definitive conclusions were not possible because most studies had small convenience samples, cross-sectional designs and were rated high risk of bias. CONCLUSION The diagnosis of PPCS continues to rely on symptom report, preferably using standardised symptom rating scales. The existing research does not indicate that any other specific tool or measure has satisfactory accuracy for clinical diagnosis. Future research drawing on prospective, longitudinal cohort studies could help inform clinical practice.
Collapse
Affiliation(s)
- Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anu M Räisänen
- Department of Physical Therapy Education - Oregon, Western University of Health Sciences, College of Health Sciences - Northwest, Lebanon, Oregon, USA
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Chantel T Debert
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Frémont
- Department of Rehabilitation, Laval University, Quebec, Quebec, Canada
| | - Sidney Hinds
- Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Karen Barlow
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, Pennsylvania, USA
| | - Nina Feddermann-Demont
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Sports Neuroscience, University of Zurich, Zurich, Switzerland
| | - Colm Fuller
- College of Medicine and Health, University College Cork, Cork, Ireland
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Trauma Center, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Michael Makdissi
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Ware AL, Onicas AI, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO, Lebel C. Altered longitudinal structural connectome in paediatric mild traumatic brain injury: an Advancing Concussion Assessment in Paediatrics study. Brain Commun 2023; 5:fcad173. [PMID: 37324241 PMCID: PMC10265725 DOI: 10.1093/braincomms/fcad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.
Collapse
Affiliation(s)
- Ashley L Ware
- Correspondence to: Ashley L. Ware, PhD Department of Psychology, Georgia State University 140 Decatur Street SE, Atlanta, GA 30303, USA E-mail:
| | - Adrian I Onicas
- Department of Psychology, University of Calgary, Calgary, AB T2N 0V2, Canada
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków 30-054, Poland
| | - Nishard Abdeen
- Department of Radiology, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa,Ottawa, ON, Canada K1H 8L1
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, QC, Canada H3C 3J7
| | - Christian Beaulieu
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, Edmonton, AB, Canada T6G 2V2
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6H 3V4
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada V6H 3V4
| | - William Craig
- University of Alberta and Stollery Children’s Hospital, Edmonton, AB, Canada T6G 1C9
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada H3T1J4
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, QC, CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Quynh Doan
- Department of Pediatrics University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Bradley G Goodyear
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, AB T2N 0V2, Canada
- Department of Radiology, University of Calgary, Calgary, AB T2N 0V2, Canada
| | - Jocelyn Gravel
- Pediatric Emergency Department, CHU Sainte-Justine, Montréal, QC H3T1C5, Canada
- Department of Pediatric, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | | | | |
Collapse
|
21
|
La PL, Joyce JM, Bell TK, Mauthner M, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Brain metabolites measured with magnetic resonance spectroscopy in pediatric concussion and orthopedic injury: An Advancing Concussion Assessment in Pediatrics (A-CAP) study. Hum Brain Mapp 2023; 44:2493-2508. [PMID: 36763547 PMCID: PMC10028643 DOI: 10.1002/hbm.26226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Millions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.g., N-acetyl Aspartate (tNAA), glutamate (Glx), creatine (tCr), choline (tCho), and myo-Inositol (mI)) to better understand these disruptions. In this study, we used MRS to examine differences in brain metabolites between children and adolescents with concussion versus orthopedic injury. Children and adolescents with concussion (n = 361) or orthopedic injury (OI) (n = 184) aged 8 to 17 years were recruited from five emergency departments across Canada. MRS data were collected from the left dorsolateral prefrontal cortex (L-DLPFC) using point resolved spectroscopy (PRESS) at 3 T at a mean of 12 days post-injury (median 10 days post-injury, range 2-33 days). Univariate analyses for each metabolite found no statistically significant metabolite differences between groups. Within each analysis, several covariates were statistically significant. Follow-up analyses designed to account for possible confounding factors including age, site, scanner, vendor, time since injury, and tissue type (and interactions as appropriate) did not find any metabolite group differences. In the largest sample of pediatric concussion studied with MRS to date, we found no metabolite differences between concussion and OI groups in the L-DLPFC. We suggest that at 2 weeks post-injury in a general pediatric concussion population, brain metabolites in the L-DLPFC are not specifically affected by brain injury.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Julie M Joyce
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Ste Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Sader N, Gobbi D, Goodyear B, Frayne R, Ware AL, Beauchamp MH, Craig WR, Doan Q, Zemek R, Riva-Cambrin J, Yeates KO. Can quantitative susceptibility mapping help diagnose and predict recovery of concussion in children? An A-CAP study. J Neurol Neurosurg Psychiatry 2023; 94:227-235. [PMID: 36517039 DOI: 10.1136/jnnp-2022-329487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is an MRI technique that is a potential biomarker for concussion. We performed QSM in children following concussion or orthopaedic injury (OI), to assess QSM performance as a diagnostic and prognostic biomarker. METHODS Children aged 8-17 years with either concussion (N=255) or OI (N=116) were recruited from four Canadian paediatric emergency departments and underwent QSM postacutely (2-33 days postinjury) using 3 Tesla MRI. QSM Z-scores within nine regions of interest (ROI) were compared between groups. QSM Z-scores were also compared with the 5P score, the current clinical benchmark for predicting persistent postconcussion symptoms (PPCS), at 4 weeks postinjury, with PPCS defined using reliable change methods based on both participant and parent reports. RESULTS Concussion and OI groups did not differ significantly in QSM Z-scores for any ROI. Higher QSM Z-scores within frontal white matter (WM) independently predicted PPCS based on parent ratings of cognitive symptoms (p=0.001). The combination of frontal WM QSM Z-score and 5P score was better at predicting PPCS than 5P score alone (p=0.004). The area under the curve was 0.72 (95% CI 0.63 to 0.81) for frontal WM susceptibility, 0.69 (95% CI 0.59 to 0.79) for the 5P score and 0.74 (95% CI 0.65 to 0.83) for both. CONCLUSION The findings suggest that QSM is a potential MRI biomarker that can help predict PPCS in children with concussion, over and above the current clinical benchmark, and thereby aid in clinical management. They also suggest a frontal lobe substrate for PPCS, highlighting the potential for QSM to clarify the neurophysiology of paediatric concussion.
Collapse
Affiliation(s)
- Nicholas Sader
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - David Gobbi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Brad Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Ashley L Ware
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - William R Craig
- Department of Pediatrics, University of Alberta, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jay Riva-Cambrin
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
23
|
van Ierssel JJ, Tang K, Beauchamp M, Bresee N, Cortel-LeBlanc A, Craig W, Doan Q, Gravel J, Lyons T, Mannix R, Orr S, Zemek R, Yeates KO. Association of Posttraumatic Headache With Symptom Burden After Concussion in Children. JAMA Netw Open 2023; 6:e231993. [PMID: 36884251 PMCID: PMC9996395 DOI: 10.1001/jamanetworkopen.2023.1993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/22/2023] [Indexed: 03/09/2023] Open
Abstract
Importance Headache is the most common symptom after pediatric concussion. Objectives To examine whether posttraumatic headache phenotype is associated with symptom burden and quality of life 3 months after concussion. Design, Setting, and Participants This was a secondary analysis of the Advancing Concussion Assessment in Pediatrics (A-CAP) prospective cohort study, conducted September 2016 to July 2019 at 5 Pediatric Emergency Research Canada (PERC) network emergency departments. Children aged 8.0-16.99 years presenting with acute (<48 hours) concussion or orthopedic injury (OI) were included. Data were analyzed from April to December 2022. Exposure Posttraumatic headache was classified as migraine or nonmigraine headache, or no headache, using modified International Classification of Headache Disorders, 3rd edition, diagnostic criteria based on self-reported symptoms collected within 10 days of injury. Main Outcomes and Measures Self-reported postconcussion symptoms and quality-of-life were measured at 3 months after concussion using the validated Health and Behavior Inventory (HBI) and Pediatric Quality of Life Inventory-Version 4.0 (PedsQL-4.0). An initial multiple imputation approach was used to minimize potential biases due to missing data. Multivariable linear regression evaluated the association between headache phenotype and outcomes compared with the Predicting and Preventing Postconcussive Problems in Pediatrics (5P) clinical risk score and other covariates and confounders. Reliable change analyses examined clinical significance of findings. Results Of 967 enrolled children, 928 (median [IQR] age, 12.2 [10.5 to 14.3] years; 383 [41.3%] female) were included in analyses. HBI total score (adjusted) was significantly higher for children with migraine than children without headache (estimated mean difference [EMD], 3.36; 95% CI, 1.13 to 5.60) and children with OI (EMD, 3.10; 95% CI, 0.75 to 6.62), but not children with nonmigraine headache (EMD, 1.93; 95% CI, -0.33 to 4.19). Children with migraine were more likely to report reliable increases in total symptoms (odds ratio [OR], 2.13; 95% CI, 1.02 to 4.45) and somatic symptoms (OR, 2.70; 95% CI, 1.29 to 5.68) than those without headache. PedsQL-4.0 subscale scores were significantly lower for children with migraine than those without headache only for physical functioning (EMD, -4.67; 95% CI, -7.86 to -1.48). Conclusions and Relevance In this cohort study of children with concussion or OI, those with posttraumatic migraine symptoms after concussion had higher symptom burden and lower quality of life 3 months after injury than those with nonmigraine headache. Children without posttraumatic headache reported the lowest symptom burden and highest quality of life, comparable with children with OI. Further research is warranted to determine effective treatment strategies that consider headache phenotype.
Collapse
Affiliation(s)
| | - Ken Tang
- Independent statistical consultant
| | - Miriam Beauchamp
- Department of Psychology, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Hospital Research Centre, Montreal, Québec, Canada
| | - Natalie Bresee
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Canada
- Department of Emergency Medicine, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - William Craig
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Stollery Children’s Hospital, Edmonton, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute , Vancouver, Canada
| | - Jocelyn Gravel
- CHU Sainte-Justine Hospital Research Centre, Montreal, Québec, Canada
- Department of Pediatric Emergency Medicine, Université de Montréal, Montréal, Canada
| | - Todd Lyons
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Serena Orr
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Roger Zemek
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Emergency Medicine, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Keith Owen Yeates
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Department of Psychology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
24
|
Dennis EL, Keleher F, Tate DF, Wilde EA. The Role of Neuroimaging in Evolving TBI Research and Clinical Practice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23286258. [PMID: 36865222 PMCID: PMC9980266 DOI: 10.1101/2023.02.24.23286258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Neuroimaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) have been widely adopted in the clinical diagnosis and management of traumatic brain injury (TBI), particularly at the more acute and severe levels of injury. Additionally, a number of advanced applications of MRI have been employed in TBI-related clinical research with great promise, and researchers have used these techniques to better understand underlying mechanisms, progression of secondary injury and tissue perturbation over time, and relation of focal and diffuse injury to later outcome. However, the acquisition and analysis time, the cost of these and other imaging modalities, and the need for specialized expertise have represented historical barriers in extending these tools in clinical practice. While group studies are important in detecting patterns, heterogeneity among patient presentation and limited sample sizes from which to compare individual level data to well-developed normative data have also played a role in the limited translatability of imaging to wider clinical application. Fortunately, the field of TBI has benefitted from increased public and scientific awareness of the prevalence and impact of TBI, particularly in head injury related to recent military conflicts and sport-related concussion. This awareness parallels an increase in federal funding in the United States and other countries allocated to investigation in these areas. In this article we summarize funding and publication trends since the mainstream adoption of imaging in TBI to elucidate evolving trends and priorities in the application of different techniques and patient populations. We also review recent and ongoing efforts to advance the field through promoting reproducibility, data sharing, big data analytic methods, and team science. Finally, we discuss international collaborative efforts to combine and harmonize neuroimaging, cognitive, and clinical data, both prospectively and retrospectively. Each of these represent unique, but related, efforts that facilitate closing gaps between the use of advanced imaging solely as a research tool and the use of it in clinical diagnosis, prognosis, and treatment planning and monitoring.
Collapse
Affiliation(s)
- Emily L Dennis
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Finian Keleher
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT
| | - David F Tate
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Elisabeth A Wilde
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
- Baylor College of Medicine, Houston, TX
| |
Collapse
|
25
|
Sparanese S, Yeates KO, Bone J, Beauchamp MH, Craig W, Zemek R, Doan Q. Concurrent Psychosocial Concerns and Post-Concussive Symptoms Following Pediatric mTBI: An A-CAP Study. J Pediatr Psychol 2023; 48:156-165. [PMID: 36308773 DOI: 10.1093/jpepsy/jsac076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To measure the association between psychosocial problems and persistent post-concussive symptoms (PCS) in youth who were seen in the emergency department with mild traumatic brain injury (mTBI) or orthopedic injury (OI). METHODS From a larger prospective cohort study, Advancing Concussion Assessment in Pediatrics (A-CAP), 122 child-guardian pairs who presented to the emergency department with mTBI (N = 70) or OI (N = 52) were recruited for this cross-sectional sub-study. Each pair completed 2 measures assessing PCS burden at 2 weeks, 3 months, and 6 months post-injury. At one visit, pairs concurrently completed MyHEARTSMAP, a comprehensive, psychosocial self-assessment tool to evaluate 4 domains of mental wellness. RESULTS When measured at the same visit, children who self-reported moderate or severe Psychiatry domain concerns concurrently experienced a greater burden of cognitive symptoms (β = 5.49; 0.93-10.05) and higher overall PCS count (β = 2.59; 0.70-4.48) after adjusting for covariables, including retrospective pre-injury symptoms and injury group. Additionally, reports indicating mild Function domain severity were associated with increased cognitive (β = 3.34; 95% CI: 0.69-5.99) and somatic symptoms (β = 6.79; 2.15-11.42) and total symptom count (β = 1.29; 0.18-2.39). CONCLUSION Increasing severity in multiple domains of mental health is associated with more PCS in youth. While the differences in PCS between the mTBI and OI groups appeared somewhat larger for children with more mental health concerns, the interaction was not statistically significant; larger sample sizes are needed to evaluate the moderating effect of psychosocial difficulties on post-concussion symptoms.
Collapse
Affiliation(s)
| | | | - Jeffrey Bone
- BC Children's Hospital Research Institute, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, Canada
| | - Quynh Doan
- BC Children's Hospital Research Institute, Canada
- Department of Pediatrics, University of British Columbia Faculty of Medicine, Canada
| |
Collapse
|
26
|
Convergent Validity of Myheartsmap: A Pediatric Psychosocial Health Screening Tool. Child Psychiatry Hum Dev 2023; 54:66-75. [PMID: 34350505 DOI: 10.1007/s10578-021-01221-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/25/2023]
Abstract
Recognition of pediatric mental health concerns often depends on assessment by parents, educators, and primary care professionals. Therefore, a psychosocial screening instrument suitable for routine use in schools and primary care is needed. The Pediatric Quality of Life (PedsQL) and the Strengths and Difficulties Questionnaire (SDQ) are widely used for screening but lack adolescent-specific mental health measures. MyHEARTSMAP is an instrument assessing aspects of youth psychosocial health via four domains: Psychiatry, Function, Social, and Youth Health. We evaluated MyHEARTSMAP convergent validity with PedsQL and SDQ among 122 child-parent dyads participating in a larger concussion study. Convergent validity was assessed via correlations: MyHEARTSMAP Psychiatry and Function domains correlated strongly (r ≥ 0.44) and Social domain correlated weakly (r ≤ 0.25) to corresponding PedsQL and SDQ subscales, while Youth Health domain correlated moderately (r ≥ 0.31) to the tools' total scales. In conclusion, MyHEARTSMAP converges with PedsQL and SDQ, and benefits from the inclusion of adolescent-specific psychosocial measures.
Collapse
|
27
|
Lapointe AP, Ware AL, Duszynski CC, Stang A, Yeates KO, Dunn JF. Cerebral Hemodynamics and Microvasculature Changes in Relation to White Matter Microstructure After Pediatric Mild Traumatic Brain Injury: An A-CAP Pilot Study. Neurotrauma Rep 2023; 4:64-70. [PMID: 36726868 PMCID: PMC9886193 DOI: 10.1089/neur.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Advanced neuroimaging techniques show promise as a biomarker for mild traumatic brain injury (mTBI). However, little research has evaluated cerebral hemodynamics or its relation to white matter microstructure post-mTBI in children. This novel pilot study examined differences in cerebral hemodynamics, as measured using functional near-infrared spectroscopy (fNIRS), and its association with diffusion tensor imaging (DTI) metrics in children with mTBI or mild orthopedic injury (OI) to address these gaps. Children 8.00-16.99 years of age with mTBI (n = 9) or OI (n = 6) were recruited in a pediatric emergency department, where acute injury characteristics were assessed. Participants completed DTI twice, post-acutely (2-33 days) and chronically (3 or 6 months), and fNIRS ∼1 month post-injury. Automated deterministic tractography was used to compute DTI metrics. There was reduced absolute phase globally and coherence in the dorsolateral pre-frontal cortex (DLPFC) after mTBI compared to the OI group. Coherence in the DLPFC and absolute phase globally showed distinct associations with fractional anisotropy in interhemispheric white matter pathways. Two fNIRS metrics (coherence and absolute phase) differentiated mTBI from OI in children. Variability in cerebral hemodynamics related to white matter microstructure. The results provide initial evidence that fNIRS may have utility as a clinical biomarker of pediatric mTBI.
Collapse
Affiliation(s)
- Andrew P. Lapointe
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley L. Ware
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Chris C. Duszynski
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Antonia Stang
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Address correspondence to: Jeff F. Dunn, PhD, Department of Radiology, Cumming School of Medicine, Experimental Imaging Centre, University of Calgary, 3280 Hospital Drive Northwest, Calgary, Alberta, Canada T2N 4Z6;
| |
Collapse
|
28
|
Harris AD, Amiri H, Bento M, Cohen R, Ching CRK, Cudalbu C, Dennis EL, Doose A, Ehrlich S, Kirov II, Mekle R, Oeltzschner G, Porges E, Souza R, Tam FI, Taylor B, Thompson PM, Quidé Y, Wilde EA, Williamson J, Lin AP, Bartnik-Olson B. Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations. Front Neurol 2023; 13:1045678. [PMID: 36686533 PMCID: PMC9845632 DOI: 10.3389/fneur.2022.1045678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.
Collapse
Affiliation(s)
- Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Houshang Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariana Bento
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Ronald Cohen
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Christina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ivan I. Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, United States
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Roberto Souza
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Friederike I. Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Brian Taylor
- Division of Diagnostic Imaging, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - John Williamson
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alexander P. Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
29
|
La PL, Bell TK, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Comparison of different approaches to manage multi-site magnetic resonance spectroscopy clinical data analysis. Front Psychol 2023; 14:1130188. [PMID: 37151330 PMCID: PMC10157208 DOI: 10.3389/fpsyg.2023.1130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The effects caused by differences in data acquisition can be substantial and may impact data interpretation in multi-site/scanner studies using magnetic resonance spectroscopy (MRS). Given the increasing use of multi-site studies, a better understanding of how to account for different scanners is needed. Using data from a concussion population, we compare ComBat harmonization with different statistical methods in controlling for site, vendor, and scanner as covariates to determine how to best control for multi-site data. Methods The data for the current study included 545 MRS datasets to measure tNAA, tCr, tCho, Glx, and mI to study the pediatric concussion acquired across five sites, six scanners, and two different MRI vendors. For each metabolite, the site and vendor were accounted for in seven different models of general linear models (GLM) or mixed-effects models while testing for group differences between the concussion and orthopedic injury. Models 1 and 2 controlled for vendor and site. Models 3 and 4 controlled for scanner. Models 5 and 6 controlled for site applied to data harmonized by vendor using ComBat. Model 7 controlled for scanner applied to data harmonized by scanner using ComBat. All the models controlled for age and sex as covariates. Results Models 1 and 2, controlling for site and vendor, showed no significant group effect in any metabolites, but the vendor and site were significant factors in the GLM. Model 3, which included a scanner, showed a significant group effect for tNAA and tCho, and the scanner was a significant factor. Model 4, controlling for the scanner, did not show a group effect in the mixed model. The data harmonized by the vendor using ComBat (Models 5 and 6) had no significant group effect in both the GLM and mixed models. Lastly, the data harmonized by the scanner using ComBat (Model 7) showed no significant group effect. The individual site data suggest there were no group differences. Conclusion Using data from a large clinical concussion population, different analysis techniques to control for site, vendor, and scanner in MRS data yielded different results. The findings support the use of ComBat harmonization for clinical MRS data, as it removes the site and vendor effects.
Collapse
Affiliation(s)
- Parker L. La
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Parker L. La,
| | - Tiffany K. Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Miriam H. Beauchamp
- Department of Psychology, Ste-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Cairncross M, Yeates KO, Tang K, Madigan S, Beauchamp MH, Craig W, Doan Q, Zemek R, Kowalski K, Silverberg ND. Early Postinjury Screen Time and Concussion Recovery. Pediatrics 2022; 150:189740. [PMID: 36250231 DOI: 10.1542/peds.2022-056835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES To determine the association between early screen time (7-10 days postinjury) and postconcussion symptom severity in children and adolescents with concussion, as compared to those with orthopedic injury (OI). METHODS This was a planned secondary analysis of a prospective longitudinal cohort study. Participants were 633 children and adolescents with acute concussion and 334 with OI aged 8 to 16, recruited from 5 Canadian pediatric emergency departments. Postconcussion symptoms were measured using the Health and Behavior Inventory at 7 to 10 days, weekly for 3 months, and biweekly from 3 to 6 months postinjury. Screen time was measured by using the Healthy Lifestyle Behavior Questionnaire. Generalized least squares models were fit for 4 Health and Behavior Inventory outcomes (self- and parent-reported cognitive and somatic symptoms), with predictors including screen time, covariates associated with concussion recovery, and 2 3-way interactions (self- and parent-reported screen time with group and time postinjury). RESULTS Screen time was a significant but nonlinear moderator of group differences in postconcussion symptom severity for parent-reported somatic (P = .01) and self-reported cognitive symptoms (P = .03). Low and high screen time were both associated with relatively more severe symptoms in the concussion group compared to the OI group during the first 30 days postinjury but not after 30 days. Other risk factors and health behaviors had stronger associations with symptom severity than screen time. CONCLUSIONS The association of early screen time with postconcussion symptoms is not linear. Recommending moderation in screen time may be the best approach to clinical management.
Collapse
Affiliation(s)
- Molly Cairncross
- Department of Psychology, Simon Fraser University; Burnaby, British Columbia, Canada.,Departments of Psychology.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Keith Owen Yeates
- Department of Psychology.,Alberta Children's Hospital Research Institute.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Sheri Madigan
- Department of Psychology.,Alberta Children's Hospital Research Institute.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Ste-Justine Hospital Research Center, Quebec, Canada
| | - William Craig
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Quynh Doan
- Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ontario, Canada
| | | | - Noah D Silverberg
- Departments of Psychology.,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
31
|
Wittevrongel K, Barrett O, Couloigner I, Bertazzon S, Hagel B, Schneider KJ, Johnson D, Yeates KO, Zwicker JD. Longitudinal trends in incidence and health care use for pediatric concussion in Alberta, Canada. Pediatr Res 2022; 93:1752-1764. [PMID: 36085365 PMCID: PMC10172117 DOI: 10.1038/s41390-022-02214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND We described longitudinal trends in the incidence of episodes of care (EOC) and follow-up care for pediatric concussion in relation to age, sex, rurality of patient residence, point of care, and area-based socioeconomic status (SES) in Alberta, Canada. METHODS A retrospective population-based cohort study was conducted using linked, province-wide administrative health data for all patients <18 years of age who received a diagnosis of concussion, other specified injuries of head, unspecified injury of head, or post-concussion syndrome between April 1, 2004 and March 31, 2018. Data were geospatially mapped. RESULTS Concussion EOCs increased 2.2-fold over the study period, follow-up visits 5.1-fold. Care was increasingly received in physician office (PO) settings. Concussion diagnoses in rural and remote areas occurred in emergency department (ED) settings more often than in metro centres or urban areas (76%/75% vs. 52%/60%). Proportion of concussion diagnoses was positively related to SES and age. Diagnosis and point of care varied geographically. CONCLUSIONS The shift in care to PO settings, increased incidence of all diagnoses, and the higher use of the ED by some segments of the population all have important implications for appropriate clinical management and the efficient provision of health care for pediatric concussion. IMPACT This is the first study to use EOC to describe longitudinal trends in incidence and follow-up care for pediatric concussion in relation to age, sex, rurality, point of care, and area-based SES. We report increased incidence of concussion in both emergency and outpatient settings and the proportion of diagnoses was positively related to SES and age. Patients increasingly received care for concussion in PO over time. Geospatial mapping indicated that the incidence of concussion and unspecified injury of head varied geographically and temporally. Results have important implications for appropriate clinical management and efficient provision of health care following pediatric concussion.
Collapse
Affiliation(s)
| | | | | | - Stefania Bertazzon
- Department of Geography, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Brent Hagel
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kathryn J Schneider
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David Johnson
- Alberta Health Services, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Keith O Yeates
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Jennifer D Zwicker
- School of Public Policy, University of Calgary, Calgary, AB, Canada. .,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Factor structure and measurement invariance of post-concussion symptom ratings on the Health and Behaviour Inventory across time, raters, and groups: An A-CAP study. J Int Neuropsychol Soc 2022; 29:346-359. [PMID: 35924559 DOI: 10.1017/s1355617722000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To validate the two-factor structure (i.e., cognitive and somatic) of the Health and Behaviour Inventory (HBI), a widely used post-concussive symptom (PCS) rating scale, through factor analyses using bifactor and correlated factor models and by examining measurement invariance (MI). METHODS PCS ratings were obtained from children aged 8-16.99 years, who presented to the emergency department with concussion (n = 565) or orthopedic injury (OI) (n = 289), and their parents, at 10-days, 3-months, and 6-months post-injury. Item-level HBI ratings were analyzed separately for parents and children using exploratory and confirmatory factor analyses (CFAs). Bifactor and correlated models were compared using various fit indices and tested for MI across time post-injury, raters (parent vs. child), and groups (concussion vs. OI). RESULTS CFAs showed good fit for both a three-factor bifactor model, consisting of a general factor with two subfactors (i.e., cognitive and somatic), and a correlated two-factor model with cognitive and somatic factors, at all time points for both raters. Some results suggested the possibility of a third factor involving fatigue. All models demonstrated strict invariance across raters and time. Group comparisons showed at least strong or strict invariance. CONCLUSIONS The findings support the two symptom dimensions measured by the HBI. The three-factor bifactor model showed the best fit, suggesting that ratings on the HBI also can be captured by a general factor. Both correlated and bifactor models showed substantial MI. The results provide further validation of the HBI, supporting its use in childhood concussion research and clinical practice.
Collapse
|
33
|
Brooks BL, Kumari J, Virani S. Family Burden in Adolescents With Refractory Postconcussion Symptoms. J Head Trauma Rehabil 2022; 37:230-239. [PMID: 34320550 DOI: 10.1097/htr.0000000000000717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A significant minority of adolescents will have persistent postconcussion symptoms after an injury, potentially having a negative impact on family functioning. However, the reasons for a family's negative impact are not clearly understood. The objective of this study was to determine whether preinjury/demographic factors, injury characteristics, and/or worse postinjury symptoms are associated with higher levels of family stress in youth with refractory postconcussion symptoms. SETTING Pediatric refractory concussion clinic in a tertiary care center. PARTICIPANTS A total of 121 adolescents (13-18 years old) who were 1 to 12 months postconcussion. MEASURES Primary outcome was the mean stress rating on the Family Burden of Injury Interview (FBII), a 27-item questionnaire rating the impact on a family as a result of an injury. Preinjury/demographic and injury details were collected. Youth and their parents also completed measures of postconcussion symptoms, depression, anxiety, and behavioral problems. RESULTS Participants had a mean age of 16.0 years (SD = 1.3), of which, 65% identified as female, and were on an average 5.2 months (SD = 2.4) postconcussion. FBII ratings were not significantly correlated with demographics, preinjury functioning, injury severity, duration of persistent postconcussion problems (ie, time since injury), or self-reported postconcussion symptoms. Greater family burden (higher FBII ratings) significantly correlated with worse parent-reported postconcussion symptoms, worse psychological functioning (self-reported depression, parent-reported anxiety, and depression), and worse behavioral functioning (parent-reported conduct problems and peer problems). A multiple linear regression model revealed that parent-perceived postconcussion cognitive symptoms (β = .292, t = 2.56, P = .012) and parent-perceived peer problems (β = .263, t = 2.59, P = .011) were significantly associated with family burden ( F8,105 = 6.53; P < .001; R2 = 0.35). CONCLUSION Families of youth with refractory postconcussion symptoms can experience a negative impact. The severity of reported family burden in those with slow recovery from concussion was significantly associated with parents' perception of their child's cognitive symptoms and peer problems. These results could provide support for family-based interventions in this population.
Collapse
Affiliation(s)
- Brian L Brooks
- Neurosciences Program, Alberta Children's Hospital, Calgary, Alberta, Canada (Dr Brooks); Departments of Paediatrics (Dr Brooks), Clinical Neurosciences (Dr Brooks), and Psychology (Dr Brooks), Alberta Children's Hospital Research Institute (Dr Brooks and Mr Virani), Hotchkiss Brain Institute (Dr Brooks), Faculty of Nursing (Ms Kumari), and Faculty of Kinesiology (Mr Virani), University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
34
|
Onicas AI, Ware AL, Harris AD, Beauchamp MH, Beaulieu C, Craig W, Doan Q, Freedman SB, Goodyear BG, Zemek R, Yeates KO, Lebel C. Multisite Harmonization of Structural DTI Networks in Children: An A-CAP Study. Front Neurol 2022; 13:850642. [PMID: 35785336 PMCID: PMC9247315 DOI: 10.3389/fneur.2022.850642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of large, multisite neuroimaging datasets provides a promising means for robust characterization of brain networks that can reduce false positives and improve reproducibility. However, the use of different MRI scanners introduces variability to the data. Managing those sources of variability is increasingly important for the generation of accurate group-level inferences. ComBat is one of the most promising tools for multisite (multiscanner) harmonization of structural neuroimaging data, but no study has examined its application to graph theory metrics derived from the structural brain connectome. The present work evaluates the use of ComBat for multisite harmonization in the context of structural network analysis of diffusion-weighted scans from the Advancing Concussion Assessment in Pediatrics (A-CAP) study. Scans were acquired on six different scanners from 484 children aged 8.00-16.99 years [Mean = 12.37 ± 2.34 years; 289 (59.7%) Male] ~10 days following mild traumatic brain injury (n = 313) or orthopedic injury (n = 171). Whole brain deterministic diffusion tensor tractography was conducted and used to construct a 90 x 90 weighted (average fractional anisotropy) adjacency matrix for each scan. ComBat harmonization was applied separately at one of two different stages during data processing, either on the (i) weighted adjacency matrices (matrix harmonization) or (ii) global network metrics derived using unharmonized weighted adjacency matrices (parameter harmonization). Global network metrics based on unharmonized adjacency matrices and each harmonization approach were derived. Robust scanner effects were found for unharmonized metrics. Some scanner effects remained significant for matrix harmonized metrics, but effect sizes were less robust. Parameter harmonized metrics did not differ by scanner. Intraclass correlations (ICC) indicated good to excellent within-scanner consistency between metrics calculated before and after both harmonization approaches. Age correlated with unharmonized network metrics, but was more strongly correlated with network metrics based on both harmonization approaches. Parameter harmonization successfully controlled for scanner variability while preserving network topology and connectivity weights, indicating that harmonization of global network parameters based on unharmonized adjacency matrices may provide optimal results. The current work supports the use of ComBat for removing multiscanner effects on global network topology.
Collapse
Affiliation(s)
- Adrian I. Onicas
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Ashley L. Ware
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Miriam H. Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stephen B. Freedman
- Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bradley G. Goodyear
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Ware AL, Yeates KO, Tang K, Shukla A, Onicas AI, Guo S, Goodrich-Hunsaker N, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Lebel C. Longitudinal white matter microstructural changes in pediatric mild traumatic brain injury: An A-CAP study. Hum Brain Mapp 2022; 43:3809-3823. [PMID: 35467058 PMCID: PMC9294335 DOI: 10.1002/hbm.25885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023] Open
Abstract
In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre‐injury and 1‐month post‐injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion‐weighted imaging at post‐acute (2–33 days post‐injury) and chronic (3 or 6 months via random assignment) post‐injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, −0.58 (−1.04, −0.11), and superior longitudinal fasciculus, −0.49 (−0.90, −0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post‐injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Keith Owen Yeates
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ken Tang
- Independent Statistical Consulting, Richmond, British Columbia, Canada
| | - Ayushi Shukla
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adrian I Onicas
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Sunny Guo
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; 2. BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Quynh Doan
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| | - Stephen B Freedman
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, & Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Catherine Lebel
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
36
|
Examining brain white matter after pediatric mild traumatic brain injury using neurite orientation dispersion and density imaging: An A-CAP study. Neuroimage Clin 2021; 32:102887. [PMID: 34911193 PMCID: PMC8633364 DOI: 10.1016/j.nicl.2021.102887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
We examined white matter microstructure after pediatric mTBI using NODDI and DTI. Children with mTBI did not significantly differ from those with OI on any metrics. Minor alterations, if any, may be present in children at the post-acute stage after mTBI. Large longitudinal studies are needed to understand long-term brain changes post injury.
Background Pediatric mild traumatic brain injury (mTBI) affects millions of children annually. Diffusion tensor imaging (DTI) is sensitive to axonal injuries and white matter microstructure and has been used to characterize the brain changes associated with mild traumatic brain injury (mTBI). Neurite orientation dispersion and density imaging (NODDI) is a diffusion model that can provide additional insight beyond traditional DTI metrics, but has not been examined in pediatric mTBI. The goal of this study was to employ DTI and NODDI to gain added insight into white matter alterations in children with mTBI compared to children with mild orthopedic injury (OI). Methods Children (mTBI n = 320, OI n = 176) aged 8–16.99 years (12.39 ± 2.32 years) were recruited from emergency departments at five hospitals across Canada and underwent 3 T MRI on average 11 days post-injury. DTI and NODDI metrics were calculated for seven major white matter tracts and compared between groups using univariate analysis of covariance controlling for age, sex, and scanner type. False discovery rate (FDR) was used to correct for multiple comparisons. Results Univariate analysis revealed no significant group main effects or interactions in DTI or NODDI metrics. Fractional anisotropy and neurite density index in all tracts exhibited a significant positive association with age and mean diffusivity in all tracts exhibited a significant negative association with age in the whole sample. Conclusions Overall, there were no significant differences between mTBI and OI groups in brain white matter microstructure from either DTI or NODDI in the seven tracts. This indicates that mTBI is associated with relatively minor white matter differences, if any, at the post-acute stage. Brain differences may evolve at later stages of injury, so longitudinal studies with long-term follow-up are needed.
Collapse
|
37
|
Ware AL, Yeates KO, Geeraert B, Long X, Beauchamp MH, Craig W, Doan Q, Freedman SB, Goodyear BG, Zemek R, Lebel C. Structural connectome differences in pediatric mild traumatic brain and orthopedic injury. Hum Brain Mapp 2021; 43:1032-1046. [PMID: 34748258 PMCID: PMC8764485 DOI: 10.1002/hbm.25705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023] Open
Abstract
Sophisticated network‐based approaches such as structural connectomics may help to detect a biomarker of mild traumatic brain injury (mTBI) in children. This study compared the structural connectome of children with mTBI or mild orthopedic injury (OI) to that of typically developing (TD) children. Children aged 8–16.99 years with mTBI (n = 83) or OI (n = 37) were recruited from the emergency department and completed 3T diffusion MRI 2–20 days postinjury. TD children (n = 39) were recruited from the community and completed diffusion MRI. Graph theory metrics were calculated for the binarized average fractional anisotropy among 90 regions. Multivariable linear regression and linear mixed effects models were used to compare groups, with covariates age, hemisphere, and sex, correcting for multiple comparisons. The two injury groups did not differ on graph theory metrics, but both differed from TD children in global metrics (local network efficiency: TD > OI, mTBI, d = 0.49; clustering coefficient: TD < OI, mTBI, d = 0.49) and regional metrics for the fusiform gyrus (lower degree centrality and nodal efficiency: TD > OI, mTBI, d = 0.80 to 0.96; characteristic path length: TD < OI, mTBI, d = −0.75 to −0.90) and in the superior and middle orbital frontal gyrus, paracentral lobule, insula, and thalamus (clustering coefficient: TD > OI, mTBI, d = 0.66 to 0.68). Both mTBI and OI demonstrated reduced global and regional network efficiency and segregation as compared to TD children. Findings suggest a general effect of childhood injury that could reflect pre‐ and postinjury factors that can alter brain structure. An OI group provides a more conservative comparison group than TD children for structural neuroimaging research in pediatric mTBI.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Bryce Geeraert
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Pediatric Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
38
|
Ware AL, Shukla A, Guo S, Onicas A, Geeraert BL, Goodyear BG, Yeates KO, Lebel C. Participant factors that contribute to magnetic resonance imaging motion artifacts in children with mild traumatic brain injury or orthopedic injury. Brain Imaging Behav 2021; 16:991-1002. [PMID: 34694520 DOI: 10.1007/s11682-021-00582-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Motion can compromise image quality and confound results, especially in pediatric research. This study evaluated qualitative and quantitative approaches to motion artifacts detection and correction, and whether motion artifacts relate to injury history, age, or sex in children with mild traumatic brain injury or orthopedic injury relative to typically developing children. The concordance between qualitative and quantitative motion ratings was also examined. Children aged 8-16 years with mild traumatic brain injury (n = 141) or orthopedic injury (n = 73) were recruited from the emergency department and completed an MRI scan roughly 2 weeks post-injury. Typically developing children (n = 41) completed a single MRI scan. T1- and diffusion-weighted images were visually inspected and rated for motion artifacts by trained examiners. Quantitative estimates of motion artifacts were derived from FreeSurfer and FSL. Age (younger > older) and sex (boys > girls) were significantly associated with motion artifacts on both T1- and diffusion-weighted images. Children with mild traumatic brain or orthopedic injury had significantly more motion-corrupted diffusion-weighted volumes than typically developing children, but mild traumatic brain injury and orthopedic injury groups did not differ from each other. The exclusion of motion-corrupted volumes did not significantly change diffusion tensor imaging metrics. Results indicate that automated quantitative estimates of motion artifacts, which are less labour-intensive than manual methods, are appropriate. Results have implications for the reliability of structural MRI research and highlight the importance of considering motion artifacts in studies of pediatric mild traumatic brain injury.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ayushi Shukla
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Sunny Guo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Adrian Onicas
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Bryce L Geeraert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Bradley G Goodyear
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
39
|
O'Brien H, Minich NM, Langevin LM, Taylor HG, Bigler ED, Cohen DM, Beauchamp MH, Craig WR, Doan Q, Zemek R, Bacevice A, Mihalov LK, Yeates KO. Normative and Psychometric Characteristics of the Health and Behavior Inventory Among Children With Mild Orthopedic Injury Presenting to the Emergency Department: Implications for Assessing Postconcussive Symptoms Using the Child Sport Concussion Assessment Tool 5th Edition (Child SCAT5). Clin J Sport Med 2021; 31:e221-e228. [PMID: 33973883 PMCID: PMC8416708 DOI: 10.1097/jsm.0000000000000943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/03/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The study sought to present normative and psychometric data and reliable change formulas for the Health and Behavior Inventory (HBI), a postconcussive symptom rating scale embedded in the Child Sport Concussion Assessment Tool 5th edition (Child SCAT5). DESIGN Prospective cohort study with longitudinal follow-up. SETTING Pediatric emergency departments (EDs). PARTICIPANTS As part of 3 studies conducted in the United States and Canada between 2001 and 2019, 450 children aged 8 to 16 years with mild orthopedic injuries were recruited during ED visits and assessed postacutely (M = 9.38 days, SD = 3.31) and 1 month and 3 months postinjury. Independent variables were rater (child vs parent), sex, and age at injury. MAIN OUTCOME MEASURE HBI ratings. METHODS Children and parents rated children's symptoms at each time point; parents also rated children's preinjury symptoms retrospectively. Normative data (mean, SD, skewness, kurtosis, and percentiles) were computed for child and parent ratings. Internal consistency was assessed using Cronbach alpha (α), and test-retest reliability and interrater agreement were assessed with intraclass correlations (ICCs). Reliable change formulas were computed using linear regression and mixed models. RESULTS HBI ratings were positively skewed. Mean ratings and percentiles were stable over time. Child and parent ratings demonstrated good-to-excellent internal consistency (α 0.76-0.94) and moderate-to-good test-retest reliability (ICC 0.51-0.76 between adjacent assessments). However, parent-child agreement was poor to moderate (ICC 0.31-0.69). CONCLUSIONS The HBI demonstrates acceptable normative and psychometric characteristics. Modest parent-child agreement highlights the importance of multiple informants when assessing postconcussive symptoms. The results will facilitate the use of the HBI in research and clinical practice.
Collapse
Affiliation(s)
- Heidi O'Brien
- Werklund School of Education, University of Calgary, Calgary, AB
| | - Nori M Minich
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | - H Gerry Taylor
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, Utah
- Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Daniel M Cohen
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Miriam H Beauchamp
- Department of Psychology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC
| | - William R Craig
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, AB
| | - Quynh Doan
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, Ottawa, ON; and
| | - Ann Bacevice
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Leslie K Mihalov
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, AB
| |
Collapse
|
40
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Zivanovic N, Virani S, Rajaram AA, Lebel C, Yeates KO, Brooks BL. Cortical Volume and Thickness in Youth Several Years After Concussion. J Child Neurol 2021; 36:186-194. [PMID: 33059521 DOI: 10.1177/0883073820962930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The long-term effects of pediatric concussion on brain morphometry remain poorly delineated. This study used magnetic resonance imaging (MRI) to investigate cortical volume and thickness in youth several years after concussion. METHODS Participants aged 8-19 years old with a history of concussion (n = 37) or orthopedic injury (n = 20) underwent MRI, rated their postconcussion symptoms, and completed cognitive testing on average 2.6 years (SD = 1.6) after injury. FreeSurfer was used to obtain cortical volume and thickness measurements as well as determine any significant correlations between brain morphometry, postconcussion symptoms (parent and self-report), and cognitive functioning. RESULTS No significant group differences were found for either cortical volume or thickness. Youth with a history of concussion had higher postconcussion symptom scores (both parent and self-report Postconcussion Symptom Inventory) than the orthopedic injury group, but symptom ratings did not significantly correlate with cortical volume or thickness. Across both groups, faster reaction time on a computerized neurocognitive test battery (CNS Vital Signs) was associated with a thinner cortex in the left pars triangularis of the inferior frontal gyrus and the left caudal anterior cingulate. Better verbal memory was associated with a thinner cortex in the left rostral middle frontal gyrus. CONCLUSION Findings do not support differences in cortical volume or thickness approximately 2.5 years postconcussion in youth, suggesting either long-term cortical recovery or no cortical differences as a result of injury. Further research using a longitudinal study design and larger samples is needed.
Collapse
Affiliation(s)
- Nikola Zivanovic
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Shane Virani
- 70402Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Neurosciences Program, 157744Alberta Children's Hospital, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alysha A Rajaram
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Lebel
- 157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Radiology, 2129University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian L Brooks
- 432222Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Neurosciences Program, 157744Alberta Children's Hospital, Calgary, Alberta, Canada.,157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Rausa VC, Shapiro J, Seal ML, Davis GA, Anderson V, Babl FE, Veal R, Parkin G, Ryan NP, Takagi M. Neuroimaging in paediatric mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev 2020; 118:643-653. [PMID: 32905817 DOI: 10.1016/j.neubiorev.2020.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/02/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Neuroimaging is being increasingly applied to the study of paediatric mild traumatic brain injury (mTBI) to uncover the neurobiological correlates of delayed recovery post-injury. The aims of this systematic review were to: (i) evaluate the neuroimaging research investigating neuropathology post-mTBI in children and adolescents from 0-18 years, (ii) assess the relationship between advanced neuroimaging abnormalities and PCS in children, (iii) assess the quality of the evidence by evaluating study methodology and reporting against best practice guidelines, and (iv) provide directions for future research. A literature search of MEDLINE, PsycINFO, EMBASE, and PubMed was conducted. Abstracts and titles were screened, followed by full review of remaining articles where specific eligibility criteria were applied. This systematic review identified 58 imaging studies which met criteria. Based on several factors including methodological heterogeneity and relatively small sample sizes, the literature currently provides insufficient evidence to draw meaningful conclusions about the relationship between MRI findings and clinical outcomes. Future research is needed which incorporates prospective, longitudinal designs, minimises potential confounds and utilises multimodal imaging techniques.
Collapse
Affiliation(s)
- Vanessa C Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Jesse Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia.
| | - Marc L Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Gavin A Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; Psychology Service, The Royal Children's Hospital, Melbourne, Australia.
| | - Franz E Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Ryan Veal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Georgia Parkin
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Nicholas P Ryan
- Department of Paediatrics, University of Melbourne, Victoria, Australia; Cognitive Neuroscience Unit, Deakin University, Geelong, Australia.
| | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Chevignard M, Câmara-Costa H, Dellatolas G. Pediatric traumatic brain injury and abusive head trauma. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:451-484. [PMID: 32958191 DOI: 10.1016/b978-0-444-64150-2.00032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Childhood traumatic brain injury (TBI) commonly occurs during brain development and can have direct, immediately observable neurologic, cognitive, and behavioral consequences. However, it can also disrupt subsequent brain development, and long-term outcomes are a combination of preinjury development and abilities, consequences of brain injury, as well as delayed impaired development of skills that were immature at the time of injury. There is a growing number of studies on mild TBI/sport-related concussions, describing initial symptoms and their evolution over time and providing guidelines for effective management of symptoms and return to activity/school/sports. Mild TBI usually does not lead to long-term cognitive or academic consequences, despite reports of behavioral/psychologic issues postinjury. Regarding moderate to severe TBI, injury to the brain is more severe, with evidence of a number of detrimental consequences in various domains. Patients can display neurologic impairments (e.g., motor deficits, signs of cerebellar disorder, posttraumatic epilepsy), medical problems (e.g., endocrine pituitary deficits, sleep-wake abnormalities), or sensory deficits (e.g., visual, olfactory deficits). The most commonly reported deficits are in the cognitive-behavioral field, which tend to be significantly disabling in the long-term, impacting the development of autonomy, socialization and academic achievement, participation, quality of life, and later, independence and ability to enter the workforce (e.g., intellectual deficits, slow processing speed, attention, memory, executive functions deficits, impulsivity, intolerance to frustration). A number of factors influence outcomes following pediatric TBI, including preinjury stage of development and abilities, brain injury severity, age at injury (with younger age at injury most often associated with worse outcomes), and a number of family/environment factors (e.g., parental education and occupation, family functioning, parenting style, warmth and responsiveness, access to rehabilitation and care). Interventions should identify and target these specific factors, given their major role in postinjury outcomes. Abusive head trauma (AHT) occurs in very young children (most often <6 months) and is a form of severe TBI, usually associated with delay before appropriate care is sought. Outcomes are systematically worse following AHT than following accidental TBI, even when controlling for age at injury and injury severity. Children with moderate to severe TBI and AHT usually require specific, coordinated, multidisciplinary, and long-term rehabilitation interventions and school adaptations, until transition to adult services. Interventions should be patient- and family-centered, focusing on specific goals, comprising education about TBI, and promoting optimal parenting, communication, and collaborative problem-solving.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France; GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| | - Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| |
Collapse
|
45
|
Flaherty BF, Jackson ML, Cox CS, Clark A, Ewing-Cobbs L, Holubkov R, Moore KR, Patel RP, Keenan HT. Ability of the PILOT score to predict 6-month functional outcome in pediatric patients with moderate-severe traumatic brain injury. J Pediatr Surg 2020; 55:1238-1244. [PMID: 31327541 PMCID: PMC6946892 DOI: 10.1016/j.jpedsurg.2019.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the Pediatric Intensity Level of Therapy (PILOT) score alone and in combination with Emergency Department (ED) GCS and Rotterdam score of initial head CT to predict functional outcomes in children with traumatic brain injury (TBI). METHODS Children (n=108) aged 31months-15years with moderate to severe TBI were prospectively enrolled at two sites. The ability of PILOT, ED GCS, and Rotterdam scores to predict the 6-month Pediatric Injury Functional Outcome Scale (PIFOS) was evaluated using multivariable regression models with enrollment site, age, and sex as covariates. RESULTS PILOT total (sum) score was more predictive of PIFOS (R2=0.23) compared to mean (R2 = 0.20) or peak daily PILOT scores (R2=0.11). PILOT total score predicted PIFOS better than ED GCS (R2=0.01) or Rotterdam score (R2=0.06) and was similar to PILOT, ED GCS, and Rotterdam score combined. PILOT total score performed better in patients with intracranial pressure monitors (n=30, R2=0.28, slope=0.30) than without (n=78, R2=0.09, slope=0.36). CONCLUSIONS The PILOT score correlated moderately with functional outcome following TBI and outperformed other common predictors. PILOT may be a useful predictor or moderator of functional outcomes. LEVEL OF EVIDENCE Prognosis study, Level II.
Collapse
Affiliation(s)
- Brian F. Flaherty
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine 295 Chipeta Way Salt Lake City, UT 84108
| | - Margaret L. Jackson
- Department of Surgery, University of Texas McGovern Medical School 6431 Fannin Street, Suite 4.331 Houston, TX 77030
| | - Charles S. Cox
- Department of Pediatric Surgery, University of Texas McGovern Medical School 6431 Fannin Street, Suite 5.258 Houston, TX 77030
| | - Amy Clark
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine 295 Chipeta Way Salt Lake City, UT 84108
| | - Linda Ewing-Cobbs
- Department of Pediatrics and Children’s Learning Institute, University of Texas McGovern Medical School, 7000 Fannin Street, Suite 2300, Houston, TX 77030
| | - Richard Holubkov
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine 295 Chipeta Way Salt Lake City, UT 84108
| | - Kevin R. Moore
- Department of Medical Imaging, Primary Children’s Hospital 100 Mario Capecchi Drive Salt Lake City, UT 84113
| | - Rajan P. Patel
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, 6431 Fannin Street, Suite 2.130B Houston, TX 77030
| | - Heather T. Keenan
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine 295 Chipeta Way Salt Lake City, UT 84108
| |
Collapse
|
46
|
Ware AL, Shukla A, Goodrich-Hunsaker NJ, Lebel C, Wilde EA, Abildskov TJ, Bigler ED, Cohen DM, Mihalov LK, Bacevice A, Bangert BA, Taylor HG, Yeates KO. Post-acute white matter microstructure predicts post-acute and chronic post-concussive symptom severity following mild traumatic brain injury in children. Neuroimage Clin 2019; 25:102106. [PMID: 31896466 PMCID: PMC6940617 DOI: 10.1016/j.nicl.2019.102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mild traumatic brain injury (TBI) is a global public health concern that affects millions of children annually. Mild TBI tends to result in subtle and diffuse alterations in brain tissue, which challenges accurate clinical detection and prognostication. Diffusion tensor imaging (DTI) holds promise as a diagnostic and prognostic tool, but little research has examined DTI in post-acute mild TBI. The current study compared post-acute white matter microstructure in children with mild TBI versus those with mild orthopedic injury (OI), and examined whether post-acute DTI metrics can predict post-acute and chronic post-concussive symptoms (PCS). MATERIALS AND METHODS Children aged 8-16.99 years with mild TBI (n = 132) or OI (n = 69) were recruited at emergency department visits to two children's hospitals, during which parents rated children's pre-injury symptoms retrospectively. Children completed a post-acute (<2 weeks post-injury) assessment, which included a 3T MRI, and 3- and 6-month post-injury assessments. Parents and children rated PCS at each assessment. Mean diffusivity (MD) and fractional anisotropy (FA) were derived from diffusion-weighted MRI using Automatic Fiber Quantification software. Multiple multivariable linear and negative binomial regression models were used to test study aims, with False Discovery Rate (FDR) correction for multiple comparisons. RESULTS No significant group differences were found in any of the 20 white matter tracts after FDR correction. DTI metrics varied by age and sex, and site was a significant covariate. No interactions involving group, age, and sex were significant. DTI metrics in several tracts robustly predicted PCS ratings at 3- and 6-months post-injury, but only corpus callosum genu MD was significantly associated with post-acute PCS after FDR correction. Significant group by DTI metric interactions on chronic PCS ratings indicated that left cingulum hippocampus and thalamic radiation MD was positively associated with 3-month PCS in the OI group, but not in the mild TBI group. CONCLUSIONS Post-acute white matter microstructure did not differ for children with mild TBI versus OI after correcting for multiple comparisons, but was predictive of post-acute and chronic PCS in both injury groups. These findings support the potential prognostic utility of this advanced DTI technique.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| | - Ayushi Shukla
- Hotchkiss Brain Institute, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah, USA; Department of Psychology, Brigham Young University, USA
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | | | | | - Erin D Bigler
- Department of Neurology, University of Utah, USA; Department of Psychology, Brigham Young University, USA
| | - Daniel M Cohen
- Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA
| | - Leslie K Mihalov
- Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA
| | - Ann Bacevice
- Department of Pediatrics, Case Western Reserve University, USA
| | | | - H Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, USA
| | - Keith O Yeates
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
47
|
Mannix R, Zemek R, Yeates KO, Arbogast K, Atabaki S, Badawy M, Beauchamp MH, Beer D, Bin S, Burstein B, Craig W, Corwin D, Doan Q, Ellis M, Freedman SB, Gagnon I, Gravel J, Leddy J, Lumba-Brown A, Master C, Mayer AR, Park G, Penque M, Rhine T, Russell K, Schneider K, Bell M, Wisniewski S. Practice Patterns in Pharmacological and Non-Pharmacological Therapies for Children with Mild Traumatic Brain Injury: A Survey of 15 Canadian and United States Centers. J Neurotrauma 2019; 36:2886-2894. [PMID: 31025612 DOI: 10.1089/neu.2018.6290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Given the lack of evidence regarding effective pharmacological and non-pharmacological interventions for pediatric mild traumatic brain injury (mTBI) and the resultant lack of treatment recommendations reflected in consensus guidelines, variation in the management of pediatric mTBI is to be expected. We therefore surveyed practitioners across 15 centers in the United States and Canada who care for children with pediatric mTBI to evaluate common-practice variation in the management of pediatric mTBI. The survey, developed by a panel of pediatric mTBI experts, consisted of a 10-item survey instrument regarding providers' perception of common pediatric mTBI symptoms and mTBI interventions. Surveys were distributed electronically to a convenience sample of local experts at each center. Frequencies and percentages (with confidence intervals [CI]) were determined for survey responses. One hundred and seven respondents (71% response rate) included specialists in pediatric Emergency Medicine, Sports Medicine, Neurology, Neurosurgery, Neuropsychology, Neuropsychiatry, Physical and Occupational Therapy, Physiatry/Rehabilitation, and General Pediatrics. Respondents rated headache as the most prevalently reported symptom after pediatric mTBI, followed by cognitive problems, dizziness, and irritability. Of the 65 (61%; [95% CI: 51,70]) respondents able to prescribe medications, non-steroidal anti-inflammatory medications (55%; [95% CI: 42,68]) and acetaminophen (59%; [95% CI: 46,71]) were most commonly recommended. One in five respondents reported prescribing amitriptyline for headache management after pediatric mTBI, whereas topiramate (8%; [95% CI: 3,17]) was less commonly reported. For cognitive problems, methylphenidate (11%; [95% CI: 4,21]) was used more commonly than amantadine (2%; [95% CI: 0,8]). The most common non-pharmacological interventions were rest ("always" or "often" recommended by 83% [95% CI: 63,92] of the 107 respondents), exercise (59%; [95%CI: 49,69]), vestibular therapy (42% [95%CI: 33,53]) and cervical spine exercises (29% [95%CI: 21,39]). Self-reported utilization for common pediatric mTBI interventions varied widely across our Canadian and United States consortium. Future effectiveness studies for pediatric mTBI are urgently needed to advance the evidence-based care.
Collapse
Affiliation(s)
- Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, Faculty of Kinesiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristy Arbogast
- Division of Emergency Medicine, Sports Medicine and Performance Center, Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shireen Atabaki
- Division of Emergency Medicine, Children's National Health System, Washington, District of Columbia
| | - Mohammed Badawy
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, Texas
| | - Miriam H Beauchamp
- Department of Psychology, University of Montréal and Ste-Justine Research Center, Montréal, Canada
| | - Darcy Beer
- Section of Pediatric Emergency Medicine, University of Manitoba, Children's Hospital of Winnipeg, Winnipeg, Manitoba, Canada
| | - Steven Bin
- UCSF School of Medicine, Division of Pediatric Emergency Medicine, San Francisco, California
| | - Brett Burstein
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Montréal Children's Hospital, McGill University Health Centre, Montréal, Quebec, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Dan Corwin
- Division of Emergency Medicine, Sports Medicine and Performance Center, Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Quynh Doan
- Children's Research Institute, Division of Emergency Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Ellis
- Department of Surgery and Pediatrics, Section of Neurosurgery, University of Manitoba, Pan Am Concussion Program, Winnipeg, Manitoba, Canada
| | - Stephen B Freedman
- Stephen B. Freedman Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children's Hospital, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University; Trauma Programs, Montréal Children's Hospital, McGill University Health Center, Montréal, Quebec, Canada
| | - Jocelyn Gravel
- Division of Emergency Medicine, University of Montréal and Ste-Justine Research Center, Montréal, Canada
| | - John Leddy
- UBMD Department of Orthopaedics and Sports Medicine, State University of New York at Buffalo, Buffalo, New York
| | - Angela Lumba-Brown
- Departments of Emergency Medicine and Pediatrics, Concussion and Brain Performance Center, Stanford University, Stanford, California
| | - Christina Master
- Division of Orthopaedics, Sports Medicine and Performance Center, Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew R Mayer
- The Mind Research Network/LBERI and Departments of Psychology, Neurology, and Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Grace Park
- Department of Emergency Medicine, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Michelle Penque
- Pediatrics Division of Emergency Medicine, and Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Tara Rhine
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kelly Russell
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital of Winnipeg, Winnipeg, Manitoba, Canada
| | - Kathryn Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael Bell
- Department of Pediatrics and Critical Care Medicine, Children's National Medical Center, Washington, District of Columbia
| | - Stephen Wisniewski
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Takagi M, Babl FE, Anderson N, Bressan S, Clarke CJ, Crichton A, Dalziel K, Davis GA, Doyle M, Dunne K, Godfrey C, Hearps SJC, Ignjatovic V, Parkin G, Rausa V, Seal M, Thompson EJ, Truss K, Anderson V. Protocol for a prospective, longitudinal, cohort study of recovery pathways, acute biomarkers and cost for children with persistent postconcussion symptoms: the Take CARe Biomarkers study. BMJ Open 2019; 9:e022098. [PMID: 30804026 PMCID: PMC6443052 DOI: 10.1136/bmjopen-2018-022098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The majority of children who sustain a concussion will recover quickly, but a significant minority will experience ongoing postconcussive symptoms, known as postconcussion syndrome (PCS). These symptoms include emotional, behavioural, cognitive and physical symptoms and can lead to considerable disability. The neurobiological underpinnings of PCS are poorly understood, limiting potential clinical interventions. As such, patients and families frequently re-present to clinical services, who are often ill equipped to address the multifactorial nature of PCS. This contributes to the high cost of concussion management and the disability of children experiencing PCS. The aims of the present study are: (1) to plot and contrast recovery pathways for children with concussion from time of injury to 3 months postinjury, (ii) evaluate the contribution of acute biomarkers (ie, blood, MRI) to delayed recovery postconcussion and (3) estimate financial costs of child concussion to patients attending the emergency department (ED) of a tertiary children's hospital and factors predicting high cost. METHODS AND ANALYSIS Take C.A.Re is a prospective, longitudinal study at a tertiary children's hospital, recruiting and assessing 525 patients aged 5-<18 years (400 concussion, 125 orthopaedic injury) who present to the ED with a concussion and following them at 1-4 days, 2 weeks, 1 month and 3 months postinjury. Multiple domains are assessed: preinjury and postinjury, clinical, MRI, blood samples, neuropsychological, psychological and economic. PCS is defined as the presence of ≥2 symptoms on the Post Concussive Symptoms Inventory rated as worse compared with baseline 1 month postinjury. Main analyses comprise longitudinal Generalised Estimating Equation models and regression analyses of predictors of recovery and factors predicting high economic costs. ETHICS AND DISSEMINATION Ethical approval has been obtained through the Royal Children's Hospital Melbourne Human Research Ethics Committee (33122). We aim to disseminate the findings through international conferences, international peer-reviewed journals and social media. TRIAL REGISTRATION NUMBER ACTRN12615000316505; Results.
Collapse
Affiliation(s)
- Michael Takagi
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Franz E Babl
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Carlton, Victoria, Australia
- Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Nicholas Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Silvia Bressan
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cathriona J Clarke
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ali Crichton
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kim Dalziel
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Gavin A Davis
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Neurosurgery, Austin and Cabrini Hospitals, Parkville, Victoria, Australia
| | - Melissa Doyle
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin Dunne
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Carlton, Victoria, Australia
- Department of Rehabilitation Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Celia Godfrey
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Carlton, Victoria, Australia
| | - Stephen J C Hearps
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Vera Ignjatovic
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Carlton, Victoria, Australia
| | - Georgia Parkin
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Vanessa Rausa
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc Seal
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Emma Jane Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katie Truss
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Carlton, Victoria, Australia
- Psychology Service, Royal Childrens Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Torres AR, Shaikh ZI, Chavez W, Maldonado JE. Brain MRI in Children with Mild Traumatic Brain Injury and Persistent Symptoms in Both Sports- and Non-sports-related Concussion. Cureus 2019; 11:e3937. [PMID: 30937235 PMCID: PMC6433090 DOI: 10.7759/cureus.3937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: To evaluate the utility of magnetic resonance imaging (MRI) in children with mild traumatic brain injury (mTBI), persistent post-concussive syndrome (PPCS), and normal neurologic examination. Materials and methods: This was a retrospective review of pediatric patients, who were evaluated in a Pediatric Concussion Clinic between August 2013 and November 2018, with documented persistent post-concussive symptoms, normal neurological examination, and available brain MRI. Results: In our analysis of 86 cases we found seven MRI studies with abnormal findings, but none were clinically significant. Conclusion: We conclude that MRI has a low diagnostic yield in this population, and based on these results we recommend that clinicians should avoid ordering MRI studies in this group. Further research is necessary to validate these results in larger and prospective studies.
Collapse
Affiliation(s)
- Alcy R Torres
- Pediatrics, Boston University School of Medicine, Boston, USA
| | - Zakir I Shaikh
- Pediatrics, Surat Municipal Institute of Medical Education and Research, Surat, IND
| | | | - John E Maldonado
- Pediatrics, Pontifical Catholic University of Ecuador, Quito, ECU
| |
Collapse
|
50
|
Cosgrave C, Fuller C, Franklyn-Miller A, Falvey E, Beirne C, Ryan J, McCrory P. Concussion in adolescent rugby union players: comprehensive acute assessment protocol and development of the SSC concussion passport to monitor long-term health. BMJ Open Sport Exerc Med 2018; 4:e000455. [PMID: 30498576 PMCID: PMC6241986 DOI: 10.1136/bmjsem-2018-000455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Sports-related concussion (SRC) can be challenging to diagnose, assess and manage. Much of the SRC research is conducted on adults. The assessment of SRC should aim to identify deficits using a detailed multimodal assessment; however, most studies investigating the effects of SRC use diagnostic tools in isolation. It is likely that a combination of diagnostic tests will improve diagnostic accuracy. In this study, we aim to investigate how concussion affects adolescent rugby players and how a variety of diagnostic tools interact with each other as participants recover from their injury. The study will also determine the logistics of recording an individual’s concussion history on a virtual ‘Concussion Passport’ that would remain with the individual throughout their sporting career to allow monitoring of long-term health. Methods and analysis All rugby players (n=211) from the Senior Cup Teams of five schools in Dublin, Ireland will be invited to participate in the study. Baseline testing will be performed at the Sports Surgery Clinic, Dublin (SSC) before the rugby season commences. Participants will be followed up over the course of the rugby season. At baseline and at each postconcussion visit, participants will complete the following: Questionnaire, Sports Concussion Assessment Tool 3, Balance Error Scoring System, Computerised Neurocognitive Testing, Vestibulo-ocular assessment, King Devick test, Graded exercise test, Blood tests, Neck strength, FitBit. Ethics and dissemination Ethical approval was obtained from the Sports Surgery Clinic Research Ethics Committee (Approval number: SSC 0020). On completion of the study, further papers will be written and published to present the results of the various tests. Trial registration number NCT03624634.
Collapse
Affiliation(s)
- Ciaran Cosgrave
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Colm Fuller
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Andy Franklyn-Miller
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- Centre for Health Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia
| | - Eanna Falvey
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Cliff Beirne
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - John Ryan
- Emergency Department, St. Vincent’s University Hospital, Dublin, Ireland
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| |
Collapse
|