1
|
Kain MP, Epstein JH, Ross N. Rethinking statistical approaches for serological data analysis for viral surveillance. J Virol Methods 2025; 335:115149. [PMID: 40122214 DOI: 10.1016/j.jviromet.2025.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
A robust serological surveillance system for zoonotic pathogens is imperative for both early detection and advancing knowledge of emerging diseases. A statistical analysis plan that is aligned to research and epidemiological goals requires a purposeful choice among alternative methods for differentiating seronegative from seropositive samples, estimating seroprevalence, and estimating risk factors associated with seropositivity. The common standard deviation-based cutoff (e.g., 3sd) approach is simple to implement and understand, but fails to appropriately propagate uncertainty in serostatus assignments to any risk factor analysis. Methods such as Gaussian mixture models, which jointly estimate serostatus, risk factors, and their uncertainty, can alleviate the dichotomy created by the cutoff approach. Yet, because of a lack of empirical guidance of method performance, it remains difficult to choose a robust analysis method for a given serological dataset. Here we examine the performance of both cutoff and clustering approaches using simulated datasets that represent the epidemiological, biological, and immunological data generation process. We focus on understudied pathogens for which validated serological assays do not exist, as is common in emerging viruses in wildlife. We quantify coverage (the proportion of time 95 % confidence intervals contain the true value) and bias (systematic differences between true values and model point estimates) of model estimates for individual serostatus assignments, population seroprevalence, and regression coefficients for serostatus risk factors. In nearly all scenarios, Bayesian mixture models provide the highest coverage and lowest bias. Only with very low seroprevalence (∼ < 3 %) and large differences in signal between seronegative and seropositive individuals will a cutoff provide low bias and near-nominal coverage. Given poor coverage of risk factor regression coefficients, we advise against using a cutoff approach for quantifying determinants of seropositivity.
Collapse
Affiliation(s)
| | - Jonathan H Epstein
- EcoHealth Alliance, New York, NY, USA; One Health Science, Mt. Kisco, NY, USA
| | - Noam Ross
- EcoHealth Alliance, New York, NY, USA; rOpenSci, P.O. Box 90596, Austin, TX 78709, USA
| |
Collapse
|
2
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Stanton SE, Anderson KG, Bruno TC, Capitini CM, Disis ML, McQuade J, Radvanyi L, Vanpouille-Box C, Wargo J, Baines KJ, Hong MMY, Rajeh A, Kim RH, Awadalla P, Hughes LK, Maleki Vareki S. SITC strategic vision: prevention, premalignant immunity, host and environmental factors. J Immunother Cancer 2025; 13:e010419. [PMID: 40154956 PMCID: PMC11956356 DOI: 10.1136/jitc-2024-010419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer immunotherapy has improved the survival of a subset of patients by harnessing the power of the immune system to find and destroy malignant cells. The immune system also protects the host by destroying developing premalignant and malignant tumors. Advancing our knowledge of premalignant immunity and immune changes seen in lesions that develop into invasive cancer versus those that regress offers an exciting opportunity to leverage the immune system for immune prevention and immune interception of premalignancy. Understanding the immune environment of premalignant lesions and how chronic inflammation plays a central role in the evolution of premalignancy is essential for developing effective immunoprevention and immune interceptions. Factors such as host genomics and environmental factors that affect premalignant immunity and the outcome of advanced cancers are equally important in determining the response to immunotherapy. The broad use of antibiotics and factors such as obesity can disrupt a healthy gut microbiome and drive chronic inflammation that suppresses preventive immunity or the antitumor immune response required for successful immunotherapy in advanced cancers. Modifiable lifestyle factors such as diet, obesity, smoking, and stress should be considered in designing immune prevention and interception studies, as well as for patients who receive immunotherapy for advanced cancer treatment. Other factors, such as the overall immune health of patients and existing comorbidities, affect both premalignant immunity and response to immunotherapy and, therefore, should be considered in managing patients with or without cancer. The Society for Immunotherapy of Cancer previously developed an overarching manuscript regarding the challenges and opportunities that exist in cancer immunotherapy, and this manuscript serves as an in-depth follow-up regarding the topics of premalignant immunity, immune interception, and immunoprevention, and the impact of the host on responding to immunotherapy.
Collapse
Affiliation(s)
- Sasha E Stanton
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, UK
| | - Tullia C Bruno
- Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian M Capitini
- Department of Pediatrics and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
| | - Jennifer Wargo
- Departments of Surgical Oncology and Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly J Baines
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M Y Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Adnan Rajeh
- Department of Oncology, Western University, London, Ontario, Canada
| | - Raymond H Kim
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Familial Cancer Clinic, Princess Margaret Hospital Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Phillip Awadalla
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren K Hughes
- Ontario Institute for Cancer Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Sulekha Suresh D, Jain T, Dudeja V, Iyer S, Dudeja V. From Microbiome to Malignancy: Unveiling the Gut Microbiome Dynamics in Pancreatic Carcinogenesis. Int J Mol Sci 2025; 26:3112. [PMID: 40243755 PMCID: PMC11988718 DOI: 10.3390/ijms26073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/01/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality globally, characterized by a poor prognosis and limited therapeutic response. The current approach for treating pancreatic cancer involves locoregional control with surgical resection and systemic therapy in the form of cytotoxic chemotherapy. However, despite standard-of-care treatment, the outcomes remain dismal. Emerging evidence suggests that the gut microbiota plays a significant role in pancreatic carcinogenesis through dysbiosis, chronic inflammation and immune modulation. Dysbiosis-driven alterations in the gut microbiota composition can disrupt intestinal homeostasis, promote systemic inflammation and create a tumor-permissive microenvironment in the pancreas. Moreover, the gut microbiota modulates the efficacy of systemic therapies, including chemotherapy and immunotherapy, by impacting drug metabolism and shaping the tumor immune landscape. This review is mainly focused on exploring the intricate interplay between the gut microbiota and pancreatic cancer, and also highlighting its dual role in carcinogenesis and the therapeutic response.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, The University of Alabama at Birmingham, BDB 573 1808 7th Avenue South, Birmingham, AL 35294, USA; (D.S.S.); (T.J.); (V.D.); (S.I.)
| |
Collapse
|
5
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Cheng H, Guo H, Wen C, Sun G, Tang F, Li Y. The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment. Ther Adv Med Oncol 2025; 17:17588359251324882. [PMID: 40093983 PMCID: PMC11909682 DOI: 10.1177/17588359251324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Pancreatic cancer ranks among the most lethal digestive malignancies, exhibiting a steadily increasing incidence and mortality worldwide. Despite significant advances in cancer research, the 5-year survival rate remains below 10%, predominantly due to delayed diagnosis and limited therapeutic options. Concurrently, the gut microbiota-an integral component of host physiology-has emerged as a crucial player in the pathogenesis of pancreatic cancer. Mounting evidence indicates that alterations in gut microbial composition and function may influence tumor initiation, progression, and response to therapy. This review provides an in-depth examination of the intricate interplay between the gut microbiome and pancreatic cancer, highlighting potential diagnostic biomarkers and exploring microbiome-targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Huijuan Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Hongkai Guo
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Chengming Wen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Guodong Sun
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Medical Affairs, Lanzhou University First Hospital, Lanzhou, Gansu, P.R. China
| | - Futian Tang
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yumin Li
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
8
|
Kawasaki H, Nussbaum G. Therapeutic potential of garlic, aged garlic extract and garlic‑derived compounds on pancreatic cancer (Review). Biomed Rep 2025; 22:54. [PMID: 39926043 PMCID: PMC11803370 DOI: 10.3892/br.2025.1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Garlic is a popular ingredient used in cuisines and traditional medicines worldwide. It contains numerous bioactive organosulfur-containing compounds, such as allicin, with reported potential for anticancer and antimicrobial therapy. The biological activity and potential use of garlic and its products have been extensively investigated. Aged garlic extract (AGE) is a product manufactured by aging garlic, and has been shown to have numerous health benefits. It has been previously revealed that several garlic-derived compounds, including AGE, have tumor-suppressive effects in various cancer models. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and carries a dismal prognosis. Recently, numerous tumors, including PDAC, were shown to harbor intracellular bacteria, some of which are oral pathogens. Tumor-associated bacteria have been linked to cancer progression. Garlic may inhibit tumor development, in part, by targeting these bacteria. Although it requires further investigation, pharmacological and antibacterial effects of garlic and its products could offer significant therapeutic benefits for the prevention and treatment of PDAC. In the present review, the therapeutic potential of garlic on PDAC is summarized and discussed.
Collapse
Affiliation(s)
- Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
9
|
Chen X, Sun F, Wang X, Feng X, Aref AR, Tian Y, Ashrafizadeh M, Wu D. Inflammation, microbiota, and pancreatic cancer. Cancer Cell Int 2025; 25:62. [PMID: 39987122 PMCID: PMC11847367 DOI: 10.1186/s12935-025-03673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer (PC) is a malignancy of gastrointestinal tract threatening the life of people around the world. In spite of the advances in the treatment of PC, the overall survival of this disease in advanced stage is less than 12%. Moreover, PC cells have aggressive behaviour in proliferation and metastasis as well as capable of developing therapy resistance. Therefore, highlighting the underlying molecular mechanisms in PC pathogenesis can provide new insights for its treatment. In the present review, inflammation and related pathways as well as role of gut microbiome in the regulation of PC pathogenesis are highlighted. The various kinds of interleukins and chemokines are able to regulate angiogenesis, metastasis, proliferation, inflammation and therapy resistance in PC cells. Furthermore, a number of molecular pathways including NF-κB, TLRs and TGF-β demonstrate dysregulation in PC aggravating inflammation and tumorigenesis. Therapeutic regulation of these pathways can reverse inflammation and progression of PC. Both chronic and acute pancreatitis have been shown to be risk factors in the development of PC, further highlighting the role of inflammation. Finally, the composition of gut microbiota can be a risk factor for PC development through affecting pathways such as NF-κB to mediate inflammation.
Collapse
Affiliation(s)
- XiaoLiang Chen
- Department of General Surgery and Integrated Traditional Chinese and Western Medicine Oncology, Tiantai People'S Hospital of Zhejiang Province(Tiantai Branch of Zhejiang Provincial People'S Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Xuqin Wang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Yu Tian
- Research Center, the Huizhou Central People'S Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
- School of Public Health, Benedictine University, No. 5700 College Road, Lisle, IL, 60532, USA.
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Dengfeng Wu
- Department of Emergency, The People'S Hospital of Gaozhou, No. 89 Xiguan Road, Gaozhou, 525200, Guangdong, China.
| |
Collapse
|
10
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Wang X, He X, Zhong B. Oral microbiota: the overlooked catalyst in cancer initiation and progression. Front Cell Dev Biol 2025; 12:1479720. [PMID: 39872848 PMCID: PMC11769975 DOI: 10.3389/fcell.2024.1479720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The advancement of high-throughput sequencing technology in recent decades has led to a greater understanding of the components of the oral microbiota, providing a solid foundation for extensive research in this field. The oral microbiota plays an important role in an individual's overall health. It has been shown to be significantly correlated with chronic human diseases, including diabetes, rheumatoid arthritis, cardiovascular disease, periodontal disease, and Alzheimer's disease. Furthermore, tumor occurrence and development are closely related to the oral microbiome. Specific bacteria, such as Fusobacterium nucleatum (F. nucleatum), Porphyromonas gingivalis (P. gingivalis), Streptococcus, Streptomyces, Prevotella, and Fibrophagy gingivalis, play critical roles in cancer development. The oral microbiota has various oncogenic mechanisms, including bacterial inflammation, immunological suppression, tumor growth mediated by bacterial toxins, antiapoptotic activity, and carcinogenic effects. This paper reviews the role of the oral microbiota in the occurrence and progression of cancer and systematically elucidates the molecular mechanisms by which dysbiosis influences tumorigenesis and tumor progression. This information can provide a theoretical basis for exploring cancer treatment strategies and offer new insights for cancer prevention.
Collapse
Affiliation(s)
- Xinlin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Deng J, Sun C, Xu G, Wang B, Tzortzopoulou E, Deng D, Giovannetti E. The Oral Microbiome and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:151-170. [PMID: 40111691 DOI: 10.1007/978-3-031-79146-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing evidence suggesting a strong association between members of the oral microbiota and various types of cancer, including oral cancer, colorectal cancer, esophageal squamous cell carcinoma, and pancreatic cancer. Periodontal diseases closely associated with pathogenic bacteria in the oral cavity have been shown to be correlated with the occurrence and development of cancers. Among the periodontal disease-associated bacteria in the oral cavity, two prominent oral pathogens, Porphyromonas gingivalis and Fusobacterium nucleatum, have been found to promote tumor cell proliferation, invasion, and migration, as well as to inhibit immune cell function, thereby facilitating tumor progression. The presence of other oral pathogenic bacteria, such as Treponema denticola, Tannerella forsythia, Parvimonas micra, and Aggregatibacter actinomycetemcomitans, has also been found to be associated with cancer worsening. Oral commensal bacteria play a crucial role in maintaining the normal oral homeostasis. However, the relationship between oral commensal bacteria and the occurrence and development of cancers remains controversial. Some studies suggest an increase in oral commensal bacteria during tumor development, while others suggest an association of certain commensal bacteria with lower tumor risk. The microbiota can significantly alter responses and toxicity to various forms of cancer treatment through interactions with the human body, thereby influencing disease progression. In this chapter, we provide a concise overview of current understanding of the role of the oral microbiota in cancer.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chen Sun
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleni Tzortzopoulou
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
13
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
14
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
16
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
17
|
Baima G, Minoli M, Michaud DS, Aimetti M, Sanz M, Loos BG, Romandini M. Periodontitis and risk of cancer: Mechanistic evidence. Periodontol 2000 2024; 96:83-94. [PMID: 38102837 PMCID: PMC11579815 DOI: 10.1111/prd.12540] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
This review aims to critically analyze the pathways of interaction and the pathogenic mechanisms linking periodontitis and oral bacteria with the initiation/progression of cancer at different body compartments. A higher risk of head and neck cancer has been consistently associated with periodontitis. This relationship has been explained by the local promotion of dysbiosis, chronic inflammation, immune evasion, and direct (epi)genetic damage to epithelial cells by periodontal pathobionts and their toxins. Epidemiological reports have also studied a possible link between periodontitis and the incidence of other malignancies at distant sites, such as lung, breast, prostate, and digestive tract cancers. Mechanistically, different pathways have been involved, including the induction of a chronic systemic inflammatory state and the spreading of oral pathobionts with carcinogenic potential. Indeed, periodontitis may promote low-grade systemic inflammation and phenotypic changes in the mononuclear cells, leading to the release of free radicals and cytokines, as well as extracellular matrix degradation, which are all mechanisms involved in carcinogenic and metastatic processes. Moreover, the transient hematogenous spill out or micro-aspiration/swallowing of periodontal bacteria and their virulence factors (i.e., lipopolysaccharides, fimbriae), may lead to non-indigenous bacterial colonization of multiple microenvironments. These events may in turn replenish the tumor-associated microbiome and thus influence the molecular hallmarks of cancer. Particularly, specific strains of oral pathobionts (e.g., Porphyromonas gingivalis and Fusobacterium nucleatum) may translocate through the hematogenous and enteral routes, being implicated in esophageal, gastric, pancreatic, and colorectal tumorigenesis through the modulation of the gastrointestinal antitumor immune system (i.e., tumor-infiltrating T cells) and the increased expression of pro-inflammatory/oncogenic genes. Ultimately, the potential influence of common risk factors, relevant comorbidities, and upstream drivers, such as gerovulnerability to multiple diseases, in explaining the relationship cannot be disregarded. The evidence analyzed here emphasizes the possible relevance of periodontitis in cancer initiation/progression and stimulates future research endeavors.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental SchoolUniversity of TurinTurinItaly
| | - Margherita Minoli
- Department of PeriodontologyUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Dominique S. Michaud
- Department of Public Health and Community MedicineTufts University School of MedicineBostonMassachusettsUSA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental SchoolUniversity of TurinTurinItaly
| | - Mariano Sanz
- Faculty of OdontologyUniversity ComplutenseMadridSpain
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| | - Bruno G. Loos
- Department of Periodontology, ACTA ‐ Academic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Mario Romandini
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| |
Collapse
|
18
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
19
|
Lu J, Tong Q. From pathogenesis to treatment: the impact of bacteria on cancer. Front Microbiol 2024; 15:1462749. [PMID: 39360320 PMCID: PMC11445166 DOI: 10.3389/fmicb.2024.1462749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The intricate relationship between cancer and bacteria has garnered increasing attention in recent years. While traditional cancer research has primarily focused on tumor cells and genetic mutations, emerging evidence highlights the significant role of microbial communities within the tumor microenvironment in cancer development and progression. This review aims to provide a comprehensive overview of the current understanding of the complex interplay between cancer and bacteria. We explore the diverse ways in which bacteria influence tumorigenesis and tumor behavior, discussing direct interactions between bacteria and tumor cells, their impact on tumor immunity, and the potential modulation of the tumor microenvironment. Additionally, we delve into the mechanisms through which bacterial metabolites and extracellular products May affect cancer pathways. By conducting a thorough analysis of the existing literature, we underscore the multifaceted and intricate relationship between bacteria and cancer. Understanding this complex interplay could pave the way for novel therapeutic approaches and preventive strategies in cancer treatment.
Collapse
Affiliation(s)
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
21
|
Yu R, Wang S, Han L. Relevance of harmful intratumoral microbiota in cancer progression and its clinical application. Biomed Pharmacother 2024; 178:117238. [PMID: 39106707 DOI: 10.1016/j.biopha.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
Microorganisms are closely related to human health, and changes in the microbiome can lead to the occurrence of diseases. With advances in sequencing technology and research, it has been discovered that intratumoral microbiota exists in various cancer tissues and differs in various cancers. Microorganism can colonize tumor tissues through intestine of damaged mucosal barrier, proximity to normal tissues and bloodstream circulation. Increasing evidence suggests that intratumoral microbiota promotes tumor progression by increasing genomic instability, affecting host immune systems, promoting tumor migration, and regulating tumor signaling pathways. This review article summarizes the latest progress in intratumoral microbiome research, including the development history of intratumoral microbiota, their composition and sources within tumors, their distribution in various cancer tissues, as well as their role in cancer development. Furthermore, the application of intratumoral microbiota in clinical settings is emphasized and we innovatively summarize the clinical trials involving microbial applications for cancer diagnosis and treatment across different countries.
Collapse
Affiliation(s)
- Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
22
|
Grigorescu RR, Husar-Sburlan IA, Gheorghe C. Pancreatic Cancer: A Review of Risk Factors. Life (Basel) 2024; 14:980. [PMID: 39202722 PMCID: PMC11355429 DOI: 10.3390/life14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal types of gastrointestinal cancer despite the latest medical advances. Its incidence has continuously increased in recent years in developed countries. The location of the pancreas can result in the initial symptoms of neoplasia being overlooked, which can lead to a delayed diagnosis and a subsequent reduction in the spectrum of available therapeutic options. The role of modifiable risk factors in pancreatic cancer has been extensively studied in recent years, with smoking and alcohol consumption identified as key contributors. However, the few screening programs that have been developed focus exclusively on genetic factors, without considering the potential impact of modifiable factors on disease occurrence. Thus, fully understanding and detecting the risk factors for pancreatic cancer represents an important step in the prevention and early diagnosis of this type of neoplasia. This review reports the available evidence on different risk factors and identifies the areas that could benefit the most from additional studies.
Collapse
Affiliation(s)
- Raluca Roxana Grigorescu
- Gastroenterology Department, “Sfanta Maria” Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Cristian Gheorghe
- Center for Digestive Disease and Liver Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
23
|
Löhr JM, Öhlund D, Söreskog E, Andersson E, Vujasinovic M, Zethraeus N, Sund M. Can our experience with surveillance for inherited pancreatic cancer help to identify early pancreatic cancer in the general population? Fam Cancer 2024; 23:399-403. [PMID: 38441833 PMCID: PMC11255073 DOI: 10.1007/s10689-024-00363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 07/18/2024]
Abstract
Screening of the general population for cancer is a matter of primary prevention reducing the burden of disease. Whilst this is successful for several cancers including breast, colon and prostate, the situation to screen and hence prevent pancreatic cancer is different. The organ is not as accessible to simple physical exam or biological samples (fecal or blood test). Neither exists a blood test such as PSA that is cost-effective. Reviewing the evidence from screening risk groups for pancreatic cancer, one must conclude that there is no rational at present to screen the general population, for a lack of appropriate tests.
Collapse
Affiliation(s)
- J-Matthias Löhr
- Karolinska Comprehensive Cancer Center and Karolinska Institutet, Stockholm, Sweden.
- Div. of Surgery & Oncology, Dept. of Upper Abdominal Diseases, CLINTEC Karolinska Institutet, Karolinska Comprehensive Cancer Center, Stockholm, SE-141 86, Sweden.
| | - Daniel Öhlund
- Department of Radiation Sciences and Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Emma Söreskog
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Stockholm, Sweden
| | - Emil Andersson
- Karolinska Comprehensive Cancer Center and Karolinska Institutet, Stockholm, Sweden
| | - Miroslav Vujasinovic
- Karolinska Comprehensive Cancer Center and Karolinska Institutet, Stockholm, Sweden
| | - Niklas Zethraeus
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Stockholm, Sweden
| | - Malin Sund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Surgical and Perioperative Sciences/ Surgery, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
25
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
26
|
Ma Z, Jiang Z, Dong H, Xu W, Yan S, Chen J, Li A, Wang X. Microbial Communities and Functional Genes in Periodontitis and Healthy Controls. Int Dent J 2024; 74:638-646. [PMID: 38448300 PMCID: PMC11123521 DOI: 10.1016/j.identj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic progressive disease and the leading cause of tooth loss in adults. Recent studies have shown the impact of oral microbial communities on systemic health and diseases such as cancer, atherosclerosis, rheumatoid arthritis, inflammatory bowel disease, diabetes, hypertension, and Alzheimer's disease. In previous case control studies investigatin the relationship between periodontal disease and the oral microbiota, little attention has been paid to the intersections of these domains. METHODS Here, we used high-throughput 16S rRNA sequencing to analyse the differences in the microbial composition in saliva between a group of patients with chronic periodontitis (C; n = 51) and a healthy control group (H; n = 61) and predicted the functional gene composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. RESULTS We found significant alterations in oral microbial diversity between C and H (P = 0.002). Sixteen genera were significantly different between C and H, and 15 of them were enriched in C linear discriminant analysis (LDA > 2). Fifty functional genes were significantly different between C and H, and 34 of them were enriched in C (P < .025). CONCLUSIONS Periodontitis is associated with significant changes in the oral microbial community.
Collapse
Affiliation(s)
- Zhonghui Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Jiang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoxin Dong
- Department of Stomatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Wenhua Xu
- Department of Stomatology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
29
|
Kaliamoorthy S, Priya Sayeeram S, Gowdhaman N, Jayaraj M, Radhika B, Chellapandi S, Elumalai A, Archana SP, Raju K, Palla S. Association of Periodontal Red Complex Bacteria With the Incidence of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e59251. [PMID: 38813341 PMCID: PMC11134483 DOI: 10.7759/cureus.59251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Porphyromonas gingivalis is the primary microbe in the "periodontal red complex" bacteria (PRCB) along with Tannerella forsythia and Treponema denticola, which are linked to periodontal disease (PD). These pathogens are also implicated in various systemic disorders, but their association with the incidence of gastrointestinal (GI) cancer is less explored. A systematic review followed by a meta-analysis was conducted as per standard guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2022) to find this association between GI cancers and PRCB after a literature search for full-text papers in the English language (between 2010 and 2023) in databases (Cochrane Library, PubMed, and Web of Science) with suitable keywords using the Boolean search strategy. Data extraction involved titles, abstracts, and full texts retrieved and scored by the modified Newcastle-Ottawa Scale. The data were analyzed by the Review Manager (RevMan 5.2, Cochrane Collaboration, Denmark). Standard Cochran Q test and I2 statistics (for heterogeneity) and a random effects model (pooled OR with 95% CI) were applied to report results. P. gingivalis among the PRCB was linked to GI cancers (OR: 2.16; 95% CI: 1.34-3.47). T. forsythia and T. denticola did not show meaningful associations as per existing evidence for GI cancers.
Collapse
Affiliation(s)
- Sriram Kaliamoorthy
- Department of Dentistry, Vinayaka Missions Medical College and Hospital, Vinayaka Missions Research Foundation, Karaikal, IND
| | - Sugantha Priya Sayeeram
- Department of Prosthodontics, Government Dental College and Hospital, The Tamil Nadu Dr. MGR Medical University, Pudukkottai, IND
| | - N Gowdhaman
- Departmentof Physiology, Dhanalakshmi Srinivasan Medical College and Hospital, The Tamil Nadu Dr. MGR Medical University, Perambalur, IND
| | - Merlin Jayaraj
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - B Radhika
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sugirtha Chellapandi
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Agila Elumalai
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sai P Archana
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Kanmani Raju
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Santosh Palla
- Department of Oral Medicine and Radiology, Sun Dental Care, Chennai, IND
| |
Collapse
|
30
|
Márquez-Arrico CF, Silvestre FJ, Marquez-Arrico JE, Silvestre-Rangil J. Could Periodontitis Increase the Risk of Suffering from Pancreatic Cancer?-A Systematic Review. Cancers (Basel) 2024; 16:1257. [PMID: 38610935 PMCID: PMC11010905 DOI: 10.3390/cancers16071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: The relationship between periodontitis and systemic pathologies continues to grow. Recently, the presence of periodontal pathogens has been linked to an increased risk of pancreatic cancer (PC) and its mortality. Thus, a systematic review is needed to identify whether an association between the two diseases can be established. The objective of this review is to elucidate the mechanisms responsible for this association. (2) Methods: A systematic review was carried out using three databases (PubMed, Embase and Scopus) with the following keywords "Periodontitis AND pancreatic cancer". A total of 653 articles were retrieved; before selection and screening, the inclusion and exclusion criteria were defined, resulting in a total of 13 articles being included in the review. (3) Results: The increase in low-grade systemic inflammation, pH changes, and the cytotoxicity of certain periodontopathogenic bacteria were found in the scientific literature reviewed as mechanisms linking periodontitis with the risk of PC. (4) Conclusions: Through this systematic review, we have seen how periodontitis can be related to PC and how it worsens its prognosis. Knowing the behavior of periodontopathogenic bacteria and the influence they have on our immune and inflammatory system may help to achieve an interdisciplinary approach to both pathologies.
Collapse
Affiliation(s)
| | - Francisco Javier Silvestre
- Stomatology Department, University of Valencia, 46010 Valencia, Spain; (F.J.S.); (J.S.-R.)
- Doctor Peset University Hospital, University of Valencia, 46017 Valencia, Spain
| | - Julia Elena Marquez-Arrico
- Department of Clinical Psychology and Psychobiology, University of Barcelona, 08035 Barcelona, Spain;
- Institut de Neurociències, University of Barcelona, 08035 Barcelona, Spain
| | | |
Collapse
|
31
|
Zhang Y, Zhang H, Liu B, Ning K. Highly accurate diagnosis of pancreatic cancer by integrative modeling using gut microbiome and exposome data. iScience 2024; 27:109294. [PMID: 38450156 PMCID: PMC10915599 DOI: 10.1016/j.isci.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The noninvasive detection of pancreatic ductal adenocarcinoma (PDAC) remains an immense challenge. In this study, we proposed a robust, accurate, and noninvasive classifier, namely Multi-Omics Co-training Graph Convolutional Networks (MOCO-GCN). It achieved high accuracy (0.9 ± 0.06), F1 score (0.9± 0.07), and AUROC (0.89± 0.08), surpassing contemporary approaches. The performance of model was validated on an external cohort of German PDAC patients. Additionally, we discovered that the exposome may impact PDAC development through its complex interplay with gut microbiome by mediation analysis. For example, Fusobacterium hwasookii nucleatum, known for its ability to induce inflammatory responses, may serve as a mediator for the impact of rheumatoid arthritis on PDAC. Overall, our study sheds light on how exposome and microbiome in concert could contribute to PDAC development, and enable PDAC diagnosis with high fidelity and interpretability.
Collapse
Affiliation(s)
- Yuli Zhang
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
32
|
Subramanian SK, Brahmbhatt B, Bailey-Lundberg JM, Thosani NC, Mutha P. Lifestyle Medicine for the Prevention and Treatment of Pancreatitis and Pancreatic Cancer. Diagnostics (Basel) 2024; 14:614. [PMID: 38535034 PMCID: PMC10968821 DOI: 10.3390/diagnostics14060614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2025] Open
Abstract
The incidence of pancreatitis and pancreatic cancer is on the upswing in the USA. These conditions often lead to higher healthcare costs due to the complex nature of diagnosis and the need for specialized medical interventions, surgical procedures, and prolonged medical management. The economic ramification encompasses direct healthcare expenses and indirect costs related to productivity losses, disability, and potential long-term care requirements. Increasing evidence underscores the importance of a healthy lifestyle in preventing and managing these conditions. Lifestyle medicine employs evidence-based interventions to promote health through six key pillars: embracing a whole-food, plant-predominant dietary pattern; regular physical activity; ensuring restorative sleep; managing stress effectively; removing harmful substances; and fostering positive social connections. This review provides a comprehensive overview of lifestyle interventions for managing and preventing the development of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Sruthi Kapliyil Subramanian
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Bhaumik Brahmbhatt
- Mayo Clinic, Division of Gastroenterology and Hepatology, Jacksonville, FL 32224, USA;
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA;
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Pritesh Mutha
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| |
Collapse
|
33
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
34
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
35
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
36
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Merchant AT, Zhao L, Bawa EM, Yi F, Vidanapathirana NP, Lohman M, Zhang J. Association between clusters of antibodies against periodontal microorganisms and Alzheimer disease mortality: Evidence from a nationally representative survey in the USA. J Periodontol 2024; 95:84-90. [PMID: 37452709 PMCID: PMC10788377 DOI: 10.1002/jper.23-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Alzheimer disease (AD) has been linked with periodontal microorganisms such as Porphyromonas gingivalis in observational and mechanistic studies. IgG antibodies against periodontal microorganisms which are markers of past and current periodontal infection have been correlated with cognitive impairment. We examined associations between empirically derived groups of 19 IgG antibodies against periodontal microorganisms and AD mortality. METHODS Individuals participating in the Third National Health and Nutrition Examination Survey (NHANES III) with complete data on IgG titers were followed up between 1988 and December 31, 2019. The outcome was AD mortality, and the main exposures were IgG antibodies against periodontal microorganisms classified into four mutually exclusive groups using cluster analysis. Survey-weighted Cox proportional hazard models were used to evaluate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for the relationship between clusters and AD mortality. RESULTS With up to 21 years of follow-up, 160 AD-related deaths were documented. In the multivariable-adjusted model, AD mortality overall was not associated with the Red-Green (aHR 1.18; 95% CI, 0.46-3.07), Yellow-Orange (aHR 1.36; 95% CI, 0.58-3.19), Orange-Blue (aHR 0.63; 95%, CI, 0.33-1.21), and the Orange-Red (aHR 0.79; 95% CI, 0.37-1.70) when the upper tertiles were compared to the bottom tertiles. However, the subgroup of middle-aged individuals in the highest tertile of the Red-Green cluster, but not older individuals, had a 13% higher risk of AD mortality (aHR 1.13; 95% CI, 1.02-1.26) compared with those in the bottom tertile. CONCLUSION Clusters of IgG antibodies against periodontal microorganisms did not predict AD mortality in this study.
Collapse
Affiliation(s)
- Anwar T Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Eric Mishio Bawa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Fanli Yi
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Nadeesha P Vidanapathirana
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Matthew Lohman
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
38
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
39
|
Kandalai S, Li H, Zhang N, Peng H, Zheng Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol Ther 2023; 24:2240084. [PMID: 37498047 PMCID: PMC10376920 DOI: 10.1080/15384047.2023.2240084] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Recent evidence has shown that the human microbiome is associated with various diseases, including cancer. The salivary microbiome, fecal microbiome, and circulating microbial DNA in blood plasma have all been used experimentally as diagnostic biomarkers for many types of cancer. The microbiomes present within local tissue, other regions, and tumors themselves have been shown to promote and restrict the development and progression of cancer, most often by affecting cancer cells or the host immune system. These microbes have also been shown to impact the efficacy of various cancer therapies, including radiation, chemotherapy, and immunotherapy. Here, we review the research advances focused on how microbes impact these different facets and why they are important to the clinical care of cancer. It is only by better understanding the roles these microbes play in the diagnosis, development, progression, and treatment of cancer, that we will be able to catch and treat cancer early.
Collapse
Affiliation(s)
- Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Ma H, Luo W, Gu Y. Does Oral Microbiota Have a Close Relationship with Pancreatic Cancer? A Systematic Review and Meta-Analysis. Ann Surg Oncol 2023; 30:8635-8641. [PMID: 37787951 DOI: 10.1245/s10434-023-14366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The association between oral microbiota and pancreatic cancer (PC) is increasingly recognized and studied. Yet, contrasting results are seen in current studies. This study aimed to provide systematic review and meta-analysis comparing PC and oral microbiota. METHODS Studies related to the association between oral microbiota and PC were identified through digital databases including PubMed, Medline, EMBASE, COCHRANE, and SCOPUS without limitations on language or publication period. The last identification date was 10 March 2023. Three case-control studies concerning the issue were included. For the meta-analyses, RevMan software version 5.4 was used. The Newcastle-Ottawa scale was used to evaluate articles and measurement of study differences, and publication bias was shown. RESULTS Porphyromonas gingivalis in oral bacteria was detected at a comparatively high detection rate in PC patients compared with healthy controls (odds ratio [OR], 1.38; 95 % confidence interval [CI], 1.09-1.74; P = 0.007; I2 = 34 %). The detection rate did not differ significantly between PC patients and healthy control patients for Aggregatibacter actinomycetemcomitans (OR 0.98; 95 % CI 0.75-1.29; P = 0.90; I2 = 76 %); Tannerella forsythiaand (OR 1.12; 95 % CI 0.89-1.42; P = 0.33; I2 = 0 %), or Prevotella intermedia (OR 1.08; 95 % CI 0.84-1.39; P = 0.55; I2 = 0 %). CONCLUSION Oral microbiota were closely related to PC, whereas P. gingivalis was more commonly found in the PC patients than in the healthy controls. For patients with PC, P. gingivalis may play a role in early diagnosis.
Collapse
Affiliation(s)
- Haowei Ma
- Clinical Medicine, Capital Medical University, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric and Gynecologic Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Wu S, Wen S, An K, Xiong L, Zeng H, Niu Y, Yin T. Bibliometric analysis of global research trends between gut microbiota and pancreatic cancer: from 2004 to 2023. Front Microbiol 2023; 14:1281451. [PMID: 38088976 PMCID: PMC10715435 DOI: 10.3389/fmicb.2023.1281451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal malignancies of the digestive system and is expected to be the second leading cause of cancer-related death in the United States by 2030. A growing body of evidence suggests that the gut microbiota (GM) is intimately involved in the clinical diagnosis, oncogenic mechanism and treatment of PC. However, no bibliometric analysis of PC and GM has been reported. METHODS The literature on PC and GM was retrieved from the Web of Science Core Collection (WoSCC) database for the period from January 1, 2004 to April 25, 2023. Microsoft Excel 2021, CiteSpace, VOSviewer, Scimago Graphica, Graphpad Prism, Origin, the R package "bibliometrics" and the bibliometric online analysis program were used to visualize the publishing trends and hot spots in this field. RESULTS A total of 1,449 articles were included, including 918 articles and 531 reviews. Publishing had grown rapidly since 2017, with the 2023 expected to publish 268 articles. Unsurprisingly, the United States ranked highest in terms of number of literatures, H index and average citations. The University of California System was the most active institution, but Harvard University tended to be cited the most on average. The three most influential researchers were Robert M. Hoffman, Zhao Minglei, and Zhang Yong. Cancers had published the most papers, while Nature was the most cited journal. Keyword analysis and theme analysis indicated that "tumor microenvironment," "gemcitabine-resistance," "ductal adenocarcinoma," "gut microbiota" and "diagnosis" will be the hotspots and frontiers of research in the future. CONCLUSION In summary, the field is receiving increasing attention. We found that future hotspots of PC/GM research may focus on the mechanism of oncogenesis, flora combination therapy and the exploitation of new predictive biomarkers, which provides effective suggestions and new insights for scholars.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Niu
- Department of Ophthalmology, Henan Provincial People’s Hospital, Clinical Medical College of Henan University, Zhengzhou, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Luo W, Wang J, Chen H, Ye L, Qiu J, Liu Y, Wang R, Weng G, Liu T, Su D, Tao J, Ding C, You L, Zhang T. Epidemiology of pancreatic cancer: New version, new vision. Chin J Cancer Res 2023; 35:438-450. [PMID: 37969957 PMCID: PMC10643340 DOI: 10.21147/j.issn.1000-9604.2023.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
Pancreatic cancer (PC) is a devastating malignancy with an extremely high mortality rate and poses significant challenges to healthcare systems worldwide. The prevalence of PC risk factors spiked over the years, leading to a global increase in PC incidence rates. The contribution of different risk factors, however, varied from region to region due to genetic predisposition, environmental, social, and political factors underlying disease prevalence in addition to public health strategies. This comprehensive review aims to provide a thorough analysis of the epidemiology of PC, discussing its incidence, risk factors, screening strategies and socioeconomic burden. We compiled a wide range of seminal studies as well as epidemiological investigations to serve this review as a comprehensive guide for researchers, healthcare professionals, and policymakers keen for a more profound understanding of PC epidemiology. This review highlights the essentiality of persistent research efforts, interdisciplinary collaboration, and public health initiatives to address the expanding burden of this malignancy.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liyuan Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tao Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chen Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
43
|
Liu Y, Liu H, Rong Y, Shi Q, Yang Q, Li H, Zhang Z, Tao J. Alterations of oral microbiota are associated with the development and severity of acute pancreatitis. J Oral Microbiol 2023; 15:2264619. [PMID: 37808891 PMCID: PMC10557549 DOI: 10.1080/20002297.2023.2264619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
Acute pancreatitis (AP) is a common abdomen clinical emergency. Most APs have mild clinical symptoms and a good prognosis. However, about 20% of patients develop severe acute pancreatitis (SAP), increasing morbidity and mortality. The microbiome's impact on AP pathophysiology has received increasing attention. Hence, to explore changes in oral microbial composition in acute pancreatitis, we collected clinical information and oral saliva samples from 136 adult participants: 47 healthy controls, 43 acute mild AP (MAP), 29 moderate AP (MSAP), and 17 severe AP (SAP). Using 16S rRNA gene sequencing, 663,175 high-quality sequences were identified. The relative abundance and diversity of oral microorganisms in AP patients increased, with decreased beneficial bacteria such as Streptococcus, Neisseria, and Gemella, and increased Prevotella, Veillonella, Granulicatella, Actinomyces, and Peptostreptococcus in the AP group. Further changes in microbial composition occurred with increasing disease severity, including a decreased abundance of beneficial bacteria such as Neisseria, Haemophilus, and Gemella in MSAP and SAP compared to MAP. Moreover, the Lefse analysis showed that Prevotella, Peptostreptococcus, Actinomyces, and Porphyromonas were better microbial markers for AP. Therefore, oral microbiome changes could distinguish AP from healthy individuals and serve as an early novel predictor of disease severity in AP patients.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Rong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiao Shi
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Yang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Nasiri K, Amiri Moghaddam M, Etajuri EA, Badkoobeh A, Tavakol O, Rafinejad M, Forutan Mirhosseini A, Fathi A. Periodontitis and progression of gastrointestinal cancer: current knowledge and future perspective. Clin Transl Oncol 2023; 25:2801-2811. [PMID: 37036595 DOI: 10.1007/s12094-023-03162-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 04/11/2023]
Abstract
Periodontitis is a polymicrobial disorder caused by dysbiosis. Porphyromonas gingivalis (P.gingivalis) and Fusobacterium nucleatum (F.nucleatum) are pathobiont related to periodontitis pathogenesis and were found to be abundant in the intestinal mucosa of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. Besides, periodontal infections have been found in a variety of tissues and organs, indicating that periodontitis is not just an inflammation limited to the oral cavity. Considering the possible translocation of pathobiont from the oral cavity to the gastrointestinal (GI) tract, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the relationship between periodontitis and GI malignancies by focusing on the oral/gut axis.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Masoud Amiri Moghaddam
- Department of Periodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Omid Tavakol
- Department of Prosthodontics, Islamic Azad University, Shiraz, Iran
| | | | | | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
45
|
Baima G, Ribaldone DG, Romano F, Aimetti M, Romandini M. The Gum-Gut Axis: Periodontitis and the Risk of Gastrointestinal Cancers. Cancers (Basel) 2023; 15:4594. [PMID: 37760563 PMCID: PMC10526746 DOI: 10.3390/cancers15184594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Periodontitis has been linked to an increased risk of various chronic non-communicable diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-inflammatory pathways related to periodontitis may impact the pathophysiology of the gastrointestinal tract and its accessory organs through the so-called "gum-gut axis". In addition to the hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research suggests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact mechanisms by which oral pathogens contribute to the development of digestive tract cancers are not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells. Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis in the carcinogenesis of the enteral tract. The "gum-gut axis" may therefore represent a promising target for the development of strategies for the prevention and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | | | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
46
|
Siddiqui R, Badran Z, Boghossian A, Alharbi AM, Alfahemi H, Khan NA. The increasing importance of the oral microbiome in periodontal health and disease. Future Sci OA 2023; 9:FSO856. [PMID: 37621848 PMCID: PMC10445586 DOI: 10.2144/fsoa-2023-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 08/26/2023] Open
Abstract
Herein, the aim is to discuss the current knowledge of microbiome and periodontal diseases. Current treatment strategies include mechanical therapy such as root planing, scaling, deep pocket debridement and antimicrobial chemotherapy as an adjuvant therapy. Among promising therapeutic strategies, dental probiotics and oral microbiome transplantation have gained attention, and may be used to treat bacterial imbalances by competing with pathogenic bacteria for nutrients and adhesion surfaces, as well as probiotics targeting the gut microbiome. Development of strategies to prevent and treat periodontal diseases are warranted as both are highly prevalent and can affect human health. Further studies are necessary to better comprehend the microbiome in order to develop innovative preventative measures as well as efficacious therapies against periodontal diseases.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Zahi Badran
- Periodontology Unit, Department of Preventive & Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anania Boghossian
- College of Arts & Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha, 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
47
|
Qian J, Zhang X, Wei B, Tang Z, Zhang B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188943. [PMID: 37355177 DOI: 10.1016/j.bbcan.2023.188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal cancers in the world and its 5-year survival rate is <10%. Due to the unique TME and dense tissue structure, its curative efficacy is far from satisfactory,the immunotherapy is even more invalid. According to the recent studies, the gut and tumor microbiota have been proved to play a key role in the development, progression and prognosis of PDAC. Based on the differences of microbiome composition observed in PDAC patients and normal pancreas, many researches have been made focusing on the latent communication between gut and intra-tumor microbiota and PDAC. In this review, we will demonstrate the potential mechanism of the oncogenic effects of GM and IM and their crucial effects on modulating the TME. Besides, we focus on their interaction with chemotherapeutic and immunotherapeutic drugs and inducing the drug resistance, thus enlightening the promising role to be used to monitor the occurrence of PDAC, accurately modulate the immune environment to promote the therapeutic efficacy and predict the prognosis.
Collapse
Affiliation(s)
- Jiwei Qian
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Butian Wei
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- The Second affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31000, China.
| |
Collapse
|
48
|
Debertin J, Teles F, Martin LM, Lu J, Koestler DC, Kelsey KT, Beck JD, Platz EA, Michaud DS. Antibodies to oral pathobionts and colon cancer risk in the CLUE I cohort study. Int J Cancer 2023; 153:302-311. [PMID: 36971101 PMCID: PMC10389748 DOI: 10.1002/ijc.34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis has been associated with an increased risk for gastrointestinal cancers. The objective of our study was to investigate the association of antibodies to oral bacteria and the risk of colon cancer in a cohort setting. Using the CLUE I cohort, a prospective cohort initiated in 1974 in Washington County, Maryland, we conducted a nested case-control study to examine the association of levels of IgG antibodies to 11 oral bacterial species (13 total strains) with risk of colon cancer diagnosed a median of 16 years later (range: 1-26 years). Antibody response was measured using checkerboard immunoblotting assays. We included 200 colon cancer cases and 200 controls matched on age, sex, cigarette smoking status, time of blood draw and pipe or cigar smoking status. Controls were selected using incidence density sampling. Conditional logistic regression models were used to assess the association between antibody levels and colon cancer risk. In the overall analysis, we observed significant inverse associations for 6 of the 13 antibodies measured (P-trends <.05) and one positive association for antibody levels to Aggregatibacter actinomycetemcomitans (ATCC 29523; P-trend = .04). While we cannot rule out a role for periodontal disease in colon cancer risk, findings from our study suggest that a strong adaptive immune response may be associated with a lower risk of colon cancer. More studies will need to examine whether the positive associations we observed with antibodies to A. actinomycetemcomitans reflect a true causal association for this bacterium.
Collapse
Affiliation(s)
- Julia Debertin
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Martin
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
- University of Kansas Cancer Center, Kansas City, KS
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - James D. Beck
- Division of Comprehensive Oral Health/Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
49
|
Bangolo AI, Trivedi C, Jani I, Pender S, Khalid H, Alqinai B, Intisar A, Randhawa K, Moore J, De Deugd N, Faisal S, Suresh SB, Gopani P, Nagesh VK, Proverbs-Singh T, Weissman S. Impact of gut microbiome in the development and treatment of pancreatic cancer: Newer insights. World J Gastroenterol 2023; 29:3984-3998. [PMID: 37476590 PMCID: PMC10354587 DOI: 10.3748/wjg.v29.i25.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The gut microbiome plays an important role in the variation of pharmacologic response. This aspect is especially important in the era of precision medicine, where understanding how and to what extent the gut microbiome interacts with drugs and their actions will be key to individualizing therapy. The impact of the composition of the gut microbiome on the efficacy of newer cancer therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment has become an active area of research. Pancreatic adenocarcinoma (PAC) has a poor prognosis even in those with potentially resectable disease, and treatment options are very limited. Newer studies have concluded that there is a synergistic effect for immunotherapy in combination with cytotoxic drugs, in the treatment of PAC. A variety of commensal microbiota can affect the efficacy of conventional chemotherapy and immunotherapy by modulating the tumor microenvironment in the treatment of PAC. This review will provide newer insights on the impact that alterations made in the gut microbial system have in the development and treatment of PAC.
Collapse
Affiliation(s)
- Ayrton I Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ishan Jani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Silvanna Pender
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hirra Khalid
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Budoor Alqinai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Alina Intisar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Karamvir Randhawa
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Joseph Moore
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nicoleta De Deugd
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shaji Faisal
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Suchith Boodgere Suresh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Parva Gopani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tracy Proverbs-Singh
- Department of Gastrointestinal Malignancies, John Theurer Cancer Center, Hackensack, NJ 07601, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
50
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|