1
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Veshkini A, Kühn C, Dengler F, Bachmann L, Liermann W, Helm C, Ulrich R, Delling C, Hammon HM. Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: impacts on epithelial barriers and transcellular transport systems. Front Cell Infect Microbiol 2024; 14:1495309. [PMID: 39703373 PMCID: PMC11656319 DOI: 10.3389/fcimb.2024.1495309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cryptosporidium parvum (C. parvum) is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment. Methods At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with C. parvum oocysts (in-house strain LE-01-Cp-15). On day 8 after infection, calves were slaughtered and jejunum mucosa samples were taken. The RNA was extracted from collected samples and subjected to sequencing. Differentially expressed genes (DEG) between the infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05 and used for gene ontology (GO) and pathway enrichment analysis in Cytoscape (v3.9.1). Results and discussion To study the pathophysiology of infectious diarrhea on intestinal permeability, 459 genes related to epithelial cell barrier integrity and paracellular and transmembrane transport systems were selected from 12,908 identified genes in mucus. Among, there were 61 increased and 109 decreased gene transcripts belonged to adhesion molecules (e.g. ADGRD1 and VCAM1), ATP-binding cassette (ABC, e.g. ABCC2 and ABCD1) and solute carrier (SLC, e.g. SLC28A2 and SLC38A3) transporters, and ion channels (e.g. KCNJ15). Our results suggest deregulation of cellular junctions and thus a possibly increased intestinal permeability, whereas deregulation of ABC and SLC transporters and ion channels may influence the absorption/secretion of amino acids, carbohydrates, fats, and organic compounds, as well as acid-based balance and osmotic hemostasis. Besides pathogen-induced gene expression alterations, part of the DEG may have been triggered or consequently affected by inflammatory mechanisms. The study provided a deeper understanding of the pathophysiology of infectious diarrhea in neonatal calves and the host-pathogen interactions at the transcript level. For further studies with a particular focus on the transport system, these results could lead to a new approach to elucidating pathophysiological regulatory mechanisms.
Collapse
Affiliation(s)
- Arash Veshkini
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| | - Franziska Dengler
- Institute of Animal Sciences, University of Hohenheim, Hohenheim, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Neubrandenburg, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christiane Helm
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Reiner Ulrich
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Cora Delling
- Institute of Veterinary Parasitology, Leipzig University, Leipzig, Germany
| | - Harald M. Hammon
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
4
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
5
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
6
|
Yang H, Fan X, Mao X, Yu B, He J, Yan H, Wang J. The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets. J Anim Sci Biotechnol 2024; 15:61. [PMID: 38698473 PMCID: PMC11067158 DOI: 10.1186/s40104-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
Collapse
Affiliation(s)
- Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China.
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| |
Collapse
|
7
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
8
|
Guo SC, Yu B, Jia Q, Yan HY, Wang LQ, Sun FF, Ma TH, Yang H. Loureirin C extracted from Dracaena cochinchinensis S.C. Chen prevents rotaviral diarrhea in mice by inhibiting the intestinal Ca 2+-activated Cl - channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117077. [PMID: 37625605 DOI: 10.1016/j.jep.2023.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Resina Draconis (RD) is the red resin of Dracaena cochinchinensis (Lour.) S.C. Chen and most used as a hemostatic drug in traditional Chinese medicine. Recent studies have reported that RD has a therapeutic effect on gastrointestinal diseases. Loureirin A, B, and C (LA, LB, and LC) are dihydrochalcone compounds isolated from RD. AIM OF THE STUDY Dehydration is the primary cause of death in rotaviral diarrhea. Inhibition of Ca2+-activated Cl- channels (CaCCs)-mediated Cl- secretion significantly reduced fluid secretion in rotaviral diarrhea. RD was used to treat digestive diseases such as diarrhea and abdominal pain; however, the pharmacological mechanism remains unclear. This study investigated the effects of RD and loureirin on intestinal Cl- channels and their therapeutic effects on rotavirus-induced diarrhea, aiming to reveal RD's molecular basis, targets, and mechanisms for treating rotaviral diarrhea. MATERIALS AND METHODS Cell-based fluorescence quenching assays were used to examine the effect of RD and loureirin on Cl- channels activity. Electrophysiological properties were tested using short-circuit current experiments in epithelial cells or freshly isolated mouse intestinal tissue. Fecal water content, intestinal peristalsis rate, and smooth muscle contraction were measured in neonatal mice infected with SA-11 rotavirus before and after LC treatment or adult mice. RESULTS RD, LA, LB, and LC inhibited CaCCs-mediated Cl- current in HT-29 cells and colonic epithelium. The inhibitory effect of LC on CaCCs was primarily on the apical side in epithelial cells, which may be partially produced by affecting cytoplasmic Ca2+ levels. LC significantly inhibited TMEM16A-mediated Cl- current. Characterization studies revealed that LC inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activity in the colonic epithelium. Although LC activated the cystic fibrosis transmembrane regulator in epithelial cells, its effect was not apparent in colonic epithelium. In vivo, LC significantly reduced the fecal water content, intestinal peristalsis rate, and smooth muscle contraction of mice infected with rotavirus. CONCLUSION RD and its active compound LC inhibit intestinal CaCCs activity, which might mediate the anti-rotaviral diarrheal effect of RD.
Collapse
Affiliation(s)
- Si-Cheng Guo
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Qian Jia
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Han-Yu Yan
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Li-Qin Wang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Fang-Fang Sun
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China; Nuclear Medicine Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, PR China.
| | - Tong-Hui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| |
Collapse
|
9
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
10
|
Qu C, Guan X, Li C, Zhu X, Ma T, Li H, Yu B, Yang H. Sesquiterpene lactones improve secretory diarrhea symptoms by inhibiting intestinal Ca 2+-activated Cl - channel activities directly and indirectly. Eur J Pharmacol 2023; 955:175917. [PMID: 37473982 DOI: 10.1016/j.ejphar.2023.175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Chao Qu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Xin Guan
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China; Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Chang Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Xiaojuan Zhu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Tonghui Ma
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Hongyan Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| |
Collapse
|
11
|
Abuelizz HA, Bakheit AH, Marzouk M, El-Senousy WM, Abdellatif MM, Mostafa GAE, Al-Salahi R. Evaluation of Some Benzo[g]Quinazoline Derivatives as Antiviral Agents against Human Rotavirus Wa Strain: Biological Screening and Docking Study. Curr Issues Mol Biol 2023; 45:2409-2421. [PMID: 36975526 PMCID: PMC10047800 DOI: 10.3390/cimb45030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Globally, rotavirus (RV) is the most common cause of acute gastroenteritis in infants and toddlers; however, there are currently no agents available that are tailored to treat rotavirus infection in particular. Improved and widespread immunization programs are being implemented worldwide to reduce rotavirus morbidity and mortality. Despite certain immunizations, there are no licensed antivirals that can attack rotavirus in hosts. Benzoquinazolines, chemical components synthesized in our laboratory, were developed as antiviral agents, and showed good activity against herpes simplex, coxsackievirus B4 and hepatitis A and C. In this research project, an in vitro investigation of the effectiveness of benzoquinazoline derivatives 1–16 against human rotavirus Wa strains was carried out. All compounds exhibited antiviral activity, however compounds 1–3, 9 and 16 showed the greatest activity (reduction percentages ranged from 50 to 66%). In-silico molecular docking of highly active compounds, which were selected after studying the biological activity of all investigated of benzo[g]quinazolines compounds, was implemented into the protein’s putative binding site to establish an optimal orientation for binding. As a result, compounds 1, 3, 9, and 16 are promising anti-rotavirus Wa strains that lead with Outer Capsid protein VP4 inhibition.
Collapse
Affiliation(s)
- Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Tanning Materials and Leather Technology Department, Organic Chemicals Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Waled M. El-Senousy
- Food Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Mohamed M. Abdellatif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Tokyo 192-0397, Japan
| | - Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Zhao C, Jiang Y, Yin H, Jin Z, Yuan J, Shang H, Song H. Hericium caput-medusae (Bull.: Fr.) Pers. Fermentation concentrate polysaccharide ameliorate diarrhea in DSS-induced early colitis by modulating ion channel. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
14
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
15
|
Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Mol Microbiol 2021; 117:818-836. [PMID: 34954851 DOI: 10.1111/mmi.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase-domain like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hours of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
16
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
17
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
18
|
Harada Y, Sekine H, Kubota K, Sadatomi D, Iizuka S, Fujitsuka N. Calcium-activated chloride channel is involved in the onset of diarrhea triggered by EGFR tyrosine kinase inhibitor treatment in rats. Biomed Pharmacother 2021; 141:111860. [PMID: 34246954 DOI: 10.1016/j.biopha.2021.111860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are mainly used to treat non-small cell lung cancer; however, adverse effects such as severe diarrhea represent a major obstacle towards the continuation of EGFR-TKIs therapy. Chloride channels, which control the fluid flow in the intestinal lumen, are proposed as an important target to remediate EGFR-TKIs-induced diarrhea, but the mechanism remains unclear. The aim of this study was to clarify the mechanism underlying EGFR-TKIs-induced diarrhea with a particular focus on the role of intestinal chloride channels. Here, we show that osimertinib-treated rats exhibit diarrhea and an increase in fecal water content without showing any severe histopathological changes. This diarrhea was attenuated by intraperitoneal treatment with the calcium-activated chloride channel (CaCC) inhibitor CaCCinh-A01. These findings were confirmed in afatinib-treated rats with diarrhea. Moreover, treatment with the Japanese traditional herbal medicine, hangeshashinto (HST), decreased fecal water content and improved fecal appearance in rats treated with EGFR-TKIs. HST inhibited the ionomycin-induced CaCC activation in HEK293 cells in patch-clamp current experiments and its active ingredients were identified. In conclusion, secretory diarrhea induced by treatment with EGFR-TKIs might be partially mediated by the activation of CaCC. Therefore, blocking the CaCC could be a potential new treatment for EGFR-TKI-induced diarrhea.
Collapse
Affiliation(s)
- Yumi Harada
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kunitsugu Kubota
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Daichi Sadatomi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| |
Collapse
|
19
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
20
|
Kato M, Takayama Y, Sunagawa M. The Calcium-Activated Chloride Channel TMEM16A is Inhibitied by Liquiritigenin. Front Pharmacol 2021; 12:628968. [PMID: 33897420 PMCID: PMC8060913 DOI: 10.3389/fphar.2021.628968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
The transmembrane 16 (TMEM16) family contains 10 subtypes, and the function of each protein is different. TMEM16A is a calcium-activated chloride channel involved in physiological and pathological situations. Liquiritigenin is an aglycone derived from Glycyrrhiza glabra, and it is generated via the metabolism of enterobacterial flora. It has been known that liquiritigenin reduces pain sensation involving TMEM16A activation in primary sensory neurons. In addition, other pharmacological effects of liquiritigenin in physiological functions involving TMEM16A have been reported. However, the relationship between TMEM16A and liquiritigenin is still unknown. Therefore, we hypothesized that TMEM16A is inhibited by liquiritigenin. To confirm this hypothesis, we investigated the effect of liquiritigenin on TMEM16A currents evoked by intracellular free calcium in HEK293T cells transfected with TMEM16A. In this study, we found that liquiritigenin inhibited the mouse and human TMEM16A currents. To further confirm its selectivity, we also investigated its pharmacological effects on other ion channels, including transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are non-selective cation channels involved in pain sensation. However, liquiritigenin did not inhibit the currents of TRPV1 and TRPA1 induced by capsaicin and allyl isothiocyanate, respectively. Therefore, our findings indicate that selective TMEM16A inhibition could be one molecular mechanism that explains liquiritigenin-induced pain reduction. Additionally, we also investigated the inhibitory effects of estrogens on TMEM16A because liquiritigenin reportedly binds to the estrogen receptor. In this study, a pregnancy-dependent estrogen, estriol, significantly inhibited TMEM16A. However, the efficacy was weak. Although there is a possibility that TMEM16A activity could be suppressed during pregnancy, the physiological significance seems to be small. Thus, the inhibitory effect of estrogen might not be significant under physiological conditions. Furthermore, we investigated the effect of dihydrodaidzein, which is an analog of liquiritigenin that has a hydroxyphenyl at different carbon atom of pyranose. Dihydrodaidzein also inhibited mouse and human TMEM16A. However, the inhibitory effects were weaker than those of liquiritigenin. This suggests that the efficacy of TMEM16A antagonists depends on the hydroxyl group positions. Our finding of liquiritigenin-dependent TMEM16A inhibition could connect the current fragmented knowledge of the physiological and pathological mechanisms involving TMEM16A and liquiritigenin.
Collapse
Affiliation(s)
- Mami Kato
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Shi S, Guo S, Chen Y, Sun F, Pang C, Ma B, Qu C, An H. Molecular mechanism of CaCC inh-A01 inhibiting TMEM16A channel. Arch Biochem Biophys 2020; 695:108650. [PMID: 33132191 DOI: 10.1016/j.abb.2020.108650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
TMEM16A is a calcium-activated chloride channel that is associate with several diseases, including pulmonary diseases, hypertension, diarrhea and cancer. The CaCCinh-A01 (A01) is widely recognized as an efficient blocker of TMEM16A and has been used as a tool drug to inhibit TMEM16A currents in the laboratory. A01 also has excellent pharmacokinetic properties and can be developed as a drug to target TMEM16A. However, the molecular mechanism how A01 inhibits TMEM16A is still elusive, which slows down its drug development process. Here, calculations identified that the binding pocket of A01 was located above the pore, and it was also discovered that the binding of A01 to TMEM16A not only blocked the pore but also led to its collapse. The interaction model analysis predicted that R515/K603/E623 were crucial residues for the binding between TMEM16A and A01, and the site-directed mutagenesis studies confirmed the above results. The binding mode and quantum chemical calculations showed that the carboxyl and the amide oxygen atom of A01 were the key interaction sites between TMEM16A and A01. Therefore, our study proposed the inhibitory mechanism of TMEM16A current by A01 and revealed how A01 inhibits TMEM16A at the molecular level. These findings will shed light on both the development of A01 as a potential drug for TMEM16A dysfunction-related disorders and drug screening targeting the pocket.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China; College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin, 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
22
|
Zhu X, Zhang W, Jin L, Zhang G, Yang H, Yu B. Inhibitory activities of curzerenone, curdione, furanodienone, curcumol and germacrone on Ca 2+-activated chloride channels. Fitoterapia 2020; 147:104736. [PMID: 33010370 DOI: 10.1016/j.fitote.2020.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Wanting Zhang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
23
|
Huang H, Pu Y, Liao D, Zhu Z, Wang J, Cui Y. The expression of calcium-sensing receptor during rotavirus induced diarrhea in neonatal mice. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Yu B, Xie R, Jin L, Tian X, Niu Y, Ma T, Yang H. trans-δ-Viniferin inhibits Ca2+-activated Cl− channels and improves diarrhea symptoms. Fitoterapia 2019; 139:104367. [DOI: 10.1016/j.fitote.2019.104367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
|
25
|
Yu B, Zhu X, Yang X, Jin L, Xu J, Ma T, Yang H. Plumbagin Prevents Secretory Diarrhea by Inhibiting CaCC and CFTR Channel Activities. Front Pharmacol 2019; 10:1181. [PMID: 31649543 PMCID: PMC6795057 DOI: 10.3389/fphar.2019.01181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Secretory diarrhea, which primarily originates through intestinal pathogens and viruses, is a health burden in many regions worldwide. Enterocyte Cl− channels, as the final step in enterotoxin-induced fluid secretion, constitute an attractive class of targets for diarrhea therapy. Chloride channel inhibitors have become a new class of candidates for antisecretion and anti-intestinal motility agents. In the present study, we identified plumbagin as a transmembrane protein 16A (TMEM16A) inhibitor in a cell-based fluorescence-quenching assay, and the IC50 value was ∼12.46 µM. Short-circuit current measurements showed that plumbagin reversibly inhibited the Eact-induced Cl− current on the apical side of TMEM16A-transfected Fischer rat thyroid (FRT) cells with no significant effect on cytoplasmic Ca2+ signaling. Notably, plumbagin also inhibited the activity of intestinal epithelial calcium-activated chloride channel (CaCC) and cystic fibrosis transmembrane conductance regulator (CFTR) in both HT-29 cells and mouse colons, but had no effects on the activity of the Na+-K+ ATPase or K+ channels. In in vivo experiments, the administration of plumbagin reduced both Escherichia coli heat-stable enterotoxin (STa)- and cholera toxin (CT)-induced intestinal fluid secretion. In neonatal mouse models of CT- and rotavirus infection-induced diarrhea, 0.4 µg plumbagin inhibited secretory diarrhea by >40% and 50%, respectively, without affecting intestinal epithelial integrity or the rotaviral infection. In addition, plumbagin exerted inhibitory effects on the vasoactive intestinal peptide (VIP)-, prostaglandin E2 (PGE2)-, and 5-hydroxytryptamine (5-HT)-stimulated Cl− currents. In the evaluations of intestinal motility, plumbagin significantly delayed intestinal motility and inhibited intestinal smooth muscle contractility without an evident impact on contractive frequency. Collectively, our results indicate that plumbagin inhibits both Ca2+- and cAMP-activated Cl− channels, accounting for the mechanisms of plumbagin inhibition of chloride secretion and intestinal motility. Thus, plumbagin can be a lead compound in the treatment of CT-induced, Traveler’s, and rotaviral diarrhea, as well as other types of secretory diarrhea that result from excessive intestinal fluid secretion and increased intestinal peristalsis.
Collapse
Affiliation(s)
- Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiaojuan Zhu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xinyu Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Xu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Tonghui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
26
|
Kunzelmann K, Centeio R, Wanitchakool P, Cabrita I, Benedetto R, Saha T, Hoque KM, Schreiber R. Control of Ion Transport by Tmem16a Expressed in Murine Intestine. Front Physiol 2019; 10:1262. [PMID: 31680994 PMCID: PMC6797858 DOI: 10.3389/fphys.2019.01262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Cl– secretion by the human and murine intestinal epithelium occurs through the cystic fibrosis transmembrane conductance regulator (cftr). However, the Ca2+ activated Cl– channel Tmem16a was shown to contribute to Cl– secretion, mainly, but not exclusively, as a basolaterally located Cl– channel that controls basolateral Ca2+ signaling, and thus activation of basolateral Ca2+ dependent Sk4 K+ channels. In intestinal goblet cells, Tmem16a was shown to regulated Ca2+ signals required for exocytosis of mucus. Because a recent report denied the existence and functional role of Tmem16a in murine intestine, we reexamined in detail expression of mRNA and protein for Tmem16a in mouse colon. In experiments using short-circuited Ussing chamber and whole cell patch-clamp techniques, we further compared ion transport in wild type (WT) colon with that in mice with intestinal epithelial specific knockout of Tmem16a. As reported earlier we fully confirm expression of Tmem16a in colonic epithelial cells and the role of Tmem16a for both Ca2+-dependent and cAMP-regulated ion secretion.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Raquel Centeio
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Tultul Saha
- Division of Pathophysiology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kazi Mirajul Hoque
- Division of Pathophysiology, National Institute of Cholera and Enteric Diseases, Kolkata, India.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Lee B, Hong GS, Lee SH, Kim H, Kim A, Hwang EM, Kim J, Lee MG, Yang JY, Kweon MN, Tse CM, Mark D, Oh U. Anoctamin 1/TMEM16A controls intestinal Cl - secretion induced by carbachol and cholera toxin. Exp Mol Med 2019; 51:1-14. [PMID: 31383845 PMCID: PMC6802608 DOI: 10.1038/s12276-019-0287-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) mediate numerous physiological functions and are best known for the transport of electrolytes and water in epithelia. In the intestine, CaCC currents are considered necessary for the secretion of fluid to protect the intestinal epithelium. Although genetic ablation of ANO1/TMEM16A, a gene encoding a CaCC, reduces the carbachol-induced secretion of intestinal fluid, its mechanism of action is still unknown. Here, we confirm that ANO1 is essential for the secretion of intestinal fluid. Carbachol-induced transepithelial currents were reduced in the proximal colon of Ano1-deficient mice. Surprisingly, cholera toxin-induced and cAMP-induced fluid secretion, believed to be mediated by CFTR, were also significantly reduced in the intestine of Ano1-deficient mice. ANO1 is largely expressed in the apical membranes of intestines, as predicted for CaCCs. The Ano1-deficient colons became edematous under basal conditions and had a greater susceptibility to dextran sodium sulfate-induced colitis. However, Ano1 depletion failed to affect tumor development in a model of colorectal cancer. We thus conclude that ANO1 is necessary for cAMP- and carbachol-induced Cl− secretion in the intestine, which is essential for the protection of the intestinal epithelium from colitis. An ion channel, a membrane protein allowing ion transport, that controls the flow of chloride is needed for proper secretion of protective fluids in the intestine. Uhtaek Oh from the Korea Institute of Science & Technology in Seoul, South Korea, and colleagues showed that cells lining the intestinal surface express a calcium-activated chloride channel called anoctamin-1 (ANO1) that regulates fluid secretion in the gut. Compared to control animals, ANO1-deficient mice released less fluid into their intestines following exposure to a diarrhea-inducing toxin or to a chloride transport–stimulating signaling molecule. This fluid secretion was previously thought to be mediated via a different ion channel. The ANO1-deficient mice accumulated fluid within colonic tissues, which increased their susceptibility to colitis. The findings point to ANO1 activation as a potential therapeutic strategy for treating colitis.
Collapse
Affiliation(s)
- Byeongjun Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hyungsup Kim
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Ajung Kim
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Jiyoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, Korea
| | - Chung-Ming Tse
- Departments of Physiology and Medicine, Division of Gastroenterois maintained by the opening of plasmalogy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donowitz Mark
- Departments of Physiology and Medicine, Division of Gastroenterois maintained by the opening of plasmalogy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Uhtaek Oh
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea. .,Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
28
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
29
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
30
|
Jiang DH. Drug therapy combined with systematic nursing for children with rotavirus enteritis: Therapeutic effect and impact on serum cytokines. Shijie Huaren Xiaohua Zazhi 2018; 26:569-574. [DOI: 10.11569/wcjd.v26.i9.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic effect of drug therapy combined with systematic nursing in children with rotavirus enteritis and the effect on serum cytokines.
METHODS A total of 90 children with rotavirus enteritis treated at our hospital from July 2015 to August 2017 were selected and equally divided into either an observation group (Saccharomyces boulardii sachets + systematic nursing) or a control group (Saccharomyces boulardii sachets). After 3 d of treatment, the clinical efficacy of the two groups was evaluated, time to remission of clinical symptoms and the hospitalization time were recorded, and the levels of serum interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α were measured.
RESULTS The total effective rate was significantly higher in the observation group than in the control group (93.33% vs 77.78%, P < 0.05). The time to remission of fever, dehydration, and diarrhea and hospitalization time were significantly shorter in the observation group than in the control group (3.02 d ± 0.97 d vs 4.57 d ± 1.04 d, 3.36 d ±1.67 d vs 5.84 d ± 1.49 d, 5.32 d ± 1.13 d vs 6.28 d ± 1.25 d, 5.98 d ± 2.11 d vs 7.83 d ±2.16 d; P < 0.05). After treatment, serum levels of IL-6, IL-10, and TNF-αin both groups significantly decreased (P < 0.05), and the decrease was significantly greater in the observation group than in the control group (70.21 pg/mL ± 16.84 pg/mL vs 78.58 pg/mL ± 18.63 pg/mL, 12.18 pg/mL ± 8.97 pg/mL vs 16.86 pg/mL ± 9.14 pg/mL, 3.48 pg/mL ± 1.08 pg/mL vs 4.39 pg/mL ± 1.13 pg/mL; P < 0.05).
CONCLUSION Saccharomyces boulardii sachets combined with systematic nursing is an effective way to shorten the time to remission of clinical symptoms and hospitalization time and lower the levels of IL-6, IL-10, and TNF-α in children with rotavirus enteritis.
Collapse
|
31
|
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6:33-45. [PMID: 29928670 PMCID: PMC6007821 DOI: 10.1016/j.jcmgh.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Every year, enteric infections and associated diarrhea kill millions of people. The situation is compounded by increases in the number of enteric pathogens that are acquiring resistance to antibiotics, as well as (hitherto) a relative paucity of information on host molecular targets that may contribute to diarrhea. Many forms of diarrheal disease depend on the dysregulation of intestinal ion transporters, and an associated imbalance between secretory and absorptive functions of the intestinal epithelium. A number of major transporters have been implicated in the pathogenesis of diarrheal diseases and thus an understanding of their expression, localization, and regulation after infection with various bacteria, viruses, and protozoa likely will prove critical in designing new therapies. This article surveys our understanding of transporters that are modulated by specific pathogens and the mechanism(s) involved, thereby illuminating targets that might be exploited for new therapeutic approaches.
Collapse
Key Words
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- CDI, Clostridium difficile infection
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1, chloride channel accessory 1
- CT, cholera toxin
- CXCR2, C-X-C motif chemokine receptor 2
- DRA, down-regulated in adenoma
- Diarrhea
- ENaC, epithelial sodium channel
- EPEC, enteropathogenic Escherichia coli
- ETEC, enterotoxigenic Escherichia coli
- Enteric Pathogen
- Epithelium
- EspG, Escherichia coli secreted protein G
- GPR39, G-protein coupled receptor 39
- Ion Transport
- KCC, potassium-chloride cotransporter
- LPA, lysophosphatidic acid
- LT, heat-labile toxin
- NHE, sodium/hydrogen exchanger
- NHERF2, sodium/hydrogen exchanger regulatory factor 2
- NKCC, sodium-potassium-2 chloride cotransporter
- ORT, oral rehydration therapy
- PKC, protein kinase C
- SGLT1, sodium-glucose cotransporter 1
- SLC, solute carrier
- ST, heat-stabile toxin
- TNF, tumor necrosis factor
- Tcd, Clostridium difficile toxin
- ZnR, zinc sensing receptor
- cAMP, adenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California
| | - Rashini Jayaratne
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kim E. Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California,Correspondence Address correspondence to: Kim E. Barrett, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.
| |
Collapse
|
32
|
Yu B, Jiang Y, Zhang B, Yang H, Ma T. Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharmacol Res 2017; 129:453-461. [PMID: 29155014 DOI: 10.1016/j.phrs.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
We previously identified, by a natural-product screen, resveratrol oligomers as inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Here, we report the resveratrol dimer trans-ε-viniferin (TV) and tetramer r-2-viniferin (RV) as inhibitors of the intestinal calcium-activated chloride channel (CaCC) and demonstrate their antisecretory efficacy in a neonatal mouse model of rotaviral diarrhea. Short-circuit measurements show inhibition of CaCC current in the human colonic cell line HT-29 by TV and RV with IC50∼1 and 20μM, respectively. TV primarily inhibited the physiologically relevant, long-term CaCC current following agonist stimulation, without effect on cytoplasmic Ca2+ signaling. TV and RV inhibited short-circuit current in mouse colon as well. In a neonatal mouse model of rotaviral secretory diarrhea produced by oral inoculation with rotavirus, 2μg TV or 11μg RV inhibited secretory diarrhea by >50%, without effect on the rotaviral infection. Our results support the antisecretory efficacy of non-toxic, natural-product resveratrol oligomers for diarrheas produced by CaCC activation. Because these compounds also inhibit the CFTR chloride channel, they may be useful for antisecretory therapy of a wide range of diarrheas.
Collapse
Affiliation(s)
- Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China
| | - Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China; College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Bo Zhang
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China.
| | - Tonghui Ma
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
33
|
Abstract
Rotavirus infections are a leading cause of severe, dehydrating gastroenteritis in children <5 years of age. Despite the global introduction of vaccinations for rotavirus over a decade ago, rotavirus infections still result in >200,000 deaths annually, mostly in low-income countries. Rotavirus primarily infects enterocytes and induces diarrhoea through the destruction of absorptive enterocytes (leading to malabsorption), intestinal secretion stimulated by rotavirus non-structural protein 4 and activation of the enteric nervous system. In addition, rotavirus infections can lead to antigenaemia (which is associated with more severe manifestations of acute gastroenteritis) and viraemia, and rotavirus can replicate in systemic sites, although this is limited. Reinfections with rotavirus are common throughout life, although the disease severity is reduced with repeat infections. The immune correlates of protection against rotavirus reinfection and recovery from infection are poorly understood, although rotavirus-specific immunoglobulin A has a role in both aspects. The management of rotavirus infection focuses on the prevention and treatment of dehydration, although the use of antiviral and anti-emetic drugs can be indicated in some cases.
Collapse
|
34
|
An interesting phenomenon in immigrant spouses and elderly suicides in Taiwan. Arch Gerontol Geriatr 2017; 74:128-132. [PMID: 29096227 DOI: 10.1016/j.archger.2017.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Immigration is a global issue. Taiwan has a high proportion of immigrant spouses who take care of the aging parents-in-law at home mainly based on filial piety. Difficulties in communication in many aspects of daily life occur between the elderly and immigrant spouses, and result in the elderly becoming vulnerable and thus, influencing their psychological well-being. Although past studies demonstrated that due to cultural differences, employed foreign care providers negatively influenced elder care quality (e.g., care receipts' health or mortality rates), no studies have explored whether immigrant spouses, as family caregivers, have any influence on elderly suicides due to cross cultural communication differences. OBJECTIVE To address the above gap, this study was to examine the static relationship between immigrant spouses and elderly suicides. METHOD National-level authority data, comprising a 10-year longitudinal nationwide sample, were used. The number of immigrant spouses was treated as a proxy of cultural differences. Twelve models of outcomes with and without city- and time-fixed effects were conducted using panel data analysis. RESULTS Descriptive statistics of the study variables are provided. The results revealed that overall the number of immigrant spouses had a positive correlation with suicides in older adults. Further, the gender of immigrant spouses had different impacts on elderly suicides. CONCLUSIONS This is the first study to examine relation between immigrant spouses and the elderly suicides. The study results provide another viewpoint of understanding of the role of immigrant spouses in elder care, while promoting elder-caregiver interactions for optimal elder health outcomes.
Collapse
|
35
|
Van Sebille YZ, Gibson RJ, Wardill HR, Ball IA, Keefe DM, Bowen JM. Dacomitinib-induced diarrhea: Targeting chloride secretion with crofelemer. Int J Cancer 2017; 142:369-380. [DOI: 10.1002/ijc.31048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Hannah R. Wardill
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Imogen A. Ball
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Dorothy M.K. Keefe
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| | - Joanne M. Bowen
- Discipline of Physiology; Adelaide Medical School, University of Adelaide; Australia
| |
Collapse
|
36
|
Chai R, Chen Y, Yuan H, Wang X, Guo S, Qi J, Zhang H, Zhan Y, An H. Identification of Resveratrol, an Herbal Compound, as an Activator of the Calcium-Activated Chloride Channel, TMEM16A. J Membr Biol 2017; 250:483-492. [PMID: 28852814 DOI: 10.1007/s00232-017-9975-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/30/2017] [Indexed: 12/21/2022]
Abstract
Calcium-activated chloride channels (CaCCs) play vital roles in a variety of physiological processes. Dysfunction of the CaCCs is implicated in many diseases. Drug discovery targeting at CaCCs has recently become possible with the determination that TMEM16A is the molecular identity of CaCCs. In this study, we demonstrated that resveratrol (RES), a Chinese traditional medicine compound, is a novel activator of TMEM16A. The yellow fluorescence protein quenching assay and measurement of intracellular calcium fluorescence intensity show that RES activates TMEM16A channels in an intracellular Ca2+-independent way. The data of inside-out patch clamp revealed that RES dose-dependently activates TMEM16A (EC50 = 47.92 ± 9.35 μM). Furthermore, RES enhanced the contractions of the ileum of guinea pigs by activating the TMEM16A channel, which indicated that RES might be a promising drug for the treatment of gastrointestinal hypomotility. As RES was able to induce TMEM16A channel activation, TMEM16A can be added to the list of RES drug targets.
Collapse
Affiliation(s)
- Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China
| | - Jinlong Qi
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Hebei Province, Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Hebei Province, Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China. .,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China.
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
37
|
Yang H, Ma T. Luminally Acting Agents for Constipation Treatment: A Review Based on Literatures and Patents. Front Pharmacol 2017; 8:418. [PMID: 28713271 PMCID: PMC5491688 DOI: 10.3389/fphar.2017.00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Constipation is one of the most frequently reported gastrointestinal (GI) disorders that negatively impacts quality of life and is associated with a significant economic burden to the patients and society. Traditional treatments including lifestyle modification and laxatives are often ineffective in the more severe forms of constipation and over the long term. New medications targeting at intestinal chloride channels and colonic serotonin receptors have been demonstrated effective in recent years. Emerging agents focusing on improving intestinal secretion and/or colonic motility have been shown effective in animal models and even in clinical trials. Recognization of the role of cystic fibrosis transmembrane regulator (CFTR) and calcium-activated chloride channels (CaCCs) in intestine fluid secretion and motility modulation makes CFTR and CaCCs promising molecule targets for anti-constipation therapy. Although there are multiple choices for constipation treatment, there is still a recognized need for new medications in anti-constipation therapy. The present review covers the discovery of luminally acting agents for constipation treatment described in both patents (2011–present) and scientific literatures.
Collapse
Affiliation(s)
- Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal UniversityDalian, China
| | - Tonghui Ma
- Institute of Traditional Chinese Medicine, Nanjing University of Chinese MedicineNanjing, China
| |
Collapse
|
38
|
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch 2017; 469:1093-1105. [PMID: 28488023 DOI: 10.1007/s00424-017-1987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Rotavirus causes severe diarrhea in small children and is typically treated using glucose-containing oral rehydration solutions; however, glucose may have a detrimental impact on these patients, because it increases chloride secretion and presumably water loss. The rotavirus enterotoxin nonstructural protein 4 (NSP4) directly inhibits glucose-mediated sodium absorption. We examined the effects of NSP4 and glucose on sodium and chloride transport in mouse small intestines and Caco-2 cells. Mouse small intestines and Caco-2 cells were incubated with NSP4114-135 in the presence/absence of glucose. Absorption and secretion of sodium and chloride, fluid movement, peak amplitude of intracellular calcium fluorescence, and expression of Ano1 and sodium-glucose cotransporter 1 were assessed. NHE3 activity increased, and chloride secretory activity decreased with age. Net chloride secretion increased, and net sodium absorption decreased in the intestines of 3-week-old mice compared to 8-week-old mice with NSP4. Glucose increased NSP4-stimulated chloride secretion. Glucose increased NSP4-stimulated increase in short-circuit current measurements (I sc) and net chloride secretion. Ano1 cells with siRNA knockdown showed a significant difference in I sc in the presence of NSP4 and glucose without a significant difference in peak calcium fluorescence intracellular when compared to non-silencing (N.S.) cells. The failure of glucose to stimulate significant sodium absorption was likely due to the inhibition of sodium-hydrogen exchange and sodium-glucose cotransport by NSP4. Since glucose enhances intestinal chloride secretion and fails to increase sodium absorption in the presence of NSP4, glucose-based oral rehydration solutions may not be ideal for the management of rotaviral diarrhea.
Collapse
Affiliation(s)
- Liangjie Yin
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Rejeesh Menon
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Reshu Gupta
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Lauren Vaught
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes 2017; 53:367-376. [PMID: 28289928 DOI: 10.1007/s11262-017-1444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022]
Abstract
Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na+-coupled transport mechanisms at the luminal membrane, including Na+/H+ exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.
Collapse
|
40
|
Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM. The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel. Sci Rep 2017; 7:43487. [PMID: 28256607 PMCID: PMC5335360 DOI: 10.1038/srep43487] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Viroporins are small virus-encoded ion channel proteins. Most viroporins are monovalent selective cation channels, with few showing the ability to conduct divalent cations, like calcium (Ca2+). Nevertheless, some viroporins are known to disrupt host cell Ca2+ homeostasis, which is critical for virus replication and pathogenesis. Rotavirus nonstructural protein 4 (NSP4) is an endoplasmic reticulum transmembrane glycoprotein that has a viroporin domain (VPD), and NSP4 viroporin activity elevates cytosolic Ca2+ in mammalian cells. The goal of this study was to demonstrate that the NSP4 VPD forms an ion channel and determine whether the channel can conduct Ca2+. Using planar lipid bilayer and liposome patch clamp electrophysiology, we show that a synthetic peptide of the NSP4 VPD has ion channel activity. The NSP4 VPD was selective for cations over anions and channel activity was observed to have both well-defined "square top" openings as well as fast current fluctuations, similar to other viroporins. Importantly, the NSP4 VPD showed similar conductance of divalent cations (Ca2+ and Ba2+) as monovalent cations (K+), but a viroporin defective mutant lacked Ca2+ conductivity. These data demonstrate that the NSP4 VPD is a Ca2+-conducting viroporin and establish the mechanism by which NSP4 disturbs host cell Ca2+ homeostasis.
Collapse
Affiliation(s)
- Thieng Pham
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Timothy L. Dosey
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anne H. Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Ousingsawat J, Cabrita I, Wanitchakool P, Sirianant L, Krautwald S, Linkermann A, Schreiber R, Kunzelmann K. Ca 2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cell Mol Life Sci 2017; 74:173-181. [PMID: 27535660 PMCID: PMC11107605 DOI: 10.1007/s00018-016-2338-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
Activated receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain like (MLKL) are essential components of the necroptotic pathway. Phosphorylated MLKL (pMLKL) is thought to induce membrane leakage, leading to cell swelling and disintegration of the cell membrane. However, the molecular identity of the necroptotic membrane pore remains unclear, and the role of pMLKL for membrane permeabilization is currently disputed. We observed earlier that the phospholipid scramblase and ion channel TMEM16F/anoctamin 6 cause large membrane currents, cell swelling, and cell death when activated by a strong increase in intracellular Ca2+. We, therefore, asked whether TMEM16F is also central to necroptotic cell death and other cellular events during necroptosis. Necroptosis was induced by TNFα, smac mimetic, and Z-VAD (TSZ) in NIH3T3 fibroblasts and the four additional cell lines HT29, 16HBE, H441, and L929. Time-dependent changes in intracellular Ca2+, cell morphology, and membrane currents were recorded. TSZ induced a small and only transient oscillatory rise in intracellular Ca2+, which was paralleled by the activation of outwardly rectifying Cl- currents, which were typical for TMEM16F/ANO6. Ca2+ oscillations were due to Ca2+ release from endoplasmic reticulum, and were independent of extracellular Ca2+. The initial TSZ-induced cell swelling was followed by cell shrinkage. Using typical channel blockers and siRNA-knockdown, the Cl- currents were shown to be due to the activation of ANO6. However, the knockdown of ANO6 or inhibitors of ANO6 did not inhibit necroptotic cell death. The present data demonstrate the activation of ANO6 during necroptosis, which, however, is not essential for cell death.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Stefan Krautwald
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
42
|
Yu B, Jiang Y, Jin L, Ma T, Yang H. Role of Quercetin in Modulating Chloride Transport in the Intestine. Front Physiol 2016; 7:549. [PMID: 27932986 PMCID: PMC5120089 DOI: 10.3389/fphys.2016.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Cl− transport in a dose-dependent manner, with EC50 ~37 μM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Cl− currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Cl− currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase, and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.
Collapse
Affiliation(s)
- Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Lingling Jin
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| |
Collapse
|
43
|
Cil O, Phuan PW, Gillespie AM, Lee S, Tradtrantip L, Yin J, Tse M, Zachos NC, Lin R, Donowitz M, Verkman AS. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. FASEB J 2016; 31:751-760. [PMID: 27871064 DOI: 10.1096/fj.201600891r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
Abstract
Secretory diarrheas caused by bacterial enterotoxins, including cholera and traveler's diarrhea, remain a major global health problem. Inappropriate activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel occurs in these diarrheas. We previously reported that the benzopyrimido-pyrrolo-oxazinedione (R)-BPO-27 inhibits CFTR chloride conductance with low-nanomolar potency. Here, we demonstrate using experimental mouse models and human enterocyte cultures the potential utility of (R)-BPO-27 for treatment of secretory diarrheas caused by cholera and Escherichia coli enterotoxins. (R)-BPO-27 fully blocked CFTR chloride conductance in epithelial cell cultures and intestine after cAMP agonists, cholera toxin, or heat-stable enterotoxin of E. coli (STa toxin), with IC50 down to ∼5 nM. (R)-BPO-27 prevented cholera toxin and STa toxin-induced fluid accumulation in small intestinal loops, with IC50 down to 0.1 mg/kg. (R)-BPO-27 did not impair intestinal fluid absorption or inhibit other major intestinal transporters. Pharmacokinetics in mice showed >90% oral bioavailability with sustained therapeutic serum levels for >4 h without the significant toxicity seen with 7-d administration at 5 mg/kg/d. As evidence to support efficacy in human diarrheas, (R)-BPO-27 blocked fluid secretion in primary cultures of enteroids from human small intestine and anion current in enteroid monolayers. These studies support the potential utility of (R)-BPO-27 for therapy of CFTR-mediated secretory diarrheas.-Cil, O., Phuan, P.-W., Gillespie, A. M., Lee, S., Tradtrantip, L., Yin, J., Tse, M., Zachos, N. C., Lin, R., Donowitz, M., Verkman, A. S. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins.
Collapse
Affiliation(s)
- Onur Cil
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Puay-Wah Phuan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Sujin Lee
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Lukmanee Tradtrantip
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Jianyi Yin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ming Tse
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas C Zachos
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruxian Lin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and.,Gastroenterology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California, USA; .,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
44
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
45
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
46
|
Domingue JC, Ao M, Sarathy J, Rao MC. Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl- secretion in human colonic T84 cells. Am J Physiol Cell Physiol 2016; 311:C777-C792. [PMID: 27558159 DOI: 10.1152/ajpcell.00168.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
Bile acids are known to initiate intricate signaling events in a variety of tissues, primarily in the liver and gastrointestinal tract. Of the known bile acids, only the 7α-dihydroxy species, deoxycholic acid and chenodeoxycholic acid (CDCA), and their conjugates, activate processes that stimulate epithelial Cl- secretion. We have previously published that CDCA acts in a rapid manner to stimulate colonic ion secretion via protein kinase A (PKA)-mediated activation of the dominant Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) (Ao M, Sarathy J, Domingue J, Alrefai WA, and Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013); however, PKA signaling did not account for the entire CDCA response. Here we show that in human colonic T84 cells, CDCA's induction of CFTR activity, measured as changes in short-circuit current (Isc), is dependent on epidermal growth factor receptor (EGFR) activation and does not involve the bile acid receptors TGR5 or farnesoid X receptor. CDCA activation of Cl- secretion does not require Src, mitogen-activated protein kinases, or phosphoinositide 3-kinase downstream of EGFR but does require an increase in cytosolic Ca2+ In addition to PKA signaling, we found that the CDCA response requires the novel involvement of the exchange protein directly activated by cAMP (EPAC). EPAC is a known hub for cAMP and Ca2+ cross talk. Downstream of EPAC, CDCA activates Rap2, and changes in free cytosolic Ca2+ were dependent on both EPAC and EGFR activation. This study establishes the complexity of CDCA signaling in the colonic epithelium and shows the contribution of EGFR, EPAC, and Ca2+ in CDCA-induced activation of CFTR-dependent Cl- secretion.
Collapse
Affiliation(s)
- Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; .,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
47
|
Jiang Y, Yu B, Yang H, Ma T. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea. Front Pharmacol 2016; 7:270. [PMID: 27601995 PMCID: PMC4993765 DOI: 10.3389/fphar.2016.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023] Open
Abstract
Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| |
Collapse
|
48
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
49
|
Seo Y, Lee HK, Park J, Jeon DK, Jo S, Jo M, Namkung W. Ani9, A Novel Potent Small-Molecule ANO1 Inhibitor with Negligible Effect on ANO2. PLoS One 2016; 11:e0155771. [PMID: 27219012 PMCID: PMC4878759 DOI: 10.1371/journal.pone.0155771] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
Anoctamin1 (ANO1)/transmembrane protein 16A (TMEM16A), a calcium-activated chloride channel (CaCC), is involved in many physiological functions such as fluid secretion, smooth muscle contraction, nociception and cancer progression. To date, only a few ANO1 inhibitors have been described, and these have low potency and selectivity for ANO1. Here, we performed a high-throughput screening to identify highly potent and selective small molecule inhibitors of ANO1. Three novel ANO1 inhibitors were discovered from screening of 54,400 synthetic small molecules, and they were found to fully block ANO1 channel activity with an IC50 < 3 μM. Electrophysiological analysis revealed that the most potent inhibitor, 2-(4-chloro-2-methylphenoxy)-N-[(2-methoxyphenyl)methylideneamino]-acetamide (Ani9), completely inhibited ANO1 chloride current with submicromolar potency. Notably, unlike previous small-molecule ANO1 inhibitors identified to date, Ani9 displayed high selectivity for ANO1 as compared to ANO2, which shares a high amino acid homology to ANO1. In addition, Ani9 did not affect the intracellular calcium signaling and CFTR chloride channel activity. Our results suggest that Ani9 may be a useful pharmacological tool for studying ANO1 and a potential development candidate for drug therapy of cancer, hypertension, pain, diarrhea and asthma.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Ho K. Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Dong-kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Minjae Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
- * E-mail:
| |
Collapse
|
50
|
Satitsri S, Pongkorpsakol P, Srimanote P, Chatsudthipong V, Muanprasat C. Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice. Virulence 2016; 7:789-805. [PMID: 27222028 DOI: 10.1080/21505594.2016.1192743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cholera is caused by infection with Vibrio cholerae. This study aimed to investigate the pathophysiology of diarrhea caused by the V. cholerae O1 El Tor variant (EL), a major epidemic strain causing severe diarrhea in several regions. In the ligated ileal loop model of EL-induced diarrhea in the ICR mice, a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a calcium-activated chloride channel (CaCC) inhibitor similarly inhibited intestinal fluid secretion. In addition, barrier disruption and NF-κB-mediated inflammatory responses, e.g., iNOS and COX-2 expression, were observed in the infected ileal loops. Interestingly, intestinal fluid secretion and barrier disruption were suppressed by NF-κB and COX-2 inhibitors, whereas an iNOS inhibitor suppressed barrier disruption without affecting fluid secretion. Furthermore, EP2 and EP4 PGE2 receptor antagonists ameliorated the fluid secretion in the infected ileal loops. The amount of cholera toxin (CT) produced in the ileal loops by the EL was ∼2.4-fold of the classical biotype. The CT transcription inhibitor virstatin, a toll-like receptor-4 (TLR-4) antibody and a CT antibody suppressed the EL-induced intestinal fluid secretion, barrier disruption and COX-2 expression. The CT at levels detected during EL infection induced mild intestinal barrier disruption without inducing inflammatory responses in mouse intestine. Collectively, this study indicates that CT-induced intestinal barrier disruption and subsequent TLR-4-NF-κB-mediated COX-2 expression are involved in the pathogenesis of EL-induced diarrhea and represent promising novel therapeutic targets of cholera.
Collapse
Affiliation(s)
- Saravut Satitsri
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Pawin Pongkorpsakol
- b Graduate Program in Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Potjanee Srimanote
- c Graduate Studies, Faculty of Allied Health Science, Thammasat University , Rangsit , Prathumthani , Thailand
| | - Varanuj Chatsudthipong
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,d Excellent Center for Drug Discovery, Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,e Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Ministry of Education , Bangkok , Thailand
| | - Chatchai Muanprasat
- a Department of Physiology , Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,b Graduate Program in Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Ratchathewi , Bangkok , Thailand.,d Excellent Center for Drug Discovery, Faculty of Science, Mahidol University , Ratchathewi , Bangkok , Thailand.,e Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Ministry of Education , Bangkok , Thailand
| |
Collapse
|