1
|
Bi W, Kraft A, Engelskircher S, Mischke J, Witte M, Klawonn F, van Ham M, Cornberg M, Wedemeyer H, Hengst J, Jänsch L. Proteomics reveals a global phenotypic shift of NK cells in HCV patients treated with direct-acting antivirals. Eur J Immunol 2023; 53:e2250291. [PMID: 37515498 DOI: 10.1002/eji.202250291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.
Collapse
Affiliation(s)
- Wenjie Bi
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Sophie Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Moana Witte
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Frank Klawonn
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
2
|
Raïch-Regué D, Resa-Infante P, Gallemí M, Laguia F, Muñiz-Trabudua X, Muñoz-Basagoiti J, Perez-Zsolt D, Chojnacki J, Benet S, Clotet B, Martinez-Picado J, Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol Aspects Med 2023; 90:101113. [PMID: 35981912 PMCID: PMC9923124 DOI: 10.1016/j.mam.2022.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins are cell surface immune receptors known as Siglecs that play a paramount role as modulators of immunity. In recent years, research has underscored how the underlaying biology of this family of receptors influences the outcome of viral infections. While Siglecs are needed to promote effective antiviral immune responses, they can also pave the way to viral dissemination within tissues. Here, we review how recent preclinical findings focusing on the interplay between Siglecs and viruses may translate into promising broad-spectrum therapeutic interventions or key biomarkers to monitor the course of viral infections.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Jakub Chojnacki
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Susana Benet
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Mele D, Pessino G, Trisolini G, Luchena A, Benazzo M, Morbini P, Mantovani S, Oliviero B, Mondelli MU, Varchetta S. Impaired intratumoral natural killer cell function in head and neck carcinoma. Front Immunol 2022; 13:997806. [PMID: 36341402 PMCID: PMC9630640 DOI: 10.3389/fimmu.2022.997806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are emerging as unique players in the immune response against cancer; however, only limited data are available on tumor infiltrating NK cells in head and neck squamous cell carcinoma (HNSCC), one of the most common cancer. Occurrence of HNSCC is closely related to the immune microenvironment, and immunotherapy is increasingly being applied to this setting. However, the limited success of this type of treatment in this tumor calls for further investigation in the field. Surgical HNSSC specimens of 32 consecutive patients were mechanically and enzymatically dissociated. Tumor cells were separated from infiltrating cells by short centrifugation and infiltrating NK cells were phenotypically and functionally characterized by multiple antibody staining and flow cytometry. Tumor infiltrating NK cells in HNSCC showed a peculiar phenotype predominantly characterized by increased NKG2A and reduced Siglec-7, NKG2D, NKp30 and CD16 expression. This phenotype was associated with a decreased ability to perform antibody-dependent cellular cytotoxicity (ADCC). However, NK, CD4 and CD8 shared an increment of glucocorticoid-induced tumor necrosis factor-related (GITR) costimulatory receptor which could be exploited for immunotherapy with agonistic anti-GITR antibodies combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Clinical Immunology and Infectious Diseases, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Trisolini
- Division of Otorhinolaryngology, Department of Surgery, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Alberto Luchena
- Division of Otorhinolaryngology, Department of Surgery, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Division of Otorhinolaryngology, Department of Surgery, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Patrizia Morbini
- Pathology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Pathology, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology and Infectious Diseases, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Mario U. Mondelli
- Division of Clinical Immunology and Infectious Diseases, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Stefania Varchetta, ; Mario U. Mondelli,
| | - Stefania Varchetta
- Division of Clinical Immunology and Infectious Diseases, Fondazione Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
- *Correspondence: Stefania Varchetta, ; Mario U. Mondelli,
| |
Collapse
|
5
|
Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022; 10:biomedicines10051002. [PMID: 35625739 PMCID: PMC9138257 DOI: 10.3390/biomedicines10051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can manifest as acute respiratory distress syndrome and is associated with substantial morbidity and mortality. Extensive data now indicate that immune responses to SARS-CoV-2 infection determine the COVID-19 disease course. A wide range of immunomodulatory agents have been tested for the treatment of COVID-19. Natural killer (NK) cells play an important role in antiviral innate immunity, and anti-SARS-CoV-2 activity and antifibrotic activity are particularly critical for COVID-19 control. Notably, SARS-CoV-2 clearance rate, antibody response, and disease progression in COVID-19 correlate with NK cell status, and NK cell dysfunction is linked with increased SARS-CoV-2 susceptibility. Thus, NK cells function as the key element in the switch from effective to harmful immune responses in COVID-19. However, dysregulation of NK cells has been observed in COVID-19 patients, exhibiting depletion and dysfunction, which correlate with COVID-19 severity; this dysregulation perhaps contributes to disease progression. Given these findings, NK-cell-based therapies with anti-SARS-CoV-2 activity, antifibrotic activity, and strong safety profiles for cancers may encourage the rapid application of functional NK cells as a potential therapeutic strategy to eliminate SARS-CoV-2-infected cells at an early stage, facilitate immune–immune cell interactions, and favor inflammatory processes that prevent and/or reverse over-inflammation and inhibit fibrosis progression, thereby helping in the fight against COVID-19. However, our understanding of the role of NK cells in COVID-19 remains incomplete, and further research on the involvement of NK cells in the pathogenesis of COVID-19 is needed. The rationale of NK-cell-based therapies for COVID-19 has to be based on the timing of therapeutic interventions and disease severity, which may be determined by the balance between beneficial antiviral and potential detrimental pathologic actions. NK cells would be more effective early in SARS-CoV-2 infection and prevent the progression of COVID-19. Immunomodulation by NK cells towards regulatory functions could be useful as an adjunct therapy to prevent the progression of COVID-19.
Collapse
|
6
|
Lindbohm JV, Mars N, Walker KA, Singh‐Manoux A, Livingston G, Brunner EJ, Sipilä PN, Saksela K, Ferrie JE, Lovering RC, Williams SA, Hingorani AD, Gottesman RF, Zetterberg H, Kivimäki M. Plasma proteins, cognitive decline, and 20-year risk of dementia in the Whitehall II and Atherosclerosis Risk in Communities studies. Alzheimers Dement 2022; 18:612-624. [PMID: 34338426 PMCID: PMC9292245 DOI: 10.1002/alz.12419] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Plasma proteins affect biological processes and are common drug targets but their role in the development of Alzheimer's disease and related dementias remains unclear. We examined associations between 4953 plasma proteins and cognitive decline and risk of dementia in two cohort studies with 20-year follow-ups. METHODS In the Whitehall II prospective cohort study proteins were measured using SOMAscan technology. Cognitive performance was tested five times over 20 years. Linkage to electronic health records identified incident dementia. The results were replicated in the Atherosclerosis Risk in Communities (ARIC) study. RESULTS Fifteen non-amyloid/non-tau-related proteins were associated with cognitive decline and dementia, were consistently identified in both cohorts, and were not explained by known dementia risk factors. Levels of six of the proteins are modifiable by currently approved medications for other conditions. DISCUSSION This study identified several plasma proteins in dementia-free people that are associated with long-term risk of cognitive decline and dementia.
Collapse
Affiliation(s)
- Joni V. Lindbohm
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM) HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceIntramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Archana Singh‐Manoux
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Epidemiology of Ageing and Neurodegenerative diseasesUniversité de ParisParisFrance
| | - Gill Livingston
- Division of PsychiatryUniversity College LondonLondonUK
- Camden and Islington Foundation TrustLondonUK
| | - Eric J. Brunner
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
| | - Pyry N. Sipilä
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Kalle Saksela
- Department of VirologyUniversity of Helsinki and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Jane E. Ferrie
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Bristol Medical School (PHS)University of BristolBristolUK
| | - Ruth C. Lovering
- Functional Gene AnnotationInstitute of Cardiovascular ScienceUniversity College LondonLondonUK
| | | | - Aroon D. Hingorani
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- British Heart Foundation Research AcceleratorUniversity College LondonLondonUK
- Health Data ResearchLondonUK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease and UK Dementia Research InstituteUniversity College LondonLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Mika Kivimäki
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Varchetta S, Mele D, D'Ambrosio R, Perbellini R, Lombardi A, Rojas A, Paolucci S, Baldanti F, Oliviero B, Mantovani S, Tinelli C, De Silvestri A, Romero Gomez M, Lampertico P, Mondelli MU. A new algorithm shows superior ability to discriminate liver fibrosis stages in chronic hepatitis C. J Viral Hepat 2021; 28:1443-1451. [PMID: 34228858 DOI: 10.1111/jvh.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Previous evidence suggests that sialic acid-binding Ig-like lectin 7 (Siglec-7) protein is significantly increased in patients with chronic hepatitis C virus (HCV) infection and directly correlates with clinical parameters of liver inflammation and fibrosis. The aim of this study was to determine the diagnostic value of Siglec-7 as a non-invasive tool to assess liver fibrosis in patients with chronic hepatitis C in a cross-sectional study. Serum levels of Siglec-7 were retrospectively tested in 1007 consecutive patients with chronic HCV infection recruited at three different European sites and data examined by the 'imperfect gold-standard' statistical analysis. Liver stiffness obtained by transient elastography (TE) was considered the standard reference. Liver fibrosis was staged according to published cut-offs of liver stiffness measurement by TE. Accuracy of detection of liver fibrosis stage was not increased by Siglec-7 alone. However, we developed a new index (SiGAP) including Siglec-7, γ-glutamyl transferase, age and platelet count which showed increased sensitivity and specificity in predicting fibrosis compared with APRI or FIB4 indices. The AUROC of SiGAP for the diagnosis of significant (≥F2) and advanced liver fibrosis (≥F3) showed significantly higher values than those of APRI and FIB-4. Siglec-7 may be useful as a complementary tool to assess liver fibrosis stage in patients with chronic hepatitis C when included in a specifically designed algorithm, which showed high level of accuracy in the detection of F2 and F3 fibrosis stage.
Collapse
Affiliation(s)
- Stefania Varchetta
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta D'Ambrosio
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrea Lombardi
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angela Rojas
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Stefania Paolucci
- Molecular Virology Unit, Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Division of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carmine Tinelli
- Biostatistics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Manuel Romero Gomez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,UGC de Enfermedades Digestivas, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, CRC "A.M. and A. Migliavacca" Centre for Liver Disease, University of Milan, Milan, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Hong S, Yu C, Rodrigues E, Shi Y, Chen H, Wang P, Chapla DG, Gao T, Zhuang R, Moremen KW, Paulson JC, Macauley MS, Wu P. Modulation of Siglec-7 Signaling Via In Situ-Created High-Affinity cis-Ligands. ACS CENTRAL SCIENCE 2021; 7:1338-1346. [PMID: 34471678 PMCID: PMC8393205 DOI: 10.1021/acscentsci.1c00064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Sialic acid-binding immunoglobulin-like lectins, also known as Siglecs, have recently been designated as glyco-immune checkpoints. Through their interactions with sialylated glycan ligands overexpressed on tumor cells, inhibitory Siglecs on innate and adaptive immune cells modulate signaling cascades to restrain anti-tumor immune responses. However, the elucidation of the mechanisms underlying these processes is just beginning. We find that when human natural killer (NK) cells attack tumor cells, glycan remodeling occurs on the target cells at the immunological synapse. This remodeling occurs through both the transfer of sialylated glycans from NK cells to target tumor cells and the accumulation of de novo synthesized sialosides on the tumor cells. The functionalization of NK cells with a high-affinity ligand of Siglec-7 leads to multifaceted consequences in modulating a Siglec-7-regulated NK-activation. At high levels of ligand, an enzymatically added Siglec-7 ligand suppresses NK cytotoxicity through the recruitment of Siglec-7 to an immune synapse, whereas at low levels of ligand an enzymatically added Siglec-7 ligand triggers the release of Siglec-7 from the cell surface into the culture medium, preventing a Siglec-7-mediated inhibition of NK cytotoxicity. These results suggest that a glycan engineering of NK cells may provide a means to boost NK effector functions for related applications.
Collapse
Affiliation(s)
- Senlian Hong
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenhua Yu
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
- Tianjin
Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin 300060, China
| | - Emily Rodrigues
- Department of Chemistry, Department of Medical
Microbiology and Immunology, University
of Alberta, 11227 Saskatchewan Drive NW, Edmonton AB T6G 2G2, Alberta, Canada
| | - Yujie Shi
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Hongmin Chen
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Wang
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Tao Gao
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruoxuan Zhuang
- State
Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology
Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical
Microbiology and Immunology, University
of Alberta, 11227 Saskatchewan Drive NW, Edmonton AB T6G 2G2, Alberta, Canada
| | - Peng Wu
- Department of Molecular Medicine, Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla 92037, California, United States
| |
Collapse
|
9
|
Guo C, Dong C, Zhang J, Wang R, Wang Z, Zhou J, Wang W, Ji B, Ma B, Ge Y, Wang Z. An Immune Signature Robustly Predicts Clinical Deterioration for Hepatitis C Virus-Related Early-Stage Cirrhosis Patients. Front Med (Lausanne) 2021; 8:716869. [PMID: 34350203 PMCID: PMC8326446 DOI: 10.3389/fmed.2021.716869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV)-related cirrhosis leads to a heavy global burden of disease. Clinical risk stratification in HCV-related compensated cirrhosis remains a major challenge. Here, we aim to develop a signature comprised of immune-related genes to identify patients at high risk of progression and systematically analyze immune infiltration in HCV-related early-stage cirrhosis patients. Bioinformatics analysis was applied to identify immune-related genes and construct a prognostic signature in microarray data set. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were conducted with the “clusterProfiler” R package. Besides, the single sample gene set enrichment analysis (ssGSEA) was used to quantify immune-related risk term abundance. The nomogram and calibrate were set up via the integration of the risk score and clinicopathological characteristics to assess the effectiveness of the prognostic signature. Finally, three genes were identified and were adopted to build an immune-related prognostic signature for HCV-related cirrhosis patients. The signature was proved to be an independent risk element for HCV-related cirrhosis patients. In addition, according to the time-dependent receiver operating characteristic (ROC) curves, nomogram, and calibration plot, the prognostic model could precisely forecast the survival rate at the first, fifth, and tenth year. Notably, functional enrichment analyses indicated that cytokine activity, chemokine activity, leukocyte migration and chemotaxis, chemokine signaling pathway and viral protein interaction with cytokine and cytokine receptor were involved in HCV-related cirrhosis progression. Moreover, ssGSEA analyses revealed fierce immune-inflammatory response mechanisms in HCV progress. Generally, our work developed a robust prognostic signature that can accurately predict the overall survival, Child-Pugh class progression, hepatic decompensation, and hepatocellular carcinoma (HCC) for HCV-related early-stage cirrhosis patients. Functional enrichment and further immune infiltration analyses systematically elucidated potential immune response mechanisms.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenglai Dong
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Ji
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Yang L, Feng Y, Wang S, Jiang S, Tao L, Li J, Wang X. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia. Int Immunopharmacol 2021; 99:107965. [PMID: 34273636 DOI: 10.1016/j.intimp.2021.107965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Immune dysfunction is an established risk factor in acute myeloid leukemia (AML). The cytotoxicity of natural killer (NK) cells is greatly impaired in AML, and the profile of NK cell receptors is markedly altered in AML; however, this is not yet well characterized. In this study, we found the downregulation of Siglec-7 could be utilized as a potential marker of NK cell dysfunction in AML. The absolute numbers and percentages of NK cells were declined in the peripheral blood of patients with AML, and the levels of activating receptors NKG2D, NKp46, and NKp30 were reduced in NK cells from patients with AML compared with healthy controls. In contrast, the levels of inhibitory receptors TIM-3, ILT-4, ILT-5, and PD-1 were increased in NK cells from patients with AML. Of note, the level of Siglec-7 in NK cells from patients with AML was significantly lower than that in NK cells from healthy controls, and Siglec-7+ NK cells displayed higher levels of activating receptors and stronger cytotoxicity when compared with Siglec-7- NK cells. Our data indicate that decreased Siglec-7 level may predict NK cell dysfunction in AML, and NK cells may be promising targets of immunotherapy for AML.
Collapse
Affiliation(s)
- Liu Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Feng
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Shanshan Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Shanyue Jiang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
11
|
Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, Seiffert S, Weyh MK, Köhl U, Sack U, Boldt A. Detection of Immune Checkpoint Receptors - A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12:694055. [PMID: 34276685 PMCID: PMC8281132 DOI: 10.3389/fimmu.2021.694055] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels.
Collapse
Affiliation(s)
- Benjamin Shibru
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Fey
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | - Friederike Fürst
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Max Weise
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sabine Seiffert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maria Katharina Weyh
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Phenotypic Characterization by Single-Cell Mass Cytometry of Human Intrahepatic and Peripheral NK Cells in Patients with Hepatocellular Carcinoma. Cells 2021; 10:cells10061495. [PMID: 34198593 PMCID: PMC8231799 DOI: 10.3390/cells10061495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Overall response rates of systemic therapies against advanced hepatocellular carcinoma (HCC) remain unsatisfactory. Thus, searching for new immunotherapy targets is indispensable. NK cells are crucial effectors and regulators in the tumor microenvironment and a determinant of responsiveness to checkpoint inhibitors. We revealed the landscape of NK cell phenotypes in HCC patients to find potential immunotherapy targets. Using single cell mass cytometry, we analyzed 32 surface markers on CD56dim and CD56bright NK cells, which included Sialic acid-binding immunoglobulin-type lectins (Siglecs). We compared peripheral NK cells between HCC patients and healthy volunteers. We also compared NK cells, in terms of their localizations, on an individual patient bases between peripheral and intrahepatic NK cells from cancerous and noncancerous liver tissues. In the HCC patient periphery, CD160+CD56dim NK cells that expressed Siglec-7, NKp46, and NKp30 were reduced, while CD49a+CD56dim NK cells that expressed Siglec-10 were increased. CD160 and CD49a on CD56dim NK cells were significantly correlated to other NK-related markers in HCC patients, which suggested that CD160 and CD49a were signature molecules. CD49a+ CX3CR1+ Siglec-10+ NK cells had accumulated in HCC tissues. Considering further functional analyses, CD160, CD49a, CX3CR1, and Siglec-10 on CD56dim NK cells may be targets for immunotherapies of HCC patients.
Collapse
|
13
|
Varchetta S, Mele D, Oliviero B, Mantovani S, Ludovisi S, Cerino A, Bruno R, Castelli A, Mosconi M, Vecchia M, Roda S, Sachs M, Klersy C, Mondelli MU. Unique immunological profile in patients with COVID-19. Cell Mol Immunol 2021. [PMID: 33060840 DOI: 10.21203/rs.3.rs-23953/v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The relationship between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host immunity is poorly understood. We performed an extensive analysis of immune responses in 32 patients with severe COVID-19, some of whom succumbed. A control population of healthy subjects was included. Patients with COVID-19 had an altered distribution of peripheral blood lymphocytes, with an increased proportion of mature natural killer (NK) cells and low T-cell numbers. NK cells and CD8+ T cells overexpressed T-cell immunoglobulin and mucin domain-3 (TIM-3) and CD69. NK cell exhaustion was attested by increased frequencies of programmed cell death protein 1 (PD-1) positive cells and reduced frequencies of natural killer group 2 member D (NKG2D)-, DNAX accessory molecule-1 (DNAM-1)- and sialic acid-binding Ig-like lectin 7 (Siglec-7)-expressing NK cells, associated with a reduced ability to secrete interferon (IFN)γ. Patients with poor outcome showed a contraction of immature CD56bright and an expansion of mature CD57+ FcεRIγneg adaptive NK cells compared to survivors. Increased serum levels of IL-6 were also more frequently identified in deceased patients compared to survivors. Of note, monocytes secreted abundant quantities of IL-6, IL-8, and IL-1β which persisted at lower levels several weeks after recovery with concomitant normalization of CD69, PD-1 and TIM-3 expression and restoration of CD8+ T cell numbers. A hyperactivated/exhausted immune response dominate in severe SARS-CoV-2 infection, probably driven by an uncontrolled secretion of inflammatory cytokines by monocytes. These findings unveil a unique immunological profile in COVID-19 patients that will help to design effective stage-specific treatments for this potentially deadly disease.
Collapse
Affiliation(s)
- Stefania Varchetta
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Ludovisi
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Antonella Cerino
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alberto Castelli
- Division of Orthopaedics and Traumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Mosconi
- Division of Orthopaedics and Traumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Vecchia
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Roda
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Sachs
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Catherine Klersy
- Clinical Epidemiology & Biometry Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases II and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| |
Collapse
|
14
|
Sakamoto Y, Yoshio S, Doi H, Mori T, Matsuda M, Kawai H, Shimagaki T, Yoshikawa S, Aoki Y, Osawa Y, Yoshida Y, Arai T, Itokawa N, Atsukawa M, Ito T, Honda T, Mise Y, Ono Y, Takahashi Y, Saiura A, Taketomi A, Kanto T. Increased Frequency of Dysfunctional Siglec-7 -CD57 +PD-1 + Natural Killer Cells in Patients With Non-alcoholic Fatty Liver Disease. Front Immunol 2021; 12:603133. [PMID: 33692781 PMCID: PMC7938755 DOI: 10.3389/fimmu.2021.603133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disorder that can develop into liver fibrosis and hepatocellular carcinoma. Natural killer (NK) cells have been shown to protect against liver fibrosis and tumorigenesis, suggesting that they may also play a role in the pathogenesis of NAFLD. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of inhibitory and activating receptors expressed by many cell types, including NK cells. Here, we investigated the phenotypic profiles of peripheral blood and intrahepatic NK cells, including expression of Siglecs and immune checkpoint molecules, and their association with NK cell function in patients with NAFLD. Immune cells in the peripheral blood of 42 patients with biopsy-proven NAFLD and 13 healthy volunteers (HVs) were identified by mass cytometry. The function of various NK cell subpopulations was assessed by flow cytometric detection of intracellular IFN-γ and CD107a/LAMP-1, a degranulation marker, after in vitro stimulation. We found that peripheral blood from NAFLD patients, regardless of fibrosis stage, contained significantly fewer total CD56+ NK cell and CD56dim NK cell populations compared with HVs, and the CD56dim cells from NAFLD patients were functionally impaired. Among the Siglecs examined, NK cells predominantly expressed Siglec-7 and Siglec-9, and both the expression levels of Siglec-7 and Siglec-9 on NK cells and the frequencies of Siglec-7+CD56dim NK cells were reduced in NAFLD patients. Notably, Siglec-7 levels on CD56dim NK cells were inversely correlated with PD-1, CD57, and ILT2 levels and positively correlated with NKp30 and NKp46 levels. Further subtyping of NK cells identified a highly dysfunctional Siglec-7-CD57+PD-1+CD56dim NK cell subset that was increased in patients with NAFLD, even those with mild liver fibrosis. Intrahepatic NK cells from NAFLD patients expressed elevated levels of NKG2D and CD69, suggesting a more activated phenotype than normal liver NK cells. These data identify a close association between NK cell function and expression of Siglec-7, CD57, and PD-1 that could potentially be therapeutically targeted in NAFLD.
Collapse
Affiliation(s)
- Yuzuru Sakamoto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyoshi Doi
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Michitaka Matsuda
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hironari Kawai
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomonari Shimagaki
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shiori Yoshikawa
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiko Aoki
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Osawa
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuji Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Takanori Ito
- Division of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Division of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Mise
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiro Ono
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Takahashi
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akio Saiura
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akinobu Taketomi
- Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
16
|
Yoshio S, Kanto T. Macrophages as a source of fibrosis biomarkers for non-alcoholic fatty liver disease. Immunol Med 2021; 44:175-186. [PMID: 33444517 DOI: 10.1080/25785826.2020.1868664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) are becoming major liver diseases worldwide. Liver fibrosis and cirrhosis are among the most significant risk factors of hepatocellular carcinoma (HCC) and associated with the long-term prognosis of NAFLD patients. To stratify the risk of HCC in NAFLD patients clinically, the discovery of non-invasive fibrosis markers is needed urgently. Liver macrophages play critical roles in the regulation of inflammation and fibrosis by interacting with hepatic stellate cells (HSCs) and other immune cells. Thus, it is rational to explore feasible biomarkers for liver fibrosis by focusing on macrophage-related factors. We examined serum factors comprehensively in multiple cohorts of NAFLD/NASH patients to determine whether they were correlated with the biopsy-proven fibrosis stage. We found that the serum levels of interleukin (IL)-34, YKL-40 and soluble Siglec-7 (sSiglec7) were closely associated with liver fibrosis and served as diagnostic biomarkers in patients with NAFLD/NASH. In the NAFLD liver, IL-34 was produced by activated fibroblasts, and YKL-40 and sSiglec-7 were secreted from macrophages. The sensitivity and specificity of these markers to detect advanced liver fibrosis varied, supporting the notion that the combination of these markers with other modalities is an option for clinical application.
Collapse
Affiliation(s)
- Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
17
|
Sung PS, Shin EC. Immunological Mechanisms for Hepatocellular Carcinoma Risk after Direct-Acting Antiviral Treatment of Hepatitis C Virus Infection. J Clin Med 2021; 10:E221. [PMID: 33435135 PMCID: PMC7827927 DOI: 10.3390/jcm10020221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Direct-acting antiviral agents (DAAs) that allow for rapid clearance of hepatitis C virus (HCV) may evoke immunological changes. Some cases of rapid de novo hepatocellular carcinoma (HCC) development or early recurrence of HCC after DAA treatment have been reported. During chronic HCV infection, natural killer (NK) cells exhibited a deviant functional phenotype with decreased production of antiviral cytokines and increased cytotoxicity; however, DAA treatment rapidly decreased their cytotoxic function. Effective DAA therapy also suppressed the intrahepatic activation of macrophages/monocytes. This was followed by a decrease in mucosal-associated invariant T (MAIT) cell cytotoxicity without normalization of cytokine production. Rapid changes in the phenotypes of NK and MAIT cells after DAA treatment may attenuate the cytotoxicity of these cells against cancer cells. Moreover, DAA treatment did not normalize the increased frequencies of regulatory T cells even after clearance of HCV infection. Thus, the persistently increased frequency of regulatory T cells may contribute to a local immunosuppressive milieu and hamper the clearance of cancer cells. This review will focus on recent studies describing the changes in innate and adaptive immune responses after DAA treatment in patients with chronic HCV infection in the context of de novo occurrence or recurrence of HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- The Catholic Liver Research Center, The Catholic University of Korea, Seoul 06591, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Korea
| |
Collapse
|
18
|
Unique immunological profile in patients with COVID-19. Cell Mol Immunol 2020; 18:604-612. [PMID: 33060840 PMCID: PMC7557230 DOI: 10.1038/s41423-020-00557-9] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
The relationship between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host immunity is poorly understood. We performed an extensive analysis of immune responses in 32 patients with severe COVID-19, some of whom succumbed. A control population of healthy subjects was included. Patients with COVID-19 had an altered distribution of peripheral blood lymphocytes, with an increased proportion of mature natural killer (NK) cells and low T-cell numbers. NK cells and CD8+ T cells overexpressed T-cell immunoglobulin and mucin domain-3 (TIM-3) and CD69. NK cell exhaustion was attested by increased frequencies of programmed cell death protein 1 (PD-1) positive cells and reduced frequencies of natural killer group 2 member D (NKG2D)-, DNAX accessory molecule-1 (DNAM-1)- and sialic acid-binding Ig-like lectin 7 (Siglec-7)-expressing NK cells, associated with a reduced ability to secrete interferon (IFN)γ. Patients with poor outcome showed a contraction of immature CD56bright and an expansion of mature CD57+ FcεRIγneg adaptive NK cells compared to survivors. Increased serum levels of IL-6 were also more frequently identified in deceased patients compared to survivors. Of note, monocytes secreted abundant quantities of IL-6, IL-8, and IL-1β which persisted at lower levels several weeks after recovery with concomitant normalization of CD69, PD-1 and TIM-3 expression and restoration of CD8+ T cell numbers. A hyperactivated/exhausted immune response dominate in severe SARS-CoV-2 infection, probably driven by an uncontrolled secretion of inflammatory cytokines by monocytes. These findings unveil a unique immunological profile in COVID-19 patients that will help to design effective stage-specific treatments for this potentially deadly disease.
Collapse
|
19
|
Discovery of a new sialic acid binding region that regulates Siglec-7. Sci Rep 2020; 10:8647. [PMID: 32457377 PMCID: PMC7250851 DOI: 10.1038/s41598-020-64887-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/21/2020] [Indexed: 11/11/2022] Open
Abstract
Siglec-7 is a human CD33-like siglec, and is localised predominantly on human natural killer (NK) cells and monocytes. Siglec-7 is considered to function as an immunoreceptor in a sialic acid-dependent manner. However, the underlying mechanisms linking sialic acid-binding and function remain unknown. Here, to gain new insights into the ligand-binding properties of Siglec-7, we carried out in silico analysis and site-directed mutagenesis, and found a new sialic acid-binding region (site 2 containing R67) in addition to the well-known primary ligand-binding region (site 1 containing R124). This was supported by equilibrium dialysis, STD-NMR experiments, and inhibition analysis of GD3-binding toward Siglec-7 using synthetic sialoglycoconjugates and a comprehensive set of ganglioside-based glycoconjugates. Our results suggest that the two ligand-binding sites are potentially controlled by each other due to the flexible conformation of the C-C′ loop of Siglec-7.
Collapse
|
20
|
Tao L, Wang S, Yang L, Jiang L, Li J, Wang X. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin Exp Immunol 2020; 201:161-170. [PMID: 32319079 DOI: 10.1111/cei.13444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I)-dependent inhibitory receptors on natural killer (NK) cells have been found to contribute to NK cell dysfunction in hepatocellular carcinoma (HCC). However, the roles of MHC-I-independent inhibitory receptors on NK cells in HCC remain poorly defined. In this study, we analyzed the expression of the MHC-I-independent inhibitory receptors sialic acid-binding immunoglobulin-like lectin (Siglec)-7 and Siglec-9 on NK cells by analyzing the peripheral blood of 35 HCC patients and 63 healthy donors. We observed that HCC patients had lower frequencies and total numbers of NK cells in the peripheral blood. Importantly, both the expression levels of Siglec-7 on NK cells and the frequencies of Siglec-7+ NK cells were significantly reduced in HCC patients, which was accompanied by a decrease in activating receptor and an increase in inhibitory receptor expression on NK cells. Moreover, Siglec-7+ NK cells expressed higher levels of activating receptors and displayed stronger effector functions, compared with Siglec-7- NK cells. Our findings demonstrate for the first time that reduced Siglec-7 expression predicts NK cell dysfunction in HCC patients, suggesting that Siglec-7 may be a potential marker of functional NK cell subset in HCC patients.
Collapse
Affiliation(s)
- L Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - S Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - L Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - L Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - J Li
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - X Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression. J Immunol Res 2020; 2020:6243819. [PMID: 32322597 PMCID: PMC7165337 DOI: 10.1155/2020/6243819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
The function of natural killer (NK) cells, defending against virus infection and tumour progression, is regulated by multiple activating and inhibiting receptors expressed on NK cells, among which sialic acid-bind immunoglobulin-like lectins (Siglecs) act as a vital inhibitory group. Previous studies have shown that Siglec7 and Siglec9 are expressed on NK cells, which negatively regulate the function of NK cells and modulate the immune response through the interaction of sialic acid-containing ligands. Siglec7 and Siglec9 are very similar in distribution, gene encoding, protein sequences, ligand affinity, and functions in regulating the immune system against virus and cancers, but differences still exist between them. In this review, we aim to discuss the similarities and differences between Siglec7 and Siglec9 and analyze their functions in virus infection and tumour progression in order to develop better anti-viral and anti-tumor immunotherapy in the future.
Collapse
|
22
|
Tan F, Chen X, Zhang H, Yuan J, Sun C, Xu F, Huang L, Zhang X, Guan H, Chen Z, Wang C, Fan S, Zeng L, Ma X, Ye W, He W, Lu P, Petritis B, Huang RP, Yang Z. Differences in serum proteins in traditional Chinese medicine constitutional population: Analysis and verification. J Leukoc Biol 2020; 108:547-557. [PMID: 32248572 DOI: 10.1002/jlb.6vma0220-663rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Traditional Chinese medicine assigns individuals into different categories called "constitutions" to help guide the clinical treatment according to subjective physiologic, psychologic analyses, large-scale clinical observations, and epidemiologic studies. To further explore more objective expressions of constitutions, antibody microarrays were used to analyze the serologic protein profiles of two different constitutions, a balanced (or healthy) constitution (BC) and the dampness constitution (DC) comprising phlegm-dampness and damp-heat constitutions. The profiles of changing constitutions across time were also analyzed. Nineteen differentially expressed proteins between the two groups were identified, with known biologic functions involved in immunity and inflammation. This proteomic study may provide a biologic explanation why the BC is different than the dampness constitution.
Collapse
Affiliation(s)
- Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huihua Zhang
- South China Biochip Research Center, Guangzhou, China.,RayBiotech, Inc., Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Shaoyi Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Liling Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Xiaoming Ma
- The 8th People's Hospital of Nanhai District, Foshan, China
| | - Weicheng Ye
- The 8th People's Hospital of Nanhai District, Foshan, China
| | - Weitong He
- The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, China
| | - Peixia Lu
- Xiqiao town Community Health Service Center, Foshan, China
| | | | - Ruo-Pan Huang
- South China Biochip Research Center, Guangzhou, China.,RayBiotech, Inc., Guangzhou, China.,RayBiotech Life, Inc., Peachtree Corners, Georgia, USA
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| |
Collapse
|
23
|
Sakamoto Y, Yoshio S, Doi H, Kawai H, Shimagaki T, Mori T, Matsuda M, Aoki Y, Osawa Y, Yoshida Y, Arai T, Itokawa N, Ito T, Seko Y, Yamaguchi K, Itoh Y, Mise Y, Saiura A, Taketomi A, Kanto T. Serum soluble sialic acid-binding immunoglobulin-like lectin-7 concentration as an indicator of liver macrophage activation and advanced fibrosis in patients with non-alcoholic fatty liver disease. Hepatol Res 2020; 50:466-477. [PMID: 31808236 DOI: 10.1111/hepr.13464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
AIM Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver disease worldwide. Because liver fibrosis is associated with the long-term prognosis of patients with NAFLD, there is an urgent need for non-invasive markers of liver fibrosis. Sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is an immunomodulatory molecule expressed on various immune cells, including macrophages, which plays a key role in liver inflammation and fibrosis in NAFLD. We aimed to determine whether serum levels of soluble Siglec-7 (sSiglec-7) could have utility at a marker of fibrosis in this patient population. METHODS We examined serum samples from 93 NAFLD patients and 19 healthy donors for macrophage-associated protein, including sSiglec-7, soluble CD163, and YKL-40, and examined their correlation with liver fibrosis scores, tissue elastography, and histological findings. Independent factors associated with advanced fibrosis were analyzed using a logistic regression model and a decision tree. To clarify the source of sSiglec-7, we examined its expression in liver tissue-derived macrophages and cultured monocyte-derived macrophages. RESULTS Serum sSiglec-7 levels were significantly higher in NAFLD patients compared with healthy donors, and correlated positively with sCD163 and YKL-40 levels. Serum sSiglec-7 was an independent diagnostic marker with high specificity (96.3%) for advanced fibrosis (F3 and F4) in NAFLD patients. Siglec-7 was mainly expressed on CCR2+ macrophages in the liver, and sSiglec-7 production by monocyte-derived macrophages in vitro was increased after stimulation by pro-inflammatory factors. CONCLUSIONS Elevated serum sSiglec-7 could serve as an independent marker with high specificity for advanced liver fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Yuzuru Sakamoto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan.,Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hiroyoshi Doi
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hironari Kawai
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tomonari Shimagaki
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Taizo Mori
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Michitaka Matsuda
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoshihiko Aoki
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuji Yoshida
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Taeang Arai
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Norio Itokawa
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Takanori Ito
- Division of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Seko
- Division of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Division of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihito Itoh
- Division of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihiro Mise
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akio Saiura
- Department of Hepato-Pancreatic-Biliary Surgery, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akinobu Taketomi
- Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
24
|
Huang HT, Su SC, Chiou TJ, Lin YH, Shih YC, Wu YX, Fan TH, Twu YC. DNA methylation-mediated Siglec-7 regulation in natural killer cells via two 5' promoter CpG sites. Immunology 2020; 160:38-51. [PMID: 32027025 DOI: 10.1111/imm.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
First discovered on the natural killer (NK) cell, the cell surface inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is known for regulating many important biological activities. However, the detail regulatory mechanism for Siglec-7 expression in NK cells currently remains unclear. In this study, we aimed to investigate how cell surface Siglec-7 expression is regulated and found that, in both NK cell lines and peripheral NK cells, transcription was the main regulatory step. Furthermore, when NK-92MI and peripheral NK cells were treated with DNA methyltransferase (DNMT) inhibitor, the CpG island, with 9 CpG sites, in 5' Siglec-7 promoter became noticeably hypomethylated, and Siglec-7 expression increased in both RNA transcript and surface protein. Within this CpG island, we identified both CpG 8 and CpG 9 as two key regulators responsible for Siglec-7 expression. Additionally, by using histone deacetylases (HDAC) inhibitor, butyric acid, we showed that Siglec-7 expression was also subjected to the histone modification. And a combined treatment with both 5-azacytidine and butyric acid showed an additive effect on Siglec-7 transcript expression in peripheral NK cells.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chen Shih
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Hsi Fan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Hong W, Yuan H, Gu Y, Liu M, Ji Y, Huang Z, Yang J, Ma L. Immune-related prognosis biomarkers associated with osteosarcoma microenvironment. Cancer Cell Int 2020; 20:83. [PMID: 32190007 PMCID: PMC7075043 DOI: 10.1186/s12935-020-1165-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/04/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteosarcoma is a highly aggressive bone tumor that most commonly affects children and adolescents. Treatment and outcomes for osteosarcoma have remained unchanged over the past 30 years. The relationship between osteosarcoma and the immune microenvironment may represent a key to its undoing. METHODS We calculated the immune and stromal scores of osteosarcoma cases from the Target database using the ESTIMATE algorithm. Then we used the CIBERSORT algorithm to explore the tumor microenvironment and analyze immune infiltration of osteosarcoma. Differentially expressed genes (DEGs) were identified based on immune scores and stromal scores. Search Tool for the Retrieval of Interacting Genes Database (STRING) was utilized to assess protein-protein interaction (PPI) information, and Molecular Complex Detection (MCODE) plugin was used to screen hub modules of PPI network in Cytoscape. The prognostic value of the gene signature was validated in an independent GSE39058 cohort. Gene set enrichment analysis (GSEA) was performed to study the hub genes in signaling pathways. RESULTS From 83 samples of osteosarcoma obtained from the Target dataset, 137 DEGs were identified, including 134 upregulated genes and three downregulated genes. Functional enrichment analysis and PPI networks demonstrated that these genes were mainly involved in neutrophil degranulation and neutrophil activation involved in immune response, and participated in neuroactive ligand-receptor interaction and staphylococcus aureus infection. CONCLUSIONS Our study established an immune-related gene signature to predict outcomes of osteosarcoma, which may be important targets for individual treatment.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Yuexiu District, Guangzhou, 510030 Guangdong China
- Morning Star Academic Cooperation, Shanghai, China
| | - Hong Yuan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Morning Star Academic Cooperation, Shanghai, China
| | - Yujun Gu
- The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Yayun Ji
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Zifang Huang
- The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Junlin Yang
- The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Yuexiu District, Guangzhou, 510030 Guangdong China
| |
Collapse
|
27
|
Abou Hassan F, Bou Hamdan M, Melhem NM. The Role of Natural Killer Cells and Regulatory T Cells While Aging with Human Immunodeficiency Virus. AIDS Res Hum Retroviruses 2019; 35:1123-1135. [PMID: 31510754 DOI: 10.1089/aid.2019.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined antiretroviral therapy (cART) has increased the quality of life of people living with HIV (PLHIV). Consequently, the number of PLHIV >50 years is increasing worldwide. Patients on cART are known to remain in a proinflammatory state. The latter is linked to the development of non-AIDS-related chronic conditions. Although the number of aging PLHIV is increasing, the effect of HIV infection on the process of aging is not fully understood. Understanding the complexity of aging with HIV by investigating the effect of the latter on different components of the innate and adaptive immune systems is important to reduce the impact of these comorbid conditions and improve the quality of life of PLHIV. The role of killer immunoglobulin receptors (KIRs), expressed on the surface of natural killer (NK) cells, and their human leukocyte antigen (HLA) ligands in the clearance, susceptibility to or disease progression following HIV infection is well established. However, data on the effect of KIR-HLA interaction in aging HIV-infected population and the development of non-AIDS-related comorbid conditions are lacking. Moreover, conflicting data exist on the role of regulatory T cells (Tregs) during HIV infection. The purpose of this review is to advance the current knowledge on the role of NK cells and Tregs while aging with HIV infection.
Collapse
Affiliation(s)
- Farouk Abou Hassan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mirna Bou Hamdan
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada M. Melhem
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
28
|
Legrand F, Landolina N, Zaffran I, Emeh RO, Chen E, Klion AD, Levi-Schaffer F. Siglec-7 on peripheral blood eosinophils: Surface expression and function. Allergy 2019; 74:1257-1265. [PMID: 30690753 DOI: 10.1111/all.13730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Siglec-7 is an inhibitory receptor (IR) expressed on human blood eosinophils. Whereas activation of other IRs, including Siglec-8 and CD300a, has been shown to downregulate eosinophil function, little is known about the role of Siglec-7 on human eosinophils. OBJECTIVE To examine Siglec-7 expression and function in eosinophils from normal (ND) and eosinophilic (EO) donors. METHODS Eosinophil expression of Siglec-7 was quantified by flow cytometry and quantitative PCR. Soluble Siglec-7 (sSiglec-7) levels were measured by ELISA in serum. The effect of Siglec-7 on eosinophil viability and degranulation was assessed in vitro by AnnexinV-FITC/7-AAD staining and by measuring GM-CSF-induced mediator release in culture supernatants. Signal transduction was studied by Western blot. RESULTS Siglec-7 was expressed ex vivo on blood eosinophils from all eosinophilic and normal individuals studied. Siglec-7 surface, but not SIGLEC-7mRNA expression, was correlated with absolute eosinophil count (AEC). Siglec-7 was upregulated on purified eosinophils after in vitro stimulation with GM-CSF or IL-5. Serum sSiglec-7 was detectable in 133/144 subjects tested and correlated with AEC. Siglec-7 cross-linking inhibited GM-CSF-induced release of eosinophil peroxidase, TNF-α, and IL-8 (n = 7-8) but did not promote eosinophil apoptosis (n = 5). Finally, Siglec-7 cross-linking on GM-CSF-activated eosinophils induced phosphorylation of SHP-1 and de-phosphorylation of ERK1/2 and p38. CONCLUSIONS Siglec-7 is constitutively expressed on human eosinophils and downmodulates eosinophil activation. Targeting of Siglec-7 on eosinophils might enhance treatment efficacy in eosinophil-driven disorders. Conversely, therapeutic interventions that inhibit Siglec-7 could have unanticipated consequences and promote eosinophilic inflammation.
Collapse
Affiliation(s)
- Fanny Legrand
- Human Eosinophil Section; Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases; Bethesda Maryland
| | - Nadine Landolina
- Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| | - Robert O. Emeh
- Human Eosinophil Section; Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases; Bethesda Maryland
| | - Elizabeth Chen
- Human Eosinophil Section; Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases; Bethesda Maryland
- University of Maryland; College Park Maryland
| | - Amy D. Klion
- Human Eosinophil Section; Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases; Bethesda Maryland
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
29
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
30
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
31
|
Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J Virol 2019; 93:JVI.01790-18. [PMID: 30700608 DOI: 10.1128/jvi.01790-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8+ T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized. We used mass cytometry to simultaneously measure the levels of expression of 24 surface markers on peripheral NK cells from HIV-infected subjects with various degrees of HIV natural control; we then used machine learning to identify NK cell subpopulations that differentiate HIV controllers from noncontrollers. Using CITRUS (cluster identification, characterization, and regression), we identified 3 NK cell subpopulations that differentiated subjects with chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetectable HIV viremia without ART (elite controllers [EC]). In a parallel approach, we identified 11 NK cell subpopulations that differentiated HIV-infected subject groups using k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11 subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly, significance was retained in 2 subpopulations in analyses that included only cohorts without detectable viremia. By comparing the surface marker expression patterns of all identified subpopulations, we revealed that the CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells are more abundant in EC and HIV-negative controls than in VNC and that the frequency of these cells correlated with HIV DNA levels. We hypothesize that this population may have a role in immunological control of HIV infection.IMPORTANCE HIV infection results in the establishment of a stable reservoir of latently infected cells; ART is usually required to keep viral replication under control and disease progression at bay, though a small subset of HIV-infected subjects can control HIV infection without ART through immunological mechanisms. In this study, we sought to identify subpopulations of NK cells that may be involved in the natural immunological control of HIV infection. We used mass cytometry to measure surface marker expression on peripheral NK cells. Using two distinct semisupervised machine learning approaches, we identified a CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells that differentiates HIV controllers from noncontrollers. These cells can be sorted out for future functional studies to assess their potential role in the immunological control of HIV infection.
Collapse
|
32
|
Santangelo L, Bordoni V, Montaldo C, Cimini E, Zingoni A, Battistelli C, D'Offizi G, Capobianchi MR, Santoni A, Tripodi M, Agrati C. Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int 2018; 38:1741-1750. [PMID: 29359389 DOI: 10.1111/liv.13700] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is known to cause major alterations in the cross-talk between hepatic and immune cells thus contributing to the liver disease pathogenesis. Extracellular vesicles have been proved to act as major players in cell-cell communication, and their cargo changes in relation to pathophysiological states. The aim of this study was to evaluate the effects of chronic HCV infection and direct-acting antivirals (DAA) on exosome-delivered microRNAs and on their ability to modulate the innate immune response. METHODS Exosomes isolated from the plasma of healthy donors and naïve, viremic HCV patients before and after DAA treatment have been compared for their microRNAs cargo by quantitative polymerase chain reaction. Functional assays with peripheral blood cells from healthy donors were performed to assess exosome-mediated immune responses. RESULTS MicroRNAs associated with HCV-related immunopathogenesis which were found to be enriched in exosomes of HCV viremic patients (in particular, miR-122-5p, miR-222-3p, miR-146a, miR-150-5p, miR-30c, miR-378a-3p and miR-20a-5p) were markedly reduced by DAA therapy. This exosome-microRNA cargo modulation parallels changes in their immunomodulatory properties in ex vivo experiments. Exosomes from HCV patients inhibit NK degranulation activity and this effect correlates with miR-122-5p or miR-222-3p levels. CONCLUSIONS Enrichment of immunomodulatory microRNAs in exosomes of HCV patients was correlated with their inhibitory activity on innate immune cells function. Direct-acting antivirals (DAA) treatment was observed to revert both microRNA content and functional profiles of systemic exosomes towards those of healthy donors. Exosome-associated microRNAs may provide valuable biomarkers to monitor immune response recovery.
Collapse
Affiliation(s)
- Laura Santangelo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Italia Laboratory - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Gianpiero D'Offizi
- Hepatology and Infectious Diseases Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Maria R Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy.,Neuromed I.R.C.C.S.- Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Marco Tripodi
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.,Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| |
Collapse
|
33
|
Rosenstock P, Horstkorte R, Gnanapragassam VS, Harth J, Kielstein H. Siglec-7 expression is reduced on a natural killer (NK) cell subset of obese humans. Immunol Res 2018; 65:1017-1024. [PMID: 28786023 PMCID: PMC5613057 DOI: 10.1007/s12026-017-8942-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity leads to an altered adipocytokine production negatively effecting the function of natural killer cells (NK cells), which are important effector cells of the innate immune system. NK cells provide a defence against tumour cells or virus infected cells and have different activating and inhibitory surface receptors to distinguish between normal and transformed cells. One group of the inhibitory receptors are the sialic acid-binding immunoglobulin-like lectins (Siglecs). The aim of this study was to compare the expression of Siglecs-7, -9 and -10 on NK cells from normal weight and obese subjects. Therefore peripheral blood mononuclear cells (PBMC) were isolated from 10 normal weight (BMI < 25 kg/m2) and 11 obese (BMI > 30 kg/m2) blood donors and analysed by flow cytometry. Moreover, the amount of sialic acid on NK cell was determined using a fluorescent labelled lectin that binds terminal sialic acids. Percentages of immune cells were not altered between normal weight and obese individuals. CD56bright NK cells from obese subjects had a reduced expression of Siglec-7 while the expression of Siglec-9 was not altered. The reduction of Siglec-7 expression on CD56bright NK cells might be a marker for their dysfunction. Moreover, Siglecs-7, -9 and -10 are not expressed on the NK cell lines NK-92 and NKL. When comparing the two NK cell subpopulations CD56bright and CD56dim, CD56bright NK cells had a higher amount of sialic acids on their surface compared to CD56dim NK cells regardless of body weight.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystraße 1, 06114, Halle (Saale), Germany. .,Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52 1, 06108, Halle (Saale), Germany.
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystraße 1, 06114, Halle (Saale), Germany
| | | | - Jörg Harth
- Department of Transfusion Medicine, University Hospital Halle (Saale), Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52 1, 06108, Halle (Saale), Germany
| |
Collapse
|
34
|
Zhao D, Jiang X, Xu Y, Yang H, Gao D, Li X, Gao L, Ma C, Liang X. Decreased Siglec-9 Expression on Natural Killer Cell Subset Associated With Persistent HBV Replication. Front Immunol 2018; 9:1124. [PMID: 29899741 PMCID: PMC5988867 DOI: 10.3389/fimmu.2018.01124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Siglec-9 is an MHC-independent inhibitory receptor selectively expressed on CD56dim NK cells. Its role in infection diseases has not been investigated yet. Here, we studied the potential regulatory roles of NK Siglec-9 in the pathogenesis of chronic hepatitis B (CHB) infection. Flow cytometry evaluated the expression of Siglec-9 and other receptors on peripheral NK cells. Immunofluorescence staining was used to detect Siglec-9 ligands on liver biopsy tissues and cultured hepatocyte cell lines. Siglec-9 blocking assay was carried out and cytokine synthesis and CD107a degranulation was detected by flow cytometry. Compared to healthy donors, CHB patients had decreased Siglec-9+ NK cells, which reversely correlated with serum hepatitis B e antigen and HBV DNA titer. Siglec-9 expression on NK cells from patients achieving sustained virological response recovered to the level of normal donors. Neutralization of Siglec-9 restored cytokine synthesis and degranulation of NK cells from CHB patients. Immunofluorescence staining showed increased expression of Siglec-9 ligands in liver biopsy tissues from CHB patients and in hepatocyte cell lines infected with HBV or stimulated with inflammatory cytokines (IL-6 or TGF-β). These findings identify Siglec-9 as a negative regulator for NK cells contributing to HBV persistence and the intervention of Siglec-9 signaling might be of potentially translational significance.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xuemei Jiang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China.,Department of Hepatic Diseases, Jinan Infectious Disease Hospital, Jinan, China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Huimin Yang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Dongni Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
35
|
Zimmer CL, Rinker F, Höner Zu Siederdissen C, Manns MP, Wedemeyer H, Cornberg M, Björkström NK. Increased NK Cell Function After Cessation of Long-Term Nucleos(t)ide Analogue Treatment in Chronic Hepatitis B Is Associated With Liver Damage and HBsAg Loss. J Infect Dis 2018; 217:1656-1666. [PMID: 29471497 DOI: 10.1093/infdis/jiy097] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/16/2018] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Treatment with nucleos(t)ide analogues (NA) suppresses hepatitis B virus (HBV) DNA but rarely leads to functional cure of chronic hepatitis B (CHB). Following NA cessation, some hepatitis B e antigen (HBeAg)-negative CHB patients experience hepatitis B s antigen (HBsAg) loss. Cellular immune responses, including natural killer (NK) cell responses, explaining virological events following NA treatment cessation remain elusive. METHODS In a single-center prospective trial, 15 HBeAg-negative CHB patients on long-term NA treatment underwent structured NA cessation and were studied longitudinally. The NK cell compartment was assessed using high-dimensional flow cytometry and correlated with the clinical course. RESULTS Unsupervised stochastic neighbor embedding analysis revealed NA-treated CHB patients to have a significantly affected NK cell compartment compared to controls. Cessation of NA treatment resulted in minor phenotypic alterations, but it significantly augmented NK cell natural cytotoxicity responses in the CHB patients. This increased NK cell functionality correlated with alanine aminotransferase flares in the patients and was particularly enhanced in patients experiencing HBsAg seroclearance at long-term follow-up. CONCLUSIONS Increased NK cell function is associated with active hepatitis and HBsAg seroclearance following structured NA cessation. This adds to our knowledge of the immunological events that develop following cessation of NA treatment in CHB.
Collapse
Affiliation(s)
- Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Franziska Rinker
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School
| | | | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Xie J, Christiaens I, Yang B, Breedam WV, Cui T, Nauwynck HJ. Molecular cloning of porcine Siglec-3, Siglec-5 and Siglec-10, and identification of Siglec-10 as an alternative receptor for porcine reproductive and respiratory syndrome virus (PRRSV). J Gen Virol 2017; 98:2030-2042. [PMID: 28742001 PMCID: PMC5656783 DOI: 10.1099/jgv.0.000859] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, several entry mediators have been characterized for porcine
reproductive and respiratory syndrome virus (PRRSV). Porcine sialoadhesin [pSn,
also known as sialic acid-binding immunoglobulin-type lectin (Siglec-1)] and
porcine CD163 (pCD163) have been identified as the most important host entry
mediators that can fully coordinate PRRSV infection into macrophages. However,
recent isolates have not only shown a tropism for sialoadhesin-positive cells,
but also for sialoadhesin-negative cells. This observation might be partly
explained by the existence of additional receptors that can support PRRSV
binding and entry. In the search for new receptors, recently identified porcine
Siglecs (Siglec-3, Siglec-5 and Siglec-10), members of the same family as
sialoadhesin, were cloned and characterized. Only Siglec-10 was able to
significantly improve PRRSV infection and production in a CD163-transfected cell
line. Compared with sialoadhesin, Siglec-10 performed equally effectively as a
receptor for PRRSV type 2 strain MN-184, but it was less capable of supporting
infection with PRRSV type 1 strain LV (Lelystad virus). Siglec-10 was
demonstrated to be involved in the endocytosis of PRRSV, confirming the
important role of Siglec-10 in the entry process of PRRSV. In conclusion, it can
be stated that PRRSV may use several Siglecs to enter macrophages, which may
explain the strain differences in the pathogenesis.
Collapse
Affiliation(s)
- Jiexiong Xie
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Isaura Christiaens
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Bo Yang
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Wander Van Breedam
- Unit for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Tingting Cui
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
37
|
Sex Differences in Spontaneous Degranulation Activity of Intrahepatic Natural Killer Cells during Chronic Hepatitis B: Association with Estradiol Levels. Mediators Inflamm 2017; 2017:3214917. [PMID: 28469292 PMCID: PMC5392396 DOI: 10.1155/2017/3214917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/31/2023] Open
Abstract
Major sex differences are observed in the prevalence, intensity, and severity of hepatitis B virus (HBV) infection. Here, we investigated degranulation activity of circulating and intrahepatic natural killer (NK) cells from HBV and HCV chronically infected patients before any treatment (n = 125). The frequency of CD107+ NK cells in the female liver was significantly higher compared to that in males during chronic HBV infection (p = 0.002) and correlated with the plasma levels of estradiol (correlation coefficient r = 0.634; p < 0.0001). Our results clearly show sex differences in degranulation activity of intrahepatic NK cells of HBV-infected patients. This probably contributes to the ability of females to better deal with HBV disease.
Collapse
|
38
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
39
|
Shao JY, Yin WW, Zhang QF, Liu Q, Peng ML, Hu HD, Hu P, Ren H, Zhang DZ. Siglec-7 Defines a Highly Functional Natural Killer Cell Subset and Inhibits Cell-Mediated Activities. Scand J Immunol 2017; 84:182-90. [PMID: 27312286 DOI: 10.1111/sji.12455] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is an inhibitory receptor expressed on natural killer (NK) cells. In this study, we investigated the relationship between Siglec-7 expression and NK cell functions. Siglec-7 was highly expressed on NK cells and was preferentially expressed by mature NK cells from peripheral blood of healthy adults. Siglec-7(+) NK cells displayed higher levels of activating receptors CD38, CD16, DNAM1, NKp30 and NKp46, but lower levels of inhibitory receptors such as NKG2A and CD158b, compared with Siglec-7(-) NK cells. Functional tests showed that Siglec-7(+) NK cells displayed more CD107a degranulation and IFN-γ production than Siglec-7(-) NK cells. Siglec-7 inhibited NK cell functions when interacting with specific antibodies. These data suggest that Siglec-7 defines a highly functional NK cell subset and suppresses NK cell-mediated functions when cross-linked with specific antibodies.
Collapse
Affiliation(s)
- J-Y Shao
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - W-W Yin
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q-F Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - M-L Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H-D Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - P Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - D-Z Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Allegretti AS, Ortiz G, Kalim S, Wibecan J, Zhang D, Shan HY, Xu D, Chung RT, Karumanchi SA, Thadhani RI. Siglec-7 as a Novel Biomarker to Predict Mortality in Decompensated Cirrhosis and Acute Kidney Injury. Dig Dis Sci 2016; 61:3609-3620. [PMID: 27655105 PMCID: PMC5106324 DOI: 10.1007/s10620-016-4316-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients with decompensated cirrhosis have high morbidity and are commonly hospitalized with acute kidney injury. AIMS We examined serum levels of Siglec-7, a transmembrane receptor that regulates immune activity, as a biomarker for mortality in patients with cirrhosis and acute kidney injury. METHODS Serum Siglec-7 was measured in hospitalized patients with cirrhosis and acute kidney injury, as well as in reference groups with acute liver injury/acute kidney injury, cirrhosis without acute kidney injury, and sepsis without liver disease. Clinical characteristics and subsequent outcomes were examined using univariate and multivariable analyses according to initial Siglec-7 levels. Primary outcome was death by 90 days. RESULTS One hundred twenty-eight subjects were included, 92 of which had cirrhosis and acute kidney injury and were used in the primary analysis. Average Model for End-Stage Liver Disease (MELD) score was 24 [95 % CI 23, 26], and serum creatinine was 2.5 [2.2, 2.8] mg/dL at the time Siglec-7 was measured. After adjusting for age and MELD score, high serum Siglec-7 level predicted mortality with a hazard ratio of 1.96 [1.04, 3.69; p = 0.04]. There was no difference in Siglec-7 levels by etiology of AKI (p = 0.24). Addition of serum Siglec-7 to MELD score improved discrimination for 90-day mortality [category-free net reclassification index = 0.38 (p = 0.04); integrated discrimination increment = 0.043 (p = 0.04)]. CONCLUSION Serum Siglec-7 was associated with increased mortality among hospitalized patients with cirrhosis and acute kidney injury. Addition of Siglec-7 to MELD score may increase discrimination to predict 90-day mortality.
Collapse
Affiliation(s)
- Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo Ortiz
- Department of Medicine, St. Elizabeth’s Hospital, Boston, MA, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua Wibecan
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dongsheng Zhang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hui Yi Shan
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Dihua Xu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - S. Ananth Karumanchi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ravi I. Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|