1
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
Soundararajan R, Maurin MM, Rodriguez-Silva J, Upadhyay G, Alden AJ, Gowda SGB, Schell MJ, Yang M, Levine NJ, Gowda D, Sundaraswamy PM, Hui SP, Pflieger L, Wang H, Marcet J, Martinez C, Bennett RD, Chudzinski A, Karachristos A, Nywening TM, Cavallaro PM, Anderson ML, Coffey RJ, Nebozhyn MV, Loboda A, Coppola D, Pledger WJ, Halade GV, Yeatman TJ. Integration of lipidomics with targeted, single cell, and spatial transcriptomics defines an unresolved pro-inflammatory state in colon cancer. Gut 2025; 74:586-602. [PMID: 39658263 PMCID: PMC11885055 DOI: 10.1136/gutjnl-2024-332535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Over a century ago, Virchow proposed that cancer represents a chronically inflamed, poorly healing wound. Normal wound healing is represented by a transitory phase of inflammation, followed by a pro-resolution phase, with prostaglandin (PGE2/PGD2)-induced 'lipid class switching' producing inflammation-quenching lipoxins (LXA4, LXB4). OBJECTIVE We explored if lipid dysregulation in colorectal cancers (CRCs) is driven by a failure to resolve inflammation. DESIGN We performed liquid chromatography and tandem mass spectrometry (LC-MS/MS) untargeted analysis of 40 human CRC and normal paired samples and targeted, quantitative analysis of 81 human CRC and normal paired samples. We integrated analysis of lipidomics, quantitative reverse transcription-PCR, large scale gene expression, and spatial transcriptomics with public scRNASEQ data to characterize pattern, expression and cellular localisation of genes that produce and modify lipid mediators. RESULTS Targeted, quantitative LC-MS/MS demonstrated a marked imbalance of pro-inflammatory mediators, with a dearth of resolving lipid mediators. In tumours, we observed prominent over-expression of arachidonic acid derivatives, the genes encoding their synthetic enzymes and receptors, but poor expression of genes producing pro-resolving synthetic enzymes and resultant lipoxins (LXA4, LXB4) and associated receptors. These results indicate that CRC is the product of defective lipid class switching likely related to inadequate or ineffective levels of PGE2/PGD2. CONCLUSION We show that the lipidomic profile of CRC tumours exhibits a distinct pro-inflammatory bias with a deficiency of endogenous resolving mediators secondary to defective lipid class switching. These observations pave the way for 'resolution medicine', a novel therapeutic approach for inducing or providing resolvins to mitigate the chronic inflammation driving cancer growth and progression.
Collapse
Affiliation(s)
| | - Michelle M Maurin
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | | | - Gunjan Upadhyay
- Department of Internal Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Ashley J Alden
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | | | - Michael J Schell
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mingli Yang
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | - Noah Jhad Levine
- Center for Phenom Health, Buck Institute for Research on Aging, Novato, California, USA
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sappora, Japan
| | - Punith M Sundaraswamy
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sappora, Japan
| | - Lance Pflieger
- Center for Phenom Health, Buck Institute for Research on Aging, Novato, California, USA
| | - Heiman Wang
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | - Jorge Marcet
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | | | - Allen Chudzinski
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | - Timothy M Nywening
- Division of Surgical Oncology, Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | - Paul M Cavallaro
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Andrey Loboda
- Merck Research Laboratories Boston, Boston, Massachusetts, USA
| | - Domenico Coppola
- Department of Pathology, Florida Digestive Health Specialists LLP, Bradenton, Florida, USA
| | - Warren Jackson Pledger
- Tampa General Hospital, Tampa, Florida, USA
- Department of Molecular Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Ganesh V Halade
- Department of Internal Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Timothy J Yeatman
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| |
Collapse
|
3
|
Atreya CE, Leach H, Asiimwe E, Bahri N, Le BK, Macaire G, Wood KC, Van Blarigan EL, Lee RT. Integrative Oncology: Incorporating Evidence-Based Approaches for Patients With GI Cancers. Am Soc Clin Oncol Educ Book 2025; 45:e471734. [PMID: 39841946 DOI: 10.1200/edbk-25-471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Data have matured to support incorporation of integrative oncology modalities into comprehensive cancer care. Clinical practice guidelines have recently been published by ASCO for diet and exercise (2022) and use of cannabinoids and cannabis (2024) and jointly by ASCO and the Society for Integrative Oncology (SIO) for application of integrative approaches in the management of pain (2022), anxiety and depression (2023), and fatigue (2024) among adults with cancer. Following the ASCO-SIO guidelines, clinicians should recommend mindfulness-based interventions (MBIs) to patients with symptoms of anxiety or depression and MBIs and exercise for management of fatigue during or after completion of cancer treatment. We will review the basis of these recommendations and evidence to support use of other mind-body approaches, exercise, nutrition, acupuncture/acupressure, and natural products in the specific contexts of GI cancers. For example, optimizing physical activity and diet is associated with improved survival after a colorectal cancer (CRC) diagnosis, in addition to conferring symptom management benefits. We will also highlight gaps in research, including that most studies enrolling patients with GI malignancies have focused on CRC. A limitation of nonpharmacologic evidence-based guidelines is that they list broad categories (eg, yoga or acupuncture) and lack implementation details. How to safely and equitably incorporate integrative approaches into conventional cancer care will be addressed. This ASCO Educational Book article aims to be both evidence-informed and practical, with attention to unique considerations for people with GI cancers.
Collapse
Affiliation(s)
- Chloe E Atreya
- Department of Medicine, University of California, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
- Osher Center for Integrative Health, San Francisco, CA
| | - Heather Leach
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO
| | - Edgar Asiimwe
- Department of Medicine, University of California, San Francisco, CA
- National Clinician Scholars Program, University of California, San Francisco, CA
| | | | - Bryan Khuong Le
- Department of Medicine, University of California, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Greta Macaire
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Kelley C Wood
- ReVital Cancer Rehabilitation, Select Medical, Mechanicsburg, PA
| | - Erin L Van Blarigan
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
- Department of Urology, University of California, San Francisco, CA
| | | |
Collapse
|
4
|
Yang Y, Zhou H, Hong Z. Glaucoma and dietary links: insights from high-salt intake, the Mediterranean diet, and specific nutrients. Front Nutr 2024; 11:1461748. [PMID: 39512517 PMCID: PMC11541052 DOI: 10.3389/fnut.2024.1461748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Glaucoma, a prevalent and potentially blinding eye disease, is linked to a variety of factors, including elevated intraocular pressure, optic nerve damage, and oxidative stress. In recent years, dietary habits, as a controllable lifestyle factor, have received increasing attention in the prevention and treatment of glaucoma. The purpose of this review was to investigate the effects of dietary factors on glaucoma, with a particular emphasis on two common dietary patterns: the high-salt diet and the Mediterranean diet. In addition, we investigated the association between many particular nutrients (including omega-3 fatty acids, vitamins, caffeine, and minerals) and glaucoma to fully assess the potential involvement of dietary variables in glaucoma pathogenesis, prevention, and treatment. This article reveals the importance of dietary components in glaucoma prevention and explores prospective possibilities for future research by conducting a comprehensive review of previous scientific studies.
Collapse
Affiliation(s)
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | | |
Collapse
|
5
|
Chan DSM, Cariolou M, Markozannes G, Balducci K, Vieira R, Kiss S, Becerra-Tomás N, Aune D, Greenwood DC, González-Gil EM, Copson E, Renehan AG, Bours M, Demark-Wahnefried W, Hudson MM, May AM, Odedina FT, Skinner R, Steindorf K, Tjønneland A, Velikova G, Baskin ML, Chowdhury R, Hill L, Lewis SJ, Seidell J, Weijenberg MP, Krebs J, Cross AJ, Tsilidis KK. Post-diagnosis dietary factors, supplement use and colorectal cancer prognosis: A Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int J Cancer 2024; 155:445-470. [PMID: 38692645 DOI: 10.1002/ijc.34906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/15/2023] [Accepted: 01/17/2024] [Indexed: 05/03/2024]
Abstract
The role of diet in colorectal cancer prognosis is not well understood and specific lifestyle recommendations are lacking. We searched for randomised controlled trials (RCTs) and longitudinal observational studies on post-diagnosis dietary factors, supplement use and colorectal cancer survival outcomes in PubMed and Embase from inception until 28th February 2022. Random-effects dose-response meta-analyses were conducted when at least three studies had sufficient information. The evidence was interpreted and graded by the CUP Global independent Expert Committee on Cancer Survivorship and Expert Panel. Five RCTs and 35 observational studies were included (30,242 cases, over 8700 all-cause and 2100 colorectal cancer deaths, 3700 progression, recurrence, or disease-free events). Meta-analyses, including 3-10 observational studies each, were conducted for: whole grains, nuts/peanuts, red and processed meat, dairy products, sugary drinks, artificially sweetened beverages, coffee, alcohol, dietary glycaemic load/index, insulin load/index, marine omega-3 polyunsaturated fatty acids, supplemental calcium, circulating 25-hydroxyvitamin D (25[OH]D) and all-cause mortality; for alcohol, supplemental calcium, circulating 25(OH)D and colorectal cancer-specific mortality; and for circulating 25(OH)D and recurrence/disease-free survival. The overall evidence was graded as 'limited'. The inverse associations between healthy dietary and/or lifestyle patterns (including diets that comprised plant-based foods), whole grains, total, caffeinated, or decaffeinated coffee and all-cause mortality and the positive associations between unhealthy dietary patterns, sugary drinks and all-cause mortality provided 'limited-suggestive' evidence. All other exposure-outcome associations provided 'limited-no conclusion' evidence. Additional, well-conducted cohort studies and carefully designed RCTs are needed to develop specific lifestyle recommendations for colorectal cancer survivors.
Collapse
Affiliation(s)
- Doris S M Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Margarita Cariolou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Georgios Markozannes
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Katia Balducci
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Rita Vieira
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sonia Kiss
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nerea Becerra-Tomás
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Oslo New University College, Oslo, Norway
- Department of Research, The Cancer Registry of Norway, Oslo, Norway
| | - Darren C Greenwood
- Leeds Institute for Data Analytics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Esther M González-Gil
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Ellen Copson
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew G Renehan
- The Christie NHS Foundation Trust, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martijn Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Wendy Demark-Wahnefried
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa M Hudson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital and Translational and Clinical Research Institute, and Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Galina Velikova
- School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Rajiv Chowdhury
- Department of Global Health, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Lynette Hill
- World Cancer Research Fund International, London, UK
| | - Sarah J Lewis
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jaap Seidell
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - John Krebs
- Department of Biology, University of Oxford, Oxford, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| |
Collapse
|
6
|
Fretwell A, Louca P, Cohoon G, Sakellaropoulou A, Henriques Caetano MDP, Koullapis A, Orange ST, Malcomson FC, Dobson C, Corfe BM. Still too little evidence: the role of diet in colorectal cancer survivorship - a systematic review. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38860747 DOI: 10.1080/10408398.2024.2360068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Colorectal cancer incidence (CRC) is influenced by dietary factors, yet the impact of diet on CRC-specific mortality and recurrence-free survival (RFS) remains unclear. This review provides a narrative summary of existing research on dietary factors affecting CRC-specific mortality, RFS, and disease-free survival (DFS). This study searched electronic databases to identify cross-sectional/prospective research investigating dietary intake on CRC-specific mortality, RFS, or DFS. Twenty-eight studies were included in the corpus. Because of high study heterogeneity, we performed a narrative synthesis of studies. Limited, but suggestive evidence indicates beneficial effects of adhering to the American Cancer Society (ACS) guidelines and a plant rich low-carbohydrate diet on risk of CRC-specific mortality, potentially driven by fiber from cereals, vegetables, and wholegrains, but not fruit. For RFS and DFS, a Western dietary pattern, high intake of refined grains, and sugar sweetened beverages correlated with increased risk of CRC recurrence and development of disease/death. Conversely, greater adherence to the ACS dietary and alcohol guidelines, higher ω-3 polyunsaturated fatty acids, and dark fish consumption reduced risk. Our findings underscore the need for (i) standardized investigations into diet's role in CRC survivorship, including endpoints, and (ii) comprehensive analyses to isolate specific effects within correlated lifestyle components.
Collapse
Affiliation(s)
- Anna Fretwell
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Panayiotis Louca
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Georgia Cohoon
- School of Biomedical, Nutrition and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Margarida de Pinheiro Henriques Caetano
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutrition and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alexandros Koullapis
- School of Biomedical, Nutrition and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel T Orange
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutrition and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona C Malcomson
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Christina Dobson
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Bernard M Corfe
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Roux-Levy C, Binquet C, Vaysse C, Scherrer ML, Ayav A, Ortega-Deballon P, Lakkis Z, Liu D, Deguelte S, Cottet V. Association between polyunsaturated fatty acids in adipose tissue and mortality of colorectal cancer patients. Nutrition 2024; 121:112358. [PMID: 38401197 DOI: 10.1016/j.nut.2024.112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Nutritional intake and dysregulation of fatty acid metabolism play a role in the progression of various tumors, but the consumption of fatty acids is difficult to assess accurately with dietary questionnaires. Biomarkers can objectively assess intake, storage and bioavailability. OBJECTIVE We studied the association between the polyunsaturated fatty acid (PUFA) composition of abdominal subcutaneous adipose tissue (good indicator of dietary intake over 2-3 years) and all-cause mortality. METHODS In the multicenter AGARIC study, samples from 203 patients with colorectal cancer (CRC) undergoing curative surgery, were harvested from subcutaneous adipose tissue, which were then analyzed for PUFA composition. RESULTS After a median follow-up of 45 months, 76 patients died. These patients were more often men (72.4% versus 57.5%, P = 0.04), diabetic (32.9% versus 13.4%, P = 0.001), old (median: 74.5 versus 66.6 years, P < 0.001) and with high alcohol consumption (47.4% versus 30.7%, P = 0.005). An increased risk of death was observed with higher levels of 20:2 ω-6 (hazard ratiotertile3 vstertile1 (HRT3vsT1) 2.12; 95% confidence interval (CI) 1.01-4.42; p-trend = 0.04), 22:4 ω-6 (HRT3vsT1 = 3.52; 95% CI = 1.51-8.17; p-trend = 0.005), and 22:5 ω-6 (HRT3vsT1 = 3.50; 95% CI = 1.56-7.87; p-trend = 0.002). Conversely, the risk of death seemed lower when higher concentrations of 18:3 ω-6 (HRT3vsT1 = 0.52; 95% CI = 0.27-0.99; p-trend = 0.04) and the essential fatty acid, α-linolenic acid 18:3 ω-3 (HRT3vsT1 = 0.47; 95% CI = 0.24-0.93; p-trend = 0.03) were observed. CONCLUSION The risk of death was increased in CRC patients with higher concentrations of certain ω-6 PUFAs and lower concentrations of α-linolenic acid in their subcutaneous adipose tissue. These results reflect dietary habits and altered fatty acid metabolism. Our exploratory results warrant confirmation in larger studies with further exploration of the mechanisms involved.
Collapse
Affiliation(s)
- Cécile Roux-Levy
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France
| | - Christine Binquet
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Inserm CIC 1432, Clinical Epidemiology Team, Faculté de Médecine de Dijon, Dijon, France; University Hospital of Dijon, Dijon, France
| | - Carole Vaysse
- ITERG - Team of Nutrition Life Sciences, Bordeaux, France
| | - Marie-Lorraine Scherrer
- Department of Digestive, Cancer, Bariatric and Emergency Surgery, Regional Hospital Centre Metz Thionville, Hôpital de Mercy, Ars-Laquenexy, France
| | - Ahmet Ayav
- Department of General and Digestive Surgery, University Hospital of Nancy, Hôpital Brabois, Vandoeuvre-les-Nancy, France
| | - Pablo Ortega-Deballon
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Department of Digestive Surgical Oncology, University Hospital of Dijon, Dijon, France
| | - Zaher Lakkis
- Department of General, Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - David Liu
- Department of General and Digestive Surgery, University Hospital of Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Sophie Deguelte
- Department of General, Digestive and Endocrine Surgery, University Hospital of Reims, Reims, France
| | - Vanessa Cottet
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Inserm CIC 1432, Clinical Epidemiology Team, Faculté de Médecine de Dijon, Dijon, France; University Hospital of Dijon, Dijon, France.
| |
Collapse
|
8
|
Klobodu C, Vitolins MZ, Deutsch JM, Fisher K, Nasser JA, Stott D, Murray MJ, Curtis L, Milliron BJ. Examining the Role of Nutrition in Cancer Survivorship and Female Fertility: A Narrative Review. Curr Dev Nutr 2024; 8:102134. [PMID: 38584676 PMCID: PMC10997918 DOI: 10.1016/j.cdnut.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Female cancer survivors have a higher chance of experiencing infertility than females without a history of cancer diagnosis. This risk remains high despite advances in fertility treatments. There is a need to augment fertility treatments with cost-effective methods such as nutritional guidance to improve fertility chances. The aim of this review article is to connect the current literature on cancer survivorship nutrition and fertility nutrition, focusing on the importance of integrating nutritional guidance into fertility counseling, assessment, and treatment for female cancer survivors. Consuming a healthful diet comprising whole grains, soy, fruits, vegetables, seafood, and unsaturated fats has improved both female fertility and cancer survivorship. Similarly, maintaining a healthy body weight also improves female fertility and cancer survivorship. Therefore, dietary interventions to support female cancer survivors with fertility challenges are of immense importance. The period of follow-up fertility counseling and assessment after cancer treatment may provide a unique opportunity for implementing nutritional guidance for female cancer survivors. Dietary interventions are a promising strategy to improve pregnancy chances and overall quality of life among female cancer survivors; thus, researchers should investigate perceptions regarding fertility, barriers, and challenges to changing nutrition-related behaviors, and preferences for nutritional guidance to support fertility treatments in this population.
Collapse
Affiliation(s)
- Cynthia Klobodu
- Department of Nutrition and Food Science, California State University, Chico, College of Natural Sciences, CA, United States
| | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jonathan M Deutsch
- Department of Health Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Kathleen Fisher
- Department of Nursing, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Jennifer A Nasser
- Department of Health Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Dahlia Stott
- Department of Health Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| | - Michael J Murray
- Northern California Fertility Medical Center, Sacramento, CA, United States
| | - Laura Curtis
- Department of Nutrition and Food Science, California State University, Chico, College of Natural Sciences, CA, United States
| | - Brandy-Joe Milliron
- Department of Health Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Lange de Luna J, Nounu A, Neumeyer S, Sinke L, Wilson R, Hellbach F, Matías-García PR, Delerue T, Winkelmann J, Peters A, Thorand B, Beekman M, Heijmans BT, Slagboom E, Gieger C, Linseisen J, Waldenberger M. Epigenome-wide association study of dietary fatty acid intake. Clin Epigenetics 2024; 16:29. [PMID: 38365790 PMCID: PMC10874013 DOI: 10.1186/s13148-024-01643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS). RESULTS DNA methylation levels were measured in whole blood from the population-based KORA FF4 study (N = 1354) and LLS (N = 448), using the Illumina MethylationEPIC BeadChip and Illumina HumanMethylation450 array, respectively. We assessed associations between DNAm and intake of eight and four PUFAs in KORA and LLS, respectively. Where possible, results were meta-analyzed. Below the Bonferroni correction threshold (p < 7.17 × 10-8), we identified two differentially methylated positions (DMPs) associated with PUFA intake in the KORA study. The DMP cg19937480, annotated to gene PRDX1, was positively associated with docosahexaenoic acid (DHA) in model 1 (beta: 2.00 × 10-5, 95%CI: 1.28 × 10-5-2.73 × 10-5, P value: 6.98 × 10-8), while cg05041783, annotated to gene MARK2, was positively associated with docosapentaenoic acid (DPA) in our fully adjusted model (beta: 9.80 × 10-5, 95%CI: 6.25 × 10-5-1.33 × 10-4, P value: 6.75 × 10-8). In the meta-analysis, we identified the CpG site (cg15951061), annotated to gene CDCA7L below Bonferroni correction (1.23 × 10-7) associated with eicosapentaenoic acid (EPA) intake in model 1 (beta: 2.00 × 10-5, 95% CI: 1.27 × 10-5-2.73 × 10-5, P value = 5.99 × 10-8) and we confirmed the association of cg19937480 with DHA in both models 1 and 2 (beta: 2.07 × 10-5, 95% CI: 1.31 × 10-5-2.83 × 10-5, P value = 1.00 × 10-7 and beta: 2.19 × 10-5, 95% CI: 1.41 × 10-5-2.97 × 10-5, P value = 5.91 × 10-8 respectively). CONCLUSIONS Our study identified three CpG sites associated with PUFA intake. The mechanisms of these sites remain largely unexplored, highlighting the novelty of our findings. Further research is essential to understand the links between CpG site methylation and PUFA outcomes.
Collapse
Affiliation(s)
- Julia Lange de Luna
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, LMU Munich, 80539, Munich, Germany
| | - Aayah Nounu
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sonja Neumeyer
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Science, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Fabian Hellbach
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156, Augsburg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, LMU Munich, 80539, Munich, Germany
| | - Pamela R Matías-García
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Klinikum Rechts Der Isar, Chair Neurogenetics, Technical University of Munich, Munich, Germany
- Klinikum Rechts Der Isar, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, LMU Munich, 80539, Munich, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, LMU Munich, 80539, Munich, Germany
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Science, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Science, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Science, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Jakob Linseisen
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156, Augsburg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, LMU Munich, 80539, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
| |
Collapse
|
10
|
Powers-James C, Morse M, Narayanan S, Ramondetta L, Lopez G, Wagner R, Cohen L. Integrative Oncology Approaches to Reduce Recurrence of Disease and Improve Survival. Curr Oncol Rep 2024; 26:147-163. [PMID: 38180690 DOI: 10.1007/s11912-023-01467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW After a cancer diagnosis, patients ask what they can do in addition to the recommended treatments to increase their survival. Many turn to integrative medicine modalities and lifestyle changes to improve their chances of survival. Numerous studies have demonstrated that lifestyle changes can significantly improve survival rates for cancer patients. Less support exists for the use of natural products or supplements to improve cancer survival. In this manuscript, we review key findings and evidence in the areas of healthy eating habits, physical activity, stress management and social support, and sleep quality, as well as natural products and supplements as they relate to the cancer recurrence and survival. RECENT FINDINGS While more research is needed to fully understand the mechanisms underlying the associations between lifestyle changes and cancer survival, findings suggest that lifestyle modifications in the areas of diet, physical activity, stress management and social support, and sleep quality improve clinical cancer outcomes. This is especially true for programs that modify more than one lifestyle habit. To date, outside of supplementing with vitamin D to maintain adequate levels, conflicting conclusion within the research remain regarding the efficacy of using natural products or supplement to improve cancer recurrence of disease or cancer survival. A call for further research is warranted. Lifestyle screening and counseling should be incorporated into cancer treatment plans to help improve patient outcomes. While the scientific community strives for the pursuit of high-quality research on natural products to enhance cancer survival, transparency, dialogue, and psychological safety between patients and clinicians must continue to be emphasized. Proactive inquiry by clinicians regarding patients' supplement use will allow for an informed discussion of the benefits and risks of natural products and supplements, as well as a re-emphasis of the evidence supporting diet and other lifestyle habits to increase survival.
Collapse
Affiliation(s)
- Catherine Powers-James
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Meroë Morse
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Santhosshi Narayanan
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lois Ramondetta
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gabriel Lopez
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Richard Wagner
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Pettersen CHH, Samdal H, Sætrom P, Wibe A, Hermansen E, Schønberg SA. The Salmon Oil OmeGo Reduces Viability of Colorectal Cancer Cells and Potentiates the Anti-Cancer Effect of 5-FU. Mar Drugs 2023; 21:636. [PMID: 38132957 PMCID: PMC10744414 DOI: 10.3390/md21120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on CRC cells. The salmon oil OmeGo (Hofseth BioCare) contains a spectrum of fatty acids, including the n-3 PUFAs docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA). We explored a potential anti-cancer effect of OmeGo on the four CRC cell lines DLD-1, HCT-8, LS411N, and LS513, alone and in combination with the chemotherapeutic agent 5-Fluorouracil (5-FU). Screening indicated a time- and dose-dependent effect of OmeGo on the viability of the DLD-1 and LS513 CRC cell lines. Treatment with 5-FU and OmeGo (IC20-IC30) alone indicated a significant reduction in viability. A combinatory treatment with OmeGo and 5-FU resulted in a further reduction in viability in DLD-1 and LS513 cells. Treatment of CRC cells with DHA + EPA in a concentration corresponding to the content in OmeGo alone or combined with 5-FU significantly reduced viability of all four CRC cell lines tested. The lowest concentration of OmeGo reduced viability to a higher degree both alone and in combination with 5-FU compared to the corresponding concentrations of DHA + EPA in three of the cell lines. Results suggest that a combination of OmeGo and 5-FU could have a potential as an alternative anti-cancer therapy for patients with CRC.
Collapse
Affiliation(s)
- Caroline H. H. Pettersen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway;
| | - Helle Samdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Bioinformatics Core Facility—BioCore, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
| | - Arne Wibe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | | | - Svanhild A. Schønberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
| |
Collapse
|
12
|
Xiang W, Lv H, Xing F, Sun X, Ma Y, Wu L, Lv G, Zong Q, Wang L, Wu Z, Feng Q, Yang W, Wang H. Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. SCIENCE ADVANCES 2023; 9:eadi2465. [PMID: 38055816 DOI: 10.1126/sciadv.adi2465] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Adenosine 5'-triphosphate citrate lyase (ACLY) is a cytosolic enzyme that converts citrate into acetyl-coenzyme A for fatty acid and cholesterol biosynthesis. ACLY is up-regulated or activated in many cancers, and targeting ACLY by inhibitors holds promise as potential cancer therapy. However, the role of ACLY in cancer immunity regulation remains poorly understood. Here, we show that ACLY inhibition up-regulates PD-L1 immune checkpoint expression in cancer cells and induces T cell dysfunction to drive immunosuppression and compromise its antitumor effect in immunocompetent mice. Mechanistically, ACLY inhibition causes polyunsaturated fatty acid (PUFA) peroxidation and mitochondrial damage, which triggers mitochondrial DNA leakage to activate the cGAS-STING innate immune pathway. Pharmacological and genetic inhibition of ACLY overcomes cancer resistance to anti-PD-L1 therapy in a cGAS-dependent manner. Furthermore, dietary PUFA supplementation mirrors the enhanced efficacy of PD-L1 blockade by ACLY inhibition. These findings reveal an immunomodulatory role of ACLY and provide combinatorial strategies to overcome immunotherapy resistance in tumors.
Collapse
Affiliation(s)
- Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoyan Sun
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Wu
- Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai 201805, China
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
| |
Collapse
|
13
|
Shi S, Wang K, Ugai T, Giannakis M, Cazaubiel J, Chan AT, Giovannucci EL, Nowak JA, Meyerhardt JA, Ogino S, Song M. Vitamin C intake and colorectal cancer survival according to KRAS and BRAF mutation: a prospective study in two US cohorts. Br J Cancer 2023; 129:1793-1800. [PMID: 37775523 PMCID: PMC10667518 DOI: 10.1038/s41416-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The associations of vitamin C intake with colorectal cancer (CRC) survival according to tumour KRAS or BRAF mutation status remain unclear. METHODS We used the inverse probability weighted multivariable Cox proportional hazards regression model to calculate the hazard ratio (HR) of mortality, and spline analysis to evaluate the dose-response relationship in the Nurses' Health Study and Health Professionals Follow-up Study. We also assessed SLC2A1 mRNA expression according to KRAS or BRAF mutation in the TCGA database. RESULTS During an average of 12.0 years of follow-up, we documented 2,096 CRC cases, of which 703 cases had KRAS and BRAF mutation data. The association between total vitamin C intake and CRC-specific mortality suggestively differed according to KRAS or BRAF mutation status (Pinteraction = 0.04), with the multivariable HR (95% CI) per 400 mg/day increase in vitamin C intake for CRC-specific mortality of 1.07 (0.87-1.32, Ptrend = 0.52) in cases with both wild type and 0.74 (0.55-1.00, Ptrend < 0.05) in cases with either KRAS or BRAF mutant type. TCGA analysis showed a higher mRNA SLC2A1 expression in KRAS or BRAF-mutated tumours than in wild-type tumours (P = 0.02). CONCLUSION Our findings support the laboratory evidence for a potential benefit of vitamin C for CRC patients with KRAS or BRAF mutated tumours.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jules Cazaubiel
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Zhou Y, Lin Z, Xie S, Gao Y, Zhou H, Chen F, Fu Y, Yang C, Ke C. Interplay of chronic obstructive pulmonary disease and colorectal cancer development: unravelling the mediating role of fatty acids through a comprehensive multi-omics analysis. J Transl Med 2023; 21:587. [PMID: 37658368 PMCID: PMC10474711 DOI: 10.1186/s12967-023-04278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) patients often exhibit gastrointestinal symptoms, A potential association between COPD and Colorectal Cancer (CRC) has been indicated, warranting further examination. METHODS In this study, we collected COPD and CRC data from the National Health and Nutrition Examination Survey, genome-wide association studies, and RNA sequence for a comprehensive analysis. We used weighted logistic regression to explore the association between COPD and CRC incidence risk. Mendelian randomization analysis was performed to assess the causal relationship between COPD and CRC, and cross-phenotype meta-analysis was conducted to pinpoint crucial loci. Multivariable mendelian randomization was used to uncover mediating factors connecting the two diseases. Our results were validated using both NHANES and GEO databases. RESULTS In our analysis of the NHANES dataset, we identified COPD as a significant contributing factor to CRC development. MR analysis revealed that COPD increased the risk of CRC onset and progression (OR: 1.16, 95% CI 1.01-1.36). Cross-phenotype meta-analysis identified four critical genes associated with both CRC and COPD. Multivariable Mendelian randomization suggested body fat percentage, omega-3, omega-6, and the omega-3 to omega-6 ratio as potential mediating factors for both diseases, a finding consistent with the NHANES dataset. Further, the interrelation between fatty acid-related modules in COPD and CRC was demonstrated via weighted gene co-expression network analysis and Kyoto Encyclopedia of Genes and Genomes enrichment results using RNA expression data. CONCLUSIONS This study provides novel insights into the interplay between COPD and CRC, highlighting the potential impact of COPD on the development of CRC. The identification of shared genes and mediating factors related to fatty acid metabolism deepens our understanding of the underlying mechanisms connecting these two diseases.
Collapse
Affiliation(s)
- Youtao Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Shuojia Xie
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Haobin Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Fengzhen Chen
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Yuewu Fu
- Department of General Surgery, School of Medicine, The First Affiliated Hospital, Ji'nan University, Guangzhou, China
| | - Cuiyan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Tojjari A, Choucair K, Sadeghipour A, Saeed A, Saeed A. Anti-Inflammatory and Immune Properties of Polyunsaturated Fatty Acids (PUFAs) and Their Impact on Colorectal Cancer (CRC) Prevention and Treatment. Cancers (Basel) 2023; 15:4294. [PMID: 37686570 PMCID: PMC10487099 DOI: 10.3390/cancers15174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of death from cancer worldwide, with increasing incidence in the Western world. Diet has become the focus of research as a significant risk factor for CRC occurrence, and the role of dietary polyunsaturated fatty acids (PUFAs) has become an area of interest given their potential role in modulating inflammation, particularly in the pro-carcinogenic inflammatory environment of the colon. This work reviews the main types of PUFAs, their characteristics, structure, and physiologic role. We then highlight their potential role in preventing CRC, their signaling function vis-à-vis tumorigenic signaling, and their subsequent potential role in modulating response to different treatment modalities. We review pre-clinical and clinical data and discuss their potential use as adjunct therapies to currently existing treatment modalities. Given our understanding of PUFAs' immune and inflammation modulatory effects, we explore the possible combination of PUFAs with immune checkpoint inhibitors and other targeted therapies.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Khalil Choucair
- Division of Hematology and Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran 14115-175, Iran;
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Anwaar Saeed
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
16
|
Shi S, Wang K, Zhong R, Cassidy A, Rimm EB, Nimptsch K, Wu K, Chan AT, Giovannucci EL, Ogino S, Ng K, Meyerhardt JA, Song M. Flavonoid intake and survival after diagnosis of colorectal cancer: a prospective study in 2 US cohorts. Am J Clin Nutr 2023; 117:1121-1129. [PMID: 37011765 PMCID: PMC10447476 DOI: 10.1016/j.ajcnut.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Although experimental evidence supports anticancer effects of flavonoids, the influence of flavonoid intake on colorectal cancer (CRC) survival remains unknown. OBJECTIVES This study aimed to assess the association of postdiagnostic flavonoid intake with mortality. METHODS We prospectively assessed the association of postdiagnostic flavonoid intake with CRC-specific and all-cause mortality in 2552 patients diagnosed with stage I-III CRC in 2 cohort studies-the Nurses' Health Study and the Health Professionals Follow-up Study. We assessed the intake of total flavonoids and their subclasses using validated food frequency questionnaires. We used the inverse probability-weighted multivariable Cox proportional hazards regression model to calculate the hazard ratio (HR) of mortality after adjusting for prediagnostic flavonoid intake and other potential confounders. We performed spline analysis to evaluate dose-response relationships. RESULTS The mean [standard deviation (SD)] age of patients at diagnosis was 68.7 (9.4) y. During 31,026 person-y of follow-up, we documented 1689 deaths, of which 327 were due to CRC. The total flavonoid intake was not associated with mortality, but a higher intake of flavan-3-ols was suggestively associated with lower CRC-specific and all-cause mortality, with multivariable HR (95% CI) per 1-SD increases of 0.83 (0.69-0.99; P = 0.04) and 0.91 (0.84-0.99; P = 0.02), respectively. The spline analysis showed a linear relationship between postdiagnostic flavan-3-ol intake and CRC-specific mortality (P = 0.01 for linearity). As the major contributor to flavan-3-ol intake, tea showed an inverse association with CRC-specific and all-cause mortality, with multivariable HRs per 1 cup/d of tea of 0.86 (0.75-0.99; P = 0.03) and 0.90 (0.85-0.95; P < 0.001), respectively. No beneficial associations were found for other flavonoid subclasses. CONCLUSIONS Higher intake of flavan-3-ol after CRC diagnosis was associated with lower CRC-specific mortality. Small, readily achievable increases in the intake of flavan-3-ol-rich foods, such as tea, may help improve survival in patients with CRC.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rong Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Katharina Nimptsch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
17
|
ZHONG JIATENG, GUO JINGYU, ZHANG XINYU, FENG SHUANG, DI WENYU, WANG YANLING, ZHU HUIFANG. The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment. Oncol Res 2023; 30:231-242. [PMID: 37305350 PMCID: PMC10207963 DOI: 10.32604/or.2022.027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In this review, we highlight the remodeling roles of lipid metabolism crosstalk between the CRC cells and the components of tumor microenvironment.
Collapse
Affiliation(s)
- JIATENG ZHONG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - JINGYU GUO
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - XINYU ZHANG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - SHUANG FENG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - WENYU DI
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - YANLING WANG
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - HUIFANG ZHU
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
18
|
Yao S, Campbell PT, Ugai T, Gierach G, Abubakar M, Adalsteinsson V, Almeida J, Brennan P, Chanock S, Golub T, Hanash S, Harris C, Hathaway CA, Kelsey K, Landi MT, Mahmood F, Newton C, Quackenbush J, Rodig S, Schultz N, Tearney G, Tworoger SS, Wang M, Zhang X, Garcia-Closas M, Rebbeck TR, Ambrosone CB, Ogino S. Proceedings of the fifth international Molecular Pathological Epidemiology (MPE) meeting. Cancer Causes Control 2022; 33:1107-1120. [PMID: 35759080 PMCID: PMC9244289 DOI: 10.1007/s10552-022-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/20/2022] [Indexed: 01/19/2023]
Abstract
Cancer heterogeneities hold the key to a deeper understanding of cancer etiology and progression and the discovery of more precise cancer therapy. Modern pathological and molecular technologies offer a powerful set of tools to profile tumor heterogeneities at multiple levels in large patient populations, from DNA to RNA, protein and epigenetics, and from tumor tissues to tumor microenvironment and liquid biopsy. When coupled with well-validated epidemiologic methodology and well-characterized epidemiologic resources, the rich tumor pathological and molecular tumor information provide new research opportunities at an unprecedented breadth and depth. This is the research space where Molecular Pathological Epidemiology (MPE) emerged over a decade ago and has been thriving since then. As a truly multidisciplinary field, MPE embraces collaborations from diverse fields including epidemiology, pathology, immunology, genetics, biostatistics, bioinformatics, and data science. Since first convened in 2013, the International MPE Meeting series has grown into a dynamic and dedicated platform for experts from these disciplines to communicate novel findings, discuss new research opportunities and challenges, build professional networks, and educate the next-generation scientists. Herein, we share the proceedings of the Fifth International MPE meeting, held virtually online, on May 24 and 25, 2021. The meeting consisted of 21 presentations organized into the three main themes, which were recent integrative MPE studies, novel cancer profiling technologies, and new statistical and data science approaches. Looking forward to the near future, the meeting attendees anticipated continuous expansion and fruition of MPE research in many research fronts, particularly immune-epidemiology, mutational signatures, liquid biopsy, and health disparities.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gretchen Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Jonas Almeida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paul Brennan
- International Agency for Research On Cancer (IARC/WHO), Genomic Epidemiology Branch, Lyon, France
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Todd Golub
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, MD Anderson Cancer Institute, Houston, TX, USA
| | - Curtis Harris
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cassandra A Hathaway
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Karl Kelsey
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christina Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - John Quackenbush
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guillermo Tearney
- Department of Pathology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Timothy R Rebbeck
- Zhu Family Center for Global Cancer Prevention, Harvard T.H. Chan School of Public Health and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Figueiredo JC, Guinter MA, Newton CC, McCullough ML, Um CY, Patel AV, Campbell PT. The Associations of Multivitamin and Antioxidant Use With Mortality Among Women and Men Diagnosed With Colorectal Cancer. JNCI Cancer Spectr 2022; 6:6604274. [PMID: 35674364 PMCID: PMC9248919 DOI: 10.1093/jncics/pkac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Colorectal cancer survivors often use multivitamins and other over-the-counter dietary supplements, but evidence is limited regarding their potential associations with mortality. Methods This prospective analysis included women and men from the Cancer Prevention Study-II Nutrition Cohort who were cancer-free at baseline (1992 or 1993) and diagnosed with colorectal cancer through June 2015. Detailed information on multivitamin use, vitamin C supplements, and vitamin E supplements was self-reported on questionnaires at baseline, in 1997, and every 2 years thereafter. Pre- and postdiagnosis data were available for 3176 and 2006 colorectal cancer survivors, respectively, among whom 2116 (648 from colorectal cancer) and 1256 (242 from colorectal cancer) died. Multivariable-adjusted Cox proportional hazards regression models examined associations. All statistical tests were 2-sided. Results Among colorectal cancer survivors, 49.7% and 58.5% reported multivitamin use before and after diagnosis, respectively (vitamin C use before and after diagnosis: 27.8% and 28.1%; vitamin E use before and after diagnosis: 27.5% and 29.4%, respectively). There were no statistically significant associations of pre- or postdiagnosis multivitamin use with all-cause, colorectal cancer-specific, or noncolorectal cancer mortality. Vitamin C was also not associated with any mortality outcomes. However, prediagnosis vitamin E use was associated with a non-statistically significant increased risk of all-cause mortality (multivariable adjusted hazard ratio = 1.08, 95% confidence intervals = 0.96 to 1.23) and all other noncolorectal cancer mortality (multivariable adjusted hazard ratio = 1.13, 95% confidence intervals = 0.97 to 1.31). Conclusions These results suggest that multivitamin use before or after diagnosis is not associated with mortality in colorectal cancer survivors. However, vitamin E use may be associated with increased risk of mortality and merits further investigation.
Collapse
Affiliation(s)
- Jane C Figueiredo
- Community and Population Health Research, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | | | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Greathouse KL, Wyatt M, Johnson AJ, Toy EP, Khan JM, Dunn K, Clegg DJ, Reddy S. Diet-microbiome interactions in cancer treatment: Opportunities and challenges for precision nutrition in cancer. Neoplasia 2022; 29:100800. [PMID: 35500546 PMCID: PMC9065883 DOI: 10.1016/j.neo.2022.100800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Dietary patterns contribute to cancer risk. Separately, microbial factors influence the development of several cancers. However, the interaction of diet and the microbiome and their joint contribution to cancer treatment response needs more research. The microbiome significantly impacts drug metabolism, immune activation, and response to immunotherapy. One of the critical factors affecting the microbiome structure and function is diet. Data demonstrate that the diet and microbiome composition affects the immune response. Moreover, malnutrition is a significant confounder to cancer therapy response. There is little understanding of the interaction of malnutrition with the microbiome in the context of cancer. This review aims to address the current knowledge of dietary intake patterns and malnutrition among cancer patients and the impact on treatment outcomes. Second, this review will provide evidence linking the microbiome to cancer treatment response and provide evidence of the potentially strong effect that diet could have on this interaction. This review will formulate critical questions that will need further research to understand the diet-microbiome relationship in cancer treatment response and directions for future research to guide us to precision nutrition therapy to improve cancer outcomes.
Collapse
|
21
|
Use of polyunsaturated fatty acids in prevention and treatment of gastrointestinal diseases, obesity and cancer. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Fatty acids are important structural and functional elements of human body. We can distinguish several types: among others polyunsaturated fatty acids, which include omega-3 fatty acids (ω-3PUFA) and omega-6 fatty acids(ω-6PUFA). The first group has pleiotropic health-promoting effects, while the second group, ω-6PUFA, negatively affects the homeostasis of the human body and contributes to the development of numerous diseases. Both the amount and the relative ratio of these acids in the diet is an important factor affecting health and quality of life.
Laboratory and clinical studies indicate that ω-3PUFA have a positive effect on the therapy of illnesses such as obesity and inflammatory bowel disease (IBD). ω-3 PUFA supplementation also appears to have a helpful effect in the adjuvant treatment of colorectal cancer and recovery.
Collapse
|
22
|
Abstract
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
Collapse
Affiliation(s)
- Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: Nikos Koundouros, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: John Blenis, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| |
Collapse
|
23
|
Molecular relation between biological stress and carcinogenesis. Mol Biol Rep 2022; 49:9929-9945. [PMID: 35610338 DOI: 10.1007/s11033-022-07543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
This paper aims to overview different types of stress, including DNA replication stress, oxidative stress, and psychological stress. Understanding the processes that constitute a cellular response to varied types of stress lets us find differences in how normal cells and cancer cells react to the appearance of a particular kind of stressor. The revealed dissimilarities are the key for targeting new molecules and signaling pathways in anticancer treatment. For this reason, molecular mechanisms that underlay DNA replication stress, oxidative stress, and psychological stress have been studied and briefly presented to indicate biochemical points that make stressors contribute to cancer development. What is more, the viewpoint in which cancer constitutes the outcome and the cause of stress has been taken into consideration. In a described way, this paper draws attention to the problem of cancer-related post-traumatic stress disorder and proposes a novel, multidimensional oncological approach, connecting anticancer treatment with psychiatric support.
Collapse
|
24
|
Aldoori J, Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids: moving towards precision use for prevention and treatment of colorectal cancer. Gut 2022; 71:822-837. [PMID: 35115314 DOI: 10.1136/gutjnl-2021-326362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Data from experimental studies have demonstrated that marine omega-3 polyunsaturated fatty acids (O3FAs) have anti-inflammatory and anticancer properties. In the last decade, large-scale randomised controlled trials of pharmacological delivery of O3FAs and prospective cohort studies of dietary O3FA intake have continued to investigate the relationship between O3FA intake and colorectal cancer (CRC) risk and mortality. Clinical data suggest that O3FAs have differential anti-CRC activity depending on several host factors (including pretreatment blood O3FA level, ethnicity and systemic inflammatory response) and tumour characteristics (including location in the colorectum, histological phenotype (eg, conventional adenoma or serrated polyp) and molecular features (eg, microsatellite instability, cyclooxygenase expression)). Recent data also highlight the need for further investigation of the effect of O3FAs on the gut microbiota as a possible anti-CRC mechanism, when used either alone or in combination with other anti-CRC therapies. Overall, these data point towards a precision approach to using O3FAs for optimal prevention and treatment of CRC based on mechanistic understanding of host, tumour and gut microbiota factors that predict anticancer activity of O3FAs.
Collapse
Affiliation(s)
- Joanna Aldoori
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.,Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew J Cockbain
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Giles J Toogood
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Mark A Hull
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Youn BY, Lee SY, Cho W, Bae KR, Ko SG, Cheon C. Global Trends of Nutrition in Cancer Research: A Bibliometric and Visualized Analysis Study over the Past 10 Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074165. [PMID: 35409847 PMCID: PMC8998574 DOI: 10.3390/ijerph19074165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
The increasing application of nutrition in cancer management has attracted a great deal of research interest in recent decades. Nutritional therapies, interventions, and assessments were known to have positive effects on reducing side effects from cancer therapy. In order to identify the global research output for nutrition in cancer research, a bibliometric analysis during the past 10 years was conducted to evaluate the current status of trends, gaps, and research directions as no bibliometric studies have been conducted regarding nutrition and cancer. After the data collection, a total of 1521 articles were chosen for this bibliometric study. The visualization analysis was performed with VOSviewer. The number of publications has grown continuously since a substantial spark was identified in 2019. The majority of the authors’ affiliations were in European countries. Four cancer types were recognized among the top 10 author keywords; they were breast cancer, head and neck cancer, colorectal cancer, and gastric cancer. The Nutrients journal was the most popular among the authors as the journal published 195 articles related to the topic. In conclusion, providing evidence-based nutritional solutions for various types of cancer is essential to nutrition and cancer research. Since it is presumed to have a growing number of cancer patients worldwide with the aging population, it is vital to continuously generate research finding effective nutrition therapies for cancer patients.
Collapse
Affiliation(s)
- Bo-Young Youn
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
| | - Seo-Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Wonje Cho
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang-Rok Bae
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
| | - Chunhoo Cheon
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
- Correspondence: ; Tel.: +82-2-961-2382
| |
Collapse
|
26
|
Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022; 130:121-139. [PMID: 35007370 DOI: 10.1111/apm.13206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Current evidence suggests that bacteria contribute to the development of certain cancers, such as colorectal cancer (CRC), partly by stimulating chronic inflammation. However, little is known about the bacterial impact on molecular pathways in CRC. Recent studies have demonstrated how specific bacteria can influence the major CRC-related pathways, i.e., Wnt, PI3K-Akt, MAPK, TGF-β, EGFR, mTOR, and p53. In order to advance the current understanding and facilitate the choice of pathways to investigate, we have systematically collected and summarized the current knowledge within bacterial altered major pathways in CRC. Several pro-tumorigenic and anti-tumorigenic bacterial species and their respective metabolites interfere with the major signaling pathways addressed in this review. Not surprisingly, some of these studies investigated known CRC drivers, such as Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis. Interestingly, some metabolites produced by bacterial species typically considered pathogenic, e.g., Vibrio cholera, displayed anti-tumorigenic activities, emphasizing the caution needed when classifying healthy and unhealthy microorganisms. The results collectively emphasize the complexity of the relationship between the microbiota and the tumorigenesis of CRC, and future studies should verify these findings in more realistic models, such as organoids, which constitute a promising platform. Moreover, future trials should investigate the clinical potential of preventive modulation of the gut microbiota regarding CRC development.
Collapse
Affiliation(s)
- Astrid L B Bennedsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Sara Furbo
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Wang Y, Liu K, Long T, Long J, Li Y, Li J, Cheng L. Dietary fish and omega-3 polyunsaturated fatty acids intake and cancer survival: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 63:6235-6251. [PMID: 35068276 DOI: 10.1080/10408398.2022.2029826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fish and omega-3 polyunsaturated fatty acids (PUFA) have been suggested to play a role in improving cancer prognosis. However, results from epidemiological studies remain inconsistent. Here we assess the association between dietary fish and/or omega-3 PUFAs intake and cancer prognosis with meta-analysis of observational studies. A systematic search of related publications was performed using PubMed and Web of Science databases. Hazard ratios (HR) and 95% confidence intervals (CI) were extracted and then pooled using a random-effect model. Potential linear and non-linear dose-response relationships were explored using generalized least squares estimation and restricted cubic splines. As a result, 21 cohort studies were included in our analysis. Compared to the lowest category, the highest category of fish intake was associated with a significant lower mortality in patients with ovarian cancer (n = 1, HR = 0.74, 95% CI: 0.57-0.95) and overall cancer (n = 12, HR = 0.87, 95% CI: 0.81-0.94). Marine omega-3 PUFAs intake rather than total omega-3 PUFAs intake showed significant protective effects on survival of overall cancer (n = 8, HR = 0.81, 95% CI: 0.71-0.94), in particular prostate cancer (n = 2, HR = 0.62, 95% CI: 0.46-0.82). Dose-response meta-analysis indicated a nonlinear and a linear relationship between fish intake, as well as marine omega-3 PUFAs intake, and overall cancer survival, respectively. In conclusion, our analysis demonstrated a protective effect of dietary fish and marine omega-3 PUFAs consumption on cancer survival.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Ma CJ, Hu WH, Huang MC, Chiang JM, Hsieh PS, Wang HS, Chiang CL, Hsieh HM, Chen CC, Wang JY. Taiwan Society of Colon and Rectum Surgeons (TSCRS) Consensus for Anti-Inflammatory Nutritional Intervention in Colorectal Cancer. Front Oncol 2022; 11:819742. [PMID: 35111685 PMCID: PMC8801427 DOI: 10.3389/fonc.2021.819742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Malnutrition and systemic inflammatory response (SIR) frequently occur in patients with colorectal cancer (CRC) and are associated with poor prognosis. Anti-inflammatory nutritional intervention is not only a way to restore the malnourished status but also modulate SIR. Nine experts, including colorectal surgeons, physicians and dieticians from 5 hospitals geographically distributed in Taiwan, attended the consensus meeting in Taiwan Society of Colon and Rectum Surgeons for a 3-round discussion and achieved the consensus based on a systematic literature review of clinical studies and published guidelines. The consensus recommends that assessment of nutritional risk and SIR should be performed before and after CRC treatment and appropriate nutritional and/or anti-inflammatory intervention should be adapted and provided accordingly.
Collapse
Affiliation(s)
- Cheng-Jen Ma
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsiang Hu
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital–Kaohsiung, Kaohsiung, Taiwan
| | - Meng-Chuan Huang
- Division of Nutrition and Dietetics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jy-Ming Chiang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital–Linkou, Taoyuan, Taiwan
| | - Pao-Shiu Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital–Linkou, Taoyuan, Taiwan
| | - Huann-Sheng Wang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Ling Chiang
- Division of Nutrition, Chang Gung Memorial Hospital–Linkou, Taoyuan, Taiwan
| | - Hui-Min Hsieh
- Division of Nutrition, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chou-Chen Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Clinical Pharmacogenomics and Pharmacoproteinomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| |
Collapse
|
29
|
Ugai T, Haruki K, Väyrynen JP, Borowsky J, Fujiyoshi K, Lau MC, Akimoto N, Zhong R, Kishikawa J, Arima K, Shi SS, Zhao M, Fuchs CS, Zhang X, Giannakis M, Song M, Nan H, Meyerhardt JA, Wang M, Nowak JA, Ogino S. Coffee Intake of Colorectal Cancer Patients and Prognosis According to Histopathologic Lymphocytic Reaction and T-Cell Infiltrates. Mayo Clin Proc 2022; 97:124-133. [PMID: 34996545 PMCID: PMC8820462 DOI: 10.1016/j.mayocp.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Given previous biologic evidence of immunomodulatory effects of coffee, we hypothesized that the association between coffee intake of colorectal cancer patients and survival differs by immune responses. Using a molecular pathologic epidemiology database of 4465 incident colorectal cancer cases, including 1262 cases with molecular data, in the Nurses' Health Study and the Health Professionals Follow-up Study, we examined the association between coffee intake of colorectal cancer patients and survival in strata of levels of histopathologic lymphocytic reaction and T-cell infiltrates in tumor tissue. We did not observe a significant association of coffee intake with colorectal cancer-specific mortality (multivariable-adjusted hazard ratio [HR] for 1-cup increase of coffee intake per day, 0.93; 95% CI, 0.84 to 1.03). Although statistical significance was not reached at the stringent level (α=.005), the association of coffee intake with colorectal cancer-specific mortality differed by Crohn disease-like lymphoid reaction (Pinteraction=.007). Coffee intake was associated with lower colorectal cancer-specific mortality in patients with high Crohn disease-like reaction (multivariable HR for 1-cup increase of coffee intake per day, 0.55; 95% CI, 0.37 to 0.81; Ptrend=.002) but not in patients with intermediate Crohn disease-like reaction (the corresponding HR, 1.02; 95% CI, 0.72 to 1.44) or negative/low Crohn disease-like reaction (the corresponding HR, 0.95; 95% CI, 0.83 to 1.07). The associations of coffee intake with colorectal cancer-specific mortality did not significantly differ by levels of other lymphocytic reaction or any T-cell subset (Pinteraction>.18). There is suggestive evidence for differential prognostic effects of coffee intake by Crohn disease-like lymphoid reaction in colorectal cancer.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shan-Shan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT; Department of Medicine, Yale School of Medicine, New Haven, CT; Smilow Cancer Hospital, New Haven, CT
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marios Giannakis
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston; Division of Gastroenterology, Massachusetts General Hospital, Boston
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
30
|
Luo H, Chen CY, Li X, Zhang X, Su CW, Liu Y, Cao T, Hao L, Wang M, Kang JX. Increased lipogenesis is critical for self-renewal and growth of breast cancer stem cells: Impact of omega-3 fatty acids. Stem Cells 2021; 39:1660-1670. [PMID: 34486791 PMCID: PMC9292025 DOI: 10.1002/stem.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Aberrant lipid metabolism has recently been recognized as a new hallmark of malignancy, but the characteristics of fatty acid metabolism in breast cancer stem cells (BCSC) and potential interventions targeting this pathway remain to be addressed. Here, by using the in vitro BCSC models, mammosphere‐derived MCF‐7 cells and HMLE‐Twist‐ER cells, we found that the cells with stem cell‐like properties exhibited a very distinct profile of fatty acid metabolism compared with that of their parental cancer cells, characterized by increased lipogenesis, especially the activity of stearoyl‐CoA desaturase 1 (SCD1) responsible for the production of monounsaturated fatty acids, and augmented synthesis and utilization of the omega‐6 arachidonic acid (AA). Suppression of SCD1 activity by either enzyme inhibitors or small interfering RNA (siRNA) knockdown strikingly limited self‐renewal and growth of the BCSC, suggesting a key role for SCD1 in BCSC proliferation. Furthermore, elevated levels of SCD1 and other lipogenic enzymes were observed in human breast cancer tissues relative to the noncancer tissues from the same patients and correlated with the pathological grades. Interestingly, treatment of BCSC with omega‐3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, effectively downregulated the expression of the lipogenic enzymes and markedly suppressed BCSC self‐renewal and growth. Dietary supplementation of nude mice bearing BCSC‐derived tumors with omega‐3 fatty acids also significantly reduced their tumor load. These findings have demonstrated that increased lipogenesis is critical for self‐renewal and growth of BCSC, and that omega‐3 fatty acids are effective in targeting this pathway to exert their anticancer effect.
Collapse
Affiliation(s)
- Haiqing Luo
- Center of Oncology, The Affiliated Hospital of Guangdong Medical University, Guangdong, People's Republic of China.,Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiangyong Li
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, People's Republic of China
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yinghua Liu
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Hao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
32
|
Pfister E, Smith R, Lane MA. N-3 Polyunsaturated fatty acid ethyl esters decrease the invasion, but not the proliferation, of human colorectal cancer cells via a PI3K-dependent mechanism in vitro. Prostaglandins Leukot Essent Fatty Acids 2021; 167:102273. [PMID: 33812216 DOI: 10.1016/j.plefa.2021.102273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023]
Abstract
N-3 polyunsaturated fatty acid (PUFA) ethyl esters have been approved by the FDA for the treatment of dyslipidemia and are promising cancer therapeutics. The study objectives were to determine if and how n-3 PUFA ethyl esters affected the proliferation and invasion of colorectal cancer cells. SW620 and HCT-116 parental and HCT-116 mutant cells isogenic for constitutively active PI3K were treated with free or ethyl esterified n-3 PUFAs and counted 72 h later. Cells were also administered n-3 PUFA ethyl esters to determine if these compounds decreased invasion through Boyden chambers and PI3K activity via western blot analysis of phosphorylated Akt. Free and n-3 PUFA ethyl esters decreased the proliferation of all cell lines. The invasion and Akt phosphorylation of both parental cell lines was decreased following treatment but this did not occur in mutant cells. The ability of n-3 PUFA ethyl esters to decrease proliferation and invasion in vitro indicates these compounds may be effective in vivo.
Collapse
Affiliation(s)
- Eric Pfister
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666
| | - Rebecca Smith
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666.
| |
Collapse
|
33
|
Cui B, Peng F, Lu J, He B, Su Q, Luo H, Deng Z, Jiang T, Su K, Huang Y, Ud Din Z, Lam EWF, Kelley KW, Liu Q. Cancer and stress: NextGen strategies. Brain Behav Immun 2021; 93:368-383. [PMID: 33160090 DOI: 10.1016/j.bbi.2020.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is well-known to cause physiological distress that leads to body balance perturbations by altering signaling pathways in the neuroendocrine and sympathetic nervous systems. This increases allostatic load, which is the cost of physiological fluctuations that are required to cope with psychological challenges as well as changes in the physical environment. Recent studies have enriched our knowledge about the role of chronic stress in disease development, especially carcinogenesis. Stress stimulates the hypothalamic-pituitaryadrenal (HPA) axis and the sympathetic nervous system (SNS), resulting in an abnormal release of hormones. These activate signaling pathways that elevate expression of downstream oncogenes. This occurs by activation of specific receptors that promote numerous cancer biological processes, including proliferation, genomic instability, angiogenesis, metastasis, immune evasion and metabolic disorders. Moreover, accumulating evidence has revealed that β-adrenergic receptor (ADRB) antagonists and downstream target inhibitors exhibit remarkable anti-tumor effects. Psychosomatic behavioral interventions (PBI) and traditional Chinese medicine (TCM) also effectively relieve the impact of stress in cancer patients. In this review, we discuss recent advances in the underlying mechanisms that are responsible for stress in promoting malignancies. Collectively, these data provide approaches for NextGen pharmacological therapies, PBI and TCM to reduce the burden of tumorigenesis.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Yanping Huang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il 61801, USA.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China.
| |
Collapse
|
34
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. New perspective toward nutritional support for malnourished cancer patients: Role of lipids. Compr Rev Food Sci Food Saf 2021; 20:1381-1421. [PMID: 33533186 DOI: 10.1111/1541-4337.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
To improve the difficulties related to malnutrition, nutritional support has become an essential part of multidisciplinary comprehensive treatment for cancer. Lipids are essential nutrient source for the human body, and nowadays in clinical practices, it has a positive interventional effect on patients suffering from cancer. However, contribution of lipids in nutritional support of cancer patients is still poorly understood. Moreover, the sensory and physicochemical properties of lipids can severely restrict their applications in lipid-rich formula foods. In this review article, for the first time, we have presented a summary of the existing studies which were related to the associations between different lipids and improved malnutrition in cancer patients and discussed possible mechanisms. Subsequently, we discussed the challenges and effective solutions during processing of lipids into formula foods. Further, by considering existing problems in current lipid nutritional support, we proposed a novel method for the treatment of malnutrition, including developing individualized lipid nutrition for different patients depending on the individual's genotype and enterotype. Nonetheless, this review study provides a new direction for future research on nutritional support and the development of lipid-rich formula foods for cancer patients, and probably will help to improve the efficacy of lipids in the treatment of cancer malnutrition.
Collapse
Affiliation(s)
- Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Fuentes NR, Mlih M, Wang X, Webster G, Cortes-Acosta S, Salinas ML, Corbin IR, Karpac J, Chapkin RS. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Res 2021; 62:100026. [PMID: 33515553 PMCID: PMC7933808 DOI: 10.1016/j.jlr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling drives the formation of many types of cancer, including colon cancer. Docosahexaenoic acid (DHA, 22∶6Δ4,7,10,13,16,19), a chemoprotective long-chain n-3 polyunsaturated fatty acid suppresses EGFR signaling. However, the mechanism underlying this phenotype remains unclear. Therefore, we used super-resolution microscopy techniques to investigate the mechanistic link between EGFR function and DHA-induced alterations to plasma membrane nanodomains. Using isogenic in vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and Fat-1 mice) models, cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling. Phospholipid incorporation of DHA reduced membrane rigidity and the size of EGFR nanoclusters. Similarly, pharmacological reduction of plasma membrane phosphatidic acid (PA), phosphatidylinositol-4,5-bisphosphate (PIP2) or cholesterol was associated with a decrease in EGFR nanocluster size. Furthermore, in DHA-treated cells only the addition of cholesterol, unlike PA or PIP2, restored EGFR nanoscale clustering. These findings reveal that DHA reduces EGFR signaling in part by reshaping EGFR proteolipid nanodomains, supporting the feasibility of using membrane therapy, i.e., dietary/drug-related strategies to target plasma membrane organization, to reduce EGFR signaling and cancer risk.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Mohamed Mlih
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Gabriella Webster
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Sergio Cortes-Acosta
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
36
|
Hoang T, Kim H, Kim J. Dietary Intake in Association with All-Cause Mortality and Colorectal Cancer Mortality among Colorectal Cancer Survivors: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers (Basel) 2020; 12:cancers12113391. [PMID: 33207660 PMCID: PMC7697273 DOI: 10.3390/cancers12113391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Given that an extensive range of dietary factors has not been investigated among colorectal cancer (CRC) survivors to date, we carried out a systematic review and meta-analysis to determine the effects of both prediagnostic and postdiagnostic dietary intake on all-cause mortality and CRC-specific mortality among CRC survivors. In total, 45 studies were included in the final analysis of 35 food items, 8 macronutrients, 27 micronutrients, 2 dietary patterns, and 13 dietary indexes in association with all-cause mortality and CRC-specific mortality. We found that an unhealthy dietary pattern increased the risks of both all-cause mortality and CRC-specific mortality. The role of prediagnostic and postdiagnostic intake such as macronutrients and fatty acids could be different in the risk of all-cause mortality. Overall, comprehensive evidence for the effect of substantial numbers of prediagnostic and postdiagnostic dietary items on mortality outcomes is reported in this study. Abstract We carried out a systematic review and meta-analysis to determine the effects of both prediagnostic and postdiagnostic dietary intake on all-cause mortality and CRC-specific mortality among CRC survivors. An extensive search of PubMed and Embase was conducted to identify eligible studies. We applied a random-effects model to estimate the pooled relative risks (RRs)/hazard ratios (HRs) and their 95% confidence intervals (CIs). As a result, a total of 45 studies were included in the final analysis. Pooled effect sizes from at least three study populations showed that whole grains and calcium were inversely associated with all-cause mortality, with RRs/HRs (95% CIs) of 0.83 (0.69–0.99) and 0.84 (0.73–0.97), respectively. In contrast, a positive association between an unhealthy dietary pattern and both all-cause mortality (RR/HR = 1.47, 95% CI = 1.05–2.05) and CRC-specific mortality (RR/HR = 1.52, 95% CI = 1.13–2.06) was observed among CRC survivors. In the subgroup analysis by CRC diagnosis, prediagnostic and postdiagnostic dietary intake such as carbohydrates, proteins, lipids, and fiber were observed to have different effects on all-cause mortality. Overall, an unhealthy dietary pattern increased the risks of both all-cause mortality and CRC-specific mortality. The role of prediagnostic and postdiagnostic intake of dietary elements such as macronutrients and fatty acids could be different in the risk of all-cause mortality.
Collapse
|
37
|
Van Blarigan EL, Zhang S, Ou FS, Venlo A, Ng K, Atreya C, Van Loon K, Niedzwiecki D, Giovannucci E, Wolfe EG, Lenz HJ, Innocenti F, O'Neil BH, Shaw JE, Polite BN, Hochster HS, Atkins JN, Goldberg RM, Mayer RJ, Blanke CD, O'Reilly EM, Fuchs CS, Meyerhardt JA. Association of Diet Quality With Survival Among People With Metastatic Colorectal Cancer in the Cancer and Leukemia B and Southwest Oncology Group 80405 Trial. JAMA Netw Open 2020; 3:e2023500. [PMID: 33125497 PMCID: PMC7599454 DOI: 10.1001/jamanetworkopen.2020.23500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Diet has been associated with survival in patients with stage I to III colorectal cancer, but data on patients with metastatic colorectal cancer are limited. OBJECTIVE To examine the association between diet quality and overall survival among individuals with metastatic colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This was a prospective cohort study of patients with metastatic colorectal cancer who were enrolled in the Cancer and Leukemia Group B (Alliance) and Southwest Oncology Group 80405 trial between October 27, 2005, and February 29, 2012, and followed up through January 2018. EXPOSURES Participants completed a validated food frequency questionnaire within 4 weeks after initiation of first-line treatment for metastatic colorectal cancer. Diets were categorized according to the Alternative Healthy Eating Index (AHEI), Alternate Mediterranean Diet (AMED) score, Dietary Approaches to Stop Hypertension (DASH) score, and Western and prudent dietary patterns derived using principal component analysis. Participants were categorized into sex-specific quintiles. MAIN OUTCOMES AND MEASURES Multivariable hazard ratios (HRs) and 95% CIs for overall survival. RESULTS In this cohort study of 1284 individuals with metastatic colorectal cancer, the median age was 59 (interquartile range [IQR]: 51-68) years, median body mass index was 27.2 (IQR, 24.1-31.4), 521 (41%) were female, and 1102 (86%) were White. There were 1100 deaths during a median follow-up of 73 months (IQR, 64-87 months). We observed an inverse association between the AMED score and risk of death (HR quintile 5 vs quintile 1, 0.83; 95% CI, 0.67-1.04; P = .04 for trend), but the point estimates were not statistically significant. None of the other diet scores or patterns were associated with overall survival. CONCLUSIONS AND RELEVANCE In this prospective analysis of patients with metastatic colorectal cancer, diet quality assessed at initiation of first-line treatment for metastatic disease was not associated with overall survival.
Collapse
Affiliation(s)
- Erin L Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Sui Zhang
- Dana-Farber/Partners CancerCare, Boston, Massachusetts
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota
| | - Alan Venlo
- Department of Medicine, University of California, San Francisco
| | - Kimmie Ng
- Dana-Farber/Partners CancerCare, Boston, Massachusetts
| | - Chloe Atreya
- Department of Medicine, University of California, San Francisco
| | | | - Donna Niedzwiecki
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Edward Giovannucci
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Eric G Wolfe
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota
| | - Heinz-Josef Lenz
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy; Department of Medicine-Hematology, University of North Carolina at Chapel Hill
| | - Bert H O'Neil
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis
| | | | - Blase N Polite
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Howard S Hochster
- Department of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut
| | - James N Atkins
- Southeast Clinical Oncology Research Consortium, Winston-Salem, North Carolina
| | | | | | - Charles D Blanke
- SWOG Group Chair's Office, Knight Cancer Institute, Oregon Health & Science University, Portland
| | | | - Charles S Fuchs
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
38
|
Bhatt DL, Hull MA, Song M, Van Hulle C, Carlsson C, Chapman MJ, Toth PP. Beyond cardiovascular medicine: potential future uses of icosapent ethyl. Eur Heart J Suppl 2020; 22:J54-J64. [PMID: 33061868 PMCID: PMC7537800 DOI: 10.1093/eurheartj/suaa119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The REDUCE-IT trial demonstrated that icosapent ethyl, an ethyl ester of eicosapentaenoic acid (EPA), reduced cardiovascular events in an at-risk population by a substantial degree. While the cardiovascular protective properties of this compound are now proven, several other potential uses are being actively explored in clinical studies. These areas of investigation include cancer, inflammatory bowel disease, infections, Alzheimer's disease, dementia, and depression. The next decade promises to deepen our understanding of the beneficial effects that EPA may offer beyond cardiovascular risk reduction.
Collapse
Affiliation(s)
- Deepak L Bhatt
- Brigham and Women’s Hospital, Heart & Vascular Center and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Mark A Hull
- Division of Gastrointestinal and Surgical Sciences, Leeds Institute of Medical Research, St James’s University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 50 Fruit Street, Boston, MA 02114, USA
| | - Carol Van Hulle
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cindy Carlsson
- William S. Middleton Memorial Veterans Hospital, Madison VA Geriatric Research, Education and Clinical Center (GRECC), 2500 Overlook Terrace, Madison, WI 53705, USA
- Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center (ADRC), 600 Highland Ave, J5/1 Mezzanine, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute (WAI), 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - M John Chapman
- Sorbonne University, 21, Rue de l'Ecole de Medicine, 75006 Paris, France
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital, 47-83, Boulevard de lopital, 75651 Paris Cedex, France
| | - Peter P Toth
- CGH Medical Center, 101 East Miller Road, Sterling, IL 61081, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Cancer diets for cancer patients: Lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors. Biochimie 2020; 178:56-68. [PMID: 32890677 DOI: 10.1016/j.biochi.2020.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Specific diets for cancer patients have the potential to offer an adjuvant modality to conventional anticancer therapy. If the concept of starving cancer cells from nutrients to inhibit tumor growth is quite simple, the translation into the clinics is not straightforward. Several diets have been described including the Calorie-restricted diet based on a reduction in carbohydrate intake and the Ketogenic diet wherein the low carbohydrate content is compensated by a high fat intake. As for other diets that deviate from normal composition only by one or two amino acids, these diets most often revealed a reduction in tumor growth in mice, in particular when associated with chemo- or radiotherapy. By contrast, in cancer patients, the interest of these diets is almost exclusively supported by case reports precluding any conclusions on their real capacity to influence disease outcome. In parallel, the field of tumor lipid metabolism has emerged in the last decade offering a better understanding of how fatty acids are captured, synthesized or stored as lipid droplets in cancers. Fatty acids participate to cancer cell survival in the hypoxic and acidic tumor microenvironment and also support proliferation and invasiveness. Interestingly, while such addiction for fatty acids may account for cancer progression associated with high fat diet, it could also represent an Achilles heel for tumors. In particular n-3 polyunsaturated fatty acids represent a class of lipids that can exert potent cytotoxic effects in tumors and therefore represent an attractive diet supplementation to improve cancer patient outcomes.
Collapse
|
40
|
Bae S, Kim MK, Kim HS, Moon YA. Arachidonic acid induces ER stress and apoptosis in HT-29 human colon cancer cells. Anim Cells Syst (Seoul) 2020; 24:260-266. [PMID: 33209199 PMCID: PMC7646553 DOI: 10.1080/19768354.2020.1813805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have important functions in biological systems. The beneficial effects of dietary PUFAs against inflammatory diseases, cardiovascular diseases, and metabolic disorders have been shown. Studies using cancer cells have presented the anti-tumorigenic effects of docosahexaenoic acid (DHA), an n-3 PUFA, while arachidonic acid (AA), an n-6 PUFA, has been shown to elicit both pro- and anti-tumorigenic effects. In the current study, the anti-tumorigenic effects of AA were evaluated in HT-29 human colon cancer cells. Upon adding AA in the media, more than 90% of HT-29 cells died, while the MCF7 cells showed good proliferation. AA inhibited the expression of SREBP-1 and its target genes that encode enzymes involved in fatty acid synthesis. As HT-29 cells contained lower basal levels of fatty acid synthase, a target gene of SREBP-1, than that in MCF7 cells, the inhibitory effects of AA on the fatty acid synthase levels in HT-29 cells were much stronger than those in MCF-7 cells. When oleic acid (OA), a monounsaturated fatty acid that can be synthesized endogenously, was added along with AA, the HT-29 cells were able to proliferate. These results suggested that HT-29 cells could not synthesize enough fatty acids for cell division in the presence of AA because of the suppression of lipogenesis. HT-29 cells may incorporate more AA into their membrane phospholipids to proliferate, which resulted in ER stress, thereby inducing apoptosis. AA could be used as an anti-tumorigenic agent against cancer cells in which the basal fatty acid synthase levels are low.
Collapse
Affiliation(s)
- Sijeong Bae
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Min-Kyoung Kim
- Department of New Drug Development, Inha University College of Medicine, Incheon, South Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
41
|
Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, Weimann A, Calder PC. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020; 12:E2555. [PMID: 32846900 PMCID: PMC7551800 DOI: 10.3390/nu12092555] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Life expectancy is increasing and so is the prevalence of age-related non-communicable diseases (NCDs). Consequently, older people and patients present with multi-morbidities and more complex needs, putting significant pressure on healthcare systems. Effective nutrition interventions could be an important tool to address patient needs, improve clinical outcomes and reduce healthcare costs. Inflammation plays a central role in NCDs, so targeting it is relevant to disease prevention and treatment. The long-chain omega-3 polyunsaturated fatty acids (omega-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to reduce inflammation and promote its resolution, suggesting a beneficial role in various therapeutic areas. An expert group reviewed the data on omega-3 LCPUFAs in specific patient populations and medical conditions. Evidence for benefits in cognitive health, age- and disease-related decline in muscle mass, cancer treatment, surgical patients and critical illness was identified. Use of DHA and EPA in some conditions is already included in some relevant guidelines. However, it is important to note that data on the effects of omega-3 LCPUFAs are still inconsistent in many areas (e.g., cognitive decline) due to a range of factors that vary amongst the trials performed to date; these factors include dose, timing and duration; baseline omega-3 LCPUFA status; and intake of other nutrients. Well-designed intervention studies are required to optimize the effects of DHA and EPA in specific patient populations and to develop more personalized strategies for their use.
Collapse
Affiliation(s)
- Barbara Troesch
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy;
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, INSERM 1027, Centre Hospitalo-Universitaire de Toulouse, 31300 Toulouse, France;
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Ines Warnke
- Nutrition Science and Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland; (B.T.); (I.W.)
| | - Arved Weimann
- Clinic for General, Visceral and Oncological Surgery, St. Georg gGmbH Clinic, 04129 Leipzig, Germany;
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
42
|
Xia DN, Tan YQ, Yang JY, Zhou G. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res 2020; 69:989-999. [PMID: 32770320 DOI: 10.1007/s00011-020-01388-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
Collapse
Affiliation(s)
- Duo-Na Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Ahn J, Kim H, Yang KM. ω-hydroxyundec-9-enoic acid induction of breast cancer cells apoptosis through generation of mitochondrial ROS and phosphorylation of AMPK. Arch Pharm Res 2020; 43:735-743. [PMID: 32720162 DOI: 10.1007/s12272-020-01254-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
This study was performed to evaluate the anticancer effect of ω-hydroxyundec-9-enoic acid (ω-HUA), a microbial bio-catalyst product in breast cancer cells, through AMP-activated protein kinase (AMPK) regulation. ω-HUA mediated apoptosis was induced in breast cancer cells by AMPK activation, loss of mitochondrial membrane potential, and reactive oxygen species (ROS) generation. ω-HUA treatment of breast cancer cells increased the AMPK phosphorylation levels, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) proteins. In addition, anti-apoptotic members, such as Bcl-2, were downregulated, while Bax, a pro-apoptotic member, was upregulated. ω-HUA decreased the mitochondrial membrane potential while increasing the expression of cytochrome c (cyt c). Treating the cells with compound C, an AMPK inhibitor, reversed the phenomena, leading to an increase in cell viability and a decrease in apoptosis induction. Treating the cells with an ROS scavenger, N-acetyl cysteine (NAC), led to AMPK inactivation and apoptosis inhibition, allowing the recovery of cell health. In conclusion, ω-HUA sequentially caused the production of mitochondrial ROS and the consequent AMPK activation, thereby inducing apoptosis in breast cancer cells. Thus, ω-HUA may prove useful as an anticancer agent that targets AMPK in breast cancer cells.
Collapse
Affiliation(s)
- Joungjwa Ahn
- Department of Food Science and Industry, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungcheongbuk-do, 28024, Republic of Korea
| | - Hyesung Kim
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Kyung Mi Yang
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea.
| |
Collapse
|
44
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
45
|
The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel) 2020; 12:cancers12061406. [PMID: 32486066 PMCID: PMC7352899 DOI: 10.3390/cancers12061406] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.
Collapse
|
46
|
Sørensen LS, Rasmussen SL, Calder PC, Yilmaz MN, Schmidt EB, Thorlacius-Ussing O. Long-term outcomes after perioperative treatment with omega-3 fatty acid supplements in colorectal cancer. BJS Open 2020; 4:678-684. [PMID: 32391656 PMCID: PMC7397352 DOI: 10.1002/bjs5.50295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to evaluate the effect of perioperative supplementation with omega‐3 fatty acids (n‐3 FA) on perioperative outcomes and survival in patients undergoing colorectal cancer surgery. Methods Patients scheduled for elective resection of colorectal cancer between 2007 and 2010 were randomized to either an n‐3 FA‐enriched oral nutrition supplement (ONS) twice daily or a standard ONS (control) for 7 days before and after surgery. Outcome measures, including postoperative complications, 3‐year cumulative incidence of local or metastatic colorectal cancer recurrence and 5‐year overall survival, were compared between the groups. Results Of 148 patients enrolled in the study, 125 (65 patients receiving n‐3 FA‐enriched ONS and 60 receiving standard ONS) were analysed. There were no differences in postoperative complications after surgery (P = 0·544). The risk of disease recurrence at 3 years was similar (relative risk 1·66, 95 per cent c.i. 0·65 to 4·26).The 5‐year survival rate of patients treated with n‐3 FA was 69·2 (95 per cent c.i. 56·5 to 78·9) per cent, compared with 81·7 (69·3 to 89·4) per cent in the control group (P = 0·193). After adjustment for age, stage of disease and adjuvant chemotherapy, n‐3 FA was associated with higher mortality compared with controls (hazard ratio 1·73, 95 per cent c.i. 1·06 to 2·83; P = 0·029). The interaction between n‐3 FA and adjuvant chemotherapy was not statistically significant. Conclusion Perioperative supplementation with n‐3 FA did not confer a survival benefit in patients undergoing colorectal cancer surgery. n‐3 FA did not benefit the subgroup of patients treated with adjuvant chemotherapy or decrease the risk of disease recurrence.
Collapse
Affiliation(s)
- L Schmidt Sørensen
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Ladefoged Rasmussen
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - P C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | | | - E Berg Schmidt
- Department of Cardiology, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - O Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
47
|
Šunderić M, Robajac D, Gligorijević N, Miljuš G, Nedić O, Smilkov K, Ackova DG, Rudić-Grujić V, Penezić A. Is There Something Fishy About Fish Oil? Curr Pharm Des 2020; 25:1747-1759. [PMID: 31298156 DOI: 10.2174/1381612825666190705185800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Fish is consumed as food worldwide and is considered as a rich source of essential nutrients required for a healthy life. Supplementation with fish oil has been adopted as a solution to prevent or cure many pathophysiological states and diseases by both the professionals and the civil population. The beneficial effects are, however, being questioned, as some controversial results were obtained in clinical and population studies. METHODS Critical evaluation of studies regarding known effects of fish oil, both in favour of its consumption and related controversies. RESULTS From the literature review, contradictory allegations about the positive action of the fish oil on human health emerged, so that a clear line about its beneficial effect cannot be withdrawn. CONCLUSION Scientific results on the application of fish oil should be taken with caution as there is still no standardised approach in testing its effects and there are significantly different baselines in respect to nutritional and other lifestyle habits of different populations.
Collapse
Affiliation(s)
- Miloš Šunderić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Dragana Robajac
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Goran Miljuš
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev, Stip, R, North Macedonia
| | - Darinka Gjorgieva Ackova
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev, Stip, R, North Macedonia
| | - Vesna Rudić-Grujić
- Department of Hygiene and Human Health, Public Health Institute Republic of Srpska, Medical Faculty, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ana Penezić
- Department of Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, White BA, Hale VL, Sung J, Chia N, Sinha R, Chen J. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020; 11:e03186-19. [PMID: 32071266 PMCID: PMC7029137 DOI: 10.1128/mbio.03186-19] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal adenomas are precancerous lesions of colorectal cancer (CRC) that offer a means of viewing the events key to early CRC development. A number of studies have investigated the changes and roles of gut microbiota in adenoma and carcinoma development, highlighting its impact on carcinogenesis. However, there has been less of a focus on the gut metabolome, which mediates interactions between the host and gut microbes. Here, we investigated metabolomic profiles of stool samples from patients with advanced adenoma (n = 102), matched controls (n = 102), and patients with CRC (n = 36). We found that several classes of bioactive lipids, including polyunsaturated fatty acids, secondary bile acids, and sphingolipids, were elevated in the adenoma patients compared to the controls. Most such metabolites showed directionally consistent changes in the CRC patients, suggesting that those changes may represent early events of carcinogenesis. We also examined gut microbiome-metabolome associations using gut microbiota profiles in these patients. We found remarkably strong overall associations between the microbiome and metabolome data and catalogued a list of robustly correlated pairs of bacterial taxa and metabolomic features which included signatures of adenoma. Our findings highlight the importance of gut metabolites, and potentially their interplay with gut microbes, in the early events of CRC pathogenesis.IMPORTANCE Colorectal adenomas are precursors of CRC. Recently, the gut microbiota, i.e., the collection of microbes residing in our gut, has been recognized as a key player in CRC development. There have been a number of gut microbiota profiling studies for colorectal adenoma and CRC; however, fewer studies have considered the gut metabolome, which serves as the chemical interface between the host and gut microbiota. Here, we conducted a gut metabolome profiling study of colorectal adenoma and CRC and analyzed the metabolomic profiles together with paired microbiota composition profiles. We found several chemical signatures of colorectal adenoma that were associated with some gut microbes and potentially indicative of future CRC. This study highlights potential early-driver metabolites in CRC pathogenesis and guides further targeted experiments and thus provides an important stepping stone toward developing better CRC prevention strategies.
Collapse
Affiliation(s)
- Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary E Devens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vanessa L Hale
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Chen
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Mika A, Kobiela J, Pakiet A, Czumaj A, Sokołowska E, Makarewicz W, Chmielewski M, Stepnowski P, Marino-Gammazza A, Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci Rep 2020; 10:1954. [PMID: 32029824 PMCID: PMC7005037 DOI: 10.1038/s41598-020-58895-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Sokołowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Makarewicz
- Department of Oncologic Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Antonella Marino-Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100, Palermo, Italy
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
50
|
Yang W, Giovannucci EL, Hankinson SE, Chan AT, Ma Y, Wu K, Fuchs CS, Lee IM, Sesso HD, Lin JH, Zhang X. Endogenous sex hormones and colorectal cancer survival among men and women. Int J Cancer 2020; 147:920-930. [PMID: 31863463 DOI: 10.1002/ijc.32844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Although previous studies have suggested a potential role of sex hormones in the etiology of colorectal cancer (CRC), no study has yet examined the associations between circulating sex hormones and survival among CRC patients. We prospectively assessed the associations of prediagnostic plasma concentrations of estrone, estradiol, free estradiol, testosterone, free testosterone and sex hormone-binding globulin (SHBG) with CRC-specific and overall mortality among 609 CRC patients (370 men and 239 postmenopausal women not taking hormone therapy at blood collection) from four U.S. cohorts. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard regression. We identified 174 deaths (83 CRC-specific deaths) in men and 106 deaths (70 CRC-specific deaths) in women. In men, higher circulating level of free testosterone was associated with lower risk of overall (the highest vs. lowest tertiles, HR = 0.66, 95% CI, 0.45-0.99, ptrend = 0.04) and possibly CRC-specific mortality (HR = 0.73, 95% CI, 0.41-1.29, ptrend = 0.27). We generally observed nonsignificant inverse associations for other sex steroids, and a positive association for SHBG with CRC-specific mortality among male patients. In women, however, we found a suggestive positive association of estrone with overall (HR = 1.54, 95% CI, 0.92-2.60, ptrend = 0.11) and CRC-specific mortality (HR = 1.96, 95% CI, 1.01-3.84, ptrend = 0.06). Total estradiol, free estradiol and free testosterone were generally suggestively associated with higher risk of mortality among female patients, although not statistically significant. These findings implicated a potential role of endogenous sex hormones in CRC prognosis, which warrant further investigation.
Collapse
Affiliation(s)
- Wanshui Yang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Susan E Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA.,Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA
| | - Yanan Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, CT.,Department of Medicine, Yale School of Medicine, New Haven, CT.,Department of Medical Oncology, Smilow Cancer Hospital, New Haven, CT
| | - I-Min Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Preventive Medicine, Department of Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Preventive Medicine, Department of Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|