1
|
Félix P, Melo AA, Costa JP, Colaço M, Pereira D, Núñez J, de Almeida LP, Borges O. Exploring TLR agonists as adjuvants for COVID-19 oral vaccines. Vaccine 2025; 53:127078. [PMID: 40184639 DOI: 10.1016/j.vaccine.2025.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic underscored the importance of advancing technologies that enable the rapid development and distribution of more effective vaccines when required. Since SARS-CoV-2 enters the body through the nasal mucosa, optimising the induction of secretory IgA (sIgA) production, a key component of the mucosal immune response, is essential. It has long been known that the induction of sIgA occurs when a vaccine is administered through mucosal surfaces and the immune responses initiated at one mucosal site can influence immune activity at other mucosal surfaces. Consequently, we propose an oral vaccine formulation (Vacform) comprising the immunomodulator CL097, a TLR7/8 agonist, and the SARS-CoV-2 spike protein, both encapsulated within glucan particles (GPs). The studies demonstrated that Vacform induced ROS production in RAW 264.7 cells but not in human neutrophils. The concentrations of Vacform tested did not induce NO production in RAW 264.7 cells. While Vacform stimulated the production of TNF-α and IL-6 in mouse spleen cells, this effect was not observed in RAW 264.7 cells. Finally, Vacform stimulated the proliferation of human PBMCs. Thus, its immunomodulatory properties were evident in specific cells under certain in vitro conditions. The Vacform was subsequently tested in vaccination studies. C57BL/6 mice were initially immunized subcutaneously, followed by two oral boosts with Vacform every two weeks. The Vacform elicited both, humoral (serum IgG and mucosal sIgA) and cellular immune responses. A balanced Th1/Th2/Th17 immune profile was observed. In conclusion, the GPs:CL097 adjuvant system shows promise for eliciting robust immune responses against SARS-CoV-2 and provides a foundation for future studies on dose-response optimization and challenge models.
Collapse
Affiliation(s)
- Paulo Félix
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Alexandra A Melo
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - João Panão Costa
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Mariana Colaço
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Dina Pereira
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Jisette Núñez
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Luís Pereira de Almeida
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Olga Borges
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal.
| |
Collapse
|
2
|
Morrison MA, Artru F, Trovato FM, Triantafyllou E, McPhail MJ. Potential therapies for acute-on-chronic liver failure. Liver Int 2025; 45:e15545. [PMID: 36800487 PMCID: PMC11815631 DOI: 10.1111/liv.15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome that develops in approximately 30% of patients hospitalised with cirrhosis and is characterised by an acute decompensation of liver function associated with extra-hepatic organ failures and a high short-term mortality. At present, no specific therapies are available for ACLF, and current management is limited to treatment of the precipitating event and organ support. Given the high prevalence and high mortality of this severe liver disease, there is an urgent need for targeted treatments. There is increasing evidence of the important role played by systemic inflammation and immune dysfunction in the pathophysiology of ACLF and a better understanding of these immune processes is resulting in new therapeutic targets. The aim of this review is to present an overview of ongoing studies of potentially promising therapies and how they could be utilised in the management of ACLF.
Collapse
Affiliation(s)
- Maura A. Morrison
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Florent Artru
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Francesca M. Trovato
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Mark J. McPhail
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
3
|
Engelmann C, Zhang IW, Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int 2025; 45:e15644. [PMID: 37365995 PMCID: PMC11815630 DOI: 10.1111/liv.15644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| | - Ingrid W. Zhang
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
- Biochemistry and Molecular Genetics ServiceHospital Clínic‐IDIBAPS CIBERehdBarcelonaSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
4
|
McGettigan B, Hernandez-Tejero M, Malhi H, Shah V. Immune Dysfunction and Infection Risk in Advanced Liver Disease. Gastroenterology 2025:S0016-5085(24)05694-4. [PMID: 39927926 DOI: 10.1053/j.gastro.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 02/11/2025]
Abstract
The risk of microbial infections is increased in cirrhosis and other forms of advanced liver disease such as alcohol-associated hepatitis. Such infections may precipitate new or further decompensation and death, especially in patients with clinical features of acute-on-chronic liver failure. The severe immune dysfunction or "immune paralysis" caused by advanced liver disease is associated with high short-term mortality. However, the pathogenic mechanisms underlying immune dysfunction and immunodeficiency are incompletely understood. Evidence to date suggests a complex, dynamic process that perturbs the physiological roles of the liver as a master regulator of systemic immunity and protector against noxious effects of exogenous molecules in the portal vein flowing from the gut. Thus, in cirrhosis and severe alcohol-associated hepatitis, the ability of hepatocytes and intrahepatic immune cells to balance normal context-dependent dichotomous responses of tolerance vs immune activation is lost. Contributing factors include loss of the gut barrier with translocation of microbial products through the portal vein, culminating in development of functional defects in innate and adaptive immune cells, and generation of immune-regulatory myeloid cells that permit microbial colonization and infection. This review addresses key evidence supporting the paradigm of immune dysfunction as a risk for microbial infections and identifies potential therapeutic targets for intervention. The primary focus is on cirrhosis-associated immune dysfunction and alcohol-associated liver disease, because the bulk of available data are from these 2 conditions.
Collapse
Affiliation(s)
- Brett McGettigan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Hernandez-Tejero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
5
|
Ferguson Toll J, Solà E, Perez MA, Piano S, Cheng A, Subramanian AK, Kim WR. Infections in decompensated cirrhosis: Pathophysiology, management, and research agenda. Hepatol Commun 2024; 8:e0539. [PMID: 39365139 PMCID: PMC11458171 DOI: 10.1097/hc9.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections in patients with cirrhosis lead to a 4-fold increase in mortality. Immune dysfunction in cirrhosis further increases the risk of bacterial infections, in addition to alterations in the gut microbiome, which increase the risk of pathogenic bacteria. High rates of empiric antibiotic use contribute to increased incidence of multidrug-resistant organisms and further increases in mortality. Despite continous advances in the field, major unknowns regarding interactions between the immune system and the gut microbiome and strategies to reduce infection risk and improve mortality deserve further investigation. Here, we highlight the unknowns in these major research areas and make a proposal for a research agenda to move toward improving disease progression and outcomes in patients with cirrhosis and infections.
Collapse
Affiliation(s)
- Jessica Ferguson Toll
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elsa Solà
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | | | - Salvatore Piano
- Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Alice Cheng
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Aruna K. Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - W. Ray Kim
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
6
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Li J, Vranjkovic A, Read D, Delaney SP, Stanford WL, Cooper CL, Crawley AM. Lasting differential gene expression of circulating CD8 T cells in chronic HCV infection with cirrhosis identifies a role for Hedgehog signaling in cellular hyperfunction. Front Immunol 2024; 15:1375485. [PMID: 38887299 PMCID: PMC11180750 DOI: 10.3389/fimmu.2024.1375485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Background The impact of chronic hepatic infection on antigen non-specific immune cells in circulation remains poorly understood. We reported lasting global hyperfunction of peripheral CD8 T cells in HCV-infected individuals with cirrhosis. Whether gene expression patterns in bulk CD8 T cells are associated with the severity of liver fibrosis in HCV infection is not known. Methods RNA sequencing of blood CD8 T cells from treatment naïve, HCV-infected individuals with minimal (Metavir F0-1 ≤ 7.0 kPa) or advanced fibrosis or cirrhosis (F4 ≥ 12.5 kPa), before and after direct-acting antiviral therapy, was performed. CD8 T cell function was assessed by flow cytometry. Results In CD8 T cells from pre-DAA patients with advanced compared to minimal fibrosis, Gene Ontology analysis and Gene Set Enrichment Analysis identified differential gene expression related to cellular function and metabolism, including upregulated Hedgehog (Hh) signaling, IFN-α, -γ, TGF-β response genes, apoptosis, apical surface pathways, phospholipase signaling, phosphatidyl-choline/inositol activity, and second-messenger-mediated signaling. In contrast, genes in pathways associated with nuclear processes, RNA transport, cytoskeletal dynamics, cMyc/E2F regulation, oxidative phosphorylation, and mTOR signaling, were reduced. Hh signaling pathway was the top featured gene set upregulated in cirrhotics, wherein hallmark genes GLI1 and PTCH1 ranked highly. Inhibition of Smo-dependent Hh signaling ablated the expression of IFN-γ and perforin in stimulated CD8 T cells from chronic HCV-infected patients with advanced compared to minimal fibrosis. CD8 T cell gene expression profiles post-DAA remained clustered with pre-DAA profiles and disparately between advanced and minimal fibrosis, suggesting a persistent perturbation of gene expression long after viral clearance. Conclusions This analysis of bulk CD8 T cell gene expression in chronic HCV infection suggests considerable reprogramming of the CD8 T cell pool in the cirrhotic state. Increased Hh signaling in cirrhosis may contribute to generalized CD8 T cell hyperfunction observed in chronic HCV infection. Understanding the lasting nature of immune cell dysfunction may help mitigate remaining clinical challenges after HCV clearance and more generally, improve long term outcomes for individuals with severe liver disease.
Collapse
Affiliation(s)
- Jiafeng Li
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Read
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sean P. Delaney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - William L. Stanford
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Angela M. Crawley
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
8
|
Artru F, McPhail MJ. Immunopathogenesis of acute on chronic liver failure. Am J Transplant 2024; 24:724-732. [PMID: 38346497 DOI: 10.1016/j.ajt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Acute-on-chronic liver failure is a well-established description of a high-mortality syndrome of chronic liver disease (usually cirrhosis) with organ failure. While the exact definition is under refinement, the accepted understanding of this entity is in patients with chronic liver disease and various organs in failure and where systemic inflammation is a major component of the pathobiology. There are limited therapies for a disease with such a poor prognosis, and while improvements in the critical care management and for very few patients, liver transplantation, mean 50% can survive to hospital discharge, rapid application of new therapies is required. Here we explain the current understanding of the immunologic abnormalities seen in acute-on-chronic liver failure across the innate and adaptive immune systems, the role of the hepatic cell death and the gut-liver axis, and recommendations for future research and treatment paradigms.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom; Liver department and NUMECAN institute, Rennes University Hospital and Rennes University, France
| | - Mark J McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
9
|
Balazs I, Stadlbauer V. Circulating neutrophil anti-pathogen dysfunction in cirrhosis. JHEP Rep 2023; 5:100871. [PMID: 37822786 PMCID: PMC10562928 DOI: 10.1016/j.jhepr.2023.100871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Neutrophils are the largest population of leucocytes and are among the first cells of the innate immune system to fight against intruding pathogens. In patients with cirrhosis, neutrophils exhibit altered functionality, including changes in phagocytic ability, bacterial killing, chemotaxis, degranulation, reactive oxygen species production and NET (neutrophil extracellular trap) formation. This results in their inability to mount an adequate antibacterial response and protect the individual from infection. Prognosis and survival in patients with cirrhosis are greatly influenced by the development of infectious complications. Multidrug-resistant bacterial infections in patients with cirrhosis are currently a growing problem worldwide; therefore, alternative methods for the prevention and treatment of bacterial infections in cirrhosis are urgently needed. The prevention and treatment of neutrophil dysfunction could be a potential way to protect patients from bacterial infections. However, the reasons for changes in neutrophil function in cirrhosis are still not completely understood, which limits the development of efficient therapeutic strategies. Both cellular and serum factors have been proposed to contribute to the functional impairment of neutrophils. Herein, we review the current knowledge on features and proposed causes of neutrophil dysfunction in cirrhosis, with a focus on current knowledge gaps and limitations, as well as opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
10
|
Luo J, Li J, Li P, Liang X, Hassan HM, Moreau R, Li J. Acute-on-chronic liver failure: far to go-a review. Crit Care 2023; 27:259. [PMID: 37393351 PMCID: PMC10315037 DOI: 10.1186/s13054-023-04540-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) has been recognized as a severe clinical syndrome based on the acute deterioration of chronic liver disease and is characterized by organ failure and high short-term mortality. Heterogeneous definitions and diagnostic criteria for the clinical condition have been proposed in different geographic regions due to the differences in aetiologies and precipitating events. Several predictive and prognostic scores have been developed and validated to guide clinical management. The specific pathophysiology of ACLF remains uncertain and is mainly associated with an intense systemic inflammatory response and immune-metabolism disorder based on current evidence. For ACLF patients, standardization of the treatment paradigm is required for different disease stages that may provide targeted treatment strategies for individual needs.
Collapse
Affiliation(s)
- Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital Affiliated of Hangzhou Medical College, Hangzhou, China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain.
- Centre de Recherche Surl'Inflammation (CRI), Institut National de La Santé Et de La Recherche Médicale (INSERM) & Université Paris-Cité, Paris, France.
- Service d'Hépatologie, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Beaujon, Clichy, France.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
11
|
Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity via antioxidative effects mediated by the Nrf2 pathway. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
13
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
14
|
Tranah TH, Kronsten VT, Shawcross DL. Implications and Management of Cirrhosis-Associated Immune Dysfunction Before and After Liver Transplantation. Liver Transpl 2022; 28:700-716. [PMID: 34738724 DOI: 10.1002/lt.26353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Cirrhosis-associated immune dysfunction (CAID) describes a panacea of innate and adaptive deficits that result from the sequelae of cirrhotic portal hypertension that is similar in its manifestations regardless of etiology of chronic liver injury. CAID is associated with synchronous observations of dysregulated priming of innate immune effector cells that demonstrate a proinflammatory phenotype but are functionally impaired and unable to adequately prevent invading pathogens. CAID is mainly driven by gut-barrier dysfunction and is associated with deficits of microbial compartmentalization and homeostasis that lead to tonic activation, systemic inflammation, and exhaustion of innate-immune cells. CAID leads to a high frequency of bacterial and fungal infections in patients with cirrhosis that are often associated with acute decompensation of chronic liver disease and acute-on-chronic liver failure and carry a high mortality rate. Understanding the deficits of mucosal and systemic immunity in the context of chronic liver disease is essential to improving care for patients with cirrhosis, preventing precipitants of acute decompensation of cirrhosis, and improving morbidity and survival. In this review, we summarize the detailed dynamic immunological perturbations associated with advanced chronic liver disease and highlight the importance of recognizing immune dysregulation as a sequela of cirrhosis. Furthermore, we address the role of screening, prevention, and early treatment of infections in cirrhosis in improving patient outcomes in transplant and nontransplant settings.
Collapse
Affiliation(s)
- Thomas H Tranah
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Victoria T Kronsten
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| |
Collapse
|
15
|
Xu H, Wang H. Immune cells in alcohol-related liver disease. LIVER RESEARCH 2022; 6:1-9. [PMID: 39959807 PMCID: PMC11791833 DOI: 10.1016/j.livres.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Alcohol-related liver disease (ALD), which is caused by excessive alcohol consumption, is one of the most common types of liver disease and a primary cause of hepatic injury, with a disease spectrum that includes steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Various lines of evidence have indicated that immune cells play a significant role in the inflammatory processes of ALD. On the one hand, the liver contains various resident immune cells that have been proven to perform different functions in ALD. For example, in the progression of the disease, Kupffer cells (KCs) are activated by lipopolysaccharide-Toll-like receptor 4 signaling and release various proinflammatory cytokines. Moreover, alcohol intake has been shown to depress the function of natural killer cells. Additionally, two types of unconventional T cells (natural killer T cells and mucosal-associated invariant T cells) are involved in the development of ALD. On the other hand, alcohol and many different cytokines stimulate the recruitment and infiltration of circulating immune cells (neutrophils, T cells, macrophages, and mast cells) into the liver. The neutrophils can produce proinflammatory mediators and cause the dysfunction of anti-infection processes. Additionally, alcohol intake can change the phenotype of T cells, resulting in their increased production of interleukin-17. Aside from KCs, infiltrating macrophages have also been observed in patients with ALD, but the roles of all of these cells in the progression of the disease have shown both similarities and differences. Additionally, the activated mast cells are also associated with the development of ALD. Herein, we review the diverse roles of the various immune cells in the progression of ALD.
Collapse
Affiliation(s)
- Honghai Xu
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Maini AA, Becares N, China L, Tittanegro TH, Patel A, De Maeyer RPH, Zakeri N, Long TV, Ly L, Gilroy DW, O'Brien A. Monocyte dysfunction in decompensated cirrhosis is mediated by the prostaglandin E2-EP4 pathway. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 3:100332. [PMID: 34825153 PMCID: PMC8603213 DOI: 10.1016/j.jhepr.2021.100332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at improving monocyte dysfunction. METHODS Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosynthetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using polychromatic flow cytometry and cytokine production. RESULTS We show that hepatic production of PGE2 via the cyclo-oxygenase 1-microsomal PGE synthase 1 pathway, and circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute decompensation, as assessed by Human Leukocyte Antigen (HLA)-DR isotype expression and tumour necrosis factor alpha and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor. CONCLUSIONS PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission. LAY SUMMARY Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high infection rates that lead to high mortality rates. A white blood cell subset, monocytes, function poorly in these patients, which is a key factor underlying their sensitivity to infection. We show that monocyte dysfunction in decompensated cirrhosis is mediated by a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunction worsens when patients are hospitalised with complications of cirrhosis compared with those in the outpatients setting, which supports the EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- CAID, cirrhosis-associated immune dysfunction
- CM, classical monocytes
- COX, cyclooxygenase
- CRP, C-reactive protein
- Cyclo-oxygenase 1
- DSS, downstream synthases
- Decompensated cirrhosis
- EIA, enzyme immune assay
- FACS, polychromatic flow cytometric analysis
- HLA DR, human leukocyte antigen – DR isotype
- HLA-DR
- HPGD, 15-hydroxyprostaglandin dehydrogenase
- HVs, healthy volunteers
- IL6
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- LPS
- LPS, lipopolysaccharide
- MDMs, monocyte-derived macrophages
- MFI, mean fluorescence intensity
- Microsomal PGE synthase 1
- NASH, non-alcoholic steatohepatitis
- OPD, patients with refractory ascites attending hospital outpatient department for day case paracentesis
- PGE2, prostaglandin E2
- TIPS, transjugular intrahepatic portosystemic shunt insertion
- TNF
- TNFα, tumour necrosis factor alpha
- cPGES, cytosolic PGE synthase
- mPGES1, microsomal PGE synthase 1
- qPCR, quantitative PCR
- sCD14, soluble CD14
Collapse
Affiliation(s)
- Alexander A Maini
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Natalia Becares
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Louise China
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Thais H Tittanegro
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Amit Patel
- Division of Medicine, University College London, London, UK
| | | | - Nekisa Zakeri
- Institute of Liver and Digestive Health, University College London, London, UK
| | | | - Lucy Ly
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Alastair O'Brien
- Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
17
|
Zheng L, Lu G, Pei W, Yan W, Li Y, Zhang L, Huang C, Jiang Q. Understanding the relationship between the structural properties of lignin and their biological activities. Int J Biol Macromol 2021; 190:291-300. [PMID: 34461157 DOI: 10.1016/j.ijbiomac.2021.08.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Due to the antioxidant properties of lignin, it has been demonstrated as an active substance for treating oxidation-related and inflammatory diseases. However, how the structural properties of lignin affect its biological activities is still ambiguous. In this study, Kraft lignin from wheat straw (KL-A) was used as the raw material to fractionate into three fractions (e.g., KL-B, KL-C, and KL-D) with different molecular weight by ultrafiltration, which possessed different physicochemical properties. The biocompatibility, in vivo and in vitro scavenging abilities for reactive oxygen species (ROS), and anti-apoptotic abilities of the lignin fractions were evaluated using SW1353 chondrocyte cell lines and were quantitatively fitted to their physicochemical properties. The results showed that lignin fractions with lower molecular weights, lower G/S ratios, and higher non-condensed phenolic OH contents endowed lignin with stronger ROS scavenging ability in vivo and in vitro, but was accompanied by increased cytotoxicity to cells. The half maximal inhibitory concentration (IC50) of KL-A, KL-B, KL-C, and KL-D were separately determined as 44.02, 33.43, 32.41, and 18.40 μg/mL. Furthermore, KL-D, with the lowest molecular weight and highest number of functional groups, showed the best antioxidant ability, while it performed poorly in inhibiting cellular apoptosis of chondrocytes. Compared to KL-D, KL-C with inverse structural properties, performed better in anti-apoptosis of SW1353 cells, which is the optimum lignin as promising active substances to be applied in the treatment of osteoarthritis in biomedical engineering.
Collapse
Affiliation(s)
- Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenhui Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China; Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, Jiangsu, PR China.
| |
Collapse
|
18
|
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291. [PMID: 34344870 PMCID: PMC8333067 DOI: 10.1038/s41392-021-00687-0] [Citation(s) in RCA: 806] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Cho Y, Szabo G. Two Faces of Neutrophils in Liver Disease Development and Progression. Hepatology 2021; 74:503-512. [PMID: 33314193 PMCID: PMC9235297 DOI: 10.1002/hep.31680] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils, the most abundant type of leukocyte in human blood, play a major role in host defense against invading pathogens and in sterile injury. Neutrophil infiltration is characteristic of inflammation because of its antimicrobial and cytotoxic activities. Neutrophils also actively participate in the resolution of inflammation and subsequent tissue repair by acting as a critical mediator between the inflammation and resolution phases of tissue damage. However, neutrophils that are consistently exposed to inflammatory conditions lose their self-resolving capabilities and maintain an inflammatory phenotype, further exacerbating tissue damage. The current review describes how neutrophils interact with tissue microenvironments and acquire disease-specific phenotypes under chronic inflammatory conditions. Here, we aim to provide a better understanding of neutrophil-mediated pathogenesis of various liver diseases.
Collapse
Affiliation(s)
- Yeonhee Cho
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA;,Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Van der Merwe S, Chokshi S, Bernsmeier C, Albillos A. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J Hepatol 2021; 75 Suppl 1:S82-S100. [PMID: 34039494 DOI: 10.1016/j.jhep.2020.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Infections, due to a dysfunctional immune response, pose a great risk to patients with decompensated cirrhosis and herald the beginning of the terminal phase of this disease. Infections typically result from breaches in innate immune barriers and inadequate clearance by immune cells. This leads to bacterial and bacterial product translocation to the systemic circulation, which is already primed by ongoing hepatic inflammation in patients with cirrhosis, who are particularly prone to developing organ failure in the presence of an infection. Early identification of bacterial infection, along with the prompt use of appropriate antibiotics, have reduced the mortality associated with certain infections in patients with decompensated cirrhosis. Judicious use of antibiotic therapy remains imperative given the emergence of multidrug-resistant infections in the cirrhotic population. Important research over the last few years has identified molecular targets on immune cells that may enhance their function, and theoretically prevent infections. Clinical trials are ongoing to delineate the beneficial effects of targeted molecules from their off-target effects. Herein, we review the mechanisms that predispose patients with cirrhosis to bacterial infections, the clinical implications of infections and potential targets for the prevention or treatment of infections in this vulnerable population.
Collapse
Affiliation(s)
- Schalk Van der Merwe
- Department of Gastroenterology and Hepatology, University hospital, Leuven, Belgium; Laboratory of Hepatology, University of Leuven, Belgium.
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, UK; Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College, London, United Kingdom
| | - Christine Bernsmeier
- Department of Biomedicine, University of Basel, Switzerland; University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Agustin Albillos
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBEREHD, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
21
|
Weiss E, de la Grange P, Defaye M, Lozano JJ, Aguilar F, Hegde P, Jolly A, Moga L, Sukriti S, Agarwal B, Gurm H, Tanguy M, Poisson J, Clària J, Abback PS, Périanin A, Mehta G, Jalan R, Francoz C, Rautou PE, Lotersztajn S, Arroyo V, Durand F, Moreau R. Characterization of Blood Immune Cells in Patients With Decompensated Cirrhosis Including ACLF. Front Immunol 2021; 11:619039. [PMID: 33613548 PMCID: PMC7893087 DOI: 10.3389/fimmu.2020.619039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aims Patients with cirrhosis and acute-on-chronic liver failure (ACLF) have immunosuppression, indicated by an increase in circulating immune-deficient monocytes. The aim of this study was to investigate simultaneously the major blood-immune cell subsets in these patients. Material and Methods Blood taken from 67 patients with decompensated cirrhosis (including 35 critically ill with ACLF in the intensive care unit), and 12 healthy subjects, was assigned to either measurements of clinical blood counts and microarray (genomewide) analysis of RNA expression in whole-blood; microarray (genomewide) analysis of RNA expression in blood neutrophils; or assessment of neutrophil antimicrobial functions. Results Several features were found in patients with ACLF and not in those without ACLF. Indeed, clinical blood count measurements showed that patients with ACLF were characterized by leukocytosis, neutrophilia, and lymphopenia. Using the CIBERSORT method to deconvolute the whole-blood RNA-expression data, revealed that the hallmark of ACLF was the association of neutrophilia with increased proportions of macrophages M0-like monocytes and decreased proportions of memory lymphocytes (of B-cell, CD4 T-cell lineages), CD8 T cells and natural killer cells. Microarray analysis of neutrophil RNA expression revealed that neutrophils from patients with ACLF had a unique phenotype including induction of glycolysis and granule genes, and downregulation of cell-migration and cell-cycle genes. Moreover, neutrophils from these patients had defective production of the antimicrobial superoxide anion. Conclusions Genomic analysis revealed that, among patients with decompensated cirrhosis, those with ACLF were characterized by dysregulation of blood immune cells, including increases in neutrophils (that had a unique phenotype) and macrophages M0-like monocytes, and depletion of several lymphocyte subsets (including memory lymphocytes). All these lymphocyte alterations, along with defective neutrophil superoxide anion production, may contribute to immunosuppression in ACLF, suggesting targets for future therapies.
Collapse
Affiliation(s)
- Emmanuel Weiss
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP Nord, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France.,European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain
| | | | - Mylène Defaye
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | | | - Ferrán Aguilar
- European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain
| | - Pushpa Hegde
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | | | - Lucile Moga
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Service d'Hépatologie & Réanimation Hépato Digestive, Hôpital Beaujon, Clichy, France
| | - Sukriti Sukriti
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Banwari Agarwal
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Haqeeqat Gurm
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Marion Tanguy
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Johanne Poisson
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Joan Clària
- European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Hospital Clínic-August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Paer-Selim Abback
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Axel Périanin
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom.,Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Rajiv Jalan
- European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain.,Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Claire Francoz
- Assistance Publique-Hôpitaux de Paris (APHP), Service d'Hépatologie & Réanimation Hépato Digestive, Hôpital Beaujon, Clichy, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Service d'Hépatologie & Réanimation Hépato Digestive, Hôpital Beaujon, Clichy, France
| | - Sophie Lotersztajn
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Vicente Arroyo
- European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain
| | - François Durand
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Service d'Hépatologie & Réanimation Hépato Digestive, Hôpital Beaujon, Clichy, France
| | - Richard Moreau
- Université de Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche sur l'Inflammation (CRI), Paris, France.,European Foundation for the study of Chronic Liver Failure (EF-Clif), European Association for the Study of Chronic Liver Failure (EASL-CLIF) Consortium and Grifols Chair, Barcelona, Spain.,Assistance Publique-Hôpitaux de Paris (APHP), Service d'Hépatologie & Réanimation Hépato Digestive, Hôpital Beaujon, Clichy, France
| |
Collapse
|
22
|
Budhraja A, Pandey S, Kannan S, Verma CS, Venkatraman P. The polybasic insert, the RBD of the SARS-CoV-2 spike protein, and the feline coronavirus - evolved or yet to evolve. Biochem Biophys Rep 2021; 25:100907. [PMID: 33521335 PMCID: PMC7833556 DOI: 10.1016/j.bbrep.2021.100907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Recent research on the SARS-CoV-2 pandemic has exploded around the furin-cleavable polybasic insert PRRAR↓S, found within the spike protein. The insert and the receptor-binding domain, (RBD), are vital clues in the Sherlock Holmes-like investigation into the origin of the virus and in its zoonotic crossover. Based on comparative analysis of the whole genome and the sequence features of the insert and the RBD domain, the bat and the pangolin have been proposed as very likely intermediary hosts. In this study, using the various databases, in-house developed tools, sequence comparisons, structure-guided docking, and molecular dynamics simulations, we cautiously present a fresh, theoretical perspective on the SARS-CoV-2 virus activation and its intermediary host. They are a) the SARS-CoV-2 has not yet acquired a fully optimal furin binding site or this seemingly less optimal sequence, PRRARS, has been selected for survival; b) in structural models of furin complexed with peptides, PRRAR↓S binds less well and with distinct differences as compared to the all basic RRKRR↓S; c) these differences may be exploited for the design of virus-specific inhibitors; d) the novel polybasic insert of SARS-CoV-2 may be promiscuous enough to be cleaved by multiple enzymes of the human airway epithelium and tissues which may explain its unexpected broad tropism; e) the RBD domain of the feline coronavirus spike protein carries residues that are responsible for high-affinity binding of the SARS-CoV-2 to the ACE 2 receptor; f) en route zoonotic transfer, the virus may have passed through the domestic cat whose very human-like ACE2 receptor and furin may have played some role in optimizing the traits required for zoonotic transfer. Polybasic insert of the SARS-CoV-2 spike protein is rare among several hundred proteins with a motif ‘RRARS’. SARS CoV-2 shares furin-like site and RBD interface residues including hotspot sites, with some of the lethal form of Feline coronavirus spike protein and those from the healthy cats. Polybasic sequence PRRARS binds less well to furin in structural models. SARS-CoV-2 may have passed through the domestic cat during zoonotic transfer.
Collapse
Affiliation(s)
- Anshul Budhraja
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, Plot No 50, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Sakshi Pandey
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, Plot No 50, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
- Corresponding author. Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
| |
Collapse
|
23
|
Casulleras M, Zhang IW, López-Vicario C, Clària J. Leukocytes, Systemic Inflammation and Immunopathology in Acute-on-Chronic Liver Failure. Cells 2020; 9:E2632. [PMID: 33302342 PMCID: PMC7762372 DOI: 10.3390/cells9122632] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex syndrome that develops in patients with cirrhosis and is characterized by acute decompensation, organ failure(s) and high short-term mortality. ACLF frequently occurs in close temporal relationship to a precipitating event, such as acute alcoholic, drug-induced or viral hepatitis or bacterial infection and, in cases without precipitating events, probably related to intestinal translocation of bacterial products. Dysbalanced immune function is central to its pathogenesis and outcome with an initial excessive systemic inflammatory response that drives organ failure and mortality. This hyperinflammatory state ultimately impairs the host defensive mechanisms of immune cells, rendering ACLF patients immunocompromised and more vulnerable to secondary infections, and therefore to higher organ dysfunction and mortality. In this review, we describe the prevailing characteristics of the hyperinflammatory state in patients with acutely decompensated cirrhosis developing ACLF, with special emphasis on cells of the innate immune system (i.e., monocytes and neutrophils), their triggers (pathogen- and damage-associated molecular patterns [PAMPs and DAMPs]), their effector molecules (cytokines, chemokines, growth factors and bioactive lipid mediators) and the consequences on tissue immunopathology. In addition, this review includes a chapter discussing new emerging therapies based on the modulation of leukocyte function by the administration of pleiotropic proteins such as albumin, Toll-like receptor 4 antagonists, interleukin-22 or stem cell therapy. Finally, the importance of finding an appropriate intervention that reduces inflammation without inducing immunosuppression is highlighted as one of the main therapeutic challenges in cirrhosis.
Collapse
Affiliation(s)
- Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Ingrid W. Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
24
|
Liu K, Wang FS, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol Immunol 2020; 18:38-44. [PMID: 33159158 PMCID: PMC7852892 DOI: 10.1038/s41423-020-00560-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, it was assumed that peripheral neutrophils are a homogeneous population that displays antimicrobial functions. However, recent data have revealed that neutrophils are heterogeneous and are additionally involved in tissue damage and immune regulation. The phenotypic and functional plasticity of neutrophils has been identified in patients with cancer, inflammatory disorders, infections, and other diseases. Currently, neutrophils, with their autocrine, paracrine, and immune modulation functions, have been shown to be involved in liver diseases, including viral hepatitis, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, cirrhosis, liver failure, and liver cancer. Accordingly, this review summarizes the role of neutrophils in liver diseases.
Collapse
Affiliation(s)
- Kai Liu
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Ruonan Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
25
|
Zaccherini G, Weiss E, Moreau R. Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment. JHEP Rep 2020; 3:100176. [PMID: 33205036 PMCID: PMC7652714 DOI: 10.1016/j.jhepr.2020.100176] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The term acute-on-chronic liver failure (ACLF) defines an abrupt and life-threatening worsening of clinical conditions in patients with cirrhosis or chronic liver disease. In recent years, different definitions and diagnostic criteria for the syndrome have been proposed by the major international scientific societies. The main controversies relate to the type of acute insult (specifically hepatic or also extrahepatic), the stage of underlying liver disease (cirrhosis or chronic hepatitis) and the concomitant extrahepatic organ failure(s) that should be considered in the definition of ACLF. Therefore, different severity criteria and prognostic scores have been proposed and validated. Current evidence shows that the pathophysiology of ACLF is closely associated with an intense systemic inflammation sustained by circulating pathogen-associated molecular patterns and damage-associated molecular patterns. The development of organ failures may be a result of a combination of tissue hypoperfusion, direct immune-mediated damage and mitochondrial dysfunction. Management of ACLF is currently based on the supportive treatment of organ failures, mainly in an intensive care setting. For selected patients, liver transplantation is an effective treatment that offers a good long-term prognosis. Future studies on potential mechanistic treatments that improve patient survival are eagerly awaited.
Collapse
Key Words
- AARC, APASL ACLF Research Consortium
- ACLF, acute-on-chronic liver failure
- AKI, acute kidney injury
- APASL, Asian Pacific Association for the Study of the Liver
- Acute decompensation
- Bacterial infections
- Bacterial translocation
- CLIF, Chronic Liver Failure-Consortium
- COSSH, Chinese Group on the Study of Severe Hepatitis
- DAMPs, damage-associated molecular patterns
- EASL, European Association for the Study of the Liver - Chronic Liver
- ER, endoplasmic reticulum
- HMGB1, high mobility group box 1
- ICU, intensive care unit
- INR, international normalised ratio
- Immunopathology
- Inflammatory response
- MELD, model for end-stage liver disease
- Metabolism
- Multiorgan failure
- NACSELD, North American Consortium for the Study of End-stage Liver Disease
- NO, nitric oxide
- OF, organ failure
- PAMPs, pathogen-associated molecular patterns
- PRR, pattern-recognition receptors
- Sterile inflammation
- TLR, Toll-like receptor
- UNOS, United Network for Organ Sharing
Collapse
Affiliation(s)
- Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Emmanuel Weiss
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP Nord, Paris, France.,Inserm et Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Inserm et Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Paris, France.,Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France
| |
Collapse
|
26
|
Abstract
Cirrhosis is a multisystemic disease wherein inflammatory responses originating from advanced liver disease and its sequelae affect distant compartments. Patients with cirrhosis are susceptible to bacterial infections, which may precipitate acute decompensation and acute-on-chronic liver failure, both of which are associated with high short-term mortality. Innate immune cells are an essential first line of defence against pathogens. Activation of liver macrophages (Kupffer cells) and resident mastocytes generate proinflammatory and vaso-permeating mediators that induce accumulation of neutrophils, lymphocytes, eosinophils and monocytes in the liver, and promote tissue damage. During cirrhosis progression, damage- and pathogen-associated molecular patterns activate immune cells and promote development of systemic inflammatory responses which may involve different tissues and compartments. The antibacterial function of circulating neutrophils and monocytes is gradually and severely impaired as cirrhosis worsens, contributing to disease progression. The mechanisms underlying impaired antimicrobial responses are complex and incompletely understood. This review focuses on the continuous and distinct perturbations arising in innate immune cells during cirrhosis, including their impact on disease progression, as well as reviewing potential therapeutic targets.
Collapse
|
27
|
Avila MA, Dufour JF, Gerbes AL, Zoulim F, Bataller R, Burra P, Cortez-Pinto H, Gao B, Gilmore I, Mathurin P, Moreno C, Poznyak V, Schnabl B, Szabo G, Thiele M, Thursz MR. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 2020; 69:764-780. [PMID: 31879281 PMCID: PMC7236084 DOI: 10.1136/gutjnl-2019-319720] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Alcohol-related liver disease (ALD), which includes a range of disorders of different severity and is one of the most prevalent types of liver disease worldwide, has recently regained increased attention. Among other reasons, the realisation that any alcohol intake, regardless of type of beverage represents a health risk, and the new therapeutic strategies tested in recently published or undergoing clinical trials spur scientific interest in this area.In April 2019, Gut convened a round table panel of experts during the European Association for the Study of the Liver International Liver Congress in Vienna to discuss critical and up-to-date issues and clinical trial data regarding ALD, its epidemiology, diagnosis, management, pathomechanisms, possible future treatments and prevention. This paper summarises the discussion and its conclusions.
Collapse
Affiliation(s)
- Matias A Avila
- Hepatology, CIBERehd, IdiSNA, CIMA, University of Navarra, Pamplona, Spain
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research and University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Alexander L Gerbes
- Liver Centre Munich, Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Fabien Zoulim
- Hepatology Department, INSERM U1052, Hospices Civils de Lyon, Cancer Research Centerl of Lyon, University of Lyon, Lyon, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Helena Cortez-Pinto
- Departamento de Gastroenterologia, CHLN, Laboratorio de Nutriçao, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian Gilmore
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, INSERM U795, Hôpital Huriez, Lille, France
| | - Christophe Moreno
- Service de Gastroentérologie, Hépatopancréatologie et Oncologie Digestive, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Vladimir Poznyak
- Department of Mental Health and Substance Abuse, World Health Organization, Geneve, Switzerland
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, and Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Mark R Thursz
- Department of Metabolism, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
28
|
CD8 +T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 2019. [PMID: 31678004 DOI: 10.1016/j.ebiom.2019.10.011.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cirrhosis-associated immune dysfunction (CAID) contributes to high sepsis risk in patients with chronic liver disease. Various innate and; to a lesser extent; adaptive immune dysfunctions have been described as contributors to CAID leading to immune-paresis and impaired anti-microbial response in cirrhosis. In this study, we examined the phenotype of CD8+T cells in chronic liver disease with the aim to evaluate changes that might contribute to impaired immune responses. METHODS Sixty patients with cirrhosis were prospectively recruited for this study. CD8+T cells from peripheral blood, ascites and liver explants were characterized using flow cytometry and immunohistochemistry, respectively. The transcriptional signature of flow-sorted HLA-DR+CD8+T cells was performed using Nanostring™ technology. HLA-DR+CD8+T cells interactions with PBMCs and myeloid cells were tested in vitro. FINDINGS Peripheral CD8+T cells from cirrhotic patients displayed an altered phenotype characterized by high HLA-DR and TIM-3 surface expression associated with concomitant infections and disease severity, respectively. Paired peritoneal CD8+T cells expressed more pronounced levels of HLA-DR and PD-1 compared to peripheral CD8+T cells. HLA-DR+CD8+T cells were enriched in cirrhotic livers compared to controls. TIM-3, CTLA-4 and PD-1 levels were highly expressed on HLA-DR+CD8+T cells and co-expression of HLA-DR and PD1 was higher in patients with poor disease outcomes. Genes involved in cytokines production and intracellular signalling pathways were strongly down-regulated in HLA-DR+CD8+T cells. In comparison to their HLA-DR- counterparts, HLA-DR+CD8+T cells promoted less proliferation of PBMCs and induced phenotypic and functional dysfunctions in monocytes and neutrophils in vitro. INTERPRETATION In patients with cirrhosis, CD8+T cells display a phenotypic, functional and transcriptional profile which may contribute to CAID. FUND: This work was supported by Medical Research Council, the Rosetrees Charitable Trust, Robert Tournut 2016 grant (Sociéte Nationale Française de GastroEntérologie), Gilead® sciences, and NIHR Imperial Biomedical Research Centre.
Collapse
|
29
|
Lebossé F, Gudd C, Tunc E, Singanayagam A, Nathwani R, Triantafyllou E, Pop O, Kumar N, Mukherjee S, Hou TZ, Quaglia A, Zoulim F, Wendon J, Dhar A, Thursz M, Antoniades CG, Khamri W. CD8 +T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 2019; 49:258-268. [PMID: 31678004 PMCID: PMC6945243 DOI: 10.1016/j.ebiom.2019.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cirrhosis-associated immune dysfunction (CAID) contributes to high sepsis risk in patients with chronic liver disease. Various innate and; to a lesser extent; adaptive immune dysfunctions have been described as contributors to CAID leading to immune-paresis and impaired anti-microbial response in cirrhosis. In this study, we examined the phenotype of CD8+T cells in chronic liver disease with the aim to evaluate changes that might contribute to impaired immune responses. METHODS Sixty patients with cirrhosis were prospectively recruited for this study. CD8+T cells from peripheral blood, ascites and liver explants were characterized using flow cytometry and immunohistochemistry, respectively. The transcriptional signature of flow-sorted HLA-DR+CD8+T cells was performed using Nanostring™ technology. HLA-DR+CD8+T cells interactions with PBMCs and myeloid cells were tested in vitro. FINDINGS Peripheral CD8+T cells from cirrhotic patients displayed an altered phenotype characterized by high HLA-DR and TIM-3 surface expression associated with concomitant infections and disease severity, respectively. Paired peritoneal CD8+T cells expressed more pronounced levels of HLA-DR and PD-1 compared to peripheral CD8+T cells. HLA-DR+CD8+T cells were enriched in cirrhotic livers compared to controls. TIM-3, CTLA-4 and PD-1 levels were highly expressed on HLA-DR+CD8+T cells and co-expression of HLA-DR and PD1 was higher in patients with poor disease outcomes. Genes involved in cytokines production and intracellular signalling pathways were strongly down-regulated in HLA-DR+CD8+T cells. In comparison to their HLA-DR- counterparts, HLA-DR+CD8+T cells promoted less proliferation of PBMCs and induced phenotypic and functional dysfunctions in monocytes and neutrophils in vitro. INTERPRETATION In patients with cirrhosis, CD8+T cells display a phenotypic, functional and transcriptional profile which may contribute to CAID. FUND: This work was supported by Medical Research Council, the Rosetrees Charitable Trust, Robert Tournut 2016 grant (Sociéte Nationale Française de GastroEntérologie), Gilead® sciences, and NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Fanny Lebossé
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom; INSERM U1052- Cancer Research Centre of Lyon (CRCL), 69003 Lyon, France
| | - Cathrin Gudd
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Enes Tunc
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Arjuna Singanayagam
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Rooshi Nathwani
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Evangelos Triantafyllou
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Oltin Pop
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Naveenta Kumar
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Sujit Mukherjee
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and transplantation, University College London, United Kingdom
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Fabien Zoulim
- INSERM U1052- Cancer Research Centre of Lyon (CRCL), 69003 Lyon, France
| | - Julia Wendon
- Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Ameet Dhar
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Mark Thursz
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| | - Charalambos G Antoniades
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom; Institute of Liver Studies, King's College Hospital, King's College London, United Kingdom
| | - Wafa Khamri
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, St. Mary's Campus Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Ishikawa K, Watanabe S, Lee P, Akar FG, Lee A, Bikou O, Fish K, Kho C, Hajjar RJ. Acute Left Ventricular Unloading Reduces Atrial Stretch and Inhibits Atrial Arrhythmias. J Am Coll Cardiol 2019; 72:738-750. [PMID: 30092950 DOI: 10.1016/j.jacc.2018.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Left atrium (LA) physiology is influenced by changes in left ventricular (LV) performance and load. OBJECTIVES The purpose of this study was to define the effect of acute changes in LV loading conditions on LA physiology in subacute myocardial infarction (MI). METHODS MI was percutaneously induced in 19 Yorkshire pigs. One to 2 weeks after MI, 14 pigs underwent acute LV unloading using a percutaneous LV assist device, Impella. The remaining 5 pigs underwent acute LV loading by percutaneous induction of aortic regurgitation. A pressure-volume catheter was inserted into the LA using a percutaneous transseptal approach, and LA pressure-volume loops were continuously monitored. Atrial arrhythmia inducibility was examined by burst-pacing of the right atrium. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) levels and ryanodine receptor phosphorylation were examined in LA tissues to study the potential effect of stretch-dependent oxidative stress. RESULTS MI resulted in reduced LV ejection fraction and increased LV end-diastolic pressure with concomitant increase in LA pressure and volumes. Acute LV unloading resulted in a reduction of LV end-diastolic pressure, which led to proportional decreases in mean LA pressure and maximum LA volume. LA pressure-volume loops exhibited a pump flow-dependent, left-downward shift. This was associated with reduced LA passive stiffness, suggesting the alleviation of the LA stretch that was present after MI. Prior to acute unloading of the LV, 71% of the pigs were arrhythmia-inducible; LV unloading reduced this to 29% (p = 0.02). Time to spontaneous termination of atrial arrhythmias was decreased from median 55 s (range 5 to 300 s) to 3 s (range 0 to 59 s). In contrast, acute LV loading with aortic regurgitation increased LA pressure without a significant effect on arrhythmogenicity. Molecular analysis of LA tissue revealed that NOX2 expression was increased after MI, whereas acute LV unloading reduced NOX2 levels and diminished ryanodine receptor phosphorylation. CONCLUSIONS Acute LV unloading relieves LA stretch and reduces atrial arrhythmogenicity in subacute MI.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Shin Watanabe
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Olympia Bikou
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kenneth Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Moreau R, Périanin A, Arroyo V. Review of Defective NADPH Oxidase Activity and Myeloperoxidase Release in Neutrophils From Patients With Cirrhosis. Front Immunol 2019; 10:1044. [PMID: 31134093 PMCID: PMC6517494 DOI: 10.3389/fimmu.2019.01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Patients with decompensated cirrhosis are highly susceptible to develop bacterial infections and these can trigger multiorgan failure associated with high in-hospital mortality. Neutrophils from patients with decompensated cirrhosis exhibit marked alterations that may explain the susceptibility of these patients to develop bacterial infections. These neutrophil alterations include marked defects in intracellular signaling pathways involving serine/threonine kinases such as protein kinase B (AKT), p38-mitogen-activated protein kinase (MAPK), and the MAP kinases1/2; activation of the NADPH oxidase complex; myeloperoxidase (MPO) release; and bactericidal activity of neutrophils stimulated by the bacterial peptide formyl-Methionine-Leucine-Phenylalanine (fMLF). Impaired activity of the NADPH oxidase 2 (NOX2) complex is also related to reduced levels of expression of its major components through post-transcriptional mechanisms. In addition, the catalytic NOX2 component gp91 phox is subject to degradation by elastase highly present in patients' plasma. A defect in the protein kinase B (AKT) and p38 MAPK-mediated signaling pathways may explain the decrease in phosphorylation of p47 phox (an important component of the NADPH oxidase complex) and MPO release, in response to neutrophil stimulation by fMLF. Most of these alterations are reversible ex vivo with TLR7/8 agonists (CL097, R848), raising the possibility that these agonists might be used in the future to restore neutrophil antibacterial functions in patients with cirrhosis.
Collapse
Affiliation(s)
- Richard Moreau
- Inserm, U1149, Centre de Recherche sur l'Inflammation, Paris, France.,UMRS1149, Université Paris Diderot-Paris 7, Paris, France.,Département Hospitalo-Universitaire UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Axel Périanin
- Inserm, U1149, Centre de Recherche sur l'Inflammation, Paris, France.,UMRS1149, Université Paris Diderot-Paris 7, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Vicente Arroyo
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| |
Collapse
|
32
|
Aguilar-Bravo B, Rodrigo-Torres D, Ariño S, Coll M, Pose E, Blaya D, Graupera I, Perea L, Vallverdú J, Rubio-Tomás T, Dubuquoy L, Armengol C, Nigro AL, Stärkel P, Mathurin P, Bataller R, Caballería J, Lozano JJ, Ginès P, Sancho-Bru P. Ductular Reaction Cells Display an Inflammatory Profile and Recruit Neutrophils in Alcoholic Hepatitis. Hepatology 2019; 69:2180-2195. [PMID: 30565271 PMCID: PMC9189898 DOI: 10.1002/hep.30472] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Chronic liver diseases are characterized by the expansion of ductular reaction (DR) cells and the expression of liver progenitor cell (LPC) markers. In alcoholic hepatitis (AH), the degree of DR expansion correlates with disease progression and short-term survival. However, little is known about the biological properties of DR cells, their impact on the pathogenesis of human liver disease, and their contribution to tissue repair. In this study, we have evaluated the transcriptomic profile of DR cells by laser capture microdissection in patients with AH and assessed its association with disease progression. The transcriptome analysis of cytokeratin 7-positive (KRT7+ ) DR cells uncovered intrinsic gene pathways expressed in DR and genes associated with alcoholic liver disease progression. Importantly, DR presented a proinflammatory profile with expression of neutrophil recruiting C-X-C motif chemokine ligand (CXC) and C-C motif chemokine ligand chemokines. Moreover, LPC markers correlated with liver expression and circulating levels of inflammatory mediators such as CXCL5. Histologically, DR was associated with neutrophil infiltration at the periportal area. In order to model the DR and to assess its functional role, we generated LPC organoids derived from patients with cirrhosis. Liver organoids mimicked the transcriptomic and proinflammatory profile of DR cells. Conditioned medium from organoids induced neutrophil migration and enhanced cytokine expression in neutrophils. Likewise, neutrophils promoted the proinflammatory profile and the expression of chemokines of liver organoids. Conclusion: Transcriptomic and functional analysis of KRT7+ cells indicate that DR has a proinflammatory profile and promote neutrophil recruitment. These results indicate that DR may be involved in the liver inflammatory response in AH, and suggest that therapeutic strategies targeting DR cells may be useful to mitigate the inflammatory cell recruitment in AH.
Collapse
Affiliation(s)
- Beatriz Aguilar-Bravo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ariño
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elisa Pose
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Luis Perea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Vallverdú
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurent Dubuquoy
- Lille Service des Maladies de l’Appareil Digestif, Hopital Huriez, Unité INSERM 995, Faculté de médecine, Lille, France
| | - Carolina Armengol
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Childhood Liver Oncology group (c-LOG), Program of Predictive and Personalized Medicine of Cancer (PMPPC), Health Sciences Institute Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Spain
| | - Antonio Lo Nigro
- Ri. Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Mathurin
- Lille Service des Maladies de l’Appareil Digestif, Hopital Huriez, Unité INSERM 995, Faculté de médecine, Lille, France
| | - Ramon Bataller
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Joan Caballería
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
33
|
Vergis N, Atkinson SR, Thursz MR. The future of therapy for alcoholic hepatitis - Beyond corticosteroids. J Hepatol 2019; 70:785-787. [PMID: 30791978 PMCID: PMC6420340 DOI: 10.1016/j.jhep.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Nikhil Vergis
- Department of Hepatology, Imperial College, London, United Kingdom.
| | | | - Mark R Thursz
- Department of Hepatology, Imperial College, London, United Kingdom
| |
Collapse
|
34
|
Albano E, Stickel F. Targeting toll-like receptor 7/8 improves host anti-infective response in alcoholic cirrhosis. Gut 2018; 67:1749-1750. [PMID: 28687679 DOI: 10.1136/gutjnl-2017-314437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|