1
|
Emoto S, Inoue R, Murai S, Inagaki Y, Nozawa H, Sasaki K, Murono K, Kaneko K, Yokoyama Y, Abe S, Nagai Y, Shinagawa T, Tachikawa Y, Okada S, Tsukahara T, Ohashi K, Ohno M, Andoh A, Ishihara S. A pilot study of gut mucosal and faecal microbiota in rectal cancer: associations with histological response and adverse events following preoperative chemoradiotherapy. Colorectal Dis 2025; 27:e70106. [PMID: 40312795 PMCID: PMC12046106 DOI: 10.1111/codi.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
AIM Preoperative chemoradiotherapy (CRT) is administered for locally advanced rectal cancer (LARC); however, its efficacy and toxicity vary among patients. This study aimed to elucidate the relationship between the gut microbiota and the effectiveness and adverse events of CRT. METHODS This prospective study included 21 patients with LARC with no history of antibiotic or probiotic administration for 6 months. Tumour mucosa, non-tumour mucosa and faecal samples were collected before and after CRT, and bacterial DNA was extracted. Metataxonomic analysis targeting the V3 and V4 regions of the 16S rRNA gene was conducted to determine the diversity and composition of the microbiota. Linear discriminant analysis effect size (LEfSe) was used to explore potential bacterial taxa predicting pathological complete response (pCR) and treatment-associated diarrhoea, which are major adverse events of CRT. RESULTS Among the 21 patients, five achieved pCR and seven experienced severe treatment-associated diarrhoea. There were no significant differences in α-diversity and β-diversity of the microbiota between the groups at any sampling sites before or after CRT. Exploratory analysis using LEfSe identified Peptostreptococcus, Coprococcus and Phoceaicola in the tumour mucosa before CRT as significant indicators for achieving pCR. Additionally, Collinsella, Haemophilus and Desulfovibrionaceae are associated with treatment-associated diarrhoea. Microbiome composition changed before and after CRT, with a notable decrease in the genus Fusobacterium_C and other taxa. β-diversity in the tumour area also changed significantly (P = 0.03). CONCLUSIONS This study suggests an association between the gut microbiota, the therapeutic effectiveness of CRT and the occurrence of treatment-associated diarrhoea in rectal cancer. These results indicate the potential for predicting treatment efficacy and adverse events based on the microbiota composition.
Collapse
Affiliation(s)
- Shigenobu Emoto
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Ryo Inoue
- Laboratory of Animal ScienceSetsunan UniversityHirakataJapan
| | - Shin Murai
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Yuriko Inagaki
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Hiroaki Nozawa
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Kazuhito Sasaki
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Koji Murono
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Kensuke Kaneko
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | | | - Shinya Abe
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | - Yuzo Nagai
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | | | | | - Satoshi Okada
- Department of Surgical OncologyUniversity of TokyoTokyoJapan
| | | | - Kai Ohashi
- Kyoto Institute of Nutrition and PathologyUjitawaraJapan
| | - Masashi Ohno
- Department of GastroenterologyShiga University of Medical ScienceOtsuJapan
| | - Akira Andoh
- Department of GastroenterologyShiga University of Medical ScienceOtsuJapan
| | | |
Collapse
|
2
|
Abdel Hamid M, Pammer LM, Oberparleiter S, Günther M, Amann A, Gruber RA, Mair A, Nocera FI, Ormanns S, Zimmer K, Gerner RR, Kocher F, Vorbach SM, Wolf D, Riedl JM, Huemer F, Seeber A. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol 2025; 9:116. [PMID: 40263545 PMCID: PMC12015310 DOI: 10.1038/s41698-025-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Despite advances in metastatic colorectal cancer (mCRC) treatment, long-term survival remains poor, particularly in right-sided colorectal cancer (RCRC), which has a worse prognosis compared to left-sided CRC (LCRC). This disparity is driven by the complex biological diversity of these malignancies. RCRC and LCRC differ not only in clinical presentation and outcomes but also in their underlying molecular and genetic profiles. This article offers a detailed literature review focusing on the distinctions between RCRC and LCRC. We explore key differences across embryology, anatomy, pathology, omics, and the tumor microenvironment (TME), providing insights into how these factors contribute to prognosis and therapeutic responses. Furthermore, we examine the therapeutic implications of these differences, considering whether the conventional classification of CRC into right- and left-sided forms should be refined. Recent molecular findings suggest that this binary classification may overlook critical biological complexities. Therefore, we propose that future approaches should integrate molecular insights to better guide personalized treatments, especially anti-EGFR therapies, and improve patient outcomes.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Oberparleiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca A Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mair
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne I Nocera
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Medicine III, Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354, Freising, Germany
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Samuel M Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Oncology, Hematology and Palliative Care, General Hospital Oberwart, Oberwart, Austria.
| |
Collapse
|
3
|
Lu J, Wei W, Zheng D. Fusobacterium nucleatum in Colorectal Cancer: Ally Mechanism and Targeted Therapy Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0640. [PMID: 40207017 PMCID: PMC11979337 DOI: 10.34133/research.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Fusobacterium nucleatum (Fn), an oral anaerobic commensal, has recently been identified as a crucial oncogenic contributor to colorectal cancer pathogenesis through its ectopic colonization in the gastrointestinal tract. Accumulating evidence reveals its multifaceted involvement in colorectal cancer initiation, progression, metastasis, and therapeutic resistance to conventional treatments, including chemotherapy, radiotherapy, and immunotherapy. This perspective highlights recent advances in anti-Fn strategies, including small-molecule inhibitors, nanomedicines, and biopharmaceuticals, while critically analyzing the translational barriers in developing targeted antimicrobial interventions. We further propose potential strategies to overcome current challenges in Fn modulation, aiming to pave the way for more effective therapeutic interventions and better clinical outcomes.
Collapse
Affiliation(s)
- Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Gilbert JA, Azad MB, Bäckhed F, Blaser MJ, Byndloss M, Chiu CY, Chu H, Dugas LR, Elinav E, Gibbons SM, Gilbert KE, Henn MR, Ishaq SL, Ley RE, Lynch SV, Segal E, Spector TD, Strandwitz P, Suez J, Tropini C, Whiteson K, Knight R. Clinical translation of microbiome research. Nat Med 2025; 31:1099-1113. [PMID: 40217076 DOI: 10.1038/s41591-025-03615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
The landscape of clinical microbiome research has dramatically evolved over the past decade. By leveraging in vivo and in vitro experimentation, multiomic approaches and computational biology, we have uncovered mechanisms of action and microbial metrics of association and identified effective ways to modify the microbiome in many diseases and treatment modalities. This Review explores recent advances in the clinical application of microbiome research over the past 5 years, while acknowledging existing barriers and highlighting opportunities. We focus on the translation of microbiome research into clinical practice, spearheaded by Food and Drug Administration (FDA)-approved microbiome therapies for recurrent Clostridioides difficile infections and the emerging fields of microbiome-based diagnostics and therapeutics. We highlight key examples of studies demonstrating how microbiome mechanisms, metrics and modifiers can advance clinical practice. We also discuss forward-looking perspectives on key challenges and opportunities toward integrating microbiome data into routine clinical practice, precision medicine and personalized healthcare and nutrition.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin J Blaser
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Mariana Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Fransisco, San Francisco, CA, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Fransisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, La Jolla, CA, USA
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Katharine E Gilbert
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, USA
- Microbes and Social Equity working group, Orono, ME, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- ZOE Ltd, London, UK
| | | | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carolina Tropini
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
6
|
Scano A, Fais S, Ciappina G, Genovese M, Granata B, Montopoli M, Consolo P, Carroccio P, Muscolino P, Ottaiano A, Bignucolo A, Picone A, Toscano E, Orrù G, Berretta M. Oxidative Stress by H 2O 2 as a Potential Inductor in the Switch from Commensal to Pathogen in Oncogenic Bacterium Fusobacterium nucleatum. Antioxidants (Basel) 2025; 14:323. [PMID: 40227274 PMCID: PMC11939671 DOI: 10.3390/antiox14030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Fusobacterium nucleatum is a pathobiont that plays a dual role as both a commensal and a pathogen. The oral cavity typically harbors this anaerobic, Gram-negative bacterium. At the same time, it is closely linked to colorectal cancer due to its potential involvement in tumor progression and resistance to chemotherapy. The mechanism by which it transforms from a commensal to a pathogen remains unknown. For this reason, we investigated the role of oxidative status as an initiatory factor in changing the bacterium's pathogenicity profile. METHODS A clinical strain of F. nucleatum subsp. animalis biofilm was exposed to different oxidative stress levels through varying subinhibitory amounts of H2O2. Subsequently, we investigated the bacterium's behavior in vitro by infecting the HT-29 cell line. We evaluated bacterial colonization, volatile sulfur compounds production, and the infected cell's oxidative status by analyzing HMOX1, pri-miRNA 155, and 146a gene expression. RESULTS The bacterial colonization rate, dimethyl sulfide production, and pri-miRNA 155 levels all increased when stressed bacteria were used, suggesting a predominant pathogenic function of these strains. CONCLUSIONS The response of F. nucleatum to different oxidative conditions could potentially explain the increase in its pathogenic traits and the existence of environmental factors that may trigger the bacterium's pathogenicity and virulence.
Collapse
Affiliation(s)
- Alessandra Scano
- Oral Biotechnology Laboratory (OBL), Department of Surgical Science, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (S.F.)
| | - Sara Fais
- Oral Biotechnology Laboratory (OBL), Department of Surgical Science, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (S.F.)
- Molecular Biology Laboratory, Azienda Ospedaliera Universitaria di Cagliari (AOU), 09124 Cagliari, Italy
| | - Giuliana Ciappina
- Division of Medical Oncology, AOU “G. Martino” Hospital, University of Messina, 98124 Messina, Italy; (G.C.); (A.P.)
| | - Martina Genovese
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.G.); (P.C.); (A.B.)
| | - Barbara Granata
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (B.G.); (P.C.); (P.M.); (E.T.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy;
| | - Pierluigi Consolo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.G.); (P.C.); (A.B.)
| | - Patrizia Carroccio
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (B.G.); (P.C.); (P.M.); (E.T.)
| | - Paola Muscolino
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (B.G.); (P.C.); (P.M.); (E.T.)
| | - Alessandro Ottaiano
- Division of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy;
| | - Alessia Bignucolo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.G.); (P.C.); (A.B.)
| | - Antonio Picone
- Division of Medical Oncology, AOU “G. Martino” Hospital, University of Messina, 98124 Messina, Italy; (G.C.); (A.P.)
| | - Enrica Toscano
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (B.G.); (P.C.); (P.M.); (E.T.)
| | - Germano Orrù
- Oral Biotechnology Laboratory (OBL), Department of Surgical Science, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (S.F.)
- Molecular Biology Laboratory, Azienda Ospedaliera Universitaria di Cagliari (AOU), 09124 Cagliari, Italy
| | - Massimiliano Berretta
- Division of Medical Oncology, AOU “G. Martino” Hospital, University of Messina, 98124 Messina, Italy; (G.C.); (A.P.)
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.G.); (P.C.); (A.B.)
| |
Collapse
|
7
|
Pu K, Luo T, Li J, Tang Q, Feng Y, Yang G. Periodontitis and gastrointestinal cancer: a nationwide cohort study of NHANES 2009-2014. BMC Public Health 2025; 25:804. [PMID: 40016703 PMCID: PMC11869642 DOI: 10.1186/s12889-025-21832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
The association between periodontitis and gastrointestinal tract (GIT) cancer has undergone extensive investigation. However, there is ongoing controversy regarding the impact of periodontitis on the incidence and mortality rates among GIT cancer patients. This study aims to clarify the relationship between periodontitis and the risk as well as mortality rates of GIT cancer. METHODS The data utilized in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) database for the years 2009-2014, which included a total of 10,706 participants from the United States. The incidence and mortality rates of GIT cancer were analyzed in relation to periodontitis. To ensure the reliability of the results, additional adjustments for covariates and stratification analyses were conducted. RESULTS In the multivariate logistic regression analysis, various variables such as age, sex, race, BMI, income, education, smoking, alcohol consumption, hypertension, hyperlipidemia, and diabetes mellitus were adjusted for. The analysis revealed no positive association between periodontitis and an increased risk of total cancer or GIT cancer including colorectal cancer. However, periodontitis was found to be significantly associated with higher mortality rates among participants for all-cause (HR: 1.58; 95% CI: 1.26-2.00; P < 0.001), GIT cancer (HR: 1.65; 95% CI: 1.24-2.20; P < 0.001), and colorectal cancer (HR: 1.65; 95% CI: 1.24-2.19; P < 0.001) individually. CONCLUSIONS The study demonstrates that periodontitis is not associated with an increased risk of incidence for total cancer, or GIT cancer including colorectal cancer. However, it is significantly associated with a higher risk of mortality for all-cause, GIT cancer, and colorectal cancer among participants in the NHANES study.
Collapse
Affiliation(s)
- Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ting Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juan Li
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA, 30022, US
| | - Yang Feng
- Department of Neurosurgery, Xi'an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China.
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
8
|
Isono H, Nakajima S, Watanabe S, Takeda AK, Yoshii H, Shimoda A, Yagishita H, Mitsudo K, Kioi M. Involvement of Oral Microbiome in the Development of Oral Malignancy. Cancers (Basel) 2025; 17:632. [PMID: 40002227 PMCID: PMC11852801 DOI: 10.3390/cancers17040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE This study aimed to identify periodontal pathogens involved in the onset and progression of OSCC. METHODS Saliva samples were collected from 112 patients without oral mucosal diseases (OMDs) as controls; 36 patients with oral potentially malignant disorders (OPMDs); and 104 patients with OSCC. Periodontal examinations were performed on all patients. Endpoint PCR was performed for seven species of oral pathogens. The 16S rRNA analysis was performed using 20 DNA samples from each group. RESULTS Periodontitis tended to worsen in the OMDs group compared to the control group. The number of oral bacteria was significantly higher in the OSCC group than in the other groups. The detection rates of P. gingivalis and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were significantly higher in the OSCC group than those in the control group. From 16S rRNA analysis, the relative abundance of Prevotella buccae and intermedia was significantly higher in OSCC than in the control. Moreover, LPS derived from P. gingivalis contributes to the early development of oral epithelial precancerous lesions and carcinomas in mice. CONCLUSIONS Specific periodontal pathogens are present in the oral cavities of patients with OPMDs and OSCC, and changes in the bacterial flora due to their presence may contribute to the onset and progression of OMDs.
Collapse
Affiliation(s)
- Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Shintaro Nakajima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Satoshi Watanabe
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan; (S.W.); (A.K.T.)
| | - Aya K. Takeda
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan; (S.W.); (A.K.T.)
| | - Haruka Yoshii
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Ami Shimoda
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Hisao Yagishita
- Division of Oral Diagnosis, Dental and Maxillofacial Radiology and Oral Pathology Diagnostic Services, The Nippon Dental University Hospital, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan;
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| |
Collapse
|
9
|
Sameni F, Elkhichi PA, Dadashi A, Sadeghi M, Goudarzi M, Eshkalak MP, Dadashi M. Global prevalence of Fusobacterium nucleatum and Bacteroides fragilis in patients with colorectal cancer: an overview of case reports/case series and meta-analysis of prevalence studies. BMC Gastroenterol 2025; 25:71. [PMID: 39930345 PMCID: PMC11808969 DOI: 10.1186/s12876-025-03664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest carcinoma across the globe and has been known as a multi-factor induced-disease. Emerging research have demonstrated that bacterial colonization may contribute to the initiation and promotion of the CRC. The presence of Fusobacterium nucleatum (F. nucleatum) and Bacteroides fragilis (B. fragilis) in the gut is associated with the development of CRC. In this study, the prevalence of F. nucleatum and B. fragilis among CRC patients has been assessed worldwide through a systematic review and meta-analysis. METHODS The extensive search was performed using "Fusobacterium nucleatum", "Bacteroides fragilis", "Colorectal cancer" and all relevant keywords. Then, a systematic paper screening was done following a comprehensive search in Embase, Web of Science, and PubMed databases while the time range was limited between the years 2000 and 2024. Afterwards, statistical analysis was performed utilizing the comprehensive meta-analysis (CMA) software (version 2.0, Biostat, USA). RESULTS According to the meta-analysis of prevalence studies, the prevalence of F. nucleatum among 19 countries and B. fragilis among 10 countries were indicated to be 38.9% (95% CI 33.7-44.3%) and 42.5% (95% CI 34.4-51.1%), respectively, among the CRC patients. It was then revealed that Asia had the highest prevalence of F. nucleatum while most of the B. fragilis isolates in CRC cases were reported in European countries. Moreover, the data suggested that the most common comorbidity observed among the CRC cases was diabetes. CONCLUSION Our results emphasized the high prevalence of F. nucleatum and B. fragilis in CRC patients. Based on this meta-analysis review, regulating the gut microbiota in CRC patients seemed to be a promising approach to improving the efficacy of CRC therapy.
Collapse
Affiliation(s)
- Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Abedi Elkhichi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dadashi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohammad Sadeghi
- EA7375-EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers,, Paris East Créteil University (UPEC), Créteil, 94010, France
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Sasaki‐Higashimoto I, Fujishima F, Ishida H, Taniyama Y, Ozawa Y, Nakamura T, Nakaya N, Sato C, Okamoto H, Tsunokake J, Kunimitsu A, Mozumi T, Kamei T, Suzuki T. Histopathological study of the localization/distribution of Fusobacterium nucleatum in esophageal cancer. Pathol Int 2025; 75:82-91. [PMID: 39760468 PMCID: PMC11848974 DOI: 10.1111/pin.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Fusobacterium nucleatum is implicated in esophageal cancer; however, its distribution in esophageal cancer tissues remains unknown. This study aimed to clarify the presence and distribution of F. nucleatum in esophageal cancer tissues using fluorescence in situ hybridization (FISH). Tissues collected from 70 patients with esophageal squamous cell carcinoma were examined using FISH. Corresponding normal epithelium and metastatic lymph nodes were assessed. F. nucleatum was identified more frequently in esophageal cancer tissues than in the normal epithelium. F. nucleatum also showed significant correlation with factors associated with tumor progression, such as pT factor and tumor size. As tumor progression advanced, the area occupied by F. nucleatum gradually became larger. F. nucleatum positivity was observed around the deep edge of the tumor nest (border-dense type) or identified diffusely in the tumor nest (diffuse distributed type). Furthermore, F. nucleatum was observed in metastatic lymph nodes, lesions of venous invasion, and walls of veins in normal epithelium. In conclusion, we visualized F. nucleatum using FISH and identified different distribution patterns of F. nucleatum, highlighting the spot density of its presence in tumor tissues. Recognizing this quantitative change is pivotal for establishing F. nucleatum as a reliable biomarker.
Collapse
Affiliation(s)
- Iku Sasaki‐Higashimoto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | | | - Hirotaka Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Taniyama
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yohei Ozawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Tomohiro Nakamura
- Department of Data Science, Faculty of Data ScienceKyoto Women's UniversityKyotoJapan
| | - Naoki Nakaya
- Department of Health Behavioral EpidemiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Chiaki Sato
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Okamoto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Junichi Tsunokake
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Atsushi Kunimitsu
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Takeru Mozumi
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Takashi Kamei
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University HospitalSendaiJapan
| |
Collapse
|
11
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Colombo APV, Lourenço TGB, de Oliveira AM, da Costa ALA. Link Between Oral and Gut Microbiomes: The Oral-Gut Axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:71-87. [PMID: 40111686 DOI: 10.1007/978-3-031-79146-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In the last decades, groundbreaking research on the human microbiome has changed our reductionist conception of the etiology and pathogenesis of several chronic diseases. As a result, we have come to appreciate the significance of a balanced microbiome in maintaining human health. In this context, the upper and lower gastrointestinal tracts (GITs) comprise the most abundant and diverse microbiotas of the human body. In addition to its diversity, functional redundancy, and temporal stability, a healthy GIT microbiome is characterized by its body site specificity. In fact, current evidence has indicated that the translocation of oral species to the gut environment through the oral-gut axis is increased in an array of illnesses, including chronic inflammatory and metabolic diseases, neurological disorders, and cancer. Oral pathogens have also been shown to promote gut dysbiosis and systemic inflammation in animal models. Yet, some level of overlapping between oral and gut microbiomes may occur without disruption of these microbial communities and loss of site specificity. The uniqueness of each host-microbiome entity may hinder our ability to define a "universal" normal GIT microbiome. Despite that, this chapter summarizes the predominant health-related taxa along the human GIT, as well as their role in the physiology and immunity of the digestive system. Some mechanisms that may lead to disturbances and relevant shifts in the oral and gut microbiomes of major inflammatory chronic diseases are also pointed out. Lastly, oral-fecal microbial signatures are presented as potential biomarkers for several oral and systemic disorders. The recognition of such symbiotic/dysbiotic microbial profiles may provide insights into the development of more accurate early diagnosis and therapeutic ecological approaches to restore the balance of the GIT microbiome.
Collapse
Affiliation(s)
- Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil.
- School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
- School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
13
|
Queen J, Cing Z, Minsky H, Nandi A, Southward T, Ferri J, McMann M, Iyadorai T, Vadivelu J, Roslani A, Loke MF, Wanyiri J, White JR, Drewes JL, Sears CL. Fusobacterium nucleatum is enriched in invasive biofilms in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630810. [PMID: 39803475 PMCID: PMC11722383 DOI: 10.1101/2024.12.30.630810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Fusobacterium nucleatum is an oral bacterium known to colonize colorectal tumors, where it is thought to play an important role in cancer progression. Recent advances in sequencing and phenotyping of F. nucleatum have revealed important differences at the subspecies level, but whether these differences impact the overall tumor ecology, and tumorigenesis itself, remain poorly understood. In this study, we sought to characterize Fusobacteria in the tumor microbiome of a cohort of individuals with CRC through a combination of molecular, spatial, and microbiologic analyses. We assessed for relative abundance of F. nucleatum in tumors compared to paired normal tissue, and correlated abundance with clinical and pathological features. We demonstrate striking enrichment of F. nucleatum and the recently discovered subspecies animalis clade 2 (Fna C2) specifically in colon tumors that have biofilms, highlighting the importance of complex community partnerships in the pathogenesis of this important organism.
Collapse
Affiliation(s)
- Jessica Queen
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zam Cing
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Hana Minsky
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asmita Nandi
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Madison McMann
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | - Julia L Drewes
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Chen S, Chang WH, Zhang J, Liu XY, Gao T, Qi XW, Cai DY, Mao Y, Lu TX. A Longitudinal Dynamic Change in LMR Can Be a Biomarker for Recurrence in Fusobacterium Nucleatum-Positive Colorectal Cancer Patients. J Inflamm Res 2024; 17:11587-11604. [PMID: 39737097 PMCID: PMC11683201 DOI: 10.2147/jir.s489432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Purpose This study assessed lymphocyte-to-monocyte ratio (LMR) changes to predict postoperative recurrence in Fusobacterium nucleatum-positive (Fn-positive) CRC patients. Patients and Methods Clinical information and paraffin tissue specimens were collected from a retrospective cohort of 332 patients. The abundance of Fn in tumor tissue was measured using a quantitative polymerase chain reaction. We evaluated the prognostic value and diagnostic performance of the dynamic changes of LMR from pre-operative to post-treatment (pr-LMR-po) and the dynamic alterations of LMR from pre-operative to post-treatment to pre-end of follow-up (pr-LMR-f) in predicting recurrence in Fn-positive CRC. Results In the total cohort and adjuvant therapy group cohort, pr-LMR-po independently predicted recurrence-free survival in Fn-positive CRC patients. In the adjuvant therapy group, pr-LMR-po (High-High vs Low-Low: HR: 3.896, 95% CI: 1.503-10.095, p=0.005) was particularly significant. Meanwhile, pr-LMR-f can serve as a predictive biomarker for Fn-positive CRC recurrence, especially in the adjuvant therapy group cohort where the c-statistic for pr-LMR-f was 0.825 (95% CI: 0.804-0.8251), with a sensitivity of 83.6% and a specificity of 79.3%. Compared to the overall adjuvant therapy group cohort, the prognostic performance of pr-LMR-f was superior in the Fn-positive CRC adjuvant therapy group cohort (AUC: 0.825 VS 0.711). Finally, we constructed a prediction model combining pr-LMR-f and CEA. After internal validation using the bootstrap resampling, the model had an AUC of 0.9295, a sensitivity of 94%, and a specificity of 72.7% in the Fn-positive CRC adjuvant therapy group cohort. Conclusion This study found that pr-LMR-po predicts Fn-positive CRC prognosis, and pr-LMR-f may predict Fn-positive CRC recurrence.
Collapse
Affiliation(s)
- Shan Chen
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Wan-Hua Chang
- Department of Gastroenterology, Huaian Hospital of Huaian City, Huai’an, Jiangsu Province, People’s Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiao-Yuan Liu
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Ting Gao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiao-Wei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Dong-Yan Cai
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Ting-Xun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
15
|
Ibeanu GC, Rowaiye AB, Okoli JC, Eze DU. Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery. Immunotargets Ther 2024; 13:749-774. [PMID: 39698218 PMCID: PMC11652712 DOI: 10.2147/itt.s486731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with numerous risk factors contributing to its development. Recent research has illuminated the significant role of the gut microbiota in CRC pathogenesis, identifying various microbial antigens as potential targets for vaccine development. Aim This review aimed at exploring the potential sources of microbial antigens that could be harnessed to create effective CRC vaccines and understand the role of microbiome-CRC interactions in carcinogenesis. Methods A comprehensive search of original research and review articles on the pathological links between key microbial candidates, particularly those more prevalent in CRC tissues, was conducted. This involved extensive use of the PubMed and Medline databases, as well as the Google Scholar search engine, utilizing pertinent keywords. A total of one hundred and forty-three relevant articles in English, mostly published between 2018 and 2024, were selected. Results Numerous microbes, particularly bacteria and viruses, are significantly overrepresented in CRC tissues and have been shown to promote tumorigenesis by inducing inflammation and modulating the immune system. This makes them promising candidates for antigens in the development of CRC vaccines. Conclusion The selection of microbial antigens focuses on their capacity to trigger a strong immune response and their link to tumor presence and progression. Identifying and validating these antigens through preclinical testing is essential in developing a CRC vaccine.
Collapse
Affiliation(s)
- Gordon C Ibeanu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Adekunle B Rowaiye
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joy C Okoli
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Daniel U Eze
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
16
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
17
|
Camañes-Gonzalvo S, Montiel-Company JM, Lobo-de-Mena M, Safont-Aguilera MJ, Fernández-Diaz A, López-Roldán A, Paredes-Gallardo V, Bellot-Arcís C. Relationship between oral microbiota and colorectal cancer: A systematic review. J Periodontal Res 2024; 59:1071-1082. [PMID: 38775019 PMCID: PMC11626693 DOI: 10.1111/jre.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 12/10/2024]
Abstract
This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sara Camañes-Gonzalvo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Miriam Lobo-de-Mena
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | - María José Safont-Aguilera
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | | | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
18
|
Hong BY, Chhaya A, Robles A, Cervantes J, Tiwari S. The role of Fusobacterium nucleatum in the pathogenesis of colon cancer. J Investig Med 2024; 72:819-827. [PMID: 39175147 DOI: 10.1177/10815589241277829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Previously, many studies have reported changes in the gut microbiota of patients with colorectal cancer (CRC). While CRC is a well-described disease, the relationship between its development and features of the intestinal microbiome is still being understood. Evidence linking Fusobacterium nucleatum enrichment in colorectal tumor tissue has prompted the elucidation of various molecular mechanisms and tumor-promoting attributes. In this review we highlight various aspects of our understanding of the relationship between the development of CRC and the alteration of intestinal microbiome, focusing specifically on the role of F. nucleatum. As the amount of F. nucleatum DNA in CRC tissue is associated with shorter survival, it may potentially serve as a prognostic biomarker, and most importantly may open the door for a role in CRC treatment.
Collapse
Affiliation(s)
- Bo-Young Hong
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ajay Chhaya
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alejandro Robles
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Jorge Cervantes
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sangeeta Tiwari
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
19
|
González A, Fullaondo A, Navarro D, Rodríguez J, Tirnauca C, Odriozola A. New Insights into Mucosa-Associated Microbiota in Paired Tumor and Non-Tumor Adjacent Mucosal Tissues in Colorectal Cancer Patients. Cancers (Basel) 2024; 16:4008. [PMID: 39682194 DOI: 10.3390/cancers16234008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE Colorectal cancer (CRC) is one of the most common cancers worldwide. Increasing scientific evidence supports the idea that gut microbiota dysbiosis accompanies colorectal tumorigenesis, and these changes could be causative. Implementing gut microbiota analysis in clinical practice is limited by sample type, sequencing platform and taxonomic classification. This article aims to address these limitations, providing new insights into the microbiota associated with CRC pathogenesis and implementing its analyses in personalized medicine. METHODS To that aim, we evaluate differences in the bacterial composition of 130 paired tumor and non-tumor adjacent tissues from a cohort of CRC patients from the Biobank of the University of Navarra, Spain. The V3-V4 region of the 16S rRNA gene was amplified, sequenced using the MinION platform, and taxonomically classified using the NCBI database. RESULTS To our knowledge, this is the first study to report an increased relative abundance of Streptococcus periodonticum and a decreased relative abundance of Corynebacterium associated with CRC. Genera such as Fusobacterium, Leptotrichia and Streptococcus showed higher relative abundances in tumor than in non-tumor tissues, as previously described in the literature. Specifically, we identified higher levels of Fusobacterium animalis, Fusobacterium nucleatum, Fusobacterium polymorphum and S. periodonticum in tumor tissues. In contrast, genera such as Bacteroides and Corynebacterium showed lower relative abundances in tumor tissues. There were also differences at the taxonomic level between tumor locations. CONCLUSIONS These results, consistent with previous studies, further support the hypothesis that Leptotrichia and Fusobacterium contribute to CRC progression, with F. nucleatum and F. animalis proposed as key CRC pathogenic taxa. Overall, these results contribute to a better understanding of the CRC-associated microbiota, addressing critical barriers to its implementation in personalized medicine.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | | | - Javier Rodríguez
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Tirnauca
- Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
20
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Akbari E, Epstein JB, Samim F. Unveiling the Hidden Links: Periodontal Disease, Fusobacterium Nucleatum, and Cancers. Curr Oncol Rep 2024; 26:1388-1397. [PMID: 39133417 DOI: 10.1007/s11912-024-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Fusobacterium nucleatum (F. nucleatum), an anaerobic, gram-negative microbe, commonly found in human dental biofilm and the gut flora. It has long been known to have a higher concentration in periodontal disease and has recently been implicated in both oral and distant cancers such as colorectal, gastrointestinal, esophageal, breast, pancreatic hepatocellular, and genitourinary cancers. However, the mechanism of its involvement in the development of cancer has not been fully discussed. This review aims to cover biological molecular and clinical aspects of F. nucleatum and cancers. RECENT FINDINGS Studies indicate F. nucleatum promotes tumor development through chronic inflammation, immune evasion, cell proliferation activation, and direct cell interactions, as in oral squamous cell carcinoma (OSCC). In colorectal cancer (CRC), F. nucleatum contributes to tumorigenesis through β-catenin signaling and NF-κB activation. It also induces autophagy, leading to chemoresistance in CRC and esophageal cancers, and enhances tumor growth and metastasis in breast cancer by reducing T-cell infiltration. F. nucleatum is linked to carcinogenesis and increased bacterial diversity in OSCC, with improved oral hygiene potentially preventing OSCC. F. nucleatum triggers cancer by causing mutations and epigenetic changes through cytokines and reactive oxygen species. It also promotes chemoresistance in CRC. F. nucleatum may potentially serve as a diagnostic tool in various cancers, with non-invasive detection methods available. Further investigation is needed to discover its potential in the diagnosis and treatment of OSCC and other cancers.
Collapse
Affiliation(s)
- Elahe Akbari
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada
| | - Joel B Epstein
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cedars Sinai Health System, Los Angeles, CA, USA
| | - Firoozeh Samim
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Rashidi A. Cachexia during anti-leukemia chemotherapy: it is not "just" the chemo. Haematologica 2024; 109:3091-3093. [PMID: 38721740 PMCID: PMC11443385 DOI: 10.3324/haematol.2024.285455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
24
|
Zheng X, Gong T, Luo W, Hu B, Gao J, Li Y, Liu R, Xie N, Yang W, Xu X, Cheng L, Zhou C, Yuan Q, Huang C, Peng X, Zhou X. Fusobacterium nucleatum extracellular vesicles are enriched in colorectal cancer and facilitate bacterial adhesion. SCIENCE ADVANCES 2024; 10:eado0016. [PMID: 39303027 PMCID: PMC11414721 DOI: 10.1126/sciadv.ado0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Fusobacterium nucleatum in colorectal cancer (CRC) tissue is implicated at multiple stages of the disease, while the mechanisms underlying bacterial translocation and colonization remain incompletely understood. Herein, we investigated whether extracellular vesicles derived from F. nucleatum (FnEVs) have impacts on bacterial colonization. In mice with colitis-related CRC, a notable enrichment of FnEVs was observed, leading to a significant increase in intratumor colonization by F. nucleatum and accelerated progression of CRC. The enrichment of FnEVs in clinical CRC tissues was demonstrated. Subsequently, we revealed that FnEVs undergo membrane fusion with CRC cells, leading to the transfer and retention of FomA on recipient cell surfaces. Given its ability to facilitate F. nucleatum autoaggregation through interaction with FN1441, the presence of FomA on CRC cell surfaces presents a target for bacterial adhesion. Collectively, the findings unveil a mechanism used by EVs to prepare a niche conducive for bacterial colonization in distal organs.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wanyi Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
25
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
26
|
Wang XX, Liu YT, Ren JG, Liu HM, Fu Q, Yang Y, Fu QY, Chen G. Salivary Microbiome Relates to Neoadjuvant Immunotherapy Response in OSCC. J Dent Res 2024; 103:988-998. [PMID: 39101654 DOI: 10.1177/00220345241262759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Most patients diagnosed with oral squamous cell carcinoma (OSCC) present with locally advanced stages, which are typically associated with poor outcomes. Although immunotherapy offers potential improvements in patient survival, its efficacy is hampered by low response rates. The microbiome is widely involved in tumor immunity and may play a role in immunotherapy. This study aimed to investigate the potential association between the oral (salivary) microbiome and immunotherapy response in patients with OSCC. Salivary metagenome sequencing was performed on 47 patients with OSCC undergoing neoadjuvant immunotherapy (NAIT) in a clinical trial (NCT04649476). Patients were divided into responders and nonresponders based on their pathological responses. The results showed that the species richness of the salivary microbiome was lower in the nonresponders before NAIT than in the responders. Differential analysis revealed that nonresponders exhibited a lower relative abundance of 34 bacterial species and a higher relative abundance of 4 bacterial species. Notably, low levels of Eubacterium infirmum, Actinobaculum, and Selenomas (EAS) in the saliva may be associated with the nonresponse of patients with OSCC to NAIT. A nomogram based on EAS was developed and validated to determine the efficacy of NAIT. The area under the curve for the training cohort was 0.81 (95% confidence interval, 0.66 to 0.81). Quantitative polymerase chain reaction confirmed that low levels of salivary EAS effectively identified nonresponders to NAIT. Furthermore, the low abundance of salivary EAS was closely correlated with a low density of intratumoral CD4+, CD14+, CD68+, and FOXP3+ cells. Metabolic functional annotation revealed numerous biosynthetic processes associated with EAS that were more active in responders. In summary, this study provides valuable data resources for the salivary microbiome and reveals that nonresponders have different salivary microbiome profiles than responders do before NAIT. Low salivary EAS levels can serve as potential biomarkers for distinguishing nonresponders from responders.
Collapse
Affiliation(s)
- X X Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y T Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J G Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H M Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Fu
- GEMEXO BIOTECH (Wuhan) Co., Ltd., Wuhan, China
| | - Y Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Q Y Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Koliarakis I, Lagkouvardos I, Vogiatzoglou K, Tsamandouras I, Intze E, Messaritakis I, Souglakos J, Tsiaoussis J. Circulating Bacterial DNA in Colorectal Cancer Patients: The Potential Role of Fusobacterium nucleatum. Int J Mol Sci 2024; 25:9025. [PMID: 39201711 PMCID: PMC11354820 DOI: 10.3390/ijms25169025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal dysbiosis is a major contributor to colorectal cancer (CRC) development, leading to bacterial translocation into the bloodstream. This study aimed to evaluate the presence of circulated bacterial DNA (cbDNA) in CRC patients (n = 75) and healthy individuals (n = 25). DNA extracted from peripheral blood was analyzed using PCR, with specific primers targeting 16S rRNA, Escherichia coli (E. coli), and Fusobacterium nucleatum (F. nucleatum). High 16S rRNA and E. coli detections were observed in all patients and controls. Only the detection of F. nucleatum was significantly higher in metastatic non-excised CRC, compared to controls (p < 0.001), non-metastatic excised CRC (p = 0.023), and metastatic excised CRC (p = 0.023). This effect was mainly attributed to the presence of the primary tumor (p = 0.006) but not the presence of distant metastases (p = 0.217). The association of cbDNA with other clinical parameters or co-morbidities was also evaluated, revealing a higher detection of E. coli in CRC patients with diabetes (p = 0.004). These results highlighted the importance of bacterial translocation in CRC patients and the potential role of F. nucleatum as an intratumoral oncomicrobe in CRC.
Collapse
Affiliation(s)
- Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
| | - Ioannis Tsamandouras
- Department of Otorhinolaryngology—Head and Neck Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
- Department of Microbiology, German Oncology Center, Yiannoukas Labs LTD, Bioiatriki Group, Limassol 4108, Cyprus
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (K.V.); (I.M.); (J.S.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
28
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
29
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
30
|
Guo L, Zhou J, Xie F, Lang Q, Xu Y, Chen L, Xue Z, Mao Y, Wang R. The profile of oral microbiome in Chinese elderly population associated with aging and systemic health status. BMC Oral Health 2024; 24:895. [PMID: 39103866 PMCID: PMC11299356 DOI: 10.1186/s12903-024-04676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE The health of oral cavity is considered as an important indicator of aging. Oral microbiota is highly associated with the oral health, while the variation of oral microbiome in elderly population and characteristic microbes associated with aging remain unclear. SUBJECTS AND METHODS In this study, 130 elderly subjects were recruited and divided into 3 groups according to their age: Stage I group (65 ≤ years < 70), Stage II group (70 ≤ years < 75), and Stage III group (75 ≤ years < 80). Their physiological indices were analyzed with using Illumina MiSeq platform and the oral microbiome was determined by high-throughput sequencing. RESULTS Along with aging, the level of fasting blood glucose, systolic pressure and monocytes are significantly increased. No significant difference was detected on the whole structure of the oral microbiome among groups. While using Metastats and Spearman's correlation analysis, specific bacteria were identified as potential age- or health index-related bacterial genera including Fusobacterium, Parvimonas, Porphyromonas, Aminobacter, Collinsella, Clostridium and Acinetobacter. CONCLUSION Our study revealed that the composition structure of salivary microbiota in elderly population was relatively stable while specific bacteria were correlated with age and health status, which is promising to be served as health indicators of the elderly after further exploration.
Collapse
Affiliation(s)
- Liqiang Guo
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xie
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Qing Lang
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Yuesong Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luping Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengsheng Xue
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China
| | - Yuejian Mao
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China.
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Tao K, Yuan Y, Xie Q, Dong Z. Relationship between human oral microbiome dysbiosis and neuropsychiatric diseases: An updated overview. Behav Brain Res 2024; 471:115111. [PMID: 38871130 DOI: 10.1016/j.bbr.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of the gut-brain axis in mental health disorders has been extensively studied. As the oral cavity is the starting point of the digestive tract, the role that the oral microbiota plays in mental health disorders has gained recent attention. Oral microbiota can enter the bloodstream and trigger inflammatory responses or translocate to the brain through the trigeminal nerve or olfactory system. Hence, the concept of the oral microbiota-brain axis has emerged. Several hypotheses have been suggested that the oral microbiota can enter the gastrointestinal tract and affect the gut-brain axis; however, literature describing oral-brain communication remains limited. This review summarizes the characteristics of oral microbiota and its mechanisms associated with mental health disorders. Through a comprehensive examination of the relationship between oral microbiota and various neuropsychiatric diseases, such as anxiety, depression, schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, and dementia, this review seeks to identify promising avenues of future research.
Collapse
Affiliation(s)
- Kai Tao
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Outpatient, West China Xiamen Hospital, Sichuan University, Fujian 361022, People's Republic of China.
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
32
|
Wang X, Zhang Q, Xu R, Li X, Hong Z. Research progress on the correlation between intestinal flora and colorectal cancer. Front Oncol 2024; 14:1416806. [PMID: 39087025 PMCID: PMC11288818 DOI: 10.3389/fonc.2024.1416806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies in the world. With the rapid pace of life and changes in diet structure, the incidence and mortality of CRC increase year by year posing a serious threat to human health. As the most complex and largest microecosystem in the human body, intestinal microecology is closely related to CRC. It is an important factor that affects and participates in the occurrence and development of CRC. Advances in next-generation sequencing technology and metagenomics have provided new insights into the ecology of gut microbes. It also helps to link intestinal flora with CRC, and the relationship between intestinal flora and CRC can be continuously understood from different levels. This paper summarizes the relationship between intestinal flora and CRC and its potential role in the diagnosis of CRC providing evidence for early screening and treatment of CRC.
Collapse
Affiliation(s)
- Xinyu Wang
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qian Zhang
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Rongxuan Xu
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Li
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Zhijun Hong
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
33
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
34
|
Yu LC, Li YP, Xin YM, Mao M, Pan YX, Qu YX, Luo ZD, Zhang Y, Zhang X. Application of Fusobacterium nucleatum as a biomarker in gastrointestinal malignancies. World J Gastrointest Oncol 2024; 16:2271-2283. [PMID: 38994170 PMCID: PMC11236247 DOI: 10.4251/wjgo.v16.i6.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
The morbidity and mortality of gastrointestinal (GI) malignancies are among the highest in the world, posing a serious threat to human health. Because of the insidious onset of the cancer, it is difficult for patients to be diagnosed at an early stage, and it rapidly progresses to an advanced stage, resulting in poor treatment and prognosis. Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium that primarily colonizes the oral cavity and is implicated in the development of colorectal, esophageal, gastric, and pancreatic cancers via various intricate mechanisms. Recent development in novel research suggests that F. nucleatum may function as a biomarker in GI malignancies. Detecting the abundance of F. nucleatum in stool, saliva, and serum samples of patients may aid in the diagnosis, risk assessment, and prognosis monitoring of GI malignancies. This editorial systematically describes the biological roles and mechanisms of F. nucleatum in GI malignancies focusing on the application of F. nucleatum as a biomarker in the diagnosis and prognosis of GI malignancies to promote the clinical translation of F. nucleatum and GI tumors-related research.
Collapse
Affiliation(s)
- Long-Chen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yue-Ming Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ya-Xin Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi-Xuan Qu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Zheng-Dong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| |
Collapse
|
35
|
Xiong J, Liu H, Li C, Li Y, Feng J. Linking periodontitis with 20 cancers, emphasis on oropharyngeal cancer: a Mendelian randomization analysis. Sci Rep 2024; 14:12511. [PMID: 38822160 PMCID: PMC11143368 DOI: 10.1038/s41598-024-63447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
While associations between periodontitis and an elevated risk of cancer have been suggested, the results of existing observational studies have been inconsistent, also leaving room for further investigation into the underlying mechanisms. This study was designed to delve into the possible causal link between periodontitis and 20 standard cancers while concurrently identifying potential mediators. We initiated a Mendelian randomization analysis that drew from either publicly accessible or personally obtained genome-wide association study (GWAS) datasets. The inverse variance weighting (IVW) method served as our primary tool for analysis. To ensure the strength and consistency of our results, we implemented additional strategies, including weighted median, weighted mode, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO), bolstered by funnel plots. Our analysis unveiled an elevated risk of head and neck cancer concomitant with periodontitis (p = 0.041, OR 0.999, 95% CI 0.999-1.000), specifically a heightened risk of oropharyngeal cancer (p = 0.022, OR 0.999, 95% CI 0.999-1.000). As a result of probing into potential mediators, Fusobacterium nucleatum emerged as a likely intermediary in the promoting effect of periodontitis on oropharyngeal cancer (p = 0.021, OR 0.999, 95% CI 0.998-1.000). Inversely, basal cell carcinoma and endometrial cancer demonstrated an association with an increased incidence of periodontitis (basal cell carcinoma: p = 0.020, OR 0.987, 95% CI 0.976-0.998; endometrial cancer: p = 0.027, OR 0.984, 95% CI 0.970-0.998). However, periodontitis exerted no significant causal impact on the 19 other common cancers or the three subtypes of head and neck cancer. To conclude, our results support the theory that periodontitis contributes to an enhanced risk of head and neck cancer, particularly oropharyngeal cancer, with Fusobacterium nucleatum functioning as a potential intermediary.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jiali Feng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
36
|
Zhu Y, Ponath F, Cosi V, Vogel J. A global survey of small RNA interactors identifies KhpA and KhpB as major RNA-binding proteins in Fusobacterium nucleatum. Nucleic Acids Res 2024; 52:3950-3970. [PMID: 38281181 DOI: 10.1093/nar/gkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
Collapse
Affiliation(s)
- Yan Zhu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
37
|
Li RM, Long Z, Ding XY, Duan L. Oral microbiota imbalance: A predisposing factor for Henoch-Schönlein Purpura in children. Heliyon 2024; 10:e28826. [PMID: 38596127 PMCID: PMC11002595 DOI: 10.1016/j.heliyon.2024.e28826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Oral microecological dysregulation has been shown to be associated with various immune system disorders. Henoch-schonlein purpura (HSP) is an autoimmune small vessel inflammatory disease in children of uncertain etiology, and studies have suggested that streptococcal infection may be an influential factor in its development. However, the relationship between oral microecological dysregulation and HSP has not been clearly studied so far. In this study, an epidemiological survey on the oral health status of children with HSP was investigated in this paper, and collected dental plaque from four groups of children for 16SrDNA high-throughput sequencing to analyze the composition and changes of oral microbial diversity among different groups. The results showed that the oral health status of children with HSP was poor, except for the incidence of caries in the 5-year-old group, the caries rate and dmfs/DMFS in the 3,4 and 5-year-old groups were higher than the same age in the fourth Chinese Oral Health Epidemiological Survey. Moreover, the development of HSP is accompanied by disturbances in the oral microbiota; a decrease in the number of Firmicutes which producing butyric acid may be closely associated with the development of HSP; changes in the abundance of Streptococcus and Neisseria may be a risk factor for the development of HSP.
Collapse
Affiliation(s)
- Rui min Li
- Department of Operative Dentistry and Endodontics, Stomatology Hospital of General Hospital, Ningxia Medical University, China
- Ningxia Medical University, China
- Ningxia Key Laboratory of Oral Disease Research, China
| | - Zhe Long
- Ningxia Medical University, China
- Ningxia Key Laboratory of Oral Disease Research, China
| | - Xiao yan Ding
- Ningxia Medical University, China
- Ningxia Key Laboratory of Oral Disease Research, China
| | - Li Duan
- Ningxia Medical University, China
- Ningxia Key Laboratory of Oral Disease Research, China
| |
Collapse
|
38
|
Lin G, Kageyama S, Maeda A, Sakamoto E, Ma J, Asakawa M, Furuta M, Yamashita Y, Takeshita T. Oral-to-rectum microbial transmission in orthopedic patients without a history of intestinal disorders. Front Cell Infect Microbiol 2024; 14:1358684. [PMID: 38660493 PMCID: PMC11039792 DOI: 10.3389/fcimb.2024.1358684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
The enrichment of oral taxa in the gut has recently been reported as a notable alteration in the microbial balance in patients with intestinal disorders. However, translocation in populations without such diseases remains controversial. In this study, we examined 49 pairs of tongue and rectal samples collected from orthopedic patients without a history of intestinal disorders to verify the presence of oral taxa in the rectal microbiota. The bacterial composition of each sample was determined using 16S rRNA gene sequencing and amplicon sequence variant (ASV) analysis. Although the bacterial compositions of the tongue and rectal microbiota were distinctly different, tongue ASVs were detected in 67.3% of the participants and accounted for 0.0%-9.37% of the rectal microbiota. Particularly, Streptococcus salivarius, Fusobacterium nucleatum, and Streptococcus parasanguinis were abundant in the rectal microbiota. According to the network analysis, tongue taxa, such as S. salivarius and S. parasanguinis, formed a cohabiting group with Klebsiella pneumoniae and Alistipes finegoldii in the rectal microbiota. The total abundance of tongue ASVs in the rectal microbiota was significantly higher in participants with older age, hypertension, and proton pump inhibitor (PPI) use. Our study presents an extensive translocation of oral taxa to the rectum of a population without intestinal disorders and suggests that aging, hypertension, and PPI use are associated with an increased abundance of oral taxa and potential pathogenic bacteria in the rectal microbiota.
Collapse
Affiliation(s)
- Ge Lin
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aiko Maeda
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Eiji Sakamoto
- Department of Oral and Maxillofacial Surgery, Kyushu University Hospital, Fukuoka, Japan
| | - Jiale Ma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. Stratification of Fusobacterium nucleatum by local health status in the oral cavity defines its subspecies disease association. Cell Host Microbe 2024; 32:479-488.e4. [PMID: 38479393 PMCID: PMC11018276 DOI: 10.1016/j.chom.2024.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
The ubiquitous inflammophilic oral pathobiont Fusobacterium nucleatum (Fn) is widely recognized for its strong association with inflammatory dysbiotic diseases and cancer. Fn is subdivided into four subspecies, which are historically considered functionally interchangeable in the oral cavity. To test this assumption, we analyzed patient-matched dental plaque and odontogenic abscess clinical specimens and examined whether an inflammatory environment selects for/against particular Fn subspecies. Dental plaque harbored a greater diversity of fusobacteria, with Fn. polymorphum dominating, whereas odontogenic abscesses were exceptionally biased for the largely uncharacterized organism Fn. animalis. Comparative genomic analyses revealed significant genotypic distinctions among Fn subspecies that correlate with their preferred ecological niches and support a taxonomic reassignment of each as a distinct Fusobacterium species. Despite originating as a low-abundance organism in dental plaque, Fn. animalis typically outcompetes other oral fusobacteria within the inflammatory abscess environment, which may explain its prevalence in other oral and extraoral diseases.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M AbdelRahman
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Giza, Egypt; Predicine, Hayward, CA, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A Palmer
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
40
|
C BG, Zhou P, Wu C. Fusobacterium nucleatum subsp. animalis comes to the spotlight in oral diseases. Cell Host Microbe 2024; 32:443-444. [PMID: 38604121 DOI: 10.1016/j.chom.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Krieger et al.'s study in this issue of Cell Host & Microbe reveals that Fusobacterium nucleatum subsp. animalis strains, previously underestimated, are significant in disease-affected oral areas. This challenges the long-held notion of the dominance of Fusobacterium nucleatum subsp. nucleatum, reshaping our understanding of Fusobacterium distribution in the oral microbiome.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, the University of Texas Health Science Center, Houston, TX, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, the University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
41
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, Jones DS, LaCourse KD, Wu Y, McMahon EF, Park SN, Lim YK, Kempchinsky AG, Willis AD, Cotton SL, Yost SC, Sicinska E, Kook JK, Dewhirst FE, Segata N, Bullman S, Johnston CD. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024; 628:424-432. [PMID: 38509359 PMCID: PMC11006615 DOI: 10.1038/s41586-024-07182-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Collapse
Affiliation(s)
- Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heather Bouzek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aitor Blanco-Míguez
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ying Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elsa F McMahon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun K Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Floyd E Dewhirst
- Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
43
|
Baima G, Ferrocino I, Del Lupo V, Colonna E, Thumbigere-Math V, Caviglia GP, Franciosa I, Mariani GM, Romandini M, Ribaldone DG, Romano F, Aimetti M. Effect of Periodontitis and Periodontal Therapy on Oral and Gut Microbiota. J Dent Res 2024; 103:359-368. [PMID: 38362600 DOI: 10.1177/00220345231222800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Mounting evidence indicates that periodontitis-related oral bacteria may contribute to gut microbial dysbiosis. This clinical study aimed to explore the oral-gut microbial signatures associated with periodontitis and to longitudinally evaluate the effect of periodontal treatment on the oral and gut microbial composition. Stool and saliva samples from generalized stage III/IV periodontitis patients (n = 47) were collected and analyzed by 16S ribosomal RNA gene amplicon sequencing, before and 3 mo after steps I to II of periodontal therapy. Periodontally healthy matched subjects (n = 47) were used as controls. Principal component analysis was carried out to identify oral-gut microbial profiles between periodontitis patients at baseline and healthy subjects; periodontitis samples were longitudinally compared before and after treatment. β-Diversity of gut microbial profiles of periodontitis patients before treatment significantly differed from healthy controls (P < 0.001). Periodontal therapy was associated with a significant change in gut microbiota (P < 0.001), with post-treatment microbial profiles similar to healthy volunteers. A higher abundance of Bacteroides, Faecalibacterium, Fusobacterium, and Lachnospiraceae was noted in fecal samples of periodontitis patients at baseline compared to healthy controls. In contrast, Lactobacillus was the only genus more abundant in the latter. Additionally, periodontal therapy led to a parallel reduction in the salivary carriage of periodontal pathobionts, as well as gut Bacteroides, Lachnoclostridium, Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae, to levels similar to healthy controls. Collectively, discriminating oral-gut microbial signatures of periodontitis were found. Periodontal treatment both mitigated oral dysbiosis and altered gut microbial composition, signifying potential broader implications for gastrointestinal health and disease.
Collapse
Affiliation(s)
- G Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - I Ferrocino
- Department of Agricultural, Forestry and Food Science, University of Turin, Turin, Italy
| | - V Del Lupo
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - E Colonna
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - V Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - G P Caviglia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - I Franciosa
- Department of Agricultural, Forestry and Food Science, University of Turin, Turin, Italy
| | - G M Mariani
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - M Romandini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - D G Ribaldone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - F Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - M Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Han H, Zhang Y, Tang H, Zhou T, Khan A. A Review of the Use of Native and Engineered Probiotics for Colorectal Cancer Therapy. Int J Mol Sci 2024; 25:3896. [PMID: 38612706 PMCID: PMC11011422 DOI: 10.3390/ijms25073896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) is a serious global health concern, and researchers have been investigating different strategies to prevent, treat, or support conventional therapies for CRC. This review article comprehensively covers CRC therapy involving wild-type bacteria, including probiotics and oncolytic bacteria as well as genetically modified bacteria. Given the close relationship between CRC and the gut microbiota, it is crucial to compile and present a comprehensive overview of bacterial therapies used in the context of colorectal cancer. It is evident that the use of native and engineered probiotics for colorectal cancer therapy necessitates research focused on enhancing the therapeutic properties of probiotic strains.. Genetically engineered probiotics might be designed to produce particular molecules or to target cancer cells more effectively and cure CRC patients.
Collapse
Affiliation(s)
- Huawen Han
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yifan Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Aman Khan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
45
|
Hernández-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease. FEMS Microbiol Rev 2024; 48:fuae012. [PMID: 38650052 PMCID: PMC11065354 DOI: 10.1093/femsre/fuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The number of research papers published on the involvement of the oral microbiota in systemic diseases has grown exponentially over the last 4 years clearly demonstrating the growing interest in this field. Indeed, accumulating evidence highlights the central role of ectopic colonization by oral bacteria in numerous noncommunicable diseases including inflammatory bowel diseases (IBDs), undernutrition, preterm birth, neurological diseases, liver diseases, lung diseases, heart diseases, or colonic cancer. There is thus much interest in understanding the molecular mechanisms that lead to the colonization and maintenance of ectopic oral bacteria. The aim of this review is to summarize and conceptualize the current knowledge about ectopic colonization by oral bacteria, highlight wherever possible the underlying molecular mechanisms and describe its implication in health and disease. The focus lies on the newly discovered molecular mechanisms, showcasing shared pathophysiological mechanisms across different body sites and syndromes and highlighting open questions in the field regarding the pathway from oral microbiota dysbiosis to noncommunicable diseases.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
47
|
Nazarinejad N, Hajikhani B, Vaezi AA, Firoozeh F, Sameni F, Yaslianifard S, Goudarzi M, Dadashi M. Association between colorectal cancer, the frequency of Bacteroides fragilis, and the level of mismatch repair genes expression in the biopsy samples of Iranian patients. BMC Gastroenterol 2024; 24:82. [PMID: 38395750 PMCID: PMC10885486 DOI: 10.1186/s12876-024-03169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficient DNA mismatch repair (MMR) can cause microsatellite instability (MSI) and is more common in colorectal cancer (CRC) patients. Understanding the carcinogenic mechanism of bacteria and their impact on cancer cells is crucial. Bacteroides fragilis (B. fragilis) has been identified as a potential promoter of tumorigenesis through the alteration of signaling pathways. This study aims to assess the expression levels of msh2, msh6, mlh1, and the relative frequency of B. fragilis in biopsy samples from CRC patients. MATERIALS AND METHODS Based on the sequence of mlh1, msh2, and msh6 genes, B. fragilis specific 16srRNA and bacterial universal 16srRNA specific primers were selected, and the expression levels of the target genes were analyzed using the Real-Time PCR method. RESULTS Significant increases in the expression levels of mlh1, msh2, and msh6 genes were observed in the cancer group. Additionally, the expression of these MMR genes showed a significant elevation in samples positive for B. fragilis presence. The relative frequency of B. fragilis in the cancer group demonstrated a significant rise compared to the control group. CONCLUSION The findings suggest a potential correlation between the abundance of B. fragilis and alterations in the expression of MMR genes. Since these genes can play a role in modifying colon cancer, investigating microbial characteristics and gene expression changes in CRC could offer a viable solution for CRC diagnosis.
Collapse
Affiliation(s)
- Nooshin Nazarinejad
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
48
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
49
|
Liu J, Jiang J, Lan Y, Li C, Han R, Wang J, Wang T, Zhao Z, Fan Z, He L, Fang J. Metagenomic analysis of oral and intestinal microbiome of patients during the initial stage of orthodontic treatment. Am J Orthod Dentofacial Orthop 2024; 165:161-172.e3. [PMID: 37966405 DOI: 10.1016/j.ajodo.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION This prospective study analyzed changes in the oral and intestinal microbiomes in patients before and after fixed orthodontic treatment, elucidating the impacts of fixed orthodontic treatment on patient health and metabolism. METHODS Metagenomic analysis was conducted on stool, dental plaque, and saliva samples from 10 fixed orthodontic patients. All the samples were sequenced with Illumina NovaSeq 6000 with a paired-end sequencing length of 150 bp. Identification of taxa in metagenomes and functional annotation of genes of the microbiota were performed using the data after quality control. Clinical periodontal parameters, including the gingiva index, plaque index, and pocket probing depth, were examined at each time point in triplicates. Patients also received a table to record their oral hygiene habits of brushing, flossing, and dessert consumption frequency over 1 month. RESULTS The brushing and flossing times per day of patients were significantly increased after treatment compared with baseline. The number of times a patient ate dessert daily was also fewer after treatment than at baseline. In addition, the plaque index decreased significantly, whereas the pH value of saliva, gingiva index, and pocket probing depth did not change. No significant differences were observed between the participants before and after orthodontic treatment regarding alpha-diversity analysis of the gut, dental plaque, or saliva microbiota. However, on closer analysis, periodontal disease-associated bacteria levels in the oral cavity remain elevated. Alterations in gut microbiota were also observed after orthodontic treatment. CONCLUSIONS The richness and diversity of the microbiome did not change significantly during the initial stage of fixed orthodontic treatment. However, the levels of periodontal disease-associated bacteria increased.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyang Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chengyan Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Libang He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Yamazaki K, Kamada N. Exploring the oral-gut linkage: Interrelationship between oral and systemic diseases. Mucosal Immunol 2024; 17:147-153. [PMID: 38007003 PMCID: PMC11222583 DOI: 10.1016/j.mucimm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The oral cavity harbors a diverse microbiota that plays a significant role in maintaining homeostasis. Disruption of this balance can lead to various oral diseases, including periodontitis. Accumulating evidence suggests a connection between periodontitis and extra-oral diseases such as cardiovascular disease, rheumatoid arthritis, obesity, and diabetes. During periodontitis, oral bacteria enter the bloodstream directly, impacting extra-oral organs. Furthermore, recent studies have uncovered another pathway, the direct oral-gut axis, where oral bacteria translocate to the gut through an enteral route, influencing gut microbiota and metabolism. Oral pathobionts associated with exacerbation of periodontal disease are implicated in gut pathology, including inflammatory bowel disease and colorectal cancer through ectopic gut colonization. Furthermore, oral bacteria can provoke host immune responses, leading to colitis and other inflammatory diseases. Conversely, mechanisms by which extra-oral conditions exacerbate oral diseases, such as periodontitis, are also beginning to be elucidated. This review discusses the bidirectional interrelationship between oral and systemic diseases based on the oral-gut linkage.
Collapse
Affiliation(s)
- Kyoko Yamazaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA; Department of Pathology, University of Michigan, Ann Arbor, USA; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|