1
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Tao S, Ji Y, Li R, Xiao Y, Wu H, Ye R, Shi J, Geng C, Tang G, Ran R, Zhu C, Wang W, Chen C, Yang Q. Layered Double Hydroxide LDH-Loaded miR-141-3p Targets RAB10 Suppressing Cellular Autophagy to Reverse Paclitaxel Resistance in Breast Cancer. ACS OMEGA 2025; 10:5886-5899. [PMID: 39989842 PMCID: PMC11840594 DOI: 10.1021/acsomega.4c09755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Autophagy is a cellular protective mechanism. As tumor cells are stimulated by drugs, autophagy is activated to increase their resistance to drugs. In gene regulation, microRNA (miRNA) plays a vital role. The diagnostic and prognostic potential of various miRNAs in cancer has been recognized, and for several years, miRNA-based therapeutic approaches have garnered significant interest in the oncology field. RAB10, a member of the RAB guanosine triphosphatase family, has been reported that it contributes to tumor resistance to chemotherapy. The bionanomaterial layered double hydroxide (LDH) is considered as an ideal gene delivery vehicle because of its nontoxicity, good biocompatibility, and slow drug release. According to our findings, we proved that miR-141-3p mediated breast cancer resistance to paclitaxel (PTX) by inhibiting autophagy through downregulation of RAB10, and LDH@miR-141-3p increased breast cancer cell sensitivity to PTX treatment, which provided a new idea for antitumor therapy.
Collapse
Affiliation(s)
- Shuang Tao
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
- Clinical
Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yuxin Ji
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
- Clinical
Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Ruonan Li
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
- Clinical
Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yuhan Xiao
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Huan Wu
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Ruyin Ye
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Jiwen Shi
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Chenchen Geng
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Guohui Tang
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Ruorong Ran
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Chengle Zhu
- Anhui
Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis
and Treatment, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Wenrui Wang
- Department
of Life Sciences, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Changjie Chen
- Department
of Biochemistry and Molecular Biology, Bengbu
Medical University, Bengbu, Anhui 233030, China
| | - Qingling Yang
- Department
of Biochemistry and Molecular Biology, Bengbu
Medical University, Bengbu, Anhui 233030, China
- Institute
of Health and Medicine, Hefei Comprehensive
National Science Center, Hefei, Anhui 231283, China
| |
Collapse
|
3
|
Wu D, Zhang Y, Zhang L, Xia W, Cai B, Dong F, Wu K, Cheng L, Shao M, Ma H, Hu Z, Lu H. Mechanism of microRNA-152-3p-Mediated Regulation of Autophagy and Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells. Onco Targets Ther 2025; 18:179-197. [PMID: 39926373 PMCID: PMC11806707 DOI: 10.2147/ott.s485100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Objective The study investigated microRNA-152-3p-mediated autophagy and sensitivity of paclitaxel-resistant ovarian cancer cells. Methods The miR-152-3p mimics and miR-152-3p inhibitor were transfected in A2780 cells and A2780T cells, and the scrambled sequences were transfected as a negative control group, the transfection efficiency was detected by qPCR technology. MTT was used to detect the proliferation and IC50 value of the cells after transfection. The expression of target proteins in A2780 cells and A2780T cells were detected by qPCR; The expression of phosphatase and tensin homolog (PTEN) and ATG4D after transfection were analyzed by Western blot. The knockdown efficiency of PTEN was detected by reverse qRT-PCR, MTT and Western blot. Results The expression level of miR-152-3p in A2780T cells was 52-fold higher than that in A2780 cells according to the results of qPCR. Downregulation of miR-152-3p reversed PTX-induced autophagy, inhibited cell proliferation and apoptosis, and reduced drug resistance in A2780T cells. Moreover, PTEN appeared to be a potential target of miR-152-3p, and low expression levels of miR-152-3p increased PTX sensitivity by downregulating PTEN in vitro. Conclusion PTEN may be a novel therapeutic target gene for patients with PTX-resistant ovarian cancer. These findings provide a potential translational framework for developing novel therapeutic strategies to overcome paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Wanying Xia
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Bingkun Cai
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Lichun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Mingkun Shao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Zengchun Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| | - Huiyi Lu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People’s Republic of China
| |
Collapse
|
4
|
Liu Y, Chen S, Guo K, Ma S, Wang X, Liu Q, Yan R, Huang Y, Li T, He S, Hui J. Osteoblast-derived exosomal miR-140-3p targets ACER2 and increases the progression of prostate cancer via the AKT/mTOR pathway-mediated inhibition of autophagy. FASEB J 2024; 38:e70206. [PMID: 39625343 DOI: 10.1096/fj.202401480r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 04/09/2025]
Abstract
Advanced prostate cancer (aPCa) often results in bone metastases (BM). However, the mechanism underlying its progression and metastasis to bones remains unclear. Therefore, we examined whether exosomal miR-140-3p affects prostate cancer (PCa) progression. We obtained from cell lines, clinical data analyses, and animal models consistently provide important evidence. Patients with PCa having BM had higher miR-140-3p expression in their serum exosomes than those without BM. Clinical investigations have manifested that the exosomal miR-140-3p overexpression connects with serum prostate-specific antigen (PSA) levels and Gleason grade in patients with PCa. Osteoblast-derived exosomal miR-140-3p targeting ACER2 activates the AKT/mTOR pathway in vitro, inhibits autophagy, and promotes PCa cell proliferation, invasion, and migration. miR-140-3p significantly increased tumorigenesis and metastasis of LNCaP in vitro. Bone metastatic PCa tissues exhibited elevated levels of miR-140-3p, p-GSK3, p-mTOR, p62, p-AKT (S473), and p-AKT (T308) contrasted with non-BM tissues. Moreover, their expression was intensified in the metastatic bone tissues. However, ACER2 and LC3 II showed opposite expression patterns. Based on our study outcomes, the evidence suggests that osteoblast-derived miR-140-3p inhibition of autophagy through the AKT/mTOR pathway is involved in PCa progression. Osteoblast-secreted exosomal miR-140-3p activates the AKT/mTOR pathway by targeting ACER2, inhibiting autophagy, and promoting the progression of PCa cells in vitro. Moreover, miR-140-3p induces the progression and metastasis of PCa in vivo.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong, China
| | - Shisheng Chen
- Department of Urology, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Kuo Guo
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, China
| | - Siyuan Ma
- Medical Simulation Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qianping Liu
- Department of Oncology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong, China
| | - Rongxin Yan
- Department of Oncology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong, China
| | - Yuerong Huang
- Department of Oncology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, Guangdong, China
| | - Tian Li
- Tianjin Medical University, Tianjin, China
| | - Shuhua He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Hui
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
6
|
Zhang S, Cao G, Shen S, Wu Y, Tan X, Jiang X. CAF-derived miR-642a-3p supports migration, invasion, and EMT of hepatocellular carcinoma cells by targeting SERPINE1. PeerJ 2024; 12:e18428. [PMID: 39544420 PMCID: PMC11562775 DOI: 10.7717/peerj.18428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) and hepatocellular carcinoma (HCC) cells interact to promote HCC progression, but the underlying mechanisms remain unclear. Serpin family E member 1 (SERPINE1) has conflicting roles in HCC, and microRNAs (miRNAs) are known to regulate tumor progression through intercellular communication. Therefore, we investigated the potential involvement of miRNA/SERPINE1 axis in crosstalk between CAFs and HCC cells. Methods In this study, candidate miRNAs targeting SERPINE1 3' UTR were predicted using multiple miRNA databases. The miRNAs and SERPINE1 mRNA expression in Huh7 cells was assessed after co-culture with CAFs using RT-qPCR. Huh7 cell proliferation and invasion were detected after SERPINE1 siRNA. The functions of the CAF-derived miR-642a-3p/SERPINE1 axis in HCC cells were examined using CCK-8, wound healing, transwell assays, western blot, and dual-luciferase reporter assays. Moreover, a orthotopic xenograft model was used to investigate the contribution of miR-642a-3p knockdown in HCC. Results SERPINE1 mRNA expression decreased, while miR-642a-3p expression increased in Huh7 cells co-cultured with CAFs. SERPINE1 knockdown enhanced Huh7 cell proliferation and invasion as well as miR-642a-3p expression. miR-642a-3p overexpression promoted migration, invasion, and epithelial-mesenchymal transition (EMT) in Huh7 cells by targeting SERPINE1, while miR-642a-3p knockdown yielded the opposite effect. Rescue experiments confirmed that SERPINE1 knockdown attenuated the inhibitory effects of miR-642a-3p knockdown on migration, invasion, and EMT in Huh7 cells. Importantly, miR-642a-3p knockdown suppressed growth and EMT in orthotopic liver tumors. Conclusion CAF-derived miR-642a-3p/SERPINE1 axis facilitated migration, invasion, and EMT in the HCC cells, suggesting miR-642a-3p/SERPINE1 axis can be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Gang Cao
- Office of the Dean, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Shuijie Shen
- Department of Science and Education, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yu Wu
- Department of Science and Education, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Jiang
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
7
|
Zhong S, Li Y, Zhu X, Li Z, Jin C, Zhao Y. Knockdown of circ_0006225 overcomes resistance to cisplatin and suppresses growth in lung cancer by miR-1236-3p/ANKRD22 axis. J Biochem Mol Toxicol 2024; 38:e23830. [PMID: 39467212 DOI: 10.1002/jbt.23830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 10/30/2024]
Abstract
Cisplatin-based chemotherapy is the mainstay of therapeutic agents for lung cancer. Hence, we investigated the role and mechanism of circ_0006225 in tumorigenesis and cisplatin resistance in lung cancer. Levels of circ_0006225, microRNA (miR)-1236-3p and ankyrin repeat domain 22 (ANKRD22) were detected. Cell cisplatin (DDP) sensitivity and growth were determined by Cell Counting Kit-8, cell colony formation, 5-ethynyl-2'-deoxyuridine, and murine xenograft assays, respectively. A high level of circ_0006225 in lung cancer tissues and cells with cisplatin resistance was observed. Circ_0006225 deletion elevated cisplatin sensitivity and constrained proliferation in DDP-resistant lung cancer cells in vitro. Mechanistically, Circ_0006225 was confirmed to modulate ANKRD22 by sequestering miR-1236-3p. Furthermore, the suppressive effects of circ_0006225 downregulation on cisplatin resistance and proliferation in DDP-resistant lung cancer cells were reversed by miR-1236-3p inhibition or ANKRD22 overexpression. Besides that, circ_0006225 silencing also repressed cisplatin resistance and tumor growth in lung cancer in vivo. In conclusion, knockdown of circ_0006225 restrained the growth and reduced cisplatin resistance in lung cancer by the miR-1236-3p/ANKRD22 axis, suggesting a better effective therapeutic target for overcoming cisplatin resistance in lung cancer patients.
Collapse
Affiliation(s)
- Shengyi Zhong
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Yanxing Li
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Xiaofeng Zhu
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Zhenhua Li
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Chi Jin
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Yuming Zhao
- Department of Cardiothorcic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Guo F, Li H, Wang J, Wang J, Zhang J, Kong F, Zhang Z, Zong J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Manag Res 2024; 16:1491-1507. [PMID: 39450194 PMCID: PMC11499618 DOI: 10.2147/cmar.s477698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transformation (EMT), invasion, metastasis, metabolism, and drug resistance are the main factors affecting the development and treatment of tumors. MiRNAs play crucial roles in almost all major cellular biological processes. Studies have been carried out on miRNAs as biomarkers and therapeutic targets. Their dysregulation contributes to the progression and prognosis of HCC. This review aims to explore the molecular cascades and corresponding phenotypic changes caused by aberrant miRNA expression and their regulatory mechanisms, summarize and analyze novel biomarkers from somatic fluids (plasma/serum/urine), and highlight the latent capacity of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Fenfen Guo
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Hong Li
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jingjing Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jiangfeng Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jinling Zhang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Fanfang Kong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Zemin Zhang
- Departments of Infectious Disease, Qingdao Women and Children’s Hospital, Qingdao, People’s Republic of China
| | - Jinbao Zong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| |
Collapse
|
9
|
Zhang MM, Liang MJ, Zhang DM, Cai JN, Yang QJ, Zhao Y, Zhang JP, Li YL. The function and mechanism of LAPTM5 in diseases. Biomed Pharmacother 2024; 178:117237. [PMID: 39096616 DOI: 10.1016/j.biopha.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.
Collapse
Affiliation(s)
- Man-Man Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming-Jun Liang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dong-Mei Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jun-Nan Cai
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun Zhao
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian-Ping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang-Ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| |
Collapse
|
10
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wang M, Liao J, Wang J, Xu M, Cheng Y, Wei L, Huang A. HDAC2 promotes autophagy-associated HCC malignant progression by transcriptionally activating LAPTM4B. Cell Death Dis 2024; 15:593. [PMID: 39147759 PMCID: PMC11327261 DOI: 10.1038/s41419-024-06981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health challenge. The activation of autophagy plays an essential role in promoting the proliferation and survival of cancer cells. However, the upstream regulatory network and mechanisms governing autophagy in HCC remain unclear. This study demonstrated that histone deacetylase 2 (HDAC2) regulates autophagy in HCC. Its expression was elevated in HCC tissues, and high HDAC2 expression was strongly associated with poor prognosis in individuals with HCC. Integrated in vitro and in vivo investigations confirmed that HDAC2 promotes autophagy and autophagy-related malignant progression in HCC. Mechanistically, HDAC2 bound specifically to the lysosome-associated protein transmembrane 4-β (LAPTM4B) promoter at four distinct binding sites, enhancing its transcriptional activation and driving autophagy-related malignant progression in HCC. These findings establish LAPTM4B as a direct target gene of HDAC2. Furthermore, the selective inhibitor of HDAC2 effectively alleviated the malignant development of HCC. In addition, multivariate Cox regression analysis of 105 human HCC samples revealed that HDAC2 expression is an independent predictor of HCC prognosis. This study underscores the crucial role of the HDAC2-LAPTM4B axis in regulating autophagy in the malignant evolution of HCC and highlights the potential of targeting HDAC2 to prevent and halt the malignant progression of HCC.
Collapse
Affiliation(s)
- Meifeng Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jie Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Meifang Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
| |
Collapse
|
12
|
Xiao H, Fu J, Liu R, Yan L, Zhou Z, Yuan J. Gastric cancer cell-derived exosomal miR-541-5p induces M2 macrophage polarization through DUSP3/JAK2/STAT3 pathway. BMC Cancer 2024; 24:957. [PMID: 39103776 PMCID: PMC11302208 DOI: 10.1186/s12885-024-12672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Exosomal microRNAs have been identified as important mediators of communication between tumor cells and macrophages in the microenvironment. miR-541-5p was reported to be involved in hepatocellular carcinoma progression, but its role in gastric cancer (GC) and in GC cell-macrophage crosstalk is unknown. METHODS Cell proliferation, migration and invasion were respectively assessed by CCK-8 assay, scratch and Transwell assays. RT-qPCR was used to detect the level of miR-541-5p, macrophage markers and DUSP3. The percentage of CD11b+CD206+ cell population was analyzed by flow cytometry. Western blotting was employed to evaluate DUSP3-JAK2/STAT3 pathway proteins and exosome markers. The interaction between miR-541-5p and DUSP3 was verified by luciferase assay. RESULTS The results showed that miR-541-5p was upregulated in GC tissues and cells, and stimulated GC cell growth, migration and invasion in vitro. GC cells induce M2 macrophage polarization by secreting the exosomal miR-541-5p. Exosomal miR-541-5p maintained JAK2/STAT3 pathway activation in macrophages by targeting negative regulation of DUSP3. Inhibiting miR-541-5p significantly limited tumor growth in vivo. CONCLUSION In conclusion, miR-541-5p promotes GC cell progression. GC cells may induce macrophage M2 polarization through the exosomal miR-541-5p-mediated DUSP3/JAK2/STAT3 pathway. miR-541-5p may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Haimin Xiao
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jia Fu
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ruiting Liu
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Likun Yan
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Zheqi Zhou
- Department 1 of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jinyan Yuan
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Beilin District, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
13
|
Li S, Xu Y, Hu X, Chen H, Xi X, Long F, Rong Y, Wang J, Yuan C, Liang C, Wang F. Crosstalk of non-apoptotic RCD panel in hepatocellular carcinoma reveals the prognostic and therapeutic optimization. iScience 2024; 27:109901. [PMID: 38799554 PMCID: PMC11126946 DOI: 10.1016/j.isci.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Non-apoptotic regulated cell death (RCD) of tumor cells profoundly affects tumor progression and plays critical roles in determining response to immune checkpoint inhibitors (ICIs). Prognosis-distinctive HCC subtypes were identified by consensus cluster analysis based on the expressions of 507 non-apoptotic RCD genes obtained from databases and literature. Meanwhile, a set of bioinformatic tools was integrated to analyze the differences of the tumor immune microenvironment infiltration, genetic mutation, copy number variation, and epigenetics alternations within two subtypes. Finally, a non-apoptotic RCDRS signature was constructed and its reliability was evaluated in HCC patients' tissues. The high-RCDRS HCC subgroup showed a significantly lower overall survival and less sensitivity to ICIs compared to low-RCDRS subgroup, but higher sensitivity to cisplatin, paclitaxel, and sorafenib. Overall, we established an RCDRS panel consisting of four non-apoptotic RCD genes, which might be a promising predictor for evaluating HCC prognosis, guiding therapeutic decision-making, and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chunhui Yuan
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
14
|
Sun F, Chen H, Dai X, Hou Y, Li J, Zhang Y, Huang L, Guo B, Yang D. Liposome-lentivirus for miRNA therapy with molecular mechanism study. J Nanobiotechnology 2024; 22:329. [PMID: 38858736 PMCID: PMC11165871 DOI: 10.1186/s12951-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3β at ser 9 (p-GSK-3β S9) to inactivate GSK3β, and facilitate translocation of β-catenin into the nucleus to activate the Wnt/β-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3β/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.
Collapse
Affiliation(s)
- Fen Sun
- Institute of Animal Sciences and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyong Dai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Yibo Hou
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jing Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yinghe Zhang
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
15
|
Tian P, Wei J, Li J, Ren J, He C. An oncogenic role of lncRNA SNHG1 promotes ATG7 expression and autophagy involving tumor progression and sunitinib resistance of Renal Cell Carcinoma. Cell Death Discov 2024; 10:273. [PMID: 38851811 PMCID: PMC11162435 DOI: 10.1038/s41420-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with high incidence in adult kidney. Long non-coding RNAs (lncRNAs) have recently been recognized as important regulators in the development of RCC. However, whether lncRNA SNHG1 is associated with RCC progression remains to be elucidated. Here, the role of SNHG1 in RCC autophagy and sunitinib resistance was evaluated. Expression of SNHG1 in RCC tissues and cells was assessed using RT-qPCR. Western blot was utilized to measure the levels of autophagy-related molecules and ATG7. RNA pull-down and RIP assays were performed to confirm the molecular axis between SNHG1/PTBP1/ATG7. Cell proliferation, migration, invasion and apoptosis were analyzed by CCK-8, EdU, transwell and flow cytometry, respectively. The subcellular localization of SNHG1 was determined by an intracellular fractionation assay. The fluorescence intensity of GFP-LC3 autophagosome in RCC cells was detected. IHC staining was performed to test ATG7 expression in tumor tissues from nude mice. Here, a positive correlation of upregulated SNHG1 with poor prognosis of RCC patients was observed in RCC tissues and cells. SNHG1 knockdown suppressed tumor growth and reversed sunitinib resistance and autophagy of RCC cells. Additionally, SNHG1 was found to directly bind to PTBP1, thereby positively regulating ATG7 expression. Furthermore, we verified that SNHG1 mediated the malignant behavior of RCC cells through the PTBP1/ATG7 axis. To sum up, SNHG1 regulates RCC cell autophagy and sunitinib resistance through the PTBP1/ATG7 axis, which highlights a promising therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Pei Tian
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Jinxing Wei
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jing Li
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Junkai Ren
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Chaohong He
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China.
| |
Collapse
|
16
|
Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, Hu Z, Hu S, Liu Y, Fu Z. CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med 2024; 30:79. [PMID: 38844847 PMCID: PMC11157842 DOI: 10.1186/s10020-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Huanhuan He
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jianzhi Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jiucheng Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ying Niu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Shaobo Hu
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
17
|
Zhang X, Wang W, Mo S, Sun X. DEAD-Box Helicase 17 circRNA (circDDX17) Reduces Sorafenib Resistance and Tumorigenesis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:2096-2108. [PMID: 38653946 DOI: 10.1007/s10620-024-08401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver malignancy. Despite significant progress in HCC treatment, resistance to chemotherapy and tumor metastasis are the main reasons for the unsatisfactory prognosis of HCC. Circular RNAs (circRNAs) have been extensively documented to play a role in the development of various types of cancer. AIMS Here, we investigated the role of DEAD-box helicase 17 circRNA (circDDX17) in HCC and its underlying molecular mechanisms. METHODS Our research employed various techniques including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8), flow cytometry, dual luciferase reporter assay, RNA immunoprecipitation (RIP), and western blot analysis. Additionally, we conducted a tumor xenograft assay to investigate the in vivo function of circDDX17. RESULTS Firstly, the expression of circDDX17 was downregulated in HCC tissues and cells. Through functional experiments, it was observed that the overexpression of circDDX17 enhanced the sensitivity of sorafenib, promoted apoptosis, and inhibited the process of epithelial-mesenchymal transition (EMT) in vitro. Additionally, in vivo studies revealed that circDDX17 reduced tumor growth and increased sorafenib sensitivity. Mechanically, circDDX17 competitively combined miR-21-5p to suppress PTEN expression and activate the PI3K/AKT pathway. Furthermore, our rescue assays demonstrated that circDDX17 act as a tumor suppressor by blocking sorafenib resistance and tumorigenesis, while the inhibitory effect caused by circDDX17 upregulation was neutralized when miR-21-5p was overexpressed, PTEN was silenced, or the PI3K/AKT pathway was activated. CONCLUSION Our findings firstly confirmed that circDDX17 suppressed sorafenib resistance and HCC progression by regulating miR-21-5p/PTEN/PI3K/AKT pathway, which may provide novel biomarkers for the diagnosis, treatment and prognosis of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Humans
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm/genetics
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Animals
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/genetics
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Apoptosis/drug effects
- Male
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Signal Transduction
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaochuan Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenyu Wang
- Medical Insurance Office, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Mo
- Department of Pharmacy, Heilongjiang Sailors General Hospital, Harbin, China
| | - Xueying Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
18
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
19
|
Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:231-243. [PMID: 38650448 PMCID: PMC11057993 DOI: 10.3724/zdxbyxb-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
MiRNAs are a class of small non-coding RNAs, which regulate gene expression post-transcriptionally by partial complementary base pairing. Aberrant miRNA expressions have been reported in tumor tissues and peripheral blood of cancer patients. In recent years, artificial intelligence algorithms such as machine learning and deep learning have been widely used in bioinformatic research. Compared to traditional bioinformatic tools, miRNA target prediction tools based on artificial intelligence algorithms have higher accuracy, and can successfully predict subcellular localization and redistribution of miRNAs to deepen our understanding. Additionally, the construction of clinical models based on artificial intelligence algorithms could significantly improve the mining efficiency of miRNA used as biomarkers. In this article, we summarize recent development of bioinformatic miRNA tools based on artificial intelligence algorithms, focusing on the potential of machine learning and deep learning in cancer-related miRNA research.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
20
|
Wang W, Wang T, Lin H, Liu D, Yu P, Zhang J. Ropivacaine combined with sorafenib attenuates hepatocellular carcinoma cell proliferation and metastasis by inhibiting the miR-224/HOXD10 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2429-2438. [PMID: 38197552 DOI: 10.1002/tox.24111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE The development of drug resistance in hepatocellular carcinoma (HCC) cells limits the effectiveness of sorafenib (Sor). However, the regulatory mechanisms underlying the effects of the combination Sor and ropivacaine (Rop) on HCC cells remain unclear. METHODS miR-224 and HOXD10 mRNA expression in HCC cells was analyzed using qRT-PCR. CCK-8, Transwell assays and tumor formation experiments in nude mice were used to assess HCC cell proliferation, migration, and invasion. Migration of HCC cells was also analyzed using a cell scratch assay. Hematoxylin and eosin staining was used to detect tumor area. RESULTS miR-224 expression profoundly increased in HepG2 and Huh7 cells. Treatment with Rop and/or Sor blocked miR-244 expression, especially the combination treatment. Transfection of miR-224 mimic increased HCC cell proliferation and tumor size in nude mice, and migration and invasion in vitro in the presence of Rop and Sor compared to the negative control mimic. Dual-luciferase reporter assays showed that HOXD10 was targeted by miR-224. HOXD10 protein expression and was markedly reduced in HepG2 and Huh7 cells. Rop and/or Sor treatment increased HOXD10 protein expression, particularly the combination treatment. miR-224 negatively regulated HOXD10 expression in HCC cells treated with Rop and Sor. Transfection-mediated silencing of HOXD10 increased HCC cell proliferation, migration, and invasion in the presence of Rop and Sor compared with negative control transfection. CONCLUSION The combination of Rop and Sor attenuates HCC cell proliferation and metastasis via the miR-224/HOXD10 axis.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Tao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hongyun Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Desheng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Xu J, Chen F, Zhu W, Zhang W. NPC1 promotes autophagy with tumor promotion and acts as a prognostic model for hepatocellular carcinoma. Gene 2024; 897:148050. [PMID: 38042211 DOI: 10.1016/j.gene.2023.148050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND more and more studies have indicated that autophagy plays a crucial role in hepatocellular carcinoma (HCC) in recent years. Hence, our study aimed to establish a prognostic signature for HCC based on autophagy-related genes (ARGs) in order to predict the prognosis of HCC. METHODS All original gene-expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). ARGs were obtained from the Human Autophagy Database (HADb). Univariate Cox regression analysis, Least absolute shrinkage and selection operator (LASSO) and Principal Component Analysis (PCA) analysis were performed to identify and validate the validity and reliability of our eight-gene signature, Gene Set Enrichment Analysis (GSEA) was used to perform enrichment analysis by comparing high-risk and low-risk groups in KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) gene sets. Finally, we verified the gene (NPC1) by functional experiments in vitro and in vivo. RESULTS 8 ARGs were identified for establishing an eight-gene signature. Then, we validated our eight-gene signature in training, internal, external, and entire testing cohorts. Besides, we also explored the relationships between the eight-gene signature and immune infiltration or immune checkpoints. We also identified NPC1 was closely related to Activated CD4 T cell and Type I IFN Response, and higher expressed level of HCC patients was more sensitive to CTLA4 and TNFRSF9 immune checkpoint inhibitors. NPC1 is highly expressed in HCC cells and tumor tissues, which promotes the proliferation, migration, and invasion of tumor cells by activating autophagy.. CONCLUSION 8 ARGs were used to establish a gene signature to predict the prognosis of HCC. we inferred that NPC1 can promote late autophagy, it could be a future novel therapeutic target of HCC.
Collapse
Affiliation(s)
- Jian Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Fei Chen
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Wenjie Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
22
|
Liu JP, Song SH, Shi PM, Qin XY, Zheng BN, Liu SQ, Ding CH, Zhang X, Xie WF, Shi YH, Xu WP. miR-541 is associated with the prognosis of liver cirrhosis and directly targets JAG2 to inhibit the activation of hepatic stellate cells. BMC Gastroenterol 2024; 24:84. [PMID: 38395762 PMCID: PMC10893617 DOI: 10.1186/s12876-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) has been emphasized as a leading event of the pathogenesis of liver cirrhosis, while the exact mechanism of its activation is largely unknown. Furthermore, the novel non-invasive predictors of prognosis in cirrhotic patients warrant more exploration. miR-541 has been identified as a tumor suppressor in hepatocellular carcinoma and a regulator of fibrotic disease, such as lung fibrosis and renal fibrosis. However, its role in liver cirrhosis has not been reported. METHODS Real-time PCR was used to detect miR-541 expression in the liver tissues and sera of liver cirrhosis patients and in the human LX-2. Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the activation of LX-2. Bioinformatics analysis and a luciferase reporter assay were conducted to investigate the target gene of miR-541. RESULTS miR-541 was downregulated in the tissues and sera of patients with liver cirrhosis, which was exacerbated by deteriorating disease severity. Importantly, the lower expression of miR-541 was associated with more episodes of complications including ascites and hepatic encephalopathy, a shorter overall lifespan, and decompensation-free survival. Moreover, multivariate Cox's regression analysis verified lower serum miR-541 as an independent risk factor for liver-related death in cirrhotic patients (HR = 0.394; 95% CI: 0.164-0.947; P = 0.037). miR-541 was also decreased in LX-2 cells activated by TGF-β and the overexpression of miR-541 inhibited the proliferation, activation and hydroxyproline secretion of LX-2 cells. JAG2 is an important ligand of Notch signaling and was identified as a direct target gene of miR-541. The expression of JAG2 was upregulated in the liver tissues of cirrhotic patients and was inversely correlated with miR-541 levels. A rescue assay further confirmed that JAG2 was involved in the function of miR-541 when regulating LX-2 activation and Notch signaling. CONCLUSIONS Dysregulation of miR-541/JAG2 axis might be a as a new mechanism of liver fibrosis, and miR-541 could serve as a novel non-invasive biomarker and therapeutic targets for liver cirrhosis.
Collapse
Affiliation(s)
- Jin-Pei Liu
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Road, 200135, Shanghai, China
| | - Shao-Hua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Pei-Mei Shi
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Xiao-Yu Qin
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Road, 200135, Shanghai, China
| | - Bai-Nan Zheng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China.
| | - Yi-Hai Shi
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Road, 200135, Shanghai, China.
| | - Wen-Ping Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China.
| |
Collapse
|
23
|
Vianello C, Monti E, Leoni I, Galvani G, Giovannini C, Piscaglia F, Stefanelli C, Gramantieri L, Fornari F. Noncoding RNAs in Hepatocellular Carcinoma: Potential Applications in Combined Therapeutic Strategies and Promising Candidates of Treatment Response. Cancers (Basel) 2024; 16:766. [PMID: 38398157 PMCID: PMC10886468 DOI: 10.3390/cancers16040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing, and 40% of patients are diagnosed at advanced stages. Over the past 5 years, the number of clinically available treatments has dramatically increased for HCC, making patient management particularly complex. Immune checkpoint inhibitors (ICIs) have improved the overall survival of patients, showing a durable treatment benefit over time and a different response pattern with respect to tyrosine kinase inhibitors (TKIs). Although there is improved survival in responder cases, a sizeable group of patients are primary progressors or are ineligible for immunotherapy. Indeed, patients with nonviral etiologies, such as nonalcoholic steatohepatitis (NASH), and alterations in specific driver genes might be less responsive to immunotherapy. Therefore, improving the comprehension of mechanisms of drug resistance and identifying biomarkers that are informative of the best treatment approach are required actions to improve patient survival. Abundant evidence indicates that noncoding RNAs (ncRNAs) are pivotal players in cancer. Molecular mechanisms through which ncRNAs exert their effects in cancer progression and drug resistance have been widely investigated. Nevertheless, there are no studies summarizing the synergistic effect between ncRNA-based strategies and TKIs or ICIs in the preclinical setting. This review aims to provide up-to-date information regarding the possible use of ncRNAs as therapeutic targets in association with molecular-targeted agents and immunotherapies and as predictive tools for the selection of optimized treatment options in advanced HCCs.
Collapse
Affiliation(s)
- Clara Vianello
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisa Monti
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Ilaria Leoni
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Giuseppe Galvani
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Fornari
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| |
Collapse
|
24
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
25
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
26
|
Shen X, Wu S, Yang Z, Zhu C. Establishment of an endoplasmic reticulum stress-associated lncRNAs model to predict prognosis and immunological characteristics in hepatocellular carcinoma. PLoS One 2023; 18:e0287724. [PMID: 37647290 PMCID: PMC10468045 DOI: 10.1371/journal.pone.0287724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/01/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) pathways play an essential role in the pathophysiology of hepatocellular carcinoma (HCC), and activation of the UPR pathway is strongly associated with tumor growth. However, the function of ERS-associated long non-coding RNAs (lncRNAs) in HCC is less recognized. METHODS We have used TCGA (The Cancer Genome Atlas) to obtain clinical and transcriptome data for HCC patients and the GSEA (Gene Set Enrichment Analysis) molecular signature database to get the ERS gene. ERS-associated prognostic lncRNA was determined using univariate Cox regression study. Then, least absolute shrinkage and selection operator and multivariate Cox regression study were used to construct ERS-associated lncRNAs risk model. Next, we use Kaplan-Meier (KM) survival study, time-dependent receiver operating characteristic (ROC) curve, univariate and multivariate Cox regression study to validate and evaluate the risk model. GSEA reveals the underlying molecular mechanism of the risk model. In addition, differences in Immune cell Infiltration Study, half-maximal inhibitory concentration (IC50) and immune checkpoints blockade (ICB) treatment between high and low risk groups were analyzed. RESULTS We constructed a risk model consisting of 6 ERS-associated lncRNAS (containingMKLN1-AS, LINC01224, AL590705.3, AC008622.2, AC145207.5, and AC026412.3). The KM survival study showed that the prognosis of HCC patients in low-risk group was better than that in high-risk group. ROC study, univariate and multivariate Cox regression study showed that the risk model had good predictive power for HCC patients. Our verification sample verified the aforesaid findings. GSEA suggests that several tumor- and metabolism-related signaling pathways are associated with risk groups. Simultaneously, we discovered that the risk models may help in the treatment of ICB and the selection of chemotherapeutic drugs. CONCLUSIONS In this article, we created an ERS-associated lncRNAs risk model to help prognostic diagnosis and personalized therapy in HCC.
Collapse
Affiliation(s)
- Xingyuan Shen
- School of Graduate, Dalian Medical University, Dalian, Liaoning, China
| | - Siyuan Wu
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhen Yang
- School of Graduate, Dalian Medical University, Dalian, Liaoning, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
27
|
Chen W, Ruan M, Zou M, Liu F, Liu H. Clinical Significance of Non-Coding RNA Regulation of Programmed Cell Death in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4187. [PMID: 37627215 PMCID: PMC10452865 DOI: 10.3390/cancers15164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a widely prevalent and malignantly progressive tumor. Most patients are typically diagnosed with HCC at an advanced stage, posing significant challenges in the execution of curative surgical interventions. Non-coding RNAs (ncRNAs) represent a distinct category of RNA molecules not directly involved in protein synthesis. However, they possess the remarkable ability to regulate gene expression, thereby exerting significant regulatory control over cellular processes. Notably, ncRNAs have been implicated in the modulation of programmed cell death (PCD), a crucial mechanism that various therapeutic agents target in the fight against HCC. This review summarizes the clinical significance of ncRNA regulation of PCD in HCC, including patient diagnosis, prognosis, drug resistance, and side effects. The aim of this study is to provide new insights and directions for the diagnosis and drug treatment strategies of HCC.
Collapse
Affiliation(s)
| | | | | | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| |
Collapse
|
28
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
29
|
Chu F, Wu P, Mu M, Hu S, Niu C. MGCG regulates glioblastoma tumorigenicity via hnRNPK/ATG2A and promotes autophagy. Cell Death Dis 2023; 14:443. [PMID: 37460467 DOI: 10.1038/s41419-023-05959-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer in adults and has constantly been a focus of research. Long noncoding RNAs (lncRNAs) play important roles in the development of cancers. To illustrate the role of lncRNAs in the development of glioblastoma, high-throughput RNA sequencing was performed to obtain the transcripts using three freshly isolated tumor tissue samples from GBM patients and three normal brain tissue samples from the traumatic brain of patients. Then, a lncRNA, MGCG (MGC70870 is expressed at a high level in glioblastoma), which has not been reported previously in GBM, was found to be associated with the prognosis of patients. The results of bioinformatic analysis showed that MGCG was correlated with autophagy and positively correlated with the expression of the autophagy-related gene ATG2A. The data of mass spectrometry demonstrated that the hnRNPK protein was a direct target interacting with MGCG, and MGCG/hnRNPK promoted the development of GBM by enhancing the translation of ATG2A and autophagy. In conclusion, the present study showed that MGCG has the potential to promote the development of GBM and may become a candidate for molecular diagnostics and treatment of tumors.
Collapse
Affiliation(s)
- Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
30
|
Zhang Y, Wu K, Liu Y, Sun S, Shao Y, Li Q, Sui X, Duan C. UHRF2 promotes the malignancy of hepatocellular carcinoma by PARP1 mediated autophagy. Cell Signal 2023:110782. [PMID: 37356603 DOI: 10.1016/j.cellsig.2023.110782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Autophagy have critical implications in the proliferation and metastasis of HCC. In the current study, we aimed to explore the underlying mechanisms of UHRF2 regulates HCC cell autophagy and HCC progression. We initially determined the relationship between UHRF2 and HCC autophagy, oncogenicity and patient survival through GSEA database and TCGA database. We mainly investigated the effect of UHRF2 on HCC development and autophagy through western blot, electron microscopy, and immunofluorescence. Functionally, UHRF2 was positively involved in the autophagy activation. Overexpression of UHRF2 reduced apoptosis in HCC cells, and promote the malignancy phenotype of HCC both in vitro and in vivo. Mechanistically, PRDX1 bound to UHRF2 and upregulated its protein expression to facilitate the biological function of UHRF2 in HCC. Meanwhile, UHRF2 bound to autophagy-related protein PARP1 and upregulated PARP1 protein level. The results showed that UHRF2 promoted autophagy and contributed to the malignant phenotype of hepatocellular carcinoma by regulating PARP1 levels. In summary, a novel interaction between PRDX1, UHRF2, and PARP1 was revealed, suggesting that UHRF2 could inspire a potential biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Kejia Wu
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Yuxin Liu
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Shuangling Sun
- Department of Biochemistry, Chongqing Medical and Pharmaceutical College, Chongqing 400016, China
| | - Yue Shao
- Department of Thoracic surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qingxiu Li
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Xinying Sui
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Li J, Bao H, Huang Z, Liang Z, Wang M, Lin N, Ni C, Xu Y. Little things with significant impact: miRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1191070. [PMID: 37274242 PMCID: PMC10235484 DOI: 10.3389/fonc.2023.1191070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has developed into one of the most lethal, aggressive, and malignant cancers worldwide. Although HCC treatment has improved in recent years, the incidence and lethality of HCC continue to increase yearly. Therefore, an in-depth study of the pathogenesis of HCC and the search for more reliable therapeutic targets are crucial to improving the survival quality of HCC patients. Currently, miRNAs have become one of the hotspots in life science research, which are widely present in living organisms and are non-coding RNAs involved in regulating gene expression. MiRNAs exert their biological roles by suppressing the expression of downstream genes and are engaged in various HCC-related processes, including proliferation, apoptosis, invasion, and metastasis. In addition, the expression status of miRNAs is related to the drug resistance mechanism of HCC, which has important implications for the systemic treatment of HCC. This paper reviews the regulatory role of miRNAs in the pathogenesis of HCC and the clinical applications of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ning Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Chunjie Ni
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Ma C, Xu Q, Huang S, Song J, Sun M, Zhang J, Chu G, Zhang B, Bai Y, Zhao X, Wang Z, Li P. The HIF-1α/miR-26a-5p/PFKFB3/ULK1/2 axis regulates vascular remodeling in hypoxia-induced pulmonary hypertension by modulation of autophagy. FASEB J 2023; 37:e22906. [PMID: 37052859 DOI: 10.1096/fj.202200699rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/29/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease characterized by pulmonary vascular remodeling, which may cause right heart failure and even death. Accumulated evidence confirmed that microRNA-26 family play critical roles in cardiovascular disease; however, their function in PAH remains largely unknown. Here, we investigated the expression of miR-26 family in plasma from PAH patients using quantitative RT-PCR, and identified miR-26a-5p as the most downregulated member, which was also decreased in hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) autophagy models and lung tissues of PAH patients. Furthermore, chromatin immunoprecipitation (ChIP) analysis and luciferase reporter assays revealed that hypoxia-inducible factor 1α (HIF-1α) specifically interacted with the promoter of miR-26a-5p and inhibited its expression in PASMCs. Tandem mRFP-GFP-LC3B fluorescence microscopy demonstrated that miR-26a-5p inhibited hypoxia-induced PAMSC autophagy, characterized by reduced formation of autophagosomes and autolysosomes. In addition, results showed that miR-26a-5p overexpression potently inhibited PASMC proliferation and migration, as determined by cell counting kit-8, EdU staining, wound-healing, and transwell assays. Mechanistically, PFKFB3, ULK1, and ULK2 were direct targets of miR-26a-5p, as determined by dual-luciferase reporter gene assays and western blots. Meanwhile, PFKFB3 could further enhance the phosphorylation level of ULK1 and promote autophagy in PASMCs. Moreover, intratracheal administration of adeno-miR-26a-5p markedly alleviated right ventricular hypertrophy and pulmonary vascular remodeling in hypoxia-induced PAH rat models in vivo. Taken together, the HIF-1α/miR-26a-5p/PFKFB3/ULK1/2 axis plays critical roles in the regulation of hypoxia-induced PASMC autophagy and proliferation. MiR-26a-5p may represent as an attractive biomarker for the diagnosis and treatment of PAH.
Collapse
Affiliation(s)
- Chaoqun Ma
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Qiang Xu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Navy 905 Hospital, Naval Medical University, Shanghai, China
| | - Songqun Huang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Minglei Sun
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jingyu Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bili Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Bai
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhongkai Wang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pan Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
33
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
34
|
Xu C, Sun W, Liu J, Pu H, Li Y. Circ_RBM23 knockdown suppresses chemoresistance, proliferation, migration and invasion of sorafenib-resistant HCC cells through miR-338-3p/RAB1B axis. Pathol Res Pract 2023; 245:154435. [PMID: 37075641 DOI: 10.1016/j.prp.2023.154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 04/01/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Circular RNA RNA-binding motif protein 23 (circ_RBM23; ID: hsa_circ_0000524) is a novel regulator in hepatocellular carcinoma (HCC). Herein, we planned to investigate its role in sorafenib resistance in HCC. METHOD Levels of circ_RBM23, microRNA (miR)-338-3p, Ras-related GTPase-trafficking protein (RAB1B), Snail and E-cadherin were detected by real-time quantitative PCR and western blotting. Sorafenib resistant (SR) HCC cells (Huh7/SR and SK-HEP-1/SR) were established by acquisition of sorafenib resistance, and cell functions were measured by MTT assay, Edu assay, colony formation assay, apoptosis assay, transwell assay, and in vivo xenograft formation assay. Crosslink between miR-338-3p and circ_RBM23 or RAB1B was confirmed by bioinformatics analysis and dual-luciferase reporter assay. RESULTS Circ_RBM23 upregulation was discovered in the tissues of SR patients and SR cells, which was accompanied with miR-338-3p downregulation and RAB1B upregulation. The 50% inhibitory concentration (IC50) of sorafenib in SR cells was greatly suppressed by interfering circ_RBM23 or reinforcing miR-338-3p, allied with this was the inhibition of EdU-positive cell rate, colony formation and migration/invasion abilities under sorafenib treatment, as well as the enhancement of apoptotic rate. Moreover, circ_RBM23 inhibition delayed tumor growth of Huh7/SR cells under sorfanib treatment in vivo. CONCLUSION Circ_RBM23 promoted chemoresistance, malignant proliferation, migration and invasion of SR HCC cells by modulating miR-338-3p/RAB1B axis.
Collapse
Affiliation(s)
- Chunlin Xu
- Department of Infection Disease (No.3), Second Affiliated Hospital of Harbin Medical University, China
| | - Weiwei Sun
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Jinglei Liu
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Haihong Pu
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Yinghong Li
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China.
| |
Collapse
|
35
|
Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S, Lin Y, Wang X, Ding Z, Qiu S, Gao D, Zhou J, Fan J, Gao Q. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy 2023; 19:1184-1198. [PMID: 36037300 PMCID: PMC10012959 DOI: 10.1080/15548627.2022.2117893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATIONS cld-CASP3: cleaved caspase 3; cld-PARP: cleaved PARP; DTP: drug tolerant persister; GO: Gene Ontology; GTEx: The Genotype-Tissue Expression; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; IC50: half maximal inhibitory concentration value; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAPTM5: lysosomal protein transmembrane 5; NT: non-targeting; PDC: patient-derived primary cell lines; PDO: patient-derived primary organoid; TCGA: The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Jiaomeng Pan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shuyi Ji
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Juan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
37
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
39
|
Li L, Xun C, Yu CH. Role of microRNA-regulated cancer stem cells in recurrent hepatocellular carcinoma. World J Hepatol 2022; 14:1985-1996. [PMID: 36618329 PMCID: PMC9813843 DOI: 10.4254/wjh.v14.i12.1985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Among the most common cancers, hepatocellular carcinoma (HCC) has a high rate of tumor recurrence, tumor dormancy, and drug resistance after initial successful chemotherapy or radiotherapy. A small subset of cancer cells, cancer stem cells (CSCs), exhibit stem cell characteristics and are present in various cancers, including HCC. The dysregulation of microRNAs (miRNAs) often accompanies the occurrence and development of HCC. miRNAs can influence tumorigenesis, progression, recurrence, and drug resistance by regulating CSCs properties, which supports their clinical utility in managing and treating HCC. This review summarizes the regulatory effects of miRNAs on CSCs in HCC with a special focus on their impact on HCC recurrence.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Chen Xun
- Department of Hepatobiliary Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Chun-Hong Yu
- School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
40
|
Wang G, Luo G, Zhao M, Miao H. Significance of exosomes in hepatocellular carcinoma. Front Oncol 2022; 12:1056379. [PMID: 36531059 PMCID: PMC9748478 DOI: 10.3389/fonc.2022.1056379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Among the most prevalent cancers in the world, hepatocellular carcinoma (HCC) has a high mortality rate. The diagnosis and management of HCC are presently hindered by difficulties in early detection and suboptimal treatment outcomes. Exosomes have been shown to play an important role in hepatocarcinogenesis and can also be used for diagnosis and treatment. In this review, we discussed the research progress on exosomes in hepatocarcinogenesis development, tumor microenvironment remodeling, treatment resistance, and immunosuppression. HCC can be diagnosed and treated by understanding the pathogenesis and identifying early diagnostic markers. This review will be a significant reference for scholars with an initial understanding of the field to fully understand the role of exosomes in the organism.
Collapse
Affiliation(s)
- GuoYun Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - GaiXiang Luo
- The First Clinical Medical College of Lanzhou University, Gansu Provincial People’s Hospital, Lanzhou, China
| | - MeiJing Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - HuiLai Miao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Wei Y, Wei L, Han T, Ding S. miR-3154 promotes hepatocellular carcinoma progression via suppressing HNF4α. Carcinogenesis 2022; 43:1002-1014. [PMID: 35917569 DOI: 10.1093/carcin/bgac067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/02/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in cancer proliferation, metastasis, drug resistance and apoptosis by targeting oncogenes or tumor suppressor genes. miR-3154 has been reported to be up-regulated in cervical cancer and leukemia, but its role in hepatocellular carcinoma (HCC) remains unclear. Here, we for the first time demonstrated that miR-3154 was elevated in HCC and liver cancer stem cells (CSCs). Up-regulated miR-3154 was associated with overall survival and disease-free survival of HCC patients. MiR-3154 knockdown inhibits HCC cells self-renewal, proliferation, metastasis, and tumorigenesis. Mechanistically, miR-3154 target directly to HNF4α. MiR-3154 knockdown upregulated HNF4α mRNA and protein expression. HNF4α interference abolish the differences of self-renewal, proliferation, metastasis, and tumorigenesis between miR-3154 knockdown cells and control hepatoma cells. Furthermore, miR-3154 expression was negatively correlated with HNF4α in HCC tissues. The combined HHC panels exhibited a better disease-free survival prognostic value for HCC patients than any of these components alone. More importantly, miR-3154 determines the responses of hepatoma cells to lenvatinib treatment. Analysis of patient cohort and patient-derived xenografts (PDXs) further suggest that miR-3154 might predict lenvatinib clinical benefit in HCC patients. In conclusion, we reveal the crucial role of miR-3514 in HCC progression and lenvatinib response, suggesting potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Lai Wei
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Tao Han
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Shuang Ding
- Department of Rheumatology & Immunology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
42
|
MiR-371a-5p Positively Associates with Hepatocellular Carcinoma Malignancy but Sensitizes Cancer Cells to Oxaliplatin by Suppressing BECN1-Dependent Autophagy. Life (Basel) 2022; 12:life12101651. [DOI: 10.3390/life12101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 01/27/2023] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy demonstrates active efficacy in advanced hepatocellular carcinoma (HCC), while resistance development limits its clinical efficacy. Thus, identifying resistance-related molecules and underlying mechanisms contributes to improving the therapeutic efficacy of HCC patients. MicroRNA-371a-5p (MiR-371a-5p) fulfills an important function in tumor progression. However, little is known about the effect of miR-371a-5p on chemotherapy response. In this study, quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were used to determine the expression levels of miR-371a-5p, BECN1 and autophagy-related proteins in HCC cells, tissues and serum. The luciferase reporter assay was used to assess the directly suppressive effect of miR-371a-5p on BECN1 mRNA translation. Moreover, gain- and loss-of-function assays and rescue assays were used to evaluate the mediated effect of BECN1-dependent autophagy on the role of miR-371a-5p in the response of HCC cells to OXA. We found that miR-371a-5p was significantly up-regulated in HCC tissues and serum from patients, whereas BECN1 protein was down-regulated in HCC tissues compared to the corresponding controls. We also found that there was a negative correlation between the two molecules in HCC tissues. In addition, we found that miR-371a-5p expression was positively associated with malignant characteristics of HCC and BECN1 protein expression is negatively associated. Contrary to this, we found that miR-371a-5p enhances and BECN1 attenuates the response of HCC cells to OXA. Importantly, the enhanced effect of miR-371a-5p on the response of HCC cells to OXA could be reduced by re-expression of non-targetable BECN1, and then the reduced effect was restored following bafilomycin A treatment. Taken together, we identified a dual role of miR-371a-5p in HCC malignant characteristics and the response of HCC cells to oxaliplatin. Importantly, we reveal that miR-371a-5p enhances oxaliplatin response by target suppression of BECN1-dependent autophagy.
Collapse
|
43
|
Wang T, Zhou Z, Wang X, You L, Li W, Zheng C, Zhang J, Wang L, Kong X, Gao Y, Sun X. Comprehensive analysis of nine m7G-related lncRNAs as prognosis factors in tumor immune microenvironment of hepatocellular carcinoma and experimental validation. Front Genet 2022; 13:929035. [PMID: 36081998 PMCID: PMC9445240 DOI: 10.3389/fgene.2022.929035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) remains the most prevalent gastrointestinal malignancy worldwide, with robust drug resistance to therapy. N7-methylguanosine (m7G) mRNA modification has been significantly related to massive human diseases. Considering the effect of m7G-modified long non-coding RNAs (lncRNAs) in HCC progression is unknown, the study aims at investigating a prognostic signature to improve clinical outcomes for patients with HCC.Methods: Two independent databases (TCGA and ICGC) were used to analyze RNAseq data of HCC patients. First, co-expression analysis was applied to obtain the m7G-related lncRNAs. Moreover, consensus clustering analysis was employed to divide HCC patients into clusters. Then, using least absolute shrinkage and selection operator-Cox regression analysis, the m7G-related lncRNA prognostic signature (m7G-LPS) was first tested in the training set and then confirmed in both the testing and ICGC sets. The expression levels of the nine lncRNAs were further confirmed via real-time PCR in cell lines, principal component analysis, and receiver operating characteristic curve. The m7G-LPS could divide HCC patients into two different risk groups with the optimal risk score. Then, Kaplan–Meier curves, tumor mutation burden (TMB), therapeutic effects of chemotherapy agents, and expressions of immune checkpoints were performed to further enhance the availability of immunotherapeutic treatments for HCC patients.Results: A total of 1465 lncRNAs associated with the m7G genes were finally selected from the TCGA database, and through the univariate Cox regression, the expression levels of 22 m7G-related lncRNAs were concerning HCC patients’ overall survival (OS). Then, the whole patients were grouped into two subgroups, and the OS in Cluster 1 was longer than that of patients in Cluster 2. Furthermore, nine prognostic m7G-related lncRNAs were identified to conduct the m7G-LPS, which were further verified. A prognostic nomogram combined age, gender, HCC grade, stage, and m7G-LPS showed strong reliability and accuracy in predicting OS in HCC patients. Finally, immune checkpoint expression, TMB, and several chemotherapy agents were remarkably associated with risk scores. More importantly, the OS of the TMB-high patients was the worst among the four groups.Conclusion: The prognostic model we established was validated by abundant algorithms, which provided a new perspective on HCC tumorigenesis and thus improved individualized treatments for patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Wang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxuan Li
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
44
|
Ning YM, Lin K, Liu XP, Ding Y, Jiang X, Zhang Z, Xuan YT, Dong L, Liu L, Wang F, Zhao Q, Wang HZ, Fang J. NAPSB as a predictive marker for prognosis and therapy associated with an immuno-hot tumor microenvironment in hepatocellular carcinoma. BMC Gastroenterol 2022; 22:392. [PMID: 35987606 PMCID: PMC9392949 DOI: 10.1186/s12876-022-02475-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Napsin B Aspartic Peptidase, Pseudogene (NAPSB) was associated with CD4 + T cell infiltration in pancreatic ductal adenocarcinoma. However, the biological role of NAPSB in hepatocellular carcinoma (HCC) remains to be determined. Methods The expression of NAPSB in HCC as well as its clinicopathological association were analyzed using data from several public datasets. qRT-PCR was used to verify the relative expression of NAPSB in patients with HCC using the Zhongnan cohort. Kaplan–Meier analyses, and univariate and multivariate Cox regression were conducted to determine the prognosis value of NAPSB on patients with HCC. Then enrichment analyses were performed to identify the possible biological functions of NAPSB. Subsequently, the immunological characteristics of NAPSB in the HCC tumor microenvironment (TME) were demonstrated comprehensively. The role of NAPSB in predicting hot tumors and its impact on immunotherapy and chemotherapy responses was also analyzed by bioinformatics methods. Results NAPSB was downregulated in patients with HCC and high NAPSB expression showed an improved survival outcome. Enrichment analyses showed that NAPSB was related to immune activation. NAPSB was positively correlated with immunomodulators, tumor-infiltrating immune cells, T cell inflamed score and cancer-immunity cycle, and highly expressed in immuno-hot tumors. High expression of NAPSB was sensitive to immunotherapy and chemotherapy, possibly due to its association with pyroptosis, apoptosis and necrosis. Conclusions NAPSB was correlated with an immuno-hot and inflamed TME, and tumor cell death. It can be utilized as a promising predictive marker for prognosis and therapy in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02475-8.
Collapse
|
45
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
46
|
Zhao L, Lan Z, Peng L, Wan L, Liu D, Tan X, Tang C, Chen G, Liu H. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif 2022; 55:e13278. [PMID: 35733381 PMCID: PMC9436901 DOI: 10.1111/cpr.13278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mesangial cell proliferation is the most basic pathological feature of immunoglobulin A nephropathy (IgAN); however, the specific underlying mechanism and an appropriate therapeutic strategy are yet to be unearthed. This study aimed to investigate the therapeutic effect of triptolide (TP) on IgAN and the mechanism by which TP regulates autophagy and proliferation of mesangial cells through the CARD9/p38 MAPK pathway. Methods We established a TP‐treated IgAN mouse model and produced IgA1‐induced human mesangial cells (HMC) and divided them into control, TP, IgAN, and IgAN+TP groups. The levels of mesangial cell proliferation (PCNA, cyclin D1, cell viability, and cell cycle) and autophagy (P62, LC3 II, and autophagy flux rate) were measured, with the autophagy inhibitor 3‐Methyladenine used to explore the relationship between autophagy and proliferation. We observed CARD9 expression in renal biopsies from patients and analyzed its clinical significance. CARD9 siRNA and overexpression plasmids were constructed to investigate the changes in mesangial cell proliferation and autophagy as well as the expression of CARD9 and p‐p38 MAPK/p38 MAPK following TP treatment. Results Administering TP was safe and effectively alleviated mesangial cell proliferation in IgAN mice. Moreover, TP inhibited IgA1‐induced HMC proliferation by promoting autophagy. The high expression of CARD9 in IgAN patients was positively correlated with the severity of HMC proliferation. CARD9/p38 MAPK was involved in the regulation of HMC autophagy and proliferation, and TP promoted autophagy to inhibit HMC proliferation by downregulating the CARD9/p38 MAPK pathway in IgAN. Conclusion TP promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xia Tan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
47
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
48
|
Xu H, Li B. MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:12876-12887. [PMID: 35609318 PMCID: PMC9275912 DOI: 10.1080/21655979.2022.2078026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of death worldwide. MicroRNA (miRNA)-mediated gene silencing is involved in tumor biology. In this study, we aimed to elucidate the function and mechanism of action of miR-582-3p in HCC. We performed reverse transcription-quantitative polymerase chain reaction and western blotting to detect the expression levels of miR-582-3p, ribonucleotide reductase regulatory subunit M2 (RRM2), and markers of the Wnt/β-catenin signaling pathway (Wnt, Gsk-3β, β-catenin, and C-myc). The potential binding between miR-582-3p and RRM2 was confirmed using a dual-luciferase reporter assay. The proliferative and migratory capacities of the cells were evaluated using the cell counting kit-8 and wound-healing assays, respectively. Mouse models were used to validate the role of miR-582-3p in vivo. We observed the downregulation of miR-582-3p levels in HCC tumors and cell lines. Its upregulation in Huh7 and Hep 3B cells impaired their proliferation and migration, and the in vivo results showed suppressed tumor growth. Additionally, miR-582-3p upregulation also reduced the expression levels of Wnt, β-catenin, and C-myc, but enhanced the expression levels of glycogen synthase kinase-3β, both in vitro and in vivo. miR-582-3p targeted RRM2, and a negative correlation was observed in its expression patterns in HCC. Furthermore, RRM2 overexpression aggravated the proliferative and migratory capabilities of Hep3B and Huh7 cells and triggered Wnt/β-catenin signaling. However, miR-582-3p depleted RRM2 expression, thereby attenuating the oncogenic effects of RRM2. In conclusion, our results demonstrated that miR-582-3p binds to RRM2 to regulate the Wnt/β-catenin signaling pathway, thereby blocking the progression of HCC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Bin Li
- Department of Emergency, Huangshi Central Hospital, Huangshi, Hubei, China
| |
Collapse
|
49
|
Ke W, Zhang L, Zhao X, Lu Z. p53 m 6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis. Apoptosis 2022; 27:426-440. [PMID: 35503144 DOI: 10.1007/s10495-022-01728-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 11/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is insidious and prone to metastasis and recurrence. Currently, no effective treatment is available for HCC. Furthermore, HCC does not respond to various radio- and chemotherapies, and the molecular mechanism of treatment resistance is unclear. Here, we found that p53 n6-methyladenosine (m6A) played a decisive role in regulating HCC sensitivity to chemotherapy via the p53 activator RG7112 and the vascular endothelial growth factor receptor inhibitor apatinib. Our results reveal that p53 activation plays a crucial role in chemotherapy-induced apoptosis and reducing cell viability. Moreover, decreasing m6A methyltransferase (e.g., methyltransferase-like 3, METTL3) expression through chemotherapeutic drug combinations reduced p53 mRNA m6A modification. p53 mRNA m6A modification blockage induced by S-adenosyl homocysteine or siRNA-mediated METTL3 inhibition enhanced HCC sensitivity to chemotherapy. Importantly, we observed that downregulation of METTL3 and upregulation of p53 expression by oral administration of chemotherapy drugs triggered apoptosis and xenograft tumor growth inhibition in nude mice. Based on these findings, we hypothesize that a METTL3-m6A-p53 axis could be a potential target in HCC therapy.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
50
|
Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 2022; 7:121. [PMID: 35418578 PMCID: PMC9008121 DOI: 10.1038/s41392-022-00975-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well known that non-coding RNAs (ncRNAs), rather than protein-coding transcripts, are the preponderant RNA transcripts. NcRNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely appreciated as pervasive regulators of multiple cancer hallmarks such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Despite recent discoveries in cancer therapy, resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy continue to be a major setback. Recent studies have shown that ncRNAs also play a major role in resistance to different cancer therapies by rewiring essential signaling pathways. In this review, we present the intricate mechanisms through which dysregulated ncRNAs control resistance to the four major types of cancer therapies. We will focus on the current clinical implications of ncRNAs as biomarkers to predict treatment response (intrinsic resistance) and to detect resistance to therapy after the start of treatment (acquired resistance). Furthermore, we will present the potential of targeting ncRNA to overcome cancer treatment resistance, and we will discuss the challenges of ncRNA-targeted therapy—especially the development of delivery systems.
Collapse
|