1
|
Ediga HH, Hester P, Yepuri A, Reddy GB, Madala SK. Nε-Carboxymethyl-Lysine Modification of Extracellular Matrix Proteins Augments Fibroblast Activation. Int J Mol Sci 2023; 24:15811. [PMID: 37958795 PMCID: PMC10650592 DOI: 10.3390/ijms242115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The extracellular matrix (ECM) is a dynamic complex protein network that provides structural integrity and plays an active role in shaping fibroblast behavior both in health and disease. Despite its essential functions, the impact of age-associated post-translational modifications on ECM-driven fibroblast activities such as proliferation, survival, fibroblast-to-myofibroblast transformation (FMT), and extracellular matrix production remains largely unknown. Nε-carboxymethyl-lysine (CML) is one of the well-characterized advanced glycation end-products (AGEs) that can occur on lysine residues within ECM proteins through non-enzymatic glycation. In this study, we determined the accumulation and the effects of the CML-modified ECM (CML-ECM) on fibroblast activation. Immunostainings and immunoblot analysis demonstrated significant increases in CML-AGE content in idiopathic pulmonary fibrosis (IPF) compared to age-matched healthy lungs. Gene expression analysis and fibroblast activation assays collectively implicate the ECM as a negative regulator of fibroblast activation. Notably, the CML modification of the ECM resulted in a significant decrease in its anti-fibrotic effects including proliferation, FMT, apoptosis, and ECM production. Together, the results of this study revealed an unexplored pathological role played by the CML-ECM on fibroblast activation, which has wide implications in IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Patrick Hester
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| | - Adithi Yepuri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| |
Collapse
|
2
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Yamada Y, Sato T, Harada N, Kayawake H, Tanaka S, Yutaka Y, Hamaji M, Nakajima D, Ohsumi A, Date H. Perioperative diabetes mellitus affects the outcomes of lung transplant recipients. Eur J Cardiothorac Surg 2022; 62:6604741. [PMID: 35678573 DOI: 10.1093/ejcts/ezac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Identifying the risks for chronic lung allograft dysfunction (CLAD) after lung transplantation (LTx) is beneficial to the patient. We hypothesized that diabetes mellitus (DM) is relevant to CLAD development. Our study aimed to clarify if DM is a risk for poor post-LTx outcomes. METHODS The records of patients first undergoing LTx in our institution between 2010 and 2018 were reviewed retrospectively. Patient characteristics and postoperative outcomes were analyzed. We established 6 months post-LTx as the landmark point for predicting overall survival (OS) and CLAD development. To identify perioperative DM, we evaluated the patient for DM at 6 months post-LTx. RESULTS A total of 172 patients were investigated. DM and CLAD occurred in 76 and 39 patients, respectively, and 40 died. At 6 months post-LTx, the unadjusted and adjusted hazard ratios (HRs) of DM for OS were 3.36 (95% confidence interval [CI95%] = [1.67-6.73]) and 2.78 (CI95% = [1.35-5.75]), respectively. The unadjusted and adjusted HRs of DM for CLAD-free survival were 2.20 (CI95% = [1.27-3.80]) and 2.15 (CI95% = [1.24-3.74]). The patients with DM were older and had a higher body mass index and more incidents of post-LTx malignant disease than the non-DM patients. The five-year OS and CLAD-free survival rates of the patients with or without DM were 57.2% vs 86.5% and 50.1% vs 72.9%, respectively. CONCLUSIONS Perioperative DM was identified as an independent adverse factor for OS and CLAD-free survival. Perioperative management of DM should be emphasized in the clinical setting of lung transplantation.
Collapse
Affiliation(s)
- Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tosiya Sato
- Department of Biostatistics, Kyoto University School of Public Health, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Acute Lung Injury Biomarkers in the Prediction of COVID-19 Severity: Total Thiol, Ferritin and Lactate Dehydrogenase. Antioxidants (Basel) 2021; 10:antiox10081221. [PMID: 34439469 PMCID: PMC8388961 DOI: 10.3390/antiox10081221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 (COVID-19) patients who develop acute respiratory distress syndrome (ARDS) can suffer acute lung injury, or even death. Early identification of severe disease is essential in order to control COVID-19 and improve prognosis. Oxidative stress (OS) appears to play an important role in COVID-19 pathogenesis; we therefore conceived a study of the potential discriminative ability of serum biomarkers in patients with ARDS and those with mild to moderate disease (non-ARDS). 60 subjects were enrolled in a single-centre, prospective cohort study of consecutively admitted patients: 29 ARDS/31 non-ARDS. Blood samples were drawn and marker levels analysed by spectrophotometry and immunoassay techniques. C-reactive protein (CRP), lactate dehydrogenase (LDH), and ferritin were significantly higher in ARDS versus non-ARDS cases at hospital admission. Leukocytes, LDH, ferritin, interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) were also significantly elevated in ARDS compared to non-ARDS patients during the hospital stay. Total thiol (TT) was found to be significantly lower in ARDS. Conversely, D-dimer, matrix metalloproteinase-9 (MMP-9) and advanced glycosylated end products (AGE) were elevated. Leukocytes, LDH, CRP, ferritin and IL-6 were found to be significantly higher in non-survivors. However, lymphocyte, tumour necrosis factor beta (TGF-β), and TT were lower. In summary, our results support the potential value of TT, ferritin and LDH as prognostic biomarkers for ARDS development in COVID-19 patients, distinguishing non-ARDS from ARDS (AUCs = 0.92; 0.91; 0.89) in a fast and cost-effective manner. These oxidative/inflammatory parameters appear to play an important role in COVID-19 monitoring and can be used in the clinical management of patients.
Collapse
|
5
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2021; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
- Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
6
|
Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, Mehrbod P, Ashrafizadeh M, Zarrabi A, McAlinden KD, Eapen MS, Sohal SS, Sharma P, Zeki AA, Ghavami S. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life (Basel) 2020; 11:1. [PMID: 33374938 PMCID: PMC7821926 DOI: 10.3390/life11010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Medical Physics Department, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (S.D.); (P.M.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey;
| | - Kielan Darcy McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia; (K.D.M.); (M.S.E.); (S.S.S.)
| | - Pawan Sharma
- Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Davis School of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, UC Davis Lung Center, University of California, Davis, CA 95616, USA;
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.A.); (S.A.); (J.A.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
7
|
Abstract
Diabetes mellitus is a chronic, progressive, incompletely understood metabolic disorder whose prevalence has been increasing steadily worldwide. Even though little attention has been paid to lung disorders in the context of diabetes, its prevalence has recently been challenged by newer studies of disease development. In this review, we summarize and discuss the role of diabetes mellitus involved in the progression of pulmonary diseases, with the main focus on pulmonary fibrosis, which represents a chronic and progressive disease with high mortality and limited therapeutic options.
Collapse
Affiliation(s)
- Saeed Kolahian
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
- Department of Pharmacogenomics, University of Tübingen, Wilhelmstrasse. 56, D-72074, Tübingen, Germany.
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
8
|
Yu J, Shi S, Zhang F, Chen G, Cao M. PredGly: predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization. Bioinformatics 2018; 35:2749-2756. [DOI: 10.1093/bioinformatics/bty1043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Abstract
Motivation
Protein glycation is a familiar post-translational modification (PTM) which is a two-step non-enzymatic reaction. Glycation not only impairs the function but also changes the characteristics of the proteins so that it is related to many human diseases. It is still much more difficult to systematically detect glycation sites due to the glycated residues without crucial patterns. Computational approaches, which can filter supposed sites prior to experimental verification, can extremely increase the efficiency of experiment work. However, the previous lysine glycation prediction method uses a small number of training datasets. Hence, the model is not generalized or pervasive.
Results
By searching from a new database, we collected a large dataset in Homo sapiens. PredGly, a novel software, can predict lysine glycation sites for H.sapiens, which was developed by combining multiple features. In addition, XGboost was adopted to optimize feature vectors and to improve the model performance. Through comparing various classifiers, support vector machine achieved an optimal performance. On the basis of a new independent test set, PredGly outperformed other glycation tools. It suggests that PredGly can provide more instructive guidance for further experimental research of lysine glycation.
Availability and implementation
https://github.com/yujialinncu/PredGly
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jialin Yu
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Shaoping Shi
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Fang Zhang
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Guodong Chen
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Man Cao
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between diabetes and respiratory diseases-Clinical and therapeutic aspects. Pharmacol Res 2018; 137:230-235. [PMID: 30312663 DOI: 10.1016/j.phrs.2018.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022]
Abstract
Diabetes is a common metabolic disorder affecting the entire body with high morbidity and mortality worldwide. The major complications related to diabetes are mostly due to the macrovascular and microvascular bed impairment due to metabolic, hemodynamic and inflammatory factors. However, studies over the past decades have added also the lung as a target organ in both type 1 and type 2 diabetes. Diabetes has always been addressed as a major comorbidity conditioning the disease behaviour and the natural history of several respiratory diseases. Increased interest has recently focused on the pathophysiology of the metabolic glycaemic disorder and the respiratory diseases suggesting a similar background shared by the two conditions. The true relationship between pulmonary diseases and diabetes mellitus has not been clarified, this review aims to summarize the link between diabetes and coexisting respiratory diseases such as asthma, chronic obstructive pulmonary disease, respiratory infections, cystic fibrosis, lung cancer and obstructive sleep apnea from a pathogenetic and therapeutic point of view.
Collapse
Affiliation(s)
- D Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Italy.
| | - P Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Italy
| | - A Spanevello
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Italy; Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Tradate, Varese-Como, Italy
| | - E Lucini
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Italy; Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Tradate, Varese-Como, Italy
| | - E La Rocca
- Department of Internal Medicine, Tradate Hospital, Tradate, Italy
| |
Collapse
|
10
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Fernández-Ochoa Á, Quirantes-Piné R, Borrás-Linares I, Gemperline D, Alarcón Riquelme ME, Beretta L, Segura-Carretero A. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J Pharm Biomed Anal 2018; 162:82-90. [PMID: 30227356 DOI: 10.1016/j.jpba.2018.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Systemic Sclerosis (SSc) is a chronic autoimmune disease whose origin and pathogenesis are not yet well known. Recent studies are allowing a better definition of the disease. However, few studies have been performed based on metabolomics. In this way, this study aims to find altered metabolites in SSc patients in order to improve their diagnosis, prognosis and treatment. For that, 59 SSc patients and 28 healthy volunteers participated in this study. Urine and plasma samples were analysed by a fingerprinting metabolomic approach based on HPLC-ESI-QTOF-MS. We observed larger differences in urine than plasma metabolites. The main deregulated metabolic families in urine were acylcarnitines, acylglycines and metabolites derived from amino acids, specifically from proline, histidine and glutamine. These results indicate perturbations in fatty acid beta oxidation and amino acid pathways in scleroderma patients. On the other hand, the main plasma biomarker candidate was 2-arachidonoylglycerol, which is involved in the endocannabinoid system with potential implications in the induction and propagation of systemic sclerosis and autoimmunity.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Isabel Borrás-Linares
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain.
| | | | | | - Marta E Alarcón Riquelme
- Centre for Genomics and Oncological Research (GENYO) Pfizer, University of Granada, Andalusian Government, Health Science Technological Park, Granada, Spain
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Antonio Segura-Carretero
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Capelozzi VL, Allen TC, Beasley MB, Cagle PT, Guinee D, Hariri LP, Husain AN, Jain D, Lantuejoul S, Larsen BT, Miller R, Mino-Kenudson M, Mehrad M, Raparia K, Roden A, Schneider F, Sholl LM, Smith ML. Molecular and Immune Biomarkers in Acute Respiratory Distress Syndrome: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med 2017; 141:1719-1727. [DOI: 10.5858/arpa.2017-0115-sa] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial syndrome with high morbidity and mortality rates, characterized by deficiency in gas exchange and lung mechanics that lead to hypoxemia, dyspnea, and respiratory failure. Histologically, ARDS is characterized by an acute, exudative phase, combining diffuse alveolar damage and noncardiogenic edema, followed by a later fibroproliferative phase. Despite an enhanced understanding of ARDS pathogenesis, the capacity to predict the development of ARDS and to risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the greatest risk of developing ARDS, to evaluate response to therapy, to predict outcome, and to improve clinical trials. The ARDS pathogenesis is presented in this article, as well as concepts and information on biomarkers that are currently used clinically or are available for laboratory use by academic and practicing pathologists and the developing and validating of new assays, focusing on the assays' major biologic roles in lung injury and/or repair and to ultimately suggest innovative, therapeutic approaches.
Collapse
|
13
|
Zheng H, Wu J, Jin Z, Yan LJ. Potential Biochemical Mechanisms of Lung Injury in Diabetes. Aging Dis 2017; 8:7-16. [PMID: 28203478 PMCID: PMC5287388 DOI: 10.14336/ad.2016.0627] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has shown that the lung is one of the target organs for microangiopathy in patients with either type 1 or type 2 diabetes mellitus (DM). Diabetes is associated with physiological and structural abnormalities in the diabetic lung concurrent with attenuated lung function. Despite intensive investigations in recent years, the pathogenic mechanisms of diabetic lung injury remain largely elusive. In this review, we summarize currently postulated mechanisms of diabetic lung injury. We mainly focus on the pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway. We also highlight that while numerous studies have mainly focused on tissue or cell damage in the lung, studies focusing on mitochondrial dysfunction in the diabetic lung have remained sketchy. Hence, further understanding of mitochondrial mechanisms of diabetic lung injury should provide invaluable insights into future therapeutic approaches for diabetic lung injury.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
14
|
Hassanein EG, ElGanady AA, Baess AI, Issa YA, ElAkhtel EM. Sputum–plasma ratio of soluble receptor for advanced glycation end-products in patients with chronic obstructive pulmonary disease. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2016.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Abuelezz SA, Hendawy N, Osman WM. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:897-909. [PMID: 27154762 DOI: 10.1007/s00210-016-1253-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Wesam M Osman
- Pathology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Waseda K, Miyahara N, Taniguchi A, Kurimoto E, Ikeda G, Koga H, Fujii U, Yamamoto Y, Gelfand EW, Yamamoto H, Tanimoto M, Kanehiro A. Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol 2016; 52:482-91. [PMID: 25188021 DOI: 10.1165/rcmb.2014-0027oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The receptor for advanced glycation end-products (RAGE) is a multiligand cell surface receptor reported to be involved in the process of acute alveolar epithelial cell injury. However, studies that address the role of RAGE in pulmonary emphysema are inconclusive. We investigated the role of RAGE in the development of elastase-induced pulmonary inflammation and emphysema in mice. RAGE-sufficient (RAGE(+/+)) mice and RAGE-deficient (RAGE(-/-)) mice were treated with intratracheal elastase on Day 0. Airway inflammation, static lung compliance, lung histology, and the levels of neutrophil-related chemokine and proinflammatory cytokines in bronchoalveolar lavage fluid were determined on Days 4 and 21. Neutrophilia in bronchoalveolar lavage fluid, seen in elastase-treated RAGE(+/+) mice, was reduced in elastase-treated RAGE(-/-) mice on Day 4, and was associated with decreased levels of keratinocyte chemoattractant, macrophage inflammatory protein-2, and IL-1β. Static lung compliance values and emphysematous changes in the lung tissue were decreased in RAGE(-/-) mice compared with RAGE(+/+) mice on Day 21 after elastase treatment. Experiments using irradiated, bone marrow-chimeric mice showed that the mice expressing RAGE on radioresistant structural cells, but not hematopoietic cells, developed elastase-induced neutrophilia and emphysematous change in the lung. In contrast, mice expressing RAGE on hematopoietic cells, but not radioresistant structural cells, showed reduced neutrophilia and emphysematous change in the lung. These data identify the importance of RAGE expressed on lung structural cells in the development of elastase-induced pulmonary inflammation and emphysema. Thus, RAGE represents a novel therapeutic target for preventing pulmonary emphysema.
Collapse
Affiliation(s)
- Koichi Waseda
- 1 Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaddah S, Ahmed S. Lifestyle associated diseases and risk of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2015.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Kyung SY, Byun KH, Yoon JY, Kim YJ, Lee SP, Park JW, Lee BH, Park JS, Jang AS, Park CS, Jeong SH. Advanced glycation end-products and receptor for advanced glycation end-products expression in patients with idiopathic pulmonary fibrosis and NSIP. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 7:221-228. [PMID: 24427342 PMCID: PMC3885476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
Advanced glycation end products (AGEs) are associated with the pathogenesis of various diseases. AGEs induce excess accumulation of extracellular matrix and expression of profibrotic cytokines. In addition, studies on receptor for advanced glycation end products (RAGE) have shown that the ligand-RAGE interaction activates several intracellular signaling cascades associated with several fibrotic diseases. We investigated the expression of AGEs and RAGE in samples from patients with idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP). Lung tissues and plasma samples from patients with IPF (n=10), NSIP (n=10), and control subjects (n=10) were obtained. Expression of AGEs and RAGE was determined by immunofluorescence assay of lung tissue. Circulating AGEs were measured by Western blot and enzyme-linked immunosorbent assay. Lungs with IPF showed strong expression for both AGEs and RAGE compared to that in NSIP and controls. However, no difference in AGE or RAGE expression was observed in lungs with NSIP compared to that in the controls. Levels of circulating AGEs also increased significantly in lungs of patients with IPF compared to those with NSIP and normal control. Increased AGE-RAGE interaction may play an important role in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Sun Young Kyung
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Kyung Hee Byun
- Department of Anatomy, Gachon University of Medicine and ScienceIncheon, Republic of Korea
| | - Jin Young Yoon
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Yu Jin Kim
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Sang Pyo Lee
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Jeong-Woong Park
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| | - Bong Hee Lee
- Department of Anatomy, Gachon University of Medicine and ScienceIncheon, Republic of Korea
| | - Jong Sook Park
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - An Soo Jang
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - Choon Sik Park
- Genome Research Center for Allergy and Respiratory diseases, Soonchunhyang University Bucheon HospitalBucheon, Republic of Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University Gil Medical CenterIncheon, Republic of Korea
| |
Collapse
|
19
|
Faner R, Rojas M, Macnee W, Agustí A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012; 186:306-13. [PMID: 22582162 DOI: 10.1164/rccm.201202-0282pp] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a natural process characterized by progressive functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. The incidence of two common chronic respiratory diseases (chronic obstructive pulmonary disease [COPD] and idiopathic pulmonary fibrosis [IPF]) increases with advanced age. It is plausible, therefore, that abnormal regulation of the mechanisms of normal aging may contribute to the pathobiology of both COPD and IPF. This review discusses the available evidence supporting a number of aging mechanisms, including oxidative stress, telomere length regulation, cellular and immunosenescence, as well as changes in a number of antiaging molecules and the extracellular matrix, which are abnormal in COPD and/or IPF. A better understanding of these abnormalities may help in the design of novel and better therapeutic interventions for these patients.
Collapse
Affiliation(s)
- Rosa Faner
- Fundación Investigación Sanitaria Illes Balears, Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Palma de Mallorca, and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Ding Q, Luckhardt T, Hecker L, Zhou Y, Liu G, Antony VB, deAndrade J, Thannickal VJ. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs 2012; 71:981-1001. [PMID: 21668038 DOI: 10.2165/11591490-000000000-00000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal of the idiopathic interstitial pneumonias. There are currently no effective pharmacological therapies approved for the treatment of IPF. Despite the focus on targeting fibrogenic pathways, recent clinical trials have been largely disappointing. Progress is being made in elucidating key cellular processes and molecular pathways critical to IPF pathogenesis, and this should facilitate the development of more effective therapeutics for this recalcitrant disease. Emerging pathobiological concepts include the role of aging and cellular senescence, oxidative stress, endoplasmic reticulum stress, cellular plasticity, microRNAs and mechanotransduction. Therapeutic approaches that target molecular pathways to modulate aberrant cellular phenotypes and promote tissue homeostasis in the lung must be developed. Heterogeneity in biological and clinical phenotypes of IPF warrants a personalized medicine approach to diagnosis and treatment of this lung disorder.
Collapse
Affiliation(s)
- Qiang Ding
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen L, Wang T, Wang X, Sun BB, Li JQ, Liu DS, Zhang SF, Liu L, Xu D, Chen YJ, Wen FQ. Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats. Respir Res 2009; 10:55. [PMID: 19552800 PMCID: PMC2712463 DOI: 10.1186/1465-9921-10-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/24/2009] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation. METHODS Rats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFbeta1 and its downstream Smad proteins were analyzed by Western blot. RESULTS AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFbeta1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues. CONCLUSION These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFbeta/Smads signaling.
Collapse
Affiliation(s)
- Lei Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim YJ, Park JW, Kyung SY, An CH, Lee SP, Park HY, Chung MP, Jeong SH. Association of Diabetes Mellitus and Metabolic Syndrome with Idiopathic Pulmonary Fibrosis. Tuberc Respir Dis (Seoul) 2009. [DOI: 10.4046/trd.2009.67.2.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yu Jin Kim
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Jeong-Woong Park
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Sun Young Kyung
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Chang Hyeok An
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Sang Pyo Lee
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Hye Yun Park
- Division of Pulmonology, Department of Internal Medicine, Sungkyunkwan University Samsung Medical Center, College of Medicine, Seoul, Korea
| | - Man Pyo Chung
- Division of Pulmonology, Department of Internal Medicine, Sungkyunkwan University Samsung Medical Center, College of Medicine, Seoul, Korea
| | - Sung Hwan Jeong
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
23
|
Mora AL, Rojas M. Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 2008; 105:641-7. [PMID: 18759327 DOI: 10.1002/jcb.21890] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The incidence of lung fibrosis increases with age. Aging is associated with modifications in the intracellular and extracellular environment including alteration of the extracellular matrix, imbalance of the redox state, accumulation of senescent cells and potential alteration of the recruitment of bone marrow mesenchymal stem cells. The combination of these senescence-related alterations in the lung and in bone marrow progenitor cells might be responsible of the higher susceptibility to lung fibrosis in elderly individuals. The understanding of these age related changes must be considered in the rationale for the development of therapeutic interventions to control lung injury and fibrosis.
Collapse
Affiliation(s)
- Ana L Mora
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Center for Translational Research in the Lung, McKelvey Center for Lung Transplantation, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
24
|
Mukherjee TK, Mukhopadhyay S, Hoidal JR. Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol 2008; 162:210-5. [PMID: 18674642 DOI: 10.1016/j.resp.2008.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/18/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is a membrane bound receptor and member of the immunoglobulin super family and is normally present in a highly abundant basal level expression in lung. This high expression of RAGE in lung alveolar epithelial type I (ATI) cells is presumably involved in the proliferation and differentiation of pulmonary epithelial cells. However, typically higher than basal level expression of RAGE may indicate the existence of severe pathophysiological condition in lung, e.g. acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). During pulmonary tissue injury an endogenous secretory isoform of RAGE called EsRAGE is noticed at high levels in broncho-alveolar lavage (BAL) and plasma. Recently, a soluble form of RAGE (sRAGE) produced by recombinant gene technology was shown to exhibit a therapeutic potential in experimental animal models. Detailed study of RAGE in the pulmonary tissues will facilitate the understanding of the importance of RAGE signaling in the pulmonary health and pathophysiology.
Collapse
Affiliation(s)
- Tapan K Mukherjee
- Indian Institute of Science Education and Research, MGSIPA Complex, Chandigarh, Punjab 160019, India.
| | | | | |
Collapse
|
25
|
Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, Ramsgaard L, Richards TJ, Loutaev I, Nawroth PP, Kasper M, Bierhaus A, Oury TD. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:583-91. [PMID: 18245812 DOI: 10.2353/ajpath.2008.070569] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severely debilitating disease associated with a dismal prognosis. There are currently no effective therapies for IPF, thus the identification of novel therapeutic targets is greatly needed. The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation has been linked to various pathologies. In healthy adult animals, RAGE is expressed at the highest levels in the lung compared to other tissues. To investigate the hypothesis that RAGE is involved in IPF pathogenesis, we have examined its expression in two mouse models of pulmonary fibrosis and in human tissue from IPF patients. In each instance we observed a depletion of membrane RAGE and its soluble (decoy) isoform, sRAGE, in fibrotic lungs. In contrast to other diseases in which RAGE signaling promotes pathology, immunohistochemical and hydroxyproline quantification studies on aged RAGE-null mice indicate that these mice spontaneously develop pulmonary fibrosis-like alterations. Furthermore, when subjected to a model of pulmonary fibrosis, RAGE-null mice developed more severe fibrosis, as measured by hydroxyproline assay and histological scoring, than wild-type controls. Combined with data from other studies on mouse models of pulmonary fibrosis and human IPF tissues indicate that loss of RAGE contributes to IPF pathogenesis.
Collapse
Affiliation(s)
- Judson M Englert
- Department of Pathology,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagai R, Fujiwara Y, Mera K, Motomura K, Iwao Y, Tsurushima K, Nagai M, Takeo K, Yoshitomi M, Otagiri M, Ikeda T. Usefulness of antibodies for evaluating the biological significance of AGEs. Ann N Y Acad Sci 2007; 1126:38-41. [PMID: 18079488 DOI: 10.1196/annals.1433.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyclonal and monoclonal antibodies have been widely applied to demonstrate the presence of advanced glycation end products (AGEs) in vivo. However, our previous study showed that monoclonal anti-AGE antibody (6D12) and polyclonal anti-N epsilon-(carboxymethyl)lysine (CML) antibody recognize not only CML but also N epsilon-(carboxyethyl)lysine (CEL), thus indicating that we should pay attention to the specificity of the antibodies. As a result, we prepared specific monoclonal antibodies against CML, CEL, N omega-(carboxymethyl)arginine (CMA), and S-(carboxymethyl)cysteine (CMC). Our immunochemical study using anti-CMA antibody demonstrated that the CMA content increased in a time-dependent manner when collagen was incubated with glucose, indicating that immunological quantification using the specific antibody is especially useful for measuring an acid-labile AGE structure, such as CMA. Monoclonal antibody is also applied to identify a novel biological marker in pathological lesions. We prepared antibody libraries against proteins modified with aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde (GA), and one antibody, GA5, which specifically reacts with the GA-modified protein that is recognized in human atherosclerotic lesions. Following successive high-performance liquid chromatography purification, the GA5-reactive compound was isolated and its chemical structure was found to be 3-hydroxy-4-hydroxymethyl-1-(5-amino-5-carboxypentyl) pyridinium cation, which was named GA-pyridine. Taken together, these results demonstrate that a specific antibody is a powerful tool for analyzing novel biomarkers, formation pathways, and the efficacy of AGE inhibitors.
Collapse
Affiliation(s)
- Ryoji Nagai
- Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, Yamaya M. The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1427-36. [PMID: 17951314 DOI: 10.1152/ajplung.00075.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Mei He
- Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Schettgen T, Tings A, Brodowsky C, Müller-Lux A, Musiol A, Kraus T. Simultaneous determination of the advanced glycation end product N ɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2007; 387:2783-91. [PMID: 17318517 DOI: 10.1007/s00216-007-1163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/22/2007] [Accepted: 01/26/2007] [Indexed: 12/12/2022]
Abstract
Analysis of biomarkers in exhaled breath condensate (EBC) is a non-invasive method for investigating the effects of different diseases or exposures, on the lungs and airways. N(epsilon)-carboxymethyllysine (CML) is an important biomarker of advanced glycation end products (AGEs). A method has been developed for simultaneous determination of CML and its precursor, the amino acid lysine, in exhaled breath condensate (EBC). After addition of labelled internal standards (d-4-CML; d-4-lysine), the EBC was concentrated by freeze-drying. Separation and detection of the analytes were performed by hydrophilic-ion liquid chromatography coupled with tandem mass-spectrometric detection (HILIC-MS-MS). The limits of quantification were 10 pg mL(-1) EBC and 0.5 ng mL(-1) EBC for CML and lysine, respectively. The relative standard deviation of the within-series precision was between 2.8 and 7.8% at spiked concentrations between 40 and 200 pg mL(-1) for CML and between 6 and 20 ng mL(-1) for lysine. Accuracy for the analytes ranged between 89.5 and 133%. The method was used for the analysis of EBC samples from ten healthy persons from the general population and ten persons receiving dialysis. CML and lysine were detected in all EBC samples with median values of 19 pg mL(-1) CML and 11.9 ng mL(-1) lysine in EBC of healthy persons and 25 pg mL(-1) CML and 9.5 ng mL(-1) lysine in EBC of dialysis patients.
Collapse
Affiliation(s)
- T Schettgen
- Institute and Outpatient Clinic of Occupational and Social Medicine, University Hospital, Aachen University of Technology, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, Papavassiliou AG, Duleba AJ. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol 2007; 127:581-9. [PMID: 17205306 DOI: 10.1007/s00418-006-0265-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the localization/immunohistochemical distribution of AGEs and RAGE, as well as their putative signalling mediator NF-kappaB in ovaries of women with polycystic ovary syndrome (PCOS) compared to normal. Archival ovarian-tissue samples from biopsies of six women with PCOS and from six healthy of similar age women, were examined immunohistochemically with monoclonal anti-AGEs, anti-RAGE and anti-NF-kappaB(p50/p65) specific antibodies. In healthy women, AGE immunoreactivity was observed in follicular cell layers (granulosa and theca) and luteinized cells, but not in endothelial cells. PCOS specimens displayed AGE immunoexpression in theca interna and granulosa cells as well as in endothelial cells, but staining of granulosa cells was stronger than in that of normal ovaries. RAGE was highly expressed in normal and PCOS tissues. Normal tissue exhibited no staining differences between granulosa cell layer and theca interna. However, in PCOS ovaries, granulosa cells displayed stronger RAGE expression compared to theca interna cells in comparison to controls. NF-kappaB(p50/p65) was expressed in the cytoplasm of theca interna and granulosa cells of both normal and PCOS ovaries; whereas the NF-kappaB p65 subunit was only observed in granulosa cells nuclei in PCOS tissue. In conclusion, these findings demonstrate for the first time that RAGE and AGE-modified proteins with activated NF-kappaB are expressed in human ovarian tissue. Furthermore, a differential qualitative distribution of AGE, RAGE and NF-kappaB p65 subunit was observed in women with PCOS compared to healthy controls, where a stronger localization of both AGE and RAGE was observed in the granulosa cell layer of PCOS ovaries.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- First Department of Internal Medicine, Endocrine section, University of Athens Medical School, 75, M. Asias Str., 11527, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Morbini P, Villa C, Campo I, Zorzetto M, Inghilleri S, Luisetti M. The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease? Mod Pathol 2006; 19:1437-45. [PMID: 16941014 DOI: 10.1038/modpathol.3800661] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The binding of the receptor for advanced glycation end products (RAGE) with its ligands begins a sustained period of cellular activation and inflammatory signal amplification in different tissues and diseases. This binding could represent an as yet uninvestigated pathway of inflammatory reaction in the lung, where the presence of the receptor has been largely documented and advanced glycation end products (AGEs) are produced by nonenzymatic glycation and oxidation of proteins and lipids, driven by smoke and pollutants exposure or inflammatory stress. We immunohistochemically assessed the expression of RAGE and of its major proinflammatory ligands, N-epsilon-carboxy-methyl-lysine, S100B and S-100A12 in normal lung and in non-neoplastic lung disorders including smoke-related airway disease, granulomatous inflammation, postobstructive damage and usual interstitial pneumonia. In normal lung low expression of the receptor was observed in bronchiolar epithelia, type II pneumocytes, macrophages and some endothelia. S100A12 and S100B were expressed, respectively, in granulocytes and in dendritic cells. Carboxy-methyl-lysine was present in bronchiolar epithelia and macrophages. In all pathological conditions associated with inflammation and lung damage overexpression of both the receptor and of AGEs was observed in bronchiolar epithelia, type II alveolar pneumocytes, alveolar macrophages and endothelia. RAGE overexpression was more evident in epithelia associated with inflammatory cell aggregates. Fibroblasts in usual interstitial pneumonia expressed both the receptor and AGEs. The number of S100A12 and S100B immunoreactive inflammatory cells was variable. S100A12 was also expressed in mononuclear inflammatory cells and in activated epithelia. The activation of the inflammatory pathway controlled by the RAGE is not specific of a single lung disease, however, it may be relevant as a nonspecific pathway of sustained inflammation in lung tissue, and on this basis therapeutic approaches based on receptor blockage can be envisaged.
Collapse
Affiliation(s)
- Patrizia Morbini
- Dipartimento di Anatomia ed Istologia Patologica, IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Castro CY. ARDS and Diffuse Alveolar Damage: A Pathologist’s Perspective. Semin Thorac Cardiovasc Surg 2006; 18:13-9. [PMID: 16766248 DOI: 10.1053/j.semtcvs.2006.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2006] [Indexed: 11/11/2022]
Abstract
Diffuse alveolar damage (DAD) is the histologic correlate of most patients with adult respiratory distress syndrome (ARDS). It is a relatively straight forward diagnosis and the main differential diagnosis clinically is acute pneumonia and histologically is bronchiolitis obliterans and organizing pneumonia (BOOP). The histologic progression of DAD includes 3 phases (exudative, proliferative, and fibrotic) that correlate with the time rather than its specific cause. The factors that govern which patients will do well and which will develop a fulminant course is not known.
Collapse
Affiliation(s)
- Claudia Y Castro
- The University of Texas Medical Branch (UTMB), Department of Pathology, Galveston, TX 77555, USA.
| |
Collapse
|
32
|
Miyake Y, Sasaki S, Yokoyama T, Chida K, Azuma A, Suda T, Kudoh S, Sakamoto N, Okamoto K, Kobashi G, Washio M, Inaba Y, Tanaka H. Case-control study of medical history and idiopathic pulmonary fibrosis in Japan. Respirology 2006; 10:504-9. [PMID: 16135175 DOI: 10.1111/j.1440-1843.2005.00742.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES A few epidemiological studies have indicated that a patient's past medical history may contribute to the risk of developing idiopathic pulmonary fibrosis (IPF). A relationship between a history of selected disorders and the risk of IPF was assessed in a multicentre hospital-based case-control study in Japan. METHODOLOGY Included in the study were 104 patients of IPF, aged 40 years or over, who had been diagnosed within the previous 2 years, in accordance with the most recent criteria. Control subjects, aged 40 years or over, consisted of 56 hospitalized patients diagnosed as having acute bacterial pneumonia and four outpatients with the common cold. Adjustment was made for age, gender, region, pack-years of smoking, employment status, occupational exposure and BMI. RESULTS Medical histories of hypertension, hyperlipidaemia, coronary heart disease, diabetes mellitus, hepatitis C virus infection, tuberculosis, asthma, atopic dermatitis and allergic rhinitis were not statistically significantly associated with the risk of IPF, although cases were more likely to have suffered from allergic rhinitis and less likely to have been asthmatics than control subjects. Having a child with a history of allergic rhinitis, but not of asthma or atopic dermatitis, was significantly related to an increased risk of IPF. CONCLUSIONS These findings suggest that a genetic predisposition to allergic rhinitis may be associated with an increased risk of IPF.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Public Health, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gonzalez-Reche LM, Kucharczyk A, Musiol AK, Kraus T. Determination of N epsilon-(carboxymethyl)lysine in exhaled breath condensate using isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2747-52. [PMID: 16921564 DOI: 10.1002/rcm.2643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In order to identify new biomarkers for pulmonary diseases in exhaled breath condensate (EBC) it was the aim of this study to develop an analytical method for the identification and quantification of N epsilon-(carboxymethyl)lysine (CML) in EBC. As detection by liquid chromatography with positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) offers the advantage of structurally related detection with the necessary specificity required for the identification of a substance, it was the method chosen for the determination of the non-volatile compound. Specific mass transitions and comparison of retention times with standards under given conditions were used for the unequivocal identification of CML in EBC of healthy subjects. Synthesis of isotopically labelled CML was performed and used as an internal standard for an accurate determination. It was possible to identify the advanced glycation end-product CML in 8 out of 10 healthy subjects. The concentration range determined in the quantifiable examined samples ranged between 35 and 110 pg/mL. EBC samples from 11 patients with different diseases such as diabetes and chronic obstructive pulmonary disease were also measured. In one patient with pneumonia a concentration of 1509 pg CML/mL EBC could be detected. This is the first time that CML has been identified and determined in EBC. The developed LC/ESI-MS/MS method could be used to address the utility of CML as a biomarker in pulmonary diseases.
Collapse
Affiliation(s)
- Luis M Gonzalez-Reche
- Institute and Outpatient-Clinic for Occupational Medicine, University Hospital, Aachen University of Technology, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
Diabetes and age-related eye disorders remain leading causes of blindness worldwide. While defined pathogenic mechanisms for many of these diseases remain elusive, there is increasing evidence that products of the Maillard reaction may play an important role in their etiology. Advanced glycation end products (AGEs) form though a range of pathways within Maillard chemistry, and there is evidence to suggest that these adducts accumulate in the intracellular and/or extracellular environment of ocular structures. This review evaluates the ever-growing literature on AGEs in biological systems and draws relevant links to diseases such as diabetic retinopathy, age-related macular degeneration, and cataract formation. It also outlines recent pharmaceutical strategies to inhibit Maillard reaction products and provides links to how these may serve to limit ocular cell dysfunction.
Collapse
Affiliation(s)
- Alan W Stitt
- Ophthalmic Research Centre, Queen's University Belfast, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland.
| |
Collapse
|
35
|
Idiopathic Pulmonary Fibrosis. Proceedings of the 1st Annual Pittsburgh International Lung Conference. October 2002. Am J Respir Cell Mol Biol 2003; 29:S1-105. [PMID: 12936907 DOI: 10.1165/rcmb.2003-0159su] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
36
|
Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest 2003; 123:2007-11. [PMID: 12796182 DOI: 10.1378/chest.123.6.2007] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. The incidence of IPF increases with age. Aging contributes to lifestyle-related diseases, including diabetes mellitus (DM); therefore, it is possible that lifestyle-related diseases may affect either the initiation or progression of IPF. DESIGN Case-control study. SETTING Nippon Medical School and Omiya City Clinic. PATIENTS AND PARTICIPANTS Sixty-five consecutive patients with IPF who were admitted to Nippon Medical School Hospital from 1995 to 2000, and 184 control subjects selected from 15,798 subjects who were admitted to Omiya City Clinic for routine medical examination between September 1999 and August 2000. MEASUREMENTS Age, sex, smoking history, and results of physical examinations, blood examinations, and lung function testing were extracted from medical records and were compared with the diagnostic criteria for lifestyle-related diseases. RESULTS The adjusted odds ratios for cigarette smoking were 5.40 (95% confidence interval [CI], 2.30 to 12.66) and 4.06 (95% CI, 1.80 to 9.15) for diabetes. There were no differences in clinical characteristics of patients with IPF that could be related to the presence of DM. CONCLUSION DM may be a risk factor for IPF.
Collapse
Affiliation(s)
- Tatsuji Enomoto
- Fourth Department of Internal Medicine, Nippon Medical School, Tokyo, and Omiya City Clinic, Saitama, Japan.
| | | | | | | | | |
Collapse
|
37
|
Miki Hayashi C, Nagai R, Miyazaki K, Hayase F, Araki T, Ono T, Horiuchi S. Conversion of Amadori products of the Maillard reaction to N(epsilon)-(carboxymethyl)lysine by short-term heating: possible detection of artifacts by immunohistochemistry. J Transl Med 2002; 82:795-808. [PMID: 12065691 DOI: 10.1097/01.lab.0000018826.59648.07] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Accumulation of advanced glycation end products (AGE) of the Maillard reaction increases by aging and in age-enhanced diseases such as atherosclerosis and diabetic complications. Immunohistochemical analysis has been used to demonstrate AGE in vivo. In immunochemistry, the heat-induced epitope retrieval technique is extensively used with formalin-fixed, paraffin-embedded tissue sections. Here we examined whether AGE could be formed artificially through the heating process. Normal rat skin and liver samples were divided into two groups, one rapidly frozen, the other formalin-fixed, paraffin-embedded and submitted to heat-induced epitope retrieval treatment. In heat-treated sections, the cytoplasm of rat epidermal cells and hepatocytes were strongly stained by monoclonal antibody against N(epsilon)-(carboxymethyl)lysine (CML), while the staining was negligible in either frozen sections or in paraffin-embedded but heat-untreated sections. To clarify the mechanism, we conducted heat treatment to glycated human serum albumin (HSA), a model Amadori protein, and generation of CML was determined by immunochemical and HPLC analysis. CML was generated from glycated HSA by heat treatment (above 80 degrees C) and increased in a time-dependent manner. In contrast, generation of CML from glycated HSA was significantly inhibited in the presence of NaBH4, a reducing agent, diethylenetriamine pentaacetic acid, a chelator of transition metal ion, or aminoguanidine, a trapping reagent for alpha-oxoaldehydes. Furthermore, heat-induced CML formation in rat liver samples determined by HPLC was markedly reduced by pretreatment with NaBH4. Reactive intermediates such as glucosone, 3-deoxyglucosone, methylglyoxal, and glyoxal were formed upon heat treatment of glycated HSA at 100 degrees C, indicating that these aldehydes generated from Amadori products by oxidative cleavage can contribute to further CML formation. CML generated by heating, directly from Amadori products or via these aldehydes, might serve as an artifact upon immunohistochemistry.
Collapse
|
38
|
Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 2001; 85:746-53. [PMID: 11371498 PMCID: PMC1723990 DOI: 10.1136/bjo.85.6.746] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- A W Stitt
- Department of Ophthalmology, The Queen's University of Belfast, The Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK
| |
Collapse
|
39
|
Usuki J, Enomoto T, Azuma A, Matsuda K, Aoyama A, Kudoh S. Influence of hyperglycemia to the severity of pulmonary fibrosis. Chest 2001; 120:71S. [PMID: 11451933 DOI: 10.1378/chest.120.1_suppl.s71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- J Usuki
- THe Fourth Department of Internal Medicine, Nippon Medical School, Tokyo, Japan. Jiro_Usuki/
| | | | | | | | | | | |
Collapse
|
40
|
Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol 2001; 145:10-8. [PMID: 11453901 DOI: 10.1046/j.1365-2133.2001.04275.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-enzymatic glycation occurring in normal human skin plays an important part in ageing. OBJECTIVES To visualize and quantify, in human subjects, the extent of glycation during human dermal intrinsic and actinic ageing, and to develop a reliable reproducible in vitro model for evaluating the efficacy of potential inhibitors of glycation. METHODS By immunohistochemistry using a monoclonal antibody recognizing carboxymethyl lysine, an advanced glycation end-product (AGE) (first objective), and by incubating dead de-epidermized dermis (DED) with glucose to simulate ageing-induced glycation in a human dermal equivalent model (second objective). RESULTS We found that glycation of the dermis generally arises after 35 years, then increases rapidly with intrinsic ageing. We also noticed an enhancement of glycation by solar irradiation that occurred via glycation of the elastic fibre network or solar elastosis tissue. In the model, production of AGEs appeared in a time-dependent way, mimicking glycation observed in vivo during chronological ageing. Irradiation of DED before incubation with glucose strongly enhanced induction of AGEs, corresponding to the effect of solar irradiation on AGEs observed in vivo. CONCLUSIONS These results confirm a marked increase of AGEs during intrinsic ageing in normal human skin and also suggest that glycation is enhanced in photoaged skin.
Collapse
Affiliation(s)
- C Jeanmaire
- Laboratoires Sérobiologiques, Division de COGNIS France, Département Recherche et Développement, 5--7 rue de Seichamps, 54425 Pulnoy, France.
| | | | | |
Collapse
|
41
|
Kasper M, Funk RH. Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Arch Gerontol Geriatr 2001; 32:233-43. [PMID: 11395169 DOI: 10.1016/s0167-4943(01)00103-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Advanced glycation end products (AGEs) formed by nonenzymatic glycation and oxidation of proteins accumulate during normal aging and at accelerated rate during the course of diabetes. They play a role in the pathogenesis of several other chronic diseases such as Alzheimer's disease, arthritis, atherosclerosis, pulmonary fibrosis and renal failure. AGE-formation changes the chemical and biological properties of proteins inside and outside of the cell. Binding to specific cell surface receptors induces activation of cellular signaling pathways leading to cellular dysfunction and cell death. AGEs are inducible by oxidative stress and induce oxidative stress. Subject of current studies of cell biologists is the intracellular processing of AGEs, which is accompanied by changes of the endolysosomal compartment.
Collapse
Affiliation(s)
- M Kasper
- Institute of Anatomy, Medical Faculty 'Carl Gustav Carus', Technical University of Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany
| | | |
Collapse
|
42
|
Ling X, Nagai R, Sakashita N, Takeya M, Horiuchi S, Takahashi K. Immunohistochemical distribution and quantitative biochemical detection of advanced glycation end products in fetal to adult rats and in rats with streptozotocin-induced diabetes. J Transl Med 2001; 81:845-61. [PMID: 11406646 DOI: 10.1038/labinvest.3780294] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMMARY We used immunohistochemical methods and four monoclonal antibodies for specific molecular structures of advanced glycation end products (AGE)-6D12, KNH-30, 1F6, and 2A2-to examine localization of AGE in fetal, young, and adult rats, and rats with streptozotocin-induced diabetes. 6D12 recognized N(epsilon)-(carboxymethyl)lysine (CML); KNH-30, N(epsilon)-(carboxyethyl)lysine (CEL); and 1F6, fluorolink. The epitope of 2A2 is as yet unknown. Immunoreactivities for these monoclonal antibodies were found in various organs and tissues in postnatal and adult rats, and accumulation increased with aging. In the fetuses, AGE structures were detected at 10 fetal days, and their accumulation increased during ontogeny. Reversed-phase high-performance liquid chromatography revealed CML in fetuses at 13 fetal days and in lungs of 28-week-old rats. In various organs and tissues of fetal, young, and adult rats, CML, CEL, 2A2-positive AGE, and fluorolink accumulated, in that order, which suggests that the accumulation of CML, a nonfluorescent/noncross-linked AGE, occurs earlier than accumulation of fluorolink, a fluorescent/cross-linked AGE. In diabetic rats, hepatocytes, splenic macrophages, renal glomerular endothelial and mesangial cells, testicular Leydig cells, and erythrocytes showed excessive accumulation of AGE, leading to the pathologic changes characteristic of diabetes mellitus. For the induction of these changes, persistent hyperglycemia and hyperketonemia might be important for acceleration of intracellular AGE accumulation in diabetic rats. Thus, AGE accumulation in tissues and cells occurs not only during aging and in diabetes mellitus but also from an early stage of ontogeny.
Collapse
Affiliation(s)
- X Ling
- Second Department of Pathology, Kumamoto University School of Medicine, Kumamoto, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Free radicals induce oxidative modification in distinct components of the living matter (lipid, proteins, and DNA). For qualitative and quantitative determination of free radical-induced modifications, different, more or less sensitive biochemical methods are available. Because of the high reactivity and short life of free radicals, ongoing oxidative damage is generally analyzed by measurement of secondary products-such as H(2)O(2), oxidized proteins, peroxidized lipids, and their breakdown products, oxidized DNA-or by fluorographic analysis in combination with fluorescent dyes such as dichlorofluorescin (DCFH). In addition, the determination of free radical-related oxidation products is usually carried out in plasma, urine, or, less frequently, in bioptic material. Consequently, biochemical data seldom reflect the effects of free radical insults in situ. The histochemical visualization of selected molecular markers of oxidative damage can often provide more valuable information concerning the in vivo distribution of oxidative processes. This review summarizes the methods currently available for histochemical detection and indirect visualization of free radical-induced alterations in tissues and isolated cells.
Collapse
Affiliation(s)
- J Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
44
|
Kasper M, Roehlecke C, Witt M, Fehrenbach H, Hofer A, Miyata T, Weigert C, Funk RH, Schleicher ED. Induction of apoptosis by glyoxal in human embryonic lung epithelial cell line L132. Am J Respir Cell Mol Biol 2000; 23:485-91. [PMID: 11017913 DOI: 10.1165/ajrcmb.23.4.4117] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress has been suggested to play a central role in the pathogenesis of lung fibrosis and lung epithelial cell apoptosis is considered to be a key event during fibrogenesis. Studies from various laboratories have indicated that metabolic conditions may initiate oxidative stress, thereby contributing to epithelial cell death. This study was designed to test the hypothesis that glyoxal, an intermediate product in the glycation reaction leading to advanced glycation end products (AGEs), may induce lung epithelial cell apoptosis. We investigated the in vitro effects of glyoxal on fetal human lung epithelial L132 cells. Immunocytochemical analysis of paraffin-embedded cells and fluorescence-activated cell sorter analysis revealed a dose-dependent accumulation of the glycoxidation product (epsilon)N-carboxymethyllysine (CML) in all compartments of the cell. It has been shown that CML modification of proteins may serve as an indicator for oxidative stress. To examine the role of apoptosis in epithelial lung cells we investigated glyoxal-dependent changes in pro- and antiapoptotic mediators bax and activated caspase-3, and galectin-3 and bcl-2, respectively. Increasing concentrations of glyoxal (50 to 400 microM) induced an increase in the number of apoptotic cells. The apoptotic changes were confirmed by transmission electron microscopy. Immunocytochemical analysis of treated cells revealed the presence of other AGEs such as pentosidine as well as products of lipid peroxidation.
Collapse
Affiliation(s)
- M Kasper
- Institute of Anatomy and Institute of Pathology, Technical University of Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Lung morphology in ARDS reflects the rapid evolution from interstitial and alveolar edema to end-stage fibrosis consequent to injury of the alveolocapillary unit. This morphologic progression, termed diffuse alveolar damage, has been subdivided into sequentially occurring exudative, proliferative, and fibrotic phases. Pulmonary lesions correlate with the phase of alveolar damage rather than its specific cause. The pathologic features are consistent with the effects of a host of injurious stimuli and the complex interaction of inflammatory mediators on alveolar epithelial and capillary endothelial cells. Although ARDS frequently culminates in "interstitial" fibrosis, the organization of intraluminal exudate dominates the histologic picture in the proliferative phase and establishes the framework for subsequent fibrous remodeling of the lung. Involvement of the pulmonary vasculature is an important aspect of ARDS, from the initial phase of edema to the terminal stage of intractable pulmonary hypertension. Vascular lesions include thrombotic, fibroproliferative, and obliterative changes that, like the parenchymal lesions, correlate with the temporal phase of DAD. Although ARDS is characterized by extensive bilateral lung involvement, alveolar damage can also affect the lung in a localized fashion. RAD is associated with the same clinical risk factors as DAD, suggesting that there is a spectrum in the extent of lung involvement and disease severity in patients at risk for ARDS. The factors that govern which patients will develop the fulminant syndrome are poorly understood. It must be re-emphasized that the lung is stereotyped in its response to injury and, consequently, descriptive, or even quantitative, studies of lung morphology can only provide clues regarding the initiating factors and pathogenetic mechanisms of ARDS. Progress in understanding the pathogenesis of ARDS and development of rational approaches to therapy will ultimately depend on careful clinical and experimental studies and the application of immunohistochemical and molecular biology techniques to unravel basic mechanisms of cellular injury and response.
Collapse
Affiliation(s)
- J F Tomashefski
- Department of Pathology, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
46
|
Kasper M, Schinzel R, Niwa T, Münch G, Witt M, Fehrenbach H, Wilsch-Bräuninger M, Pehlke K, Hofer A, Funk RH. Experimental induction of AGEs in fetal L132 lung cells changes the level of intracellular cathepsin D. Biochem Biophys Res Commun 1999; 261:175-82. [PMID: 10405342 DOI: 10.1006/bbrc.1999.0902] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of the carbonyl compound glyoxal on the induction of advanced glycation end products (AGEs) in the fetal epithelial lung cells L132 was investigated using immunohistochemical, immunoelectron microscopic, and biochemical methods. It was found that glyoxal treatment resulted in morphological changes of the cells and in the membranous and cytosolic localization of AGEs such as methyl-glyoxal-derived compounds, N-(carboxymethyllysine) (CML) and imidazolone. The formation of AGEs was accompanied with a change in the intracellular expression of cathepsin D and a loss of enzymatic activity.
Collapse
Affiliation(s)
- M Kasper
- Faculty of Medicine, Technical University of Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|