1
|
Kazi DS, Katznelson E, Liu CL, Al-Roub NM, Chaudhary RS, Young DE, Mcnichol M, Mickley L, Kramer DB, Cascio WE, Bernstein AS, Rice MB. Climate Change and Cardiovascular Health: A Systematic Review. JAMA Cardiol 2024; 9:748-757. [PMID: 38865135 PMCID: PMC11366109 DOI: 10.1001/jamacardio.2024.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Importance Climate change may increase the risk of adverse cardiovascular outcomes by causing direct physiologic changes, psychological distress, and disruption of health-related infrastructure. Yet, the association between numerous climate change-related environmental stressors and the incidence of adverse cardiovascular events has not been systematically reviewed. Objective To review the current evidence on the association between climate change-related environmental stressors and adverse cardiovascular outcomes. Evidence Review PubMed, Embase, Web of Science, and Cochrane Library were searched to identify peer-reviewed publications from January 1, 1970, through November 15, 2023, that evaluated associations between environmental exposures and cardiovascular mortality, acute cardiovascular events, and related health care utilization. Studies that examined only nonwildfire-sourced particulate air pollution were excluded. Two investigators independently screened 20 798 articles and selected 2564 for full-text review. Study quality was assessed using the Navigation Guide framework. Findings were qualitatively synthesized as substantial differences in study design precluded quantitative meta-analysis. Findings Of 492 observational studies that met inclusion criteria, 182 examined extreme temperature, 210 ground-level ozone, 45 wildfire smoke, and 63 extreme weather events, such as hurricanes, dust storms, and droughts. These studies presented findings from 30 high-income countries, 17 middle-income countries, and 1 low-income country. The strength of evidence was rated as sufficient for extreme temperature; ground-level ozone; tropical storms, hurricanes, and cyclones; and dust storms. Evidence was limited for wildfire smoke and inadequate for drought and mudslides. Exposure to extreme temperature was associated with increased cardiovascular mortality and morbidity, but the magnitude varied with temperature and duration of exposure. Ground-level ozone amplified the risk associated with higher temperatures and vice versa. Extreme weather events, such as hurricanes, were associated with increased cardiovascular risk that persisted for many months after the initial event. Some studies noted a small increase in cardiovascular mortality, out-of-hospital cardiac arrests, and hospitalizations for ischemic heart disease after exposure to wildfire smoke, while others found no association. Older adults, racial and ethnic minoritized populations, and lower-wealth communities were disproportionately affected. Conclusions and Relevance Several environmental stressors that are predicted to increase in frequency and intensity with climate change are associated with increased cardiovascular risk, but data on outcomes in low-income countries are lacking. Urgent action is needed to mitigate climate change-associated cardiovascular risk, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Dhruv S. Kazi
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Global Health Institute, Cambridge, Massachusetts
| | - Ethan Katznelson
- Department of Cardiology, Weill Cornell Medical Center, New York, NY, United States
| | - Chia-Liang Liu
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Nora M. Al-Roub
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Richard S. Chaudhary
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Diane E. Young
- Knowledge Services, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Megan Mcnichol
- Knowledge Services, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Loretta Mickley
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Daniel B. Kramer
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Wayne E. Cascio
- United States Environmental Protection Agency, Durham, North Carolina
| | - Aaron S. Bernstein
- Harvard Medical School, Boston, Massachusetts
- Harvard Global Health Institute, Cambridge, Massachusetts
- Center for Climate, Health, and Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of General Pediatrics, Boston Children’s Hospital
| | - Mary B. Rice
- Harvard Medical School, Boston, Massachusetts
- Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
2
|
Dardati E, de Elejalde R, Giolito E. On the short-term impact of pollution: The effect of PM 2.5 on emergency room visits. HEALTH ECONOMICS 2024; 33:482-508. [PMID: 38010262 DOI: 10.1002/hec.4780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
In this paper, we study the short-term effect of fine particulate matter (PM 2.5) exposure on respiratory emergency room (ER) visits in Chile, a middle-income country with high levels of air pollution. To instrument for PM 2.5, we use wind speed at different altitudes (pressure levels). Unlike previous papers, our data allow us to study the impact of high pollution levels across all age groups. We find that a 1 μg per cubic meter (μg/m3 ) increase in PM 2.5 exposure for 1 day increases ER visits for respiratory illness by 0.36%. The effect is positive and significant for all age groups. Furthermore, the coefficients on government environmental alerts suggest that avoidance behavior becomes increasingly significant across all age groups as restrictions become more severe.
Collapse
|
3
|
Zhou Y, Jin Y, Zhang Z. Short-term exposure to various ambient air pollutants and emergency department visits for cause-stable ischemic heart disease: a time-series study in Shanghai, China. Sci Rep 2023; 13:16989. [PMID: 37813933 PMCID: PMC10562371 DOI: 10.1038/s41598-023-44321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Studying the impact of local meteorological conditions and air pollution on cardiovascular disease is crucial for reducing the burden of cardiovascular disease. However, there have been few studies on the acute effects of various air pollutants on stable ischemic heart disease (SIHD), and the effects of these factors are not well defined and require further investigation. We performed a time-series study aimed at exploring the association between short-term exposure to various air pollutants and emergency department (ED) visits for SIHD during 2013-2020 in Baoshan District Renhe Hospital of Shanghai, China. The associations between air pollution (NO2, PM2.5, PM10, SO2 O3-8 h and CO) and ED visits were analyzed using quasi-Poisson regression. Subgroup and sensitivity analyses were conducted. From 2013 to 2020, a total of 18,241 ED visits for SIHD were recorded. Elevated PM2.5, PM10, NO2, SO2 and CO were significantly associated with increased ED visits for SIHD at lag (0, 5), lag 0, lag (0-4, 01-03), lag (0-3, 5, 01-03) and lag (3-5). When the concentration of O3-8 h was lower than the threshold recommended by the WHO, exposure to O3-8 h was associated with a slightly decreased risk of SIHD. Moreover, the relationship between different types of air pollution and the frequency of ED visits exhibited variations based on gender, age, and seasonality. This study suggests that short-term exposure to PM2.5, PM10, NO2, SO2 and CO might induce SIHD, especially in old females. Air pollution control measures should be encouraged to prevent the occurrence and development of SIHD.
Collapse
Affiliation(s)
- Yonghong Zhou
- Affiliated Renhe Hospital of Shanghai University (Renhe Hospital, Baoshan District), School of Medicine, Shanghai University, Shanghai, China
| | - Yi Jin
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Zheng Zhang
- Affiliated Renhe Hospital of Shanghai University (Renhe Hospital, Baoshan District), School of Medicine, Shanghai University, Shanghai, China.
- Service of Endocrinology, Affiliated Renhe Hospital of Shanghai University (Renhe Hospital, Baoshan District), Shanghai, China.
| |
Collapse
|
4
|
Safaei Kouchaksaraei E, Khosravani Semnani A, Powell KM, Kelly KE. Regional impacts on air quality and health of changing a manufacturing facility's grid-boiler to a combined heat and power system. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:760-776. [PMID: 37602777 DOI: 10.1080/10962247.2023.2248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Poor air quality is linked to numerous adverse health effects including strokes, heart attacks, and premature death. Improving energy efficiency in the industrial sector reduces air emissions and yields health benefits. One of these strategies, replacing an existing grid boiler (GB) with a combined heat and power (CHP) system, can improve a facility's energy efficiency but can also increase local air emissions, which in turn can affect health outcomes. Previous studies have considered air-emissions and health outcomes of CHP system installation at a single location, but few studies have investigated the regional air quality and health impacts of replacing an existing GB with new CHP system. This study estimates the emission changes and associated health impacts of this shift in 14 regions in the US, representing different electricity generation profiles. It assumes that one manufacturing facility in each region switches from an existing GB to a CHP system. The monetized annual US health benefits of shifting a single GB to a CHP in each of the 14 regions range from $-5.3 to 0.55 million (2022 USD), while including CHP emission control increases the benefits by 100-170% ($9,000 to 1.15 million (2022 USD)). This study also includes a sensitivity analysis, which suggests that the facility location (region, state, and county), boiler efficiency, and emission control of the CHP are key factors that would determine whether shifting from a GB to CHP system would result in health benefits or burdens.Implications: Combined heat and power (CHP) systems offer industrial facilities the opportunity to improve their energy efficiency and reduce greenhouse gas emissions. However, CHP systems also combust more fuel on site and can also increase local air emissions. This study evaluates how converting an existing grid boiler (GB) system to a CHP system (with or without emission control) affects local (from combustion) and regional emissions (from electricity consumption) and the associated health burdens in different US regions. A facility can use this study's analysis as an example for estimating the tradeoffs between local emission changes, regional emission changes, and health effects. It also provides a comparison between the incremental cost of adding SCR (compared to uncontrolled CHPs) and the NPV of the monetized health benefits associated with adding the SCR.
Collapse
Affiliation(s)
| | | | - Kody M Powell
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kerry E Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Gutman L, Pauly V, Papazian L, Roch A. Effects of ambient air pollutants on ARDS incidence and outcome: a narrative review. Ann Intensive Care 2023; 13:84. [PMID: 37704926 PMCID: PMC10499767 DOI: 10.1186/s13613-023-01182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Exposure to air pollutants promotes inflammation, cancer, and mortality in chronic diseases. Acute respiratory distress syndrome (ARDS) is a common condition among intensive care unit patients and is associated with a high mortality rate. ARDS is characterized by significant lung inflammation, which can be replicated in animal models by acute exposure to high doses of various air pollutants. Recently, several clinical studies have been conducted in different countries to investigate the role of chronic or acute air pollutant exposure in enhancing both ARDS incidence and severity. RESULTS Chronic exposure studies have mainly been conducted in the US and France. The results of these studies suggest that some air pollutants, notably ozone, nitrogen dioxide, and particulate matter, increase susceptibility to ARDS and associated mortality. Furthermore, their impact may differ according to the cause of ARDS. A cohort study conducted in an urbanized zone in China showed that exposure to very high levels of air pollutants in the few days preceding intensive care unit admission was associated with an increased incidence of ARDS. The effects of acute exposure are more debatable regarding ARDS incidence and severity. CONCLUSION There is a likely relationship between air pollutant exposure and ARDS incidence and severity. However, further studies are required to determine which pollutants are the most involved and which patients are the most affected. Due to the prevalence of ARDS, air pollutant exposure may have a significant impact and could be a key public health issue.
Collapse
Affiliation(s)
- Laëtitia Gutman
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Chemin Des Bourrely, 13015, Marseille, France.
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France.
| | - Vanessa Pauly
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
- Unité d'Analyse Des Données de Santé, Assistance Publique, Hôpitaux de Marseille, 13005, Marseille, France
| | - Laurent Papazian
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
- Médecine Intensive Réanimation, Centre Hospitalier de Bastia, 20600, Bastia, Corsica, France
| | - Antoine Roch
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Chemin Des Bourrely, 13015, Marseille, France
- Faculté de Médecine, Centre d'Etudes et de Recherches Sur Les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, 13005, Marseille, France
| |
Collapse
|
6
|
Gupta P, Jangid A, Kumar R. COVID-19-associated 2020 lockdown: a study on atmospheric black carbon fall impact on human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3507-3520. [PMID: 36367602 PMCID: PMC9650661 DOI: 10.1007/s10653-022-01430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
The mean mass concentrations of black carbon (BC), biomass burning (BC)bb, and fossil fuel combustion (BC)ff have been estimated during March-May 2020 (during the COVID-19 outbreak) and March-May 2019 at a semiarid region of Agra over the Indo-Gangetic basin region. The daily mean mass concentration of BC in 2020 and 2019 was 3.9 and 6.9 µg m-3, respectively. The high monthly mean mass concentration of BC was found to be 4.7, 3.4 and 3.3 µg m-3 in Mar-2020, Apr-2020, and May-2020, respectively, whereas in Mar-2019, Apr-2019, and May-2019 was 7.7, 7.5 and 5.4 µg m-3, respectively. The absorption coefficient (babs) and absorption angstrom exponent (AAE) of black carbon were calculated. The highest mean AAE was 1.6 in the year 2020 (Mar-May 2020) indicating the dominance of biomass burning. The mean mass concentration of fossil fuel (BC)ff and biomass burning (BC)bb is 3.4 and 0.51 µg m-3, respectively, in 2020 whereas 6.4 and 0.73 µg m-3, respectively, in 2019. The mean fraction contribution of BC with fossil fuel (BC)ff was 82.1 ± 13.5% and biomass burning (BC)bb was 17.9 ± 4.3% in 2020, while in 2019, fossil fuel (BC)ff was 86.7 ± 13.5% and biomass burning (BC)bb was 13.3 ± 6.7%. The population-weighted mean concentration of BC, fossil fuel (BC)ff, and biomass burning (BC)bb has been calculated. The health risk assessment of BC has been analyzed in the form of attributable relative risk factors and attributed relative risk during the COVID-19 outbreak using AirQ + v.2.0 model. The attributable relative risk factors of BC were 20.6% in 2020 and 29.4% in 2019. The mean attributed relative risk per 10,000,000 populations at 95% confidence interval (CI) due to BC was 184.06 (142.6-225.2) in 2020 and 609.06 (418.3-714.6) in 2019. The low attributed factor and attributed relative risk in 2020 may be attributed to improvements in air quality and a fall in the emission of BC. In 2020, due to the COVID-19 pandemic, the whole country faced the biggest lockdown, ban of the transportation of private vehicles, trains, aircraft, and construction activities, and shut down of the industry leading to a fall in the impact of BC on human health. Overall, this was like a blessing in disguise. This study will help in future planning of mitigation and emission control of air pollutants in large and BC in particular. It only needs a multipronged approach. This study may be like torch bearing to set path for mitigation of impacts of air pollution and improvement of air quality.
Collapse
Affiliation(s)
- Pratima Gupta
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra-5, India.
| | - Ashok Jangid
- Department of Physics and Computer Science, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra-5, India
| | - Ranjit Kumar
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra-5, India
| |
Collapse
|
7
|
Deslauriers JR, Redlich CA, Kang CM, Grady ST, Slade M, Koutrakis P, Garshick E. Determinants of indoor carbonaceous aerosols in homes in the Northeast United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:1-7. [PMID: 35079108 PMCID: PMC9309189 DOI: 10.1038/s41370-021-00405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Little is known about sources of residential exposure to carbonaceous aerosols, which include black carbon (BC), the elemental carbon core of combustion particles, and organic compounds from biomass combustion (delta carbon). OBJECTIVE Assess the impact of residential characteristics on indoor BC and delta carbon when known sources of combustion (e.g., smoking) are minimized. METHODS Between November 2012-December 2014, 125 subjects (129 homes) in Northeast USA were recruited and completed a residential characteristics questionnaire. Every 3 months, participants received an automated sampler to measure fine particulate matter (PM2.5) in their home during a weeklong period (N = 371 indoor air samples) and were also questioned about indoor exposures. The samples were analyzed using a transmissometer at 880 nm (reflecting BC) and at 370 nm. The difference between the two wavelengths estimates delta carbon. Outdoor BC and delta carbon were measured using a central site aethalometer. RESULTS Geometric mean indoor concentrations of BC and delta carbon (0.65 µg/m³ and 0.19 µg/m³, respectively), were greater than central site concentrations (0.53 µg/m³ and 0.02 µg/m³, respectively). Multivariable analysis showed that greater indoor concentrations of BC were associated with infrequent candle use, multi-family homes, winter season, lack of air conditioning, and central site BC. For delta carbon, greater indoor concentrations were associated with apartments, spring season, and central site concentrations. SIGNIFICANCE In addition to outdoor central site concentrations, factors related to the type of housing, season, and home exposures are associated with indoor exposure to carbonaceous aerosols. Recognition of these characteristics should enable greater understanding of indoor exposures and their sources.
Collapse
Affiliation(s)
- Jessica R Deslauriers
- Yale Occupational and Environmental Medicine Program, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Orlando VA Healthcare System, Orlando, FL, USA.
| | - Carrie A Redlich
- Yale Occupational and Environmental Medicine Program, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Choong-Min Kang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie T Grady
- Research and Development Service, VA Boston Health Care System, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicie, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Slade
- Yale Occupational and Environmental Medicine Program, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Garshick
- Channing Division of Network Medicine, Department of Medicie, Brigham and Women's Hospital, Boston, MA, USA
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Lin C, Jiang W, Gao X, He Y, Li J, Zhou C, Yang L. Attributable risk and economic burden of pneumonia among older adults admitted to hospital due to short-term exposure to airborne particulate matter: a time-stratified case-crossover study from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45342-45352. [PMID: 36705825 DOI: 10.1007/s11356-023-25530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Many studies have proven the relationship between air pollutants and respiratory diseases, but few studies have assessed the impacts of air particulate matter exposure on older patients with pneumonia. This study aimed to reveal the impacts of short-term exposure to air particulate matter on the daily number of older adult patients hospitalized due to pneumonia and calculate the economic costs attributable to this exposure. We collected inpatient data from 9 city hospitals in Sichuan Province, China, from January 1, 2018, to December 31, 2019, and calculated odds ratios and 95% confidence intervals using a time-stratified case-crossover study design and an attributable risk model to calculate the economic burden due to particulate matter pollution. It was found that for every 10 μg/m3 increase in PM2.5 and PM10 concentrations, the daily number of older adult pneumonia inpatients increased by 1.5% (95% CI: 1.010-1.021) and 1.0% (95% CI: 1.006-1.014), respectively. Those 65 ~ 79 years old were more susceptible to air particulate pollutants (P < 0.05). During the study period, the total hospitalization costs and out-of-pocket expenses attributable to PM2.5 and PM10 exposure were 44.60 million CNY (6.22%) and 16.03 million CNY (6.21%), respectively, with PM2.5 being the primary influencing factor. This study revealed the relationship between particulate matter pollution and pneumonia among older adults. The role of policies to limit particulate matter concentrations in reducing disease burden among older adults can be further explored.
Collapse
Affiliation(s)
- Chengwei Lin
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xi Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yi He
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Jia Li
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Chengchao Zhou
- School of Public Health, Shandong University, Jinan, 250100, Shandong, China
| | - Lian Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
9
|
Zhou X, Guo M, Li Z, Yu X, Huang G, Li Z, Zhang X, Liu L. Associations between air pollutant and pneumonia and asthma requiring hospitalization among children aged under 5 years in Ningbo, 2015-2017. Front Public Health 2023; 10:1017105. [PMID: 36777770 PMCID: PMC9908005 DOI: 10.3389/fpubh.2022.1017105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Exposure to ambient air pollutants is associated with an increased incidence of respiratory diseases such as pneumonia and asthma, especially in younger children. We investigated the relationship between rates of hospitalization of children aged under 5 years for pneumonia and asthma and the concentration of air pollutants in Ningbo between January 1, 2015 and August 29, 2017. Methods Data were obtained from the Ningbo Air Quality Data Real-time Publishing System and the big data platform of the Ningbo Health Information Center. A generalized additive model was established via logarithmic link function and utilized to evaluate the effect of pollutant concentration on lag dimension and perform sensitivity analysis. Results A total of 10,301 cases of pneumonia and 115 cases of asthma were identified over the course of this study. Results revealed that PM2.5, PM10, SO2 and NO2 were significantly associated with hospitalization for pneumonia and asthma in children under 5 years of age. For every 10-unit increase in lag03 air pollutant concentration, hospitalization for pneumonia and asthma due to PM2.5, PM10, SO2 and NO2 increased by 2.22% (95%CI: 0.64%, 3.82%), 1.94% (95%CI: 0.85%, 3.04%), 11.21% (95%CI: 4.70%, 18.10%) and 5.42% (95%CI: 3.07%, 7.82%), respectively. Discussion Adverse effects of air pollutants were found to be more severe in children aged 1 to 5 years and adverse effects due to PM2.5, PM10 and SO2 were found to be more severe in girls. Our findings underscore the need for implementation of effective public health measures to urgently improve air quality and reduce pediatric hospitalizations due to respiratory illness.
Collapse
Affiliation(s)
- Xingyuan Zhou
- Department of Pediatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Min Guo
- Department of Obstetrics, Tangshan Maternal and Child Health Care Hospital of Hebei Province, Tangshan, Hebei, China
| | - Zhifei Li
- Department of Pediatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Yu
- Department of Pediatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Gang Huang
- Department of Preventative Medicine, Medicine School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Li
- Department of Preventative Medicine, Medicine School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohong Zhang
- Department of Pediatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China,*Correspondence: Xiaohong Zhang ✉
| | - Liya Liu
- Department of Pediatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China,Liya Liu ✉
| |
Collapse
|
10
|
Ho AFW, Hu Z, Woo TZC, Tan KBK, Lim JH, Woo M, Liu N, Morgan GG, Ong MEH, Aik J. Ambient Air Quality and Emergency Hospital Admissions in Singapore: A Time-Series Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13336. [PMID: 36293917 PMCID: PMC9603816 DOI: 10.3390/ijerph192013336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Air pollution exposure may increase the demand for emergency healthcare services, particularly in South-East Asia, where the burden of air-pollution-related health impacts is high. This article aims to investigate the association between air quality and emergency hospital admissions in Singapore. Quasi-Poisson regression was applied with a distributed lag non-linear model (DLNM) to assess the short-term associations between air quality variations and all-cause, emergency admissions from a major hospital in Singapore, between 2009 and 2017. Higher concentrations of SO2, PM2.5, PM10, NO2, and CO were positively associated with an increased risk of (i) all-cause, (ii) cardiovascular-related, and (iii) respiratory-related emergency admissions over 7 days. O3 concentration increases were associated with a non-linear decrease in emergency admissions. Females experienced a higher risk of emergency admissions associated with PM2.5, PM10, and CO exposure, and a lower risk of admissions with NO2 exposure, compared to males. The older adults (≥65 years) experienced a higher risk of emergency admissions associated with SO2 and O3 exposure compared to the non-elderly group. We found significant positive associations between respiratory disease- and cardiovascular disease-related emergency hospital admissions and ambient SO2, PM2.5, PM10, NO2, and CO concentrations. Age and gender were identified as effect modifiers of all-cause admissions.
Collapse
Affiliation(s)
- Andrew Fu Wah Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore 168753, Singapore
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhongxun Hu
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | - Kenneth Boon Kiat Tan
- Department of Emergency Medicine, Singapore General Hospital, Singapore 168753, Singapore
| | - Jia Hao Lim
- Department of Emergency Medicine, Singapore General Hospital, Singapore 168753, Singapore
| | - Maye Woo
- Environmental Quality Monitoring Department, Environmental Monitoring and Modelling Division, National Environment Agency, Singapore 228231, Singapore
| | - Nan Liu
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Geoffrey G. Morgan
- Sydney School of Public Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore 168753, Singapore
- Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Joel Aik
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School, Singapore 169857, Singapore
- Environmental Epidemiology and Toxicology Division, National Environment Agency, Singapore 228231, Singapore
| |
Collapse
|
11
|
Jin T, Amini H, Kosheleva A, Danesh Yazdi M, Wei Y, Castro E, Di Q, Shi L, Schwartz J. Associations between long-term exposures to airborne PM 2.5 components and mortality in Massachusetts: mixture analysis exploration. Environ Health 2022; 21:96. [PMID: 36221093 PMCID: PMC9552465 DOI: 10.1186/s12940-022-00907-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mahdieh Danesh Yazdi
- Department of Family, Population, & Preventive Medicine, Program in Public Health, Stony Brook University, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Yang L, Yang J, Liu M, Sun X, Li T, Guo Y, Hu K, Bell ML, Cheng Q, Kan H, Liu Y, Gao H, Yao X, Gao Y. Nonlinear effect of air pollution on adult pneumonia hospital visits in the coastal city of Qingdao, China: A time-series analysis. ENVIRONMENTAL RESEARCH 2022; 209:112754. [PMID: 35074347 DOI: 10.1016/j.envres.2022.112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/31/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Many studies have illustrated adverse effects of short-term exposure to air pollution on human health, which usually assumes a linear exposure-response (E-R) function in the delineation of health effects due to air pollution. However, nonlinearity may exist in the association between air pollutant concentrations and health outcomes such as adult pneumonia hospital visits, and there is a research gap in understanding the nonlinearity. Here, we utilized both the distributed lag model (DLM) and nonlinear model (DLNM) to compare the linear and nonlinear impacts of air pollution on adult pneumonia hospital visits in the coastal city of Qingdao, China. While both models show adverse effects of air pollutants on adult pneumonia hospital visits, the DLNM shows an attenuation of E-R curves at high concentrations. Moreover, the DLNM may reveal delayed health effects that may be missed in the DLM, e.g., ozone exposure and pneumonia hospital visits. With the stratified analysis of air pollutants on adult pneumonia hospital visits, both models consistently reveal that the influence of air pollutants is higher during the cold season than during the warm season. Nevertheless, they may behave differently in terms of other subgroups, such as age, gender and visit types. For instance, while no significant impact due to PM2.5 in any of the subgroups abovementioned emerges based on DLM, the results from DLNM indicate statistically significant impacts for the subgroups of elderly, female and emergency department (ED) visits. With respect to adjustment by two-pollutants, PM10 effect estimates for pneumonia hospital visits were the most robust in both DLM and DLNM, followed by NO2 and SO2 based on the DLNM. Considering the estimated health effects of air pollution relying on the assumed E-R functions, our results demonstrate that the traditional linear association assumptions may overlook some potential health risks.
Collapse
Affiliation(s)
- Lingyue Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jiuli Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Mingyang Liu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - Xiaohui Sun
- Department of Chronic Disease Prevention, Qingdao Municipal Center for Disease Control & Prevention, Qingdao, 266100, China
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing,100021, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic 3004, Australia
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Qu Cheng
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| |
Collapse
|
13
|
Song X, Hu Y, Ma Y, Jiang L, Wang X, Shi A, Zhao J, Liu Y, Liu Y, Tang J, Li X, Zhang X, Guo Y, Wang S. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022; 12:e049516. [PMID: 35504636 PMCID: PMC9066484 DOI: 10.1136/bmjopen-2021-049516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adverse health effects of fine particles (particulate matter2.5) have been well documented by a series of studies. However, evidences on the impacts of black carbon (BC) or elemental carbon (EC) on health are limited. The objectives were (1) to explored the effects of BC and EC on cardiovascular and respiratory morbidity and mortality, and (2) to verified the reliability of the meta-analysis by drawing p value plots. DESIGN The systematic review and meta-analysis using adapted Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and p value plots approach. DATA SOURCES PubMed, Embase and Web of Science were searched from inception to 19 July 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Time series, case cross-over and cohort studies that evaluated the associations between BC/EC on cardiovascular or respiratory morbidity or mortality were included. DATA EXTRACTION AND SYNTHESIS Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcomes were analysed via a random effects model and reported as relative risk (RR) with 95% CI. The certainty of evidences was assessed by adapted GRADE. The reliabilities of meta-analyses were analysed by p value plots. RESULTS Seventy studies met our inclusion criteria. (1) Short-term exposure to BC/EC was associated with 1.6% (95% CI 0.4% to 2.8%) increase in cardiovascular diseases per 1 µg/m3 in the elderly; (2) Long-term exposure to BC/EC was associated with 6.8% (95% CI 0.4% to 13.5%) increase in cardiovascular diseases and (3) The p value plot indicated that the association between BC/EC and respiratory diseases was consistent with randomness. CONCLUSIONS Both short-term and long-term exposures to BC/EC were related with cardiovascular diseases. However, the impact of BC/EC on respiratory diseases did not present consistent evidence and further investigations are required. PROSPERO REGISTRATION NUMBER CRD42020186244.
Collapse
Affiliation(s)
- Xuping Song
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Hu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Liangzhen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Wang
- Second Clinical College, Lanzhou University, Lanzhou, Gansu, China
| | - Anchen Shi
- Department of General Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Junxian Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxu Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yafei Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Tang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiayang Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Zhang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yong Guo
- Department of Civil Affairs in Guizhou Province, Guizhou Province People's Government, Guiyang, Guizhou, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
14
|
The Association of Carcinoembryonic Antigen (CEA) and Air Pollutants—A Population-Based Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollutants are substances in the air that have harmful effects on humans and the ecological environment. Although slight elevations in carcinoembryonic antigen (CEA) are commonly observed in apparently healthy persons, potential associations between CEA levels and chronic low-grade inflammation induced by air pollution have yet to be documented. We conducted a community-based cross-sectional study to estimate the association between short-term exposure to ambient air pollution and the CEA. A total of 9728 participants from health examinations were enrolled for the analysis and linked with their residential air pollutant data including ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), sulphur dioxide (SO2), and particulate matter (PM10). The results showed that every increase of 1 ppm O3 significantly increased the mean differences of the CEA blood concentration by 0.005 ng/mL. Each increase of 1 ppm CO significantly reduced the mean differences of the CEA blood concentration by 0.455 ng/mL. Although smoking and alcohol drinking also increased the CEA levels, with adjustment of these confounders we identified a significant association between serum CEA in the general population and levels of the air pollutants O3 and CO. In conclusion, the serum CEA concentrations and short-term air pollutants O3 and CO exposure were found to have a significant relationship; however, its mechanism is still unclear. Moreover, long-term air pollution exposure and changes in CEA concentration still need to be further evaluated.
Collapse
|
15
|
Becchetti L, Conzo G, Conzo P, Salustri F. Understanding the heterogeneity of COVID-19 deaths and contagions: The role of air pollution and lockdown decisions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114316. [PMID: 34998067 PMCID: PMC8714297 DOI: 10.1016/j.jenvman.2021.114316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The uneven geographical distribution of the novel coronavirus epidemic (COVID-19) in Italy is a puzzle given the intense flow of movements among the different geographical areas before lockdown decisions. To shed light on it, we test the effect of the quality of air (as measured by particulate matter and nitrogen dioxide) and lockdown restrictions on daily adverse COVID-19 outcomes during the first pandemic wave in the country. We find that air pollution is positively correlated with adverse outcomes of the pandemic, with lockdown being strongly significant and more effective in reducing deceases in more polluted areas. Results are robust to different methods including cross-section, pooled and fixed-effect panel regressions (controlling for spatial correlation), instrumental variable regressions, and difference-in-differences estimates of lockdown decisions through predicted counterfactual trends. They are consistent with the consolidated body of literature in previous medical studies suggesting that poor quality of air creates chronic exposure to adverse outcomes from respiratory diseases. The estimated correlation does not change when accounting for other factors such as temperature, commuting flows, quality of regional health systems, share of public transport users, population density, the presence of Chinese community, and proxies for industry breakdown such as the share of small (artisan) firms. Our findings provide suggestions for investigating uneven geographical distribution patterns in other countries, and have implications for environmental and lockdown policies.
Collapse
|
16
|
Zhang Y, Liu L, Zhang L, Yu C, Wang X, Shi Z, Hu J, Zhang Y. Assessing short-term impacts of PM 2.5 constituents on cardiorespiratory hospitalizations: Multi-city evidence from China. Int J Hyg Environ Health 2021; 240:113912. [PMID: 34968974 DOI: 10.1016/j.ijheh.2021.113912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Apart from concentrations of particulate mass, PM2.5-associated effects on health may largely depend on its chemical components. However, little is known regarding the underlying effects of specific PM2.5 constituents. The study included nearly 1 million hospital admissions from five Chinese cities during 2015-2017. Based on the modified Community Multiscale Air Quality model, our study simulated daily concentrations of PM2.5 and five main components. We used a time-stratified case-crossover design with conditional logistic regression models to estimate short-term effects of PM2.5 constituents on cause-specific hospital admissions. Per interquartile range increase in exposure to PM2.5, elemental carbon, organic carbon, nitrate, sulfate and ammonium at lag 04-day was related to an excess risk (ER%) for non-accidental admissions of 1.6% [95% confidence interval: 1.1-2.0], 1.9% [1.3-2.4], 1.0% [0.5-1.6], 1.2% [0.4-2.0], 1.2% [0.9-1.5] and 1.4% [0.9-1.9], respectively. Great heterogeneities of constituents-admission associations existed in diverse causes and constituents. This study provided multi-center high-quality evidence that hospital admissions, particularly those for ischemic heart disease (ER% ranging from 2.3 to 5.4% at lag 04-day) and pneumonia (1.9-5.1% at lag 4-day), could be triggered by short-term exposures to ambient PM2.5 constituents. Relatively stronger constituents-admission associations were found among females for respiratory causes and the elderly for cardiovascular causes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liansheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China; Institute of Global Health, Wuhan University, Wuhan, 430071, China
| | - Xuyan Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
17
|
Xu W, Liu X, Huang Z, Du Y, Zhang B, Wang Q, Xiang J, Zou Y, Ma L. Acute Effects of Air Pollution on Ischemic Heart Disease Hospitalizations: A Population-Based Time-Series Study in Wuhan, China, 2017-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12527. [PMID: 34886253 PMCID: PMC8656788 DOI: 10.3390/ijerph182312527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Evidence of the acute effects of air pollutants on ischemic heart disease (IHD) hospitalizations based on the entire population of a megacity in central China is lacking. All IHD hospitalization records from 2017 to 2018 were obtained from the Wuhan Information Center of Health and Family Planning. Daily air pollutant concentrations and meteorological data were synchronously collected from the Wuhan Environmental Protection Bureau. A time-series study using generalized additive models was conducted to systematically examine the associations between air pollutants and IHD hospitalizations. Stratified analyses by gender, age, season, hypertension, diabetes, and hyperlipidemia were performed. In total, 139,616 IHD hospitalizations were included. Short-term exposure to air pollutants was positively associated with IHD hospitalizations. The age group ≥76 was at higher exposure risk, and the associations appeared to be more evident in cold seasons. PM2.5 and PM10 appeared to have greater effects on males and those without hypertension or diabetes, whereas NO2 and SO2 had greater effects on females and those with hypertension or diabetes. The risk of IHD hospitalization due to air pollutants was greater in people without hyperlipidemia. Our study provides new evidence of the effects of air pollution on the increased incidence of IHD in central China.
Collapse
Affiliation(s)
- Wanglin Xu
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Xingyuan Liu
- Information Center of Health and Family Planning, Wuhan 430021, China;
| | - Zenghui Huang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yating Du
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Biao Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Qiaomai Wang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Jing Xiang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yuliang Zou
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Lu Ma
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| |
Collapse
|
18
|
Nassan FL, Kelly RS, Koutrakis P, Vokonas PS, Lasky-Su JA, Schwartz JD. Metabolomic signatures of the short-term exposure to air pollution and temperature. ENVIRONMENTAL RESEARCH 2021; 201:111553. [PMID: 34171372 PMCID: PMC8478827 DOI: 10.1016/j.envres.2021.111553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Short-term exposures to air pollution and temperature have been reported to be associated with inflammation and oxidative stress. However, mechanistic understanding of the affected metabolic pathways is still lacking and literature on the short-term exposure of air-pollution on the metabolome is limited. OBJECTIVES We aimed to determine changes in the plasma metabolome and associated metabolic pathways related to short-term exposure to outdoor air pollution and temperature. METHODS We performed mass-spectrometry based untargeted metabolomic profiling of plasma samples from a large and well-characterized cohort of men (Normative Aging Study) to identify metabolic pathways associated with short-term exposure to PM2.5, NO2, O3, and temperature (one, seven-, and thirty-day average of address-specific predicted estimates). We used multivariable linear mixed-effect regression and independent component analysis (ICA) while simultaneously adjusting for all exposures and correcting for multiple testing. RESULTS Overall, 456 white men provided 648 blood samples, in which 1158 metabolites were quantified, between 2000 and 2016. Average age and body mass index were 75.0 years and 27.7 kg/m2, respectively. Only 3% were current smokers. In the adjusted models, NO2, and temperature showed statistically significant associations with several metabolites (19 metabolites for NO2 and 5 metabolites for temperature). We identified six metabolic pathways (sphingolipid, butanoate, pyrimidine, glycolysis/gluconeogenesis, propanoate, and pyruvate metabolisms) perturbed with short-term exposure to air pollution and temperature. These pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. CONCLUSIONS This is the first study to report an untargeted metabolomic signature of temperature exposure, the largest to report an untargeted metabolomic signature of air pollution, and the first to use ICA. We identified several significant plasma metabolites and metabolic pathways associated with short-term exposure to air pollution and temperature; using an untargeted approach. Those pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. These results need to be confirmed by future research.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston MA, 02215, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Zhu S, Kinnon MM, Paradise A, Dabdub D, Samuelsen GS. Health Benefits in California of Strengthening the Fine Particulate Matter Standards. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12223-12232. [PMID: 34506112 DOI: 10.1021/acs.est.1c03177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Clean Air Act requires the United States Environmental Protection Agency to review routinely the National Ambient Air Quality Standards, including fine particulate matter (PM2.5). A non-governmental Independent Particulate Matter Review Panel recently concluded that the current PM2.5 standards do not protect public health adequately and recommended revising the daily standard from 35 to 25-30 μg/m3 and the annual standard from 12 to 8-10 μg/m3. To assess the public health implications of adopting the PM2.5 standards proposed by the panel, the health benefits are quantified from their implementation based on both current (observed) and future (simulated) air quality data for California. The findings indicate that strengthening the standards would provide significant public health benefits valued at $42-$149 billion. Additionally, the stronger standards are shown to benefit environmental justice via health savings that are allocated more within environmentally and socioeconomically disadvantaged communities.
Collapse
Affiliation(s)
- Shupeng Zhu
- Advanced Power and Energy Program, University of California, Irvine, California 92697-3550, United States
| | - Michael Mac Kinnon
- Advanced Power and Energy Program, University of California, Irvine, California 92697-3550, United States
| | - Andre Paradise
- Computational Environmental Sciences Laboratory, University of California, Irvine, California 92697-3975, United States
| | - Donald Dabdub
- Computational Environmental Sciences Laboratory, University of California, Irvine, California 92697-3975, United States
| | - G Scott Samuelsen
- Advanced Power and Energy Program, University of California, Irvine, California 92697-3550, United States
| |
Collapse
|
20
|
Lu J, Bu P, Xia X, Lu N, Yao L, Jiang H. Feasibility of machine learning methods for predicting hospital emergency room visits for respiratory diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29701-29709. [PMID: 33569683 DOI: 10.1007/s11356-021-12658-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The prediction of hospital emergency room visits (ERV) for respiratory diseases after the outbreak of PM2.5 is of great importance in terms of public health, medical resource allocation, and policy decision support. Recently, the machine learning methods bring promising solutions for ERV prediction in view of their powerful ability of short-term forecasting, while their performances still exist unknown. Therefore, we aim to check the feasibility of machine learning methods for ERV prediction of respiratory diseases. Three different machine learning models, including autoregressive integrated moving average (ARIMA), multilayer perceptron (MLP), and long short-term memory (LSTM), are introduced to predict daily ERV in urban areas of Beijing, and their performances are evaluated in terms of the mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2). The results show that the performance of ARIMA is the worst, with a maximum R2 of 0.70 and minimum MAE, RMSE, and MAPE of 99, 124, and 26.56, respectively, while MLP and LSTM perform better, with a maximum R2 of 0.80 (0.78) and corresponding MAE, RMSE, and MAPE of 49 (33), 62 (42), and 14.14 (9.86). In addition, it demonstrates that MLP cannot detect the time lag effect properly, while LSTM does well in the description and prediction of exposure-response relationship between PM2.5 pollution and infecting respiratory disease.
Collapse
Affiliation(s)
- Jiaying Lu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100101, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Pengju Bu
- Beijing Huayun Shinetek Science and Technology Co., Ltd., Beijing, 100101, China
| | - Xiaolin Xia
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Engineering Technology Center of Remote Sensing Big Data Application of Guangdong Province, Guangzhou Institute of Geography, Guangzhou, 510070, China
| | - Ning Lu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China
| | - Ling Yao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China.
| | - Hou Jiang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Becchetti L, Beccari G, Conzo G, Conzo P, De Santis D, Salustri F. Air quality and COVID-19 adverse outcomes: Divergent views and experimental findings. ENVIRONMENTAL RESEARCH 2021; 193:110556. [PMID: 33278470 PMCID: PMC7711169 DOI: 10.1016/j.envres.2020.110556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The questioned link between air pollution and coronavirus disease 2019 (COVID-19) spreading or related mortality represents a hot topic that has immediately been regarded in the light of divergent views. A first "school of thought" advocates that what matters are only standard epidemiological variables (i.e. frequency of interactions in proportion of the viral charge). A second school of thought argues that co-factors such as quality of air play an important role too. METHODS We analyzed available literature concerning the link between air quality, as measured by different pollutants and a number of COVID-19 outcomes, such as number of positive cases, deaths, and excess mortality rates. We reviewed several studies conducted worldwide and discussing many different methodological approaches aimed at investigating causality associations. RESULTS Our paper reviewed the most recent empirical researches documenting the existence of a huge evidence produced worldwide concerning the role played by air pollution on health in general and on COVID-19 outcomes in particular. These results support both research hypotheses, i.e. long-term exposure effects and short-term consequences (including the hypothesis of particulate matter acting as viral "carrier") according to the two schools of thought, respectively. CONCLUSIONS The link between air pollution and COVID-19 outcomes is strong and robust as resulting from many different research methodologies. Policy implications should be drawn from a "rational" assessment of these findings as "not taking any action" represents an action itself.
Collapse
Affiliation(s)
| | | | | | - Pierluigi Conzo
- University of Turin, Turin, Italy; Collegio Carlo Alberto, Turin, Italy
| | | | | |
Collapse
|
22
|
Zhu M, Wang J, Chen C, Song Y, Pan J. Transcriptomic analysis of key genes and pathways in human bronchial epithelial cells BEAS-2B exposed to urban particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9598-9609. [PMID: 33150508 DOI: 10.1007/s11356-020-11347-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Urban particulate matter (PM), a great danger to public health, is associated with increasing risk of pulmonary diseases. However, the involved key genes and signaling pathways mediating the cellular responses to urban PM are largely unknown. In this study, human bronchial epithelial cells BEAS-2B was exposed to Standard reference material (SRM) 1649b, followed by RNA-sequencing (RNA-seq) and a combination of different bioinformatics analysis. A total of 201 genes (111 upregulated and 90 downregulated) were identified as the differentially expressed genes (DEGs). Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) unveiled several significant genes and pathways involved in PM-induced lung toxicity. Protein-protein interaction (PPI) network was performed with the Search Tool for the Retrieval of Interacting Genes (STRING), and the hub gene modules were recognized by Molecular Complex Detection (MCODE), a plug-in of Cytoscape. Moreover, Connectivity Map (CMap) analysis found six candidate small molecular compounds to reverse PM-altered gene expression, including aminohippuric acid, captopril, cinoxacin, fasudil, pargyline, and altizide. Finally, the expressions of part vital genes related to inflammation (IL-1β, CXCL2, CXCL5, CXCL8), ferroptosis (HMOX1, GCLM), and autophagy (BECN1, MAPK1LC3B) were in accordance with the RNA-seq data, with a concentration-dependent manner. This study may be helpful in revealing the complex molecular mechanisms underlying PM-induced lung toxicity and provide some new therapeutic targets for PM-related pulmonary diseases.
Collapse
Affiliation(s)
- Mengchan Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cuicui Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
23
|
Qu Z, Wu D, Henze DK, Li Y, Sonenberg M, Mao F. Transboundary transport of ozone pollution to a US border region: A case study of Yuma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116421. [PMID: 33460873 DOI: 10.1016/j.envpol.2020.116421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOx, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOx emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1-4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Dien Wu
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Yi Li
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA.
| | - Mike Sonenberg
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA
| | - Feng Mao
- Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA
| |
Collapse
|
24
|
Air Pollution and Emergency Hospital Admissions—Evidences from Lisbon Metropolitan Area, Portugal. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10227997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relevance of air pollution in the public health agenda has recently been reinforced—it is known that exposure to it has negative effects in the health of individuals, especially in big cities and metropolitan areas. In this article we observed the evolution of air pollutants (CO, NO, NO2, O3, PM10) emissions and we confront them with health vulnerabilities related to respiratory and circulatory diseases (all circulatory diseases, cardiac diseases, cerebrovascular disease, ischemic heart disease, all respiratory diseases, chronic lower respiratory diseases, acute upper respiratory infections). The study is supported in two databases, one of air pollutants and the other of emergency hospital admissions, in the 2005–2015 period, applied to the Lisbon Metropolitan Area. The analysis was conducted through Ordinary Least Squares (OLS) regression, while also using semi-elasticity to quantify associations. Results showed positive associations between air pollutants and admissions, tendentially higher in respiratory diseases, with CO and O3 having the highest number of associations, and the senior age group being the most impacted. We concluded that O3 is a good predictor for the under-15 age group and PM10 for the over-64 age group; also, there seems to exist a distinction between the urban city core and its suburban areas in air pollution and its relation to emergency hospital admissions.
Collapse
|
25
|
Lee KK, Spath N, Miller MR, Mills NL, Shah ASV. Short-term exposure to carbon monoxide and myocardial infarction: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2020; 143:105901. [PMID: 32634667 DOI: 10.1016/j.envint.2020.105901] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Previous studies suggest an association between short-term exposure to carbon monoxide and myocardial infarction. We performed a systematic review and meta-analysis to assess current evidence on this association to support the update of the World Health Organization (WHO) Global Air Quality Guidelines. METHODS We searched Medline, Embase and Cochrane Central Register of Controlled Trials to update the evidence published in a previous systematic review up to 30th September 2018 for studies investigating the association between short-term exposure to ambient carbon monoxide (up to lag of seven days) and emergency department visits or hospital admissions and mortality due to myocardial infarction. Two reviewers assessed potentially eligible studies and performed data extraction independently. Random-effects meta-analysis was used to derive the pooled risk estimate per 1 mg/m3 increase in ambient carbon monoxide concentration. Risk of bias in individual studies was assessed using a domain-based assessment tool. The overall certainty of the body of evidence was evaluated using an adapted certainty of evidence assessment framework. RESULTS We evaluated 1,038 articles from the previous review and our updated literature search, of which, 26 satisfied our inclusion criteria. Overall, myocardial infarction was associated with exposure to ambient carbon monoxide concentration (risk ratio of 1.052, 95% confidence interval 1.017-1.089 per 1 mg/m3 increase). A third of studies were assessed to be at high risk of bias (RoB) due to inadequate adjustment for confounding. Using an adaptation of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework, the overall evidence was assessed to be of moderate certainty. CONCLUSIONS This review demonstrated that the pooled risk ratio for myocardial infarction was 1.052 (95% CI 1.017-1.089) per 1 mg/m3 increase in ambient carbon monoxide concentration. However, very few studies originated from low- and middle-income countries.
Collapse
Affiliation(s)
- Kuan Ken Lee
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Nicholas Spath
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, United Kingdom
| | - Anoop S V Shah
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, United Kingdom.
| |
Collapse
|
26
|
Stieb DM, Zheng C, Salama D, BerjawI R, Emode M, Hocking R, Lyrette N, Matz C, Lavigne E, Shin HH. Systematic review and meta-analysis of case-crossover and time-series studies of short term outdoor nitrogen dioxide exposure and ischemic heart disease morbidity. Environ Health 2020; 19:47. [PMID: 32357902 PMCID: PMC7195719 DOI: 10.1186/s12940-020-00601-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Nitrogen dioxide (NO2) is a pervasive urban pollutant originating primarily from vehicle emissions. Ischemic heart disease (IHD) is associated with a considerable public health burden worldwide, but whether NO2 exposure is causally related to IHD morbidity remains in question. Our objective was to determine whether short term exposure to outdoor NO2 is causally associated with IHD-related morbidity based on a synthesis of findings from case-crossover and time-series studies. METHODS MEDLINE, Embase, CENTRAL, Global Health and Toxline databases were searched using terms developed by a librarian. Screening, data extraction and risk of bias assessment were completed independently by two reviewers. Conflicts between reviewers were resolved through consensus and/or involvement of a third reviewer. Pooling of results across studies was conducted using random effects models, heterogeneity among included studies was assessed using Cochran's Q and I2 measures, and sources of heterogeneity were evaluated using meta-regression. Sensitivity of pooled estimates to individual studies was examined using Leave One Out analysis and publication bias was evaluated using Funnel plots, Begg's and Egger's tests, and trim and fill. RESULTS Thirty-eight case-crossover studies and 48 time-series studies were included in our analysis. NO2 was significantly associated with IHD morbidity (pooled odds ratio from case-crossover studies: 1.074 95% CI 1.052-1.097; pooled relative risk from time-series studies: 1.022 95% CI 1.016-1.029 per 10 ppb). Pooled estimates for case-crossover studies from Europe and North America were significantly lower than for studies conducted elsewhere. The high degree of heterogeneity among studies was only partially accounted for in meta-regression. There was evidence of publication bias, particularly for case-crossover studies. For both case-crossover and time-series studies, pooled estimates based on multi-pollutant models were smaller than those from single pollutant models, and those based on older populations were larger than those based on younger populations, but these differences were not statistically significant. CONCLUSIONS We concluded that there is a likely causal relationship between short term NO2 exposure and IHD-related morbidity, but important uncertainties remain, particularly related to the contribution of co-pollutants or other concomitant exposures, and the lack of supporting evidence from toxicological and controlled human studies.
Collapse
Affiliation(s)
- David M. Stieb
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Carine Zheng
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Dina Salama
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rania BerjawI
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Monica Emode
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Robyn Hocking
- Learning, Knowledge and Library Services, Health Canada, Ottawa, Canada
| | - Ninon Lyrette
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Carlyn Matz
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Water and Air Quality Bureau, Health, Canada, Ottawa, Canada
| | - Hwashin H. Shin
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC V6C 1A1 Canada
- Department of Mathematics and Statistics, Queen’s University, Kingston, Canada
| |
Collapse
|
27
|
Do Ambient Ozone or Other Pollutants Modify Effects of Controlled Ozone Exposure on Pulmonary Function? Ann Am Thorac Soc 2020; 17:563-572. [DOI: 10.1513/annalsats.201908-597oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
28
|
Atmospheric Pollution and Hospitalization for Cardiovascular and Respiratory Diseases in the City of Manaus from 2008 to 2012. ScientificWorldJournal 2020; 2020:8458359. [PMID: 32308570 PMCID: PMC7152981 DOI: 10.1155/2020/8458359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
Abstract
Objective To relate the levels of air pollution and hospital admissions for cardiovascular and respiratory diseases in the city of Manaus in Brazil from 2008 to 2012. Method This is an ecological time-series study among children (under 5 years of age) and elderly (above 60 years of age). Data on the daily number of hospitalizations for cardiovascular and respiratory diseases, pollutants (PM2.5), temperature, and humidity were used. Poisson generalized additive models were used to estimate the association between variables. Increases in hospitalizations for cardiovascular and respiratory diseases were estimated for the interquartile range (IQR) daily mean level of each variable studied, with a confidence interval of 95%. Results Respiratory diseases and children: −0.40% (95% CI: −1.11, 0.30), 0.59% (95% CI: −0.35, 1.52), and 0.47% (95% CI: −3.28, 4.21) for PM2.5, temperature, and humidity, respectively. Respiratory diseases and elderly: 0.19% (95% CI: −0.93, 1.31), −0.10% (95% CI: −1.85, 1.65), and −6.17% (95% CI: −13.08, 0.74) for PM2.5, temperature, and humidity, respectively. Cardiovascular diseases and elderly: −0.18% (95% CI: −0.86, 0.50), −0.04% (95% CI: −1.10, 1.03), and −3.37% (95% CI: −7.59, 0.85) for PM2.5, temperature, and humidity, respectively. Conclusions The time-series study found no significant association between PM2.5, temperature, humidity, and hospitalization, unlike the evidences provided by the present academic literature. Since there is no air quality monitoring network in Manaus and the option available in the present study was to reproduce some information obtained from remote sensing, there is a need for implementation of ground monitoring stations for health and environmental studies in the region.
Collapse
|
29
|
Farhadi Z, Abulghasem Gorgi H, Shabaninejad H, Aghajani Delavar M, Torani S. Association between PM 2.5 and risk of hospitalization for myocardial infarction: a systematic review and a meta-analysis. BMC Public Health 2020; 20:314. [PMID: 32164596 PMCID: PMC7068986 DOI: 10.1186/s12889-020-8262-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background It is generally assumed that there have been mixed results in the literature regarding the association between ambient particulate matter (PM) and myocardial infarction (MI). The aim of this meta-analysis was to explore the rate of short-term exposure PM with aerodynamic diameters ≤2.5 μm (PM2.5) and examine its potential effect(s) on the risk of MI. Methods A systematic search was conducted on databases like PubMed, Scopus, Web of Science, and Embase with components: “air pollution” and “myocardial infarction”. The summary relative risk (RR) and 95% confidence intervals (95%CI) were also calculated to assess the association between the PM2.5 and MI. Results Twenty-six published studies were ultimately identified as eligible candidates for the meta-analysis of MI until Jun 1, 2018. The results illustrated that a 10-μg/m 3 increase in PM2.5 was associated with the risk of MI (RR = 1.02; 95% CI 1.01–1.03; P ≤ 0.0001). The heterogeneity of the studies was assessed through a random-effects model with p < 0.0001 and the I2 was 69.52%, indicating a moderate degree of heterogeneity. We also conducted subgroup analyses including study quality, study design, and study period. Accordingly, it was found that subgroups time series study design and high study period could substantially decrease heterogeneity (I2 = 41.61, 41.78). Conclusions This meta-analysis indicated that exposure – response between PM2.5 and MI. It is vital decision makers implement effective strategies to help improve air pollution, especially in developing countries or prevent exposure to PM2.5 to protect human health.
Collapse
Affiliation(s)
- Zeynab Farhadi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Abulghasem Gorgi
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran. .,Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosein Shabaninejad
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mouloud Aghajani Delavar
- Infertility and Reproductive Health Research Center, Research Institute for Health, Babol University of Medical Sciences, Babol, Iran
| | - Sogand Torani
- Department of Health Services Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Fan M, Wang Y. The impact of PM 2.5 on mortality in older adults: evidence from retirement of coal-fired power plants in the United States. Environ Health 2020; 19:28. [PMID: 32126999 PMCID: PMC7055118 DOI: 10.1186/s12940-020-00573-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Evidence of causal relationship between mortality of older adults and low- concentration PM2.5 remains limited. OBJECTIVES This study investigates the effects of low-concentration PM2.5 on the mortality of adults older than 65 using the closure of coal-fired power plants in the Eastern United States as a natural experiment. METHODS We investigated power plants in the Eastern United States (US) that had production changes through unit shutdown or plant retirement between 1999 and 2013. We included only non-clustered power plants without scrubbers and with capacities greater than 50 MW. We used instrumental variable (IV) and difference-in-differences (DID) approaches to estimate the causal impact of PM2.5 concentrations on mortality among Medicare beneficiaries. We compared changes in monthly age-adjusted mortality before and after the retirement of coal-fired plants between the treated and control counties; we accounted for annual wind direction in our selection of treated and control counties. In the models, we initially included only county and monthly fixed effects, and then adjusted for covariates including: 1) only weather variables (temperature, dew point, pressure); and 2) weather variables and socio-economic variables (median household income and poverty rate). RESULTS The monthly age-adjusted mortality rate averaged across all plants was approximately 423 per 100,000 (SD = 69) and was higher for males than females. Mean PM2.5 concentrations across all counties were 12 μg/m3 (SD = 3.78). Using the IV method, we found that reductions in PM2.5 concentrations significantly decreased monthly mortality among older adults. IV results show that a 1-μg/m3 reduction in PM2.5 concentrations leads to 7.17 fewer deaths per 100,000 per month, or a 1.7% lower monthly mortality rate among people older than 65 years. Using the DID approach, we found that power plant retirement significantly decreased: 1) monthly PM2.5 levels by 2.1 μg/m3, and 2) monthly age-adjusted mortality by approximately 15 people per 100,000 (or 3.6%) in treated counties relative to control counties. The mortality effects were higher among males than females and its impact was the greatest among people older than 75 years. CONCLUSION These findings provide evidence of the effectiveness of local, plant-level control measures in reducing near-plant PM2.5 and mortality among U.S. Medicare beneficiaries.
Collapse
Affiliation(s)
- Maoyong Fan
- Department of Economics, Miller College of Business, Ball State University, 2000 W. University Ave. WB 201, Muncie, IN, 47306, USA.
| | - Yi Wang
- Department of Environmental Health, Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Rich DQ, Frampton MW, Balmes JR, Bromberg PA, Arjomandi M, Hazucha MJ, Thurston SW, Alexis NE, Ganz P, Zareba W, Koutrakis P, Thevenet-Morrison K. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 2. Effects of Personal and Ambient Concentrations of Ozone and Other Pollutants on Cardiovascular and Pulmonary Function. Res Rep Health Eff Inst 2020; 2020:1-90. [PMID: 32239870 PMCID: PMC7325421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
INTRODUCTION The Multicenter Ozone Study of oldEr Subjects (MOSES) was a multi-center study evaluating whether short-term controlled exposure of older, healthy individuals to low levels of ozone (O3) induced acute changes in cardiovascular biomarkers. In MOSES Part 1 (MOSES 1), controlled O3 exposure caused concentration-related reductions in lung function with evidence of airway inflammation and injury, but without convincing evidence of effects on cardiovascular function. However, subjects' prior exposures to indoor and outdoor air pollution in the few hours and days before each MOSES controlled O3 exposure may have independently affected the study biomarkers and/or modified biomarker responses to the MOSES controlled O3 exposures. METHODS MOSES 1 was conducted at three clinical centers (University of California San Francisco, University of North Carolina, and University of Rochester Medical Center) and included healthy volunteers 55 to 70 years of age. Consented participants who successfully completed the screening and training sessions were enrolled in the study. All three clinical centers adhered to common standard operating procedures and used common tracking and data forms. Each subject was scheduled to participate in a total of 11 visits: screening visit, training visit, and three sets of exposure visits consisting of the pre-exposure day, the exposure day, and the post-exposure day. After completing the pre-exposure day, subjects spent the night in a nearby hotel. On exposure days, the subjects were exposed for 3 hours in random order to 0 ppb O3 (clean air), 70 ppb O3, and 120 ppm O3. During the exposure period the subjects alternated between 15 minutes of moderate exercise and 15 minutes of rest. A suite of cardiovascular and pulmonary endpoints was measured on the day before, the day of, and up to 22 hours after each exposure. In MOSES Part 2 (MOSES 2), we used a longitudinal panel study design, cardiopulmonary biomarker data from MOSES 1, passive cumulative personal exposure samples (PES) of O3 and nitrogen dioxide (NO2) in the 72 hours before the pre-exposure visit, and hourly ambient air pollution and weather measurements in the 96 hours before the pre-exposure visit. We used mixed-effects linear regression and evaluated whether PES O3 and NO2 and these ambient pollutant concentrations in the 96 hours before the pre-exposure visit confounded the MOSES 1 controlled O3 exposure effects on the pre- to post-exposure biomarker changes (Aim 1), whether they modified these pre- to post-exposure biomarker responses to the controlled O3 exposures (Aim 2), whether they were associated with changes in biomarkers measured at the pre-exposure visit or morning of the exposure session (Aim 3), and whether they were associated with differences in the pre- to post-exposure biomarker changes independently of the controlled O3 exposures (Aim 4). RESULTS Ambient pollutant concentrations at each site were low and were regularly below the National Ambient Air Quality Standard levels. In Aim 1, the controlled O3 exposure effects on the pre- to post-exposure biomarker differences were little changed when PES or ambient pollutant concentrations in the previous 96 hours were included in the model, suggesting these were not confounders of the controlled O3 exposure/biomarker difference associations. In Aim 2, effects of MOSES controlled O3 exposures on forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were modified by ambient NO2 and carbon monoxide (CO), and PES NO2, with reductions in FEV1 and FVC observed only when these concentrations were "Medium" or "High" in the 72 hours before the pre-exposure visit. There was no such effect modification of the effect of controlled O3 exposure on any other cardiopulmonary biomarker. As hypothesized for Aim 3, increased ambient O3 concentrations were associated with decreased pre-exposure heart rate variability (HRV). For example, high frequency (HF) HRV decreased in association with increased ambient O3 concentrations in the 96 hours before the pre-exposure visit (-0.460 ln[ms2]; 95% CI, -0.743 to -0.177 for each 10.35-ppb increase in O3; P = 0.002). However, in Aim 4 these increases in ambient O3 were also associated with increases in HF and low frequency (LF) HRV from pre- to post-exposure, likely reflecting a "recovery" of HRV during the MOSES O3 exposure sessions. Similar patterns across Aims 3 and 4 were observed for LF (the other primary HRV marker), and standard deviation of normal-to-normal sinus beat intervals (SDNN) and root mean square of successive differences in normal-to-normal sinus beat intervals (RMSSD) (secondary HRV markers). Similar Aim 3 and Aim 4 patterns were observed for FEV1 and FVC in association with increases in ambient PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5), CO, and NO2 in the 96 hours before the pre-exposure visit. For Aim 3, small decreases in pre-exposure FEV1 were significantly associated with interquartile range (IQR) increases in PM2.5 concentrations in the 1 hour before the pre-exposure visit (-0.022 L; 95% CI, -0.037 to -0.006; P = 0.007), CO in the 3 hours before the pre-exposure visit (-0.046 L; 95% CI, -0.076 to -0.016; P = 0.003), and NO2 in the 72 hours before the pre-exposure visit (-0.030 L; 95% CI, -0.052 to -0.008; P = 0.007). However, FEV1 was not associated with ambient O3 or sulfur dioxide (SO2), or PES O3 or NO2 (Aim 3). For Aim 4, increased FEV1 across the exposure session (post-exposure minus pre-exposure) was marginally significantly associated with each 4.1-ppb increase in PES O3 concentration (0.010 L; 95% CI, 0.004 to 0.026; P = 0.010), as well as ambient PM2.5 and CO at all lag times. FVC showed similar associations, with patterns of decreased pre-exposure FVC associated with increased PM2.5, CO, and NO2 at most lag times, and increased FVC across the exposure session also associated with increased concentrations of the same pollutants, reflecting a similar recovery. However, increased pollutant concentrations were not associated with adverse changes in pre-exposure levels or pre- to post-exposure changes in biomarkers of cardiac repolarization, ST segment, vascular function, nitrotyrosine as a measure of oxidative stress, prothrombotic state, systemic inflammation, lung injury, or sputum polymorphonuclear leukocyte (PMN) percentage as a measure of airway inflammation. CONCLUSIONS Our previous MOSES 1 findings of controlled O3 exposure effects on pulmonary function, but not on any cardiovascular biomarker, were not confounded by ambient or personal O3 or other pollutant exposures in the 96 and 72 hours before the pre-exposure visit. Further, these MOSES 1 O3 effects were generally not modified, blunted, or lessened by these same ambient and personal pollutant exposures. However, the reductions in markers of pulmonary function by the MOSES 1 controlled O3 exposure were modified by ambient NO2 and CO, and PES NO2, with reductions observed only when these pollutant concentrations were elevated in the few hours and days before the pre-exposure visit. Increased ambient O3 concentrations were associated with reduced HRV, with "recovery" during exposure visits. Increased ambient PM2.5, NO2, and CO were associated with reduced pulmonary function, independent of the MOSES-controlled O3 exposures. Increased pollutant concentrations were not associated with pre-exposure or pre- to post-exposure changes in other cardiopulmonary biomarkers. Future controlled exposure studies should consider the effect of ambient pollutants on pre-exposure biomarker levels and whether ambient pollutants modify any health response to a controlled pollutant exposure.
Collapse
Affiliation(s)
- D Q Rich
- University of Rochester Medical Center, Rochester, New York
| | - M W Frampton
- University of Rochester Medical Center, Rochester, New York
| | - J R Balmes
- University of California at San Francisco
| | | | | | | | - S W Thurston
- University of Rochester Medical Center, Rochester, New York
| | - N E Alexis
- University of North Carolina at Chapel Hill
| | - P Ganz
- University of California at San Francisco
| | - W Zareba
- University of Rochester Medical Center, Rochester, New York
| | - P Koutrakis
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
32
|
Deryugina T, Heutel G, Miller NH, Molitor D, Reif J. The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction. THE AMERICAN ECONOMIC REVIEW 2019; 109:4178-4219. [PMID: 32189719 PMCID: PMC7080189 DOI: 10.1257/aer.20180279] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We estimate the causal effects of acute fine particulate matter exposure on mortality, health care use, and medical costs among the US elderly using Medicare data. We instrument for air pollution using changes in local wind direction and develop a new approach that uses machine learning to estimate the life-years lost due to pollution exposure. Finally, we characterize treatment effect heterogeneity using both life expectancy and generic machine learning inference. Both approaches find that mortality effects are concentrated in about 25 percent of the elderly population.
Collapse
Affiliation(s)
- Tatyana Deryugina
- Gies College of Business, University of Illinois, 340 Wohlers Hall, 1206 S. Sixth Street, Champaign, IL 61820
| | - Garth Heutel
- Department of Economics, Georgia State University, PO Box 3992, Atlanta, GA 30302
| | - Nolan H. Miller
- Gies College of Business, University of Illinois, 340 Wohlers Hall, 1206 S. Sixth Street, Champaign, IL 61820
| | - David Molitor
- Gies College of Business, University of Illinois, 340 Wohlers Hall, 1206 S. Sixth Street, Champaign, IL 61820
| | - Julian Reif
- Gies College of Business, University of Illinois, 340 Wohlers Hall, 1206 S. Sixth Street, Champaign, IL 61820
| |
Collapse
|
33
|
Murtas R, Russo AG. Effects of pollution, low temperature and influenza syndrome on the excess mortality risk in winter 2016-2017. BMC Public Health 2019; 19:1445. [PMID: 31684915 PMCID: PMC6829994 DOI: 10.1186/s12889-019-7788-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the winter of 2016-2017, the number of deaths recorded in the north-west Europe was significantly higher than that in previous years. This spike in mortality was attributed principally to an influenza epidemic, but the contribution of air pollution and cold temperature has not been investigated. Information on the combined effect of low temperatures, influenza epidemic, and air pollution on mortality is inadequate. The objective of this study was to estimate the excess mortality in the winter of 2016-2017 in the metropolitan area of Milan, and to evaluate the independent short-term effect of 3 risk factors: low temperatures, the influenza epidemic, and air pollution. METHODS We used a case-crossover, time-stratified study design. Mortality data were collected on all people aged > 65 years who died of natural causes, due to respiratory diseases or cardiovascular diseases, between December 1, 2016 and February 15, 2017. Environmental data were extracted from the Regional Environmental Protection Agency. The National Surveillance Network provided data on influenza epidemic. RESULTS Among the 7590 natural deaths in people aged > 65 years, 965 (13%) were caused by respiratory conditions, and 2688 (35%) were caused by cardiovascular conditions. There were statistically significant associations between the minimum recorded temperature and deaths due to natural causes (OR = 0.966, 95% CI: 0.944-0.989), and cardiovascular conditions (OR = 0.961, 95% CI: 0.925-0.999). There were also statistically significant association between the influenza epidemic and deaths due to natural causes (OR = 1.198, 95% CI: 1.156-1.241), cardiovascular conditions (OR = 1.153, 95% CI: 1.088-1.223), and respiratory conditions (OR = 1.303, 95% CI: 1.166-1.456). High levels of PM10 (60 and 70 μg/m3) were associated with a statistically significant increase in natural and cause-specific mortality. There were statistically significant interactions between PM10 and influenza for cardiovascular-related mortality, and between influenza and temperature for deaths due to natural causes. CONCLUSIONS Excess of mortality in Milan during winter 2016-2017 was associated with influenza epidemic and concomitant environmental exposures, specifically, the combined effect of air pollution and low temperatures. Policies mitigating the effects of environmental risk factors should be implemented to prevent future excess mortality.
Collapse
Affiliation(s)
- Rossella Murtas
- Epidemiology Unit, Agency for Health Protection (ATS) of Milan, Corso Italia 19 -, 20122, Milan, Italy
| | - Antonio Giampiero Russo
- Epidemiology Unit, Agency for Health Protection (ATS) of Milan, Corso Italia 19 -, 20122, Milan, Italy.
| |
Collapse
|
34
|
Balmes JR, Arjomandi M, Bromberg PA, Costantini MG, Dagincourt N, Hazucha MJ, Hollenbeck-Pringle D, Rich DQ, Stark P, Frampton MW. Ozone effects on blood biomarkers of systemic inflammation, oxidative stress, endothelial function, and thrombosis: The Multicenter Ozone Study in oldEr Subjects (MOSES). PLoS One 2019; 14:e0222601. [PMID: 31553765 PMCID: PMC6760801 DOI: 10.1371/journal.pone.0222601] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023] Open
Abstract
The evidence that exposure to ozone air pollution causes acute cardiovascular effects is mixed. We postulated that exposure to ambient levels of ozone would increase blood markers of systemic inflammation, prothrombotic state, oxidative stress, and vascular dysfunction in healthy older subjects, and that absence of the glutathione S-transferase Mu 1 (GSTM1) gene would confer increased susceptibility. This double-blind, randomized, crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol. Subjects were exposed for 3 h in random order to 0 parts per billion (ppb) (filtered air), 70 ppb, and 120 ppb ozone, alternating 15 min of moderate exercise and rest. Blood was obtained the day before, approximately 4 h after, and approximately 22 h after each exposure. Linear mixed effect and logistic regression models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. The definition of statistical significance was p<0.01. There were no effects of ozone on the three primary markers of systemic inflammation and a prothrombotic state: C-reactive protein, monocyte-platelet conjugates, and microparticle-associated tissue factor activity. However, among the secondary endpoints, endothelin-1, a potent vasoconstrictor, increased from pre- to post-exposure with ozone concentration (120 vs 0 ppb: 0.07 pg/mL, 95% confidence interval [CI] 0.01, 0.14; 70 vs 0 ppb: -0.03 pg/mL, CI -0.09, 0.04; p = 0.008). Nitrotyrosine, a marker of oxidative and nitrosative stress, decreased with increasing ozone concentrations, with marginal significance (120 vs 0 ppb: -41.5, CI -70.1, -12.8; 70 vs 0 ppb: -14.2, CI -42.7, 14.2; p = 0.017). GSTM1 status did not modify the effect of ozone exposure on any of the outcomes. These findings from healthy older adults fail to identify any mechanistic basis for the epidemiologically described cardiovascular effects of exposure to ozone. The findings, however, may not be applicable to adults with cardiovascular disease.
Collapse
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Mehrdad Arjomandi
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
| | - Philip A. Bromberg
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | - Milan J. Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul Stark
- New England Research Institute, Watertown, MA, United States of America
| | - Mark W. Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
35
|
Wang M, Hopke PK, Masiol M, Thurston SW, Cameron S, Ling F, van Wijngaarden E, Croft D, Squizzato S, Thevenet-Morrison K, Chalupa D, Rich DQ. Changes in triggering of ST-elevation myocardial infarction by particulate air pollution in Monroe County, New York over time: a case-crossover study. Environ Health 2019; 18:82. [PMID: 31492149 PMCID: PMC6728968 DOI: 10.1186/s12940-019-0521-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Previous studies have reported that fine particle (PM2.5) concentrations triggered ST elevation myocardial infarctions (STEMI). In Rochester, NY, multiple air quality policies and economic changes/influences from 2008 to 2013 led to decreased concentrations of PM2.5 and its major constituents (SO42-, NO3-, elemental and primary organic carbon). This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014-2016), compared to DURING (2008-2013) and BEFORE these polices and changes (2005-2007). METHODS Using 921 STEMIs treated at the University of Rochester Medical Center (2005-2016) and a case-crossover design, we examined whether the rate of STEMI associated with increased PM2.5, ultrafine particles (UFP, < 100 nm), accumulation mode particles (AMP, 100-500 nm), black carbon, SO2, CO, and O3 concentrations in the previous 1-72 h was modified by the time period related to these pollutant source changes (BEFORE, DURING, AFTER). RESULTS Each interquartile range (3702 particles/cm3) increase in UFP concentration in the previous 1 h was associated with a 12% (95% CI = 3%, 22%) increase in the rate of STEMI. The effect size was larger in the AFTER period (26%) than the DURING (5%) or BEFORE periods (9%). There were similar patterns for black carbon and SO2. CONCLUSIONS An increased rate of STEMI associated with UFP and other pollutant concentrations was higher in the AFTER period compared to the BEFORE and DURING periods. This may be due to changes in PM composition (e.g. higher secondary organic carbon and particle bound reactive oxygen species) following these air quality policies and economic changes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY USA
| | - Scott Cameron
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Frederick Ling
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Daniel Croft
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Boulevard, CU 420644, Rochester, NY 14642 USA
| |
Collapse
|
36
|
Tomić-Spirić V, Kovačević G, Marinković J, Janković J, Ćirković A, Milošević Đerić A, Relić N, Janković S. Evaluation of the Impact of Black Carbon on the Worsening of Allergic Respiratory Diseases in the Region of Western Serbia: A Time-Stratified Case-Crossover Study. ACTA ACUST UNITED AC 2019; 55:medicina55060261. [PMID: 31181862 PMCID: PMC6631303 DOI: 10.3390/medicina55060261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Many epidemiological studies have shown a positive association between black carbon (BC) and the exacerbation of allergic rhinitis and allergic asthma. However, none of the studies in Serbia examined this relationship yet. The aim of this study was to examine the associations between BC and emergency department (ED) visits for allergic rhinitis and allergic asthma in the Užice region of Serbia. Materials and Methods: A time-stratified case-crossover design was applied to 523 ED visits for allergic rhinitis and asthma exacerbation that occurred in the Užice region of Serbia between 2012–2014. Data regarding ED visits were routinely collected in the Health Center of Užice. The daily average concentrations of BC were measured by automatic ambient air quality monitoring stations. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated using conditional logistic regression adjusted for the potential confounding influence of weather variables (temperature, humidity, and air pressure). Results: Statistically significant associations were observed between ED visits for allergic rhinitis and 2-day lagged exposure to BC (OR = 3.20; CI = 1.00–10.18; p = 0.049) and allergic asthma and 3-day lagged exposure to BC (OR = 3.23; CI = 1.05–9.95; p = 0.041). Conclusion: Exposure to BC in the Užice region increases the risk of ED visits for allergic rhinitis and asthma, particularly during the heating season.
Collapse
Affiliation(s)
- Vesna Tomić-Spirić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic for Allergology and Immunology, Clinical Centre of Serbia, 11000 Belgrade, Serbia.
| | | | - Jelena Marinković
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Janko Janković
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Anđa Ćirković
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | | | - Nenad Relić
- Department of Otorhinolaryngology, Faculty of Medicine, University of Priština, 38220 Kosovska Mitrovica, Serbia.
| | - Slavenka Janković
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
37
|
Bazyar J, Pourvakhshoori N, Khankeh H, Farrokhi M, Delshad V, Rajabi E. A comprehensive evaluation of the association between ambient air pollution and adverse health outcomes of major organ systems: a systematic review with a worldwide approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12648-12661. [PMID: 30903465 DOI: 10.1007/s11356-019-04874-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/13/2019] [Indexed: 05/28/2023]
Abstract
Ambient air pollution is nowadays one of the most crucial contributors to deteriorating health status worldwide. The components of air pollution include PM2.5 and PM10, NO2, SO2, CO, O3, and organic compounds. They are attributed to several health outcomes, for instance, cardiovascular diseases (CVD), respiratory diseases, birth outcomes, neurologic diseases, and psychiatric diseases. The objective of this study is to evaluate the association between different ambient air pollutants and the above-mentioned health outcomes. In this systematic review, a total of 76 articles was ultimately selected from 2653 articles, through multiple screening steps by the aid of a set of exclusion criteria as non-English articles, indoor air pollution assessment, work-related, occupational and home-attributed pollution, animal studies, tobacco smoking effects, letters to editors, commentaries, animal experiments, reviews, case reports and case series, out of 19,862 published articles through a systematic search in PubMed, Web of Science, and Scopus. Then, the associations between air pollution and different health outcomes were measured as relative risks and odds ratios. The association between air pollutants, PM2.5 and PM10, NO2, SO2, CO, O3, and VOC with major organ systems health was investigated through the gathered studies. Relative risks and/or odds ratios attributed to each air pollutant/outcome were ultimately reported. In this study, a thorough and comprehensive discussion of all aspects of the contribution of ambient air pollutants in health outcomes was proposed. To our knowledge up to now, there is no such comprehensive outlook on this issue. Growing concerns in concert with air pollution-induced health risks impose a great danger on the life of billions of people worldwide. Should we propose ideas and schemes to reduce ambient air pollutant, there will be dramatic reductions in the prevalence and occurrence of health-threatening conditions.
Collapse
Affiliation(s)
- Jafar Bazyar
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Negar Pourvakhshoori
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamidreza Khankeh
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mehrdad Farrokhi
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Vahid Delshad
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elham Rajabi
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
38
|
Phosri A, Ueda K, Phung VLH, Tawatsupa B, Honda A, Takano H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1144-1153. [PMID: 30360246 DOI: 10.1016/j.scitotenv.2018.09.183] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 04/13/2023]
Abstract
BACKGROUND Although health effects of air pollutants are well documented in many countries especially in North America and Western Europe, few studies have been conducted in Thailand where pollution mix, weather conditions, and demographic characteristics are different. The present study aimed to investigate the effects of ambient air pollution on hospital admissions for cardiovascular and respiratory diseases in Bangkok, Thailand. METHODS We obtained daily air pollution concentration (O3, NO2, SO2, PM10, and CO) and weather variable monitored in Bangkok from January 2006 to December 2014. Daily hospital admissions for cardiovascular and respiratory diseases were obtained from the National Health Security Office during the study period. A time-series analysis with generalized linear model was used to examine the effects of air pollution on hospital admissions by controlling for long-term trend and other potential confounders. The effect modification by age (0-14 years, 15-64 years, ≥65 years) and gender was also examined. RESULTS An increase of 10 μg/m3 in O3, NO2, SO2, PM10, and 1 mg/m3 in CO at lag 0-1 day was associated with a 0.14% (95% CI: -0.34 to 0.63), 1.28% (0.87 to 1.69), 8.42% (6.16 to 10.74), 1.04% (0.68 to 1.41) and 6.69% (4.33 to 9.11) increase in cardiovascular admission, respectively; and 0.69% (95% CI: 0.18 to 1.21), 1.42% (0.98 to 1.85), 4.49% (2.22 to 6.80), 1.18% (0.79 to 1.57) and 7.69% (5.20 to 10.23) increase in respiratory admission, respectively. The elderly (≥65 years) seemed to be the most susceptible group to the effect of air pollution, whereas the effect estimate for male and female was not significantly different. CONCLUSIONS Results from this study contributed the evidence to support the effects of air pollution (O3, NO2, SO2, PM10, and CO) on hospital admissions for cardiovascular and respiratory diseases, which might be useful for public health intervention in Thailand.
Collapse
Affiliation(s)
- Arthit Phosri
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kayo Ueda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Vera Ling Hui Phung
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Benjawan Tawatsupa
- Health Impact Assessment Division, Department of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Young SS, Acharjee MK, Das K. The reliability of an environmental epidemiology meta-analysis, a case study. Regul Toxicol Pharmacol 2018; 102:47-52. [PMID: 30590082 DOI: 10.1016/j.yrtph.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Claims made in science papers are coming under increased scrutiny with many claims failing to replicate. Meta-analyses are questionable when based on data from observational studies which are often unreliable. We examine the reliability of the base studies used in an air quality/heart attack meta-analysis and the resulting meta-analysis. A meta-analysis study that includes 14 observational air quality/heart attack studies is examined for its statistical reliability. We use simple counting to evaluate the reliability of the base papers and a p-value plot of the p-values from the base studies to examine study heterogeneity. We find that the base papers have the potential for massive multiple testing and multiple modeling with no statistical adjustments. Statistics coming from the base papers are not guaranteed to be unbiased, a requirement for a valid meta-analysis. There is study heterogeneity for the base papers with strong evidence for so called p-hacking in some, possibly many, of the studies. We make two observations: there are many claims at issue in each of the 14 base studies so uncorrected multiple testing is a serious issue. We find that some of the base papers exhibit the characteristics of p-hacking and are therefore not reliable; the resulting meta-analysis is not reliable.
Collapse
|
40
|
Lange SS. Comparing apples to oranges: Interpreting ozone concentrations from observational studies in the context of the United States ozone regulatory standard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1547-1556. [PMID: 30166248 DOI: 10.1016/j.scitotenv.2018.06.372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
In 2015, the United States Environmental Protection Agency (US EPA) set the ozone National Ambient Air Quality Standards (NAAQS) at 0.070 parts per million (ppm), for an annual 4th highest daily 8-hour (h) maximum average concentration, averaged over three years, with compliance based on the monitor with the highest concentrations. Numerous epidemiological studies have evaluated associations between ozone and health effects, but how the ozone concentrations derived from those studies can be compared to the ozone NAAQS is not clear, because of the complexity of the standard. The purpose of the present work was to determine how ozone summary metrics used in key epidemiology studies compare to the metrics that comprise the ozone regulatory value. Evaluation of epidemiology studies used for quantitative risk assessment in the 2015 ozone NAAQS review demonstrated that the most commonly used summary metrics that differed from the NAAQS were: 1-h maximum or 24-h average concentrations; multiple-day averages from 2 to 30 days; and averaging of ozone concentrations across all monitors in an area and over different months of the year. Using different ozone summary metrics to calculate the ozone regulatory value in twelve US cities for 2000-2002 or 2013-2015 generated alternative ozone regulatory values that were often substantively different and that may or may not vary commensurate with the regulatory standard. Comparison of epidemiology study metrics to other countries' ozone standards or guideline levels produces similar challenges as described here for the NAAQS. In conclusion, many of the ozone concentration metrics used in epidemiology studies cannot be directly compared to the ozone NAAQS, and using simple conversion ratios adds substantial uncertainty to concentration estimates. These summary metrics must be reconciled to the regulatory value before any judgements are made as to the protectiveness of current and alternative standards based on epidemiology study results.
Collapse
Affiliation(s)
- Sabine S Lange
- Toxicology Division, Texas Commission on Environmental Quality, Austin, TX, USA.
| |
Collapse
|
41
|
Hart JE, Grady ST, Laden F, Coull BA, Koutrakis P, Schwartz JD, Moy ML, Garshick E. Effects of Indoor and Ambient Black Carbon and
PM
2.5
on Pulmonary Function among Individuals with COPD. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127008. [PMID: 30570336 PMCID: PMC6371657 DOI: 10.1289/ehp3668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Particulate matter (PM) air pollution has been associated with decreased pulmonary function, but the exposure–response relationship in chronic obstructive pulmonary disease (COPD) patients is uncertain, and most studies have only focused on exposures to ambient pollution. OBJECTIVES We aimed to assess associations between pulmonary function and indoor and ambient PM≤ 2.5 μ m (PM 2.5 ) and black carbon (BC). METHODS Between November 2012 and December 2014, 125 patients with COPD (mean age, 73.4 y) who were not currently smoking and without known indoor BC sources were recruited. Indoor BC andPM 2.5 were measured in each home for a week in each season, up to four times a year, followed by in-person spirometry pre- and post-bronchodilator. Ambient exposures were available from a central site monitor. Multivariable adjusted mixed effects regression models were used to assess associations scaled per interquartile range (IQR) of exposure. RESULTS There were 367 study visits; the median (IQR) indoor BC andPM 2.5 were 0.19 (0.22)μ g / m 3 and 6.67 (5.80)μ g / m 3 , respectively. Increasing indoor exposures to BC were associated with decreases in pre-bronchodilator forced expiratory volume in 1 s( FEV 1 ) and forced vital capacity (FVC), andFEV 1 / FVC . For example, in multivariable adjusted models, each IQR increase in indoor BC from the weekly integrated filter was associated with a17.87 mL [95% confidence interval (CI):− 33.76 ,− 1.98 ] decrease in pre-bronchodilatorFEV 1 . Increases in indoorPM 2.5 were associated with decreases inFEV 1 and FVC of smaller magnitude than those for indoor BC; however, the results were less precise. Ambient BC was not associated with pre-bronchodilator pulmonary function, ambientPM 2.5 was only associated with decreases in FVC and increases inFEV 1 / FVC , and neither indoor nor ambient BC orPM 2.5 were associated with post-bronchodilator pulmonary function. CONCLUSIONS Low-level exposures to indoor BC andPM 2.5 , but not ambient exposures, were consistently associated with decreases in pre-bronchodilator pulmonary function. There was no association between exposures and post-bronchodilator pulmonary function. https://doi.org/10.1289/EHP3668.
Collapse
Affiliation(s)
- Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephanie T Grady
- Research and Development Service, Veterans Administration Boston Health Care System, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel D Schwartz
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Administration Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Administration Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Ruchiraset A, Tantrakarnapa K. Time series modeling of pneumonia admissions and its association with air pollution and climate variables in Chiang Mai Province, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33277-33285. [PMID: 30255274 PMCID: PMC6245022 DOI: 10.1007/s11356-018-3284-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/18/2018] [Indexed: 05/17/2023]
Abstract
This study aimed to predict the number of pneumonia cases in Chiang Mai Province. An autoregressive integrated moving average (ARIMA) was used in data fitting and to predict future pneumonia cases monthly. Total pneumonia cases of 67,583 were recorded in Chiang Mai during 2003-2014 that the monthly pattern of case was similar every year. Monthly pneumonia cases were increased during February and September, which are the periods of winter and rainy season in Thailand and decreased during April to July (the period of summer season to early rainy season). Using available data on 12 years of pneumonia cases, air pollution, and climate in Chiang Mai, the optimum ARIMA model was investigated based on several conditions. Seasonal change was included in the models due to statistically strong season conditions. Twelve ARIMA model (ARMODEL1-ARMODEL12) scenarios were investigated. Results showed that the most appropriate model was ARIMA (1,0,2)(2,0,0)[12] with PM10 (ARMODEL5) exhibiting the lowest AIC of - 38.29. The predicted number of monthly pneumonia cases by using ARMODEL5 during January to March 2013 was 727, 707, and 658 cases, while the real number was 804, 868, and 783 cases, respectively. This finding indicated that PM10 held the most important role to predict monthly pneumonia cases in Chiang Mai, and the model was able to predict future pneumonia cases in Chiang Mai accurately.
Collapse
Affiliation(s)
- Apaporn Ruchiraset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
43
|
Wang L, Zheng X, Stevanovic S, Wu X, Xiang Z, Yu M, Liu J. Characterization particulate matter from several Chinese cooking dishes and implications in health effects. J Environ Sci (China) 2018; 72:98-106. [PMID: 30244755 DOI: 10.1016/j.jes.2017.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
Cooking fume produced by oil and food at a high temperature releases large amount of fine particulate matter (PM) which have a potential hazard to human health. This chamber study investigated particle emission characteristics originated from using four types of oil (soybean oil, olive oil, peanut oil and lard) and different kinds of food materials (meat and vegetable). The corresponding emission factors (EFs) of number, mass, surface area and volume for particles were discussed. Temporal variation of size-fractionated particle concentration showed that olive oil produced the highest number PM concentration for the entire cooking process. Multiple path particle dosimetry (MPPD) model was performed to predict deposition in the human respiratory tract. Results showed that the pulmonary airway deposition fraction was the largest. It was also found that particles produced from olive oil led to the highest deposition. We strongly recommend minimizing the moisture content of ingredients before cooking and giving priority to the use of peanut oil instead of olive oil to reduce human exposure to PM.
Collapse
Affiliation(s)
- Lina Wang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinran Zheng
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Svetlana Stevanovic
- International Laboratory of Air Quality and Health, Queensland University of Science and Technology, Brisbane, QLD 4001, Australia.
| | - Xin Wu
- The security environmental protection bureau of Ningbo daxie development zone, Ningbo 315812, China
| | - Zhiyuan Xiang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingzhou Yu
- Department of physics, China Jiliang University, Hangzhou 310018, China
| | - Jing Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
44
|
Maji S, Ghosh S, Ahmed S. Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:471-490. [PMID: 29963909 DOI: 10.1080/09603123.2018.1487045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/06/2018] [Indexed: 05/28/2023]
Abstract
UNLABELLED The present study reports short-term impact of poor air quality on cardiovascular and respiratory morbidity rate in Delhi. The data on monthly count of patients visiting Out Patient Department (OPD) and hospital admission due to respiratory and cardiovascular illnesses from hospitals along with daily air quality data from air quality monitoring stations of Central Pollution Control Board (CPCB), Government of India, across Delhi were collected for the period 2008 to 2012. A semi-parametric Quasi-Poisson regression model was used to examine the association of high pollution episodes with relative risk of hospital OPD visit and hospital admission due to respiratory and cardiovascular diseases. This study has confirmed the substantial adverse health effects due to air pollution across criterion air pollutants. The study reports the short-term effects of air pollution on morbidity from a time-series study first time in India. The study findings illustrate the evidence of adverse health impact of air pollution from India to the global pool and can influence the policy makers to implement better air quality management system for Indian cities. ABBREVIATIONS OPD: Out Patient Department; IPD: Inpatient Department; RD: Respiratory Disease; CVD: Cardiovascular Disease; COPD: Chronic Obstructive Pulmonary Disease; CPCB: Central Pollution Control Board; NAAQMP: National Ambient Air Quality Monitoring Programme; NAAQS: National Ambient Air Quality Standards; RR; Relative Risk; IMD: Indian Meteorological Department; PM10: Particulate Matter less than 10 μm in aerodynamic diameter; SO2: Sulphur dioxide; NO2: Nitrogen dioxide; CO: Carbon Monoxide; O3: Ozone; DCE: Delhi College of Engineering; GTB Hospital: Guru Teg Bahadur Hospital; VPCH: Vallabhbhai Patel Chest Hospital; RMLH: Ram Manohar Lohia Hospital; SJH: Safdarjung Hospital; LNJPH: Lok Narayan Jai Prakash Hospital; GTBH: Guru Teg Bahadur Hospital; AH: Ambedkar Hospital; HRH: Hindu Rao Hospital; ESIH: ESI Hospital; SGRH: Sir Ganga Ram Hospital.
Collapse
Affiliation(s)
- Sanjoy Maji
- a Faculty of Engineering and Technology , Jamia Millia Islamia (Central University) , New Delhi , India
| | - Santu Ghosh
- b Department of Biostatistics , St. Johns Medical College , Bangalore , India
| | - Sirajuddin Ahmed
- a Faculty of Engineering and Technology , Jamia Millia Islamia (Central University) , New Delhi , India
| |
Collapse
|
45
|
Rich DQ, Balmes JR, Frampton MW, Zareba W, Stark P, Arjomandi M, Hazucha MJ, Costantini MG, Ganz P, Hollenbeck-Pringle D, Dagincourt N, Bromberg PA. Cardiovascular function and ozone exposure: The Multicenter Ozone Study in oldEr Subjects (MOSES). ENVIRONMENT INTERNATIONAL 2018; 119:193-202. [PMID: 29980042 DOI: 10.1016/j.envint.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND To date, there have been relatively few studies of acute cardiovascular responses to controlled ozone inhalation, although a number of observational studies have reported significant positive associations between both ambient ozone levels and acute cardiovascular events and long-term ozone exposure and cardiovascular mortality. OBJECTIVES We hypothesized that short-term controlled exposure to low levels of ozone in filtered air would induce autonomic imbalance, repolarization abnormalities, arrhythmia, and vascular dysfunction. METHODS This randomized crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol, from June 2012 to April 2015. Subjects were exposed for 3 h in random order to 0 ppb (filtered air), 70 ppb ozone, and 120 ppb ozone, alternating 15 min of moderate exercise with 15 min of rest. A suite of cardiovascular endpoints was measured the day before, the day of, and up to 22 h after each exposure. Mixed effect linear and logit models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. Site and time were included in the models. RESULTS We found no significant effects of ozone exposure on any of the primary or secondary measures of autonomic function, repolarization, ST segment change, arrhythmia, or vascular function (systolic blood pressure and flow-mediated dilation). CONCLUSIONS In this multicenter study of older healthy women and men, there was no convincing evidence for acute effects of 3-h, relatively low-level ozone exposures on cardiovascular function. However, we cannot exclude the possibility of effects with higher ozone concentrations, more prolonged exposure, or in subjects with underlying cardiovascular disease. Further, we cannot exclude the possibility that exposure to ambient ozone and other pollutants in the days before the experimental exposures obscured or blunted cardiovascular biomarker response to the controlled ozone exposures.
Collapse
Affiliation(s)
- David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America.
| | - John R Balmes
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Mark W Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Wojciech Zareba
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul Stark
- New England Research Institute, Watertown, MA, United States of America
| | - Mehrdad Arjomandi
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
| | - Milan J Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | - Peter Ganz
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
| | | | | | - Philip A Bromberg
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
46
|
Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing-A Non-Linear Analysis Based on the New Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091969. [PMID: 30201896 PMCID: PMC6165060 DOI: 10.3390/ijerph15091969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022]
Abstract
This paper aimed to estimate health risks focusing on respiratory diseases from exposure to gaseous multi-pollutants based on new data and revealed new evidence after the most stringent air pollution control plan in Beijing which was carried out in 2013. It used daily respiratory diseases outpatient data from a hospital located in Beijing with daily meteorological data and monitor data of air pollutants from local authorities. All data were collected from 2014 to 2016. Distributed lag non-linear model was employed. Results indicated that NO2 and CO had positive association with outpatients number on the day of the exposure (1.045 (95% confidence interval (CI): 1.003, 1.089) for CO and 1.022 (95% CI: 1.008, 1.036) for NO2) (and on the day after the exposure (1.026 (95% CI: 1.005, 1.048) for CO and 1.013 (95% CI: 1.005, 1.021) for NO2). Relative risk (RR) generally declines with the number of lags; ozone produces significant effects on the first day (RR = 0.993 (95% CI: 0.989, 0.998)) as well as second day (RR = 0.995 (95% CI: 0.991, 0.999)) after the exposure, while particulate pollutants did not produce significant effects. Effects from the short-term exposure to gaseous pollutants were robust after controlling for particulate matters. Our results contribute to a comprehensive understanding of the dependencies between the change of air pollutants concentration and their health effects in Beijing after the implementation of promising air regulations in 2013. Results of the study can be used to develop relevant measures minimizing the adverse health consequences of air pollutants and supporting sustainable development of Beijing as well as other rapidly growing Asian cities.
Collapse
|
47
|
Yu Y, Yao S, Dong H, Ji M, Chen Z, Li G, Yao X, Wang SL, Zhang Z. Short-term effects of ambient air pollutants and myocardial infarction in Changzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22285-22293. [PMID: 29808399 DOI: 10.1007/s11356-018-2250-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/07/2018] [Indexed: 05/06/2023]
Abstract
Ambient air pollution had been shown strongly associated with cardiovascular diseases. However, the association between air pollution and myocardial infarction (MI) is inconsistent. In the present study, we conducted a time-series study to investigate the association between air pollution and MI. Daily air pollutants, weather data, and MI data were collected from January 2015 to December 2016 in Changzhou, China. Generalized linear model (GLM) was used to assess the immediate effects of air pollutants (PM2.5, PM10, NO2, SO2, and O3) on MI. We identified a total of 5545 cases for MI, and a 10-μg/m3 increment in concentrations of PM2.5 and PM10 was associated with respective increases of 1.636% (95% confidence interval [CI] 0.537-2.740%) and 0.805% (95% CI 0.037-1.574%) for daily MI with 2-day cumulative effects. The associations were more robust among males and in the warm season versus the cold one. No significant effect was found in SO2, NO2, or O3. This study suggested that short-term exposure to PM2.5 and PM10 was associated with the increased MI risks. Our results might be useful for the primary prevention of MI exacerbated by air pollutants.
Collapse
Affiliation(s)
- Yongquan Yu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Shen Yao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huibin Dong
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Minghui Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhiyong Chen
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Guiying Li
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Xingjuan Yao
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Shou-Lin Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
48
|
Garshick E, Grady ST, Hart JE, Coull BA, Schwartz JD, Laden F, Moy ML, Koutrakis P. Indoor black carbon and biomarkers of systemic inflammation and endothelial activation in COPD patients. ENVIRONMENTAL RESEARCH 2018; 165:358-364. [PMID: 29783085 PMCID: PMC6007002 DOI: 10.1016/j.envres.2018.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
RATIONALE Evidence linking traffic-related particle exposure to systemic effects in chronic obstructive lung disease (COPD) patients is limited. OBJECTIVES Assess relationships between indoor black carbon (BC), a tracer of traffic-related particles, and plasma biomarkers of systemic inflammation and endothelial activation. METHODS BC was measured by reflectance in fine particle samples over a mean of 7.6 days in homes of 85 COPD patients up to 4 times seasonally over a year. After the completion of sampling, plasma C-reactive protein (CRP), interleukin-6 (IL-6), and soluble vascular adhesion molecule-1 (sVCAM-1) were measured. Current smokers and homes with major sources of BC were excluded; therefore, indoor BC was primarily a measure of infiltrated outdoor BC. Mixed effects regression models with a random intercept for each participant were used to assess BC effects at different times (1-9 days before phlebotomy) and in the multi-day sample. RESULTS Measured median BC was 0.19 µg/m3 (interquartile range, IQR=0.22 µg/m3). Adjusting for season, race, age, BMI, heart disease, diabetes, ambient temperature, relative humidity, a recent cold or similar illness, and blood draw time, there was a positive relationship between BC and CRP. The largest effect size was for BC averaged over the previous seven days (11.8% increase in CRP per IQR; 95%CI = 1.8-22.9). Effects were greatest among non-statin users and persons with diabetes. There were positive effects of BC on IL-6 only in non-statin users. There were no associations with sVCAM-1. CONCLUSIONS These results demonstrate exposure-response relationships between indoor BC with biomarkers of systemic inflammation in COPD patients, with stronger relationships in persons not using statins and with diabetes.
Collapse
Affiliation(s)
- Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Stephanie T Grady
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Research and Development Service, VA Boston Healthcare System, Boston, MA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel D Schwartz
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
49
|
Peng L, Meyerhoefer C, Chou SY. The health implications of unconventional natural gas development in Pennsylvania. HEALTH ECONOMICS 2018; 27:956-983. [PMID: 29532974 DOI: 10.1002/hec.3649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2017] [Accepted: 01/28/2018] [Indexed: 05/27/2023]
Abstract
We investigate the health impacts of unconventional natural gas development of Marcellus shale in Pennsylvania between 2001 and 2013 by merging well permit data from the Pennsylvania Department of Environmental Protection with a database of all inpatient hospital admissions. After comparing changes in hospitalization rates over time for air pollution-sensitive diseases in counties with unconventional gas wells to changes in hospitalization rates in nonwell counties, we find a significant association between shale gas development and hospitalizations for pneumonia among the elderly, which is consistent with higher levels of air pollution resulting from unconventional natural gas development. We note that the lack of any detectable impact of shale gas development on younger populations may be due to unobserved factors contemporaneous with drilling, such as migration.
Collapse
Affiliation(s)
- Lizhong Peng
- Department of Economics, University of West Georgia, Carrollton, GA, USA
| | - Chad Meyerhoefer
- Department of Economics, Lehigh University and NBER, Bethlehem, PA, USA
| | - Shin-Yi Chou
- Department of Economics, Lehigh University and NBER, Bethlehem, PA, USA
| |
Collapse
|
50
|
Grady ST, Koutrakis P, Hart JE, Coull BA, Schwartz J, Laden F, Zhang JJ, Gong J, Moy ML, Garshick E. Indoor black carbon of outdoor origin and oxidative stress biomarkers in patients with chronic obstructive pulmonary disease. ENVIRONMENT INTERNATIONAL 2018; 115:188-195. [PMID: 29574339 PMCID: PMC5970068 DOI: 10.1016/j.envint.2018.02.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 05/21/2023]
Abstract
OBJECTIVES We assessed relationships between indoor black carbon (BC) exposure and urinary oxidative stress biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA), in participants with chronic obstructive pulmonary disease (COPD). METHODS Eighty-two participants completed in-home air sampling for one week prior to providing urine samples up to four times in a year. Weekly indoor and daily outdoor concentrations were used to estimate indoor daily lags and moving averages. There were no reported in-home BC sources, thus indoor levels closely represented outdoor BC infiltration. Mixed effects regression models with a random intercept for each participant were used to assess relationships between indoor BC and 8-OHdG and MDA, adjusting for age, race, BMI, diabetes, heart disease, season, time of urine collection, urine creatinine, and outdoor humidity and temperature. RESULTS There were positive effects of BC on 8-OHdG and MDA, with the greatest effect the day before urine collection (6.9% increase; 95% CI 0.9-13.3%, per interquartile range: 0.22 μg/m3) for 8-OHdG and 1 to 4 days before collection (8.3% increase; 95% CI 0.03-17.3% per IQR) for MDA. Results were similar in models adjusting for PM2.5 not associated with BC and NO2 (10.4% increase, 95% CI: 3.5-17.9 for 8-OHdG; 8.1% increase, 95% CI: -1.1-18.1 for MDA). Effects on 8-OHdG were greater in obese participants. CONCLUSIONS We found positive associations between BC exposure and 8-OHdG and MDA, in which associations with 8-OHdG were stronger in obese participants. These results suggest that exposure to low levels of traffic-related pollution results in lipid peroxidation and oxidative DNA damage in individuals with COPD.
Collapse
Affiliation(s)
- Stephanie T Grady
- Research and Development Service, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jicheng Gong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep, and Critical Care Medicine, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|