1
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Ma Z, Pan S, Yang Y, Ren H, Yin S, Chen Q, An Z, Zhao X, Xu Z. Lipid droplets: Emerging therapeutic targets for age-related metabolic diseases. Ageing Res Rev 2025; 108:102758. [PMID: 40300696 DOI: 10.1016/j.arr.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the structure and function of LDs, their interactions with other organelles, and associated proteins. Furthermore, we explore the potential mechanisms by which LDs mediate the onset of ARMDs, including Alzheimer's disease (AD), sarcopenia, metabolic cardiomyopathy, non-alcoholic fatty liver disease (NAFLD), and cancer. Lastly, we discuss intervention strategies aimed at targeting LDs to improve outcomes in ARMDs, including exercise, dietary, and pharmacological interventions.
Collapse
Affiliation(s)
- Zheying Ma
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yaming Yang
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Huiqian Ren
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Sikun Yin
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qianyu Chen
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhenxian An
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
4
|
Cheng J, Zheng J, Ma C, Li Y, Hao H. T-cell senescence: Unlocking the tumor immune "Dark Box" - A multidimensional analysis from mechanism to tumor immunotherapeutic intervention. Semin Cancer Biol 2025; 113:190-209. [PMID: 40381926 DOI: 10.1016/j.semcancer.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunosenescence is the dysfunction of the immune system that occurs with age, a process that is complex and characterized by several features, of which T-cell senescence is one of the key manifestations. In the tumor microenvironment, senescent T cells lead to the inability of tumor cells to be effectively eliminated, triggering immunosuppression, which in turn affects the efficacy of immunotherapy. This is a strong indication that T-cell senescence significantly weakens the immune function of the body, making individuals, especially elderly patients with cancer, more vulnerable to cancer attacks. Despite the many challenges, T-cell senescence is important as a potential therapeutic target. This review provides insights into the molecular mechanisms of T-cell senescence and its research advances in patients with cancer, especially in older adults, and systematically analyzes potential intervention strategies, including molecular mechanism-based interventions, the use of immune checkpoint inhibitors, and CAR-T cell therapy. It is hoped that this will establish a theoretical framework for T-cell senescence in the field of tumor immunology and provide a scientific and prospective reference basis for subsequent in-depth research and clinical practice on senescent T cells.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China.
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Ma
- Department of Emergency Internal Medicine, Zibo Central Hospital, Zibo 255024, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050017, China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| |
Collapse
|
5
|
Huang L, Zhang C, Jiang A, Lin A, Zhu L, Mou W, Zeng D, Liu Z, Tang B, Zhang J, Cheng Q, Miao K, Wei T, Luo P. T-cell Senescence in the Tumor Microenvironment. Cancer Immunol Res 2025; 13:618-632. [PMID: 40232041 DOI: 10.1158/2326-6066.cir-24-0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 04/16/2025]
Abstract
T-cell senescence occurs in the tumor microenvironment (TME) and influences cancer outcomes as well as the effectiveness of immunotherapies. The TME triggers this T-cell senescence via multiple pathways, including persistent stimulation with tumor-associated antigens, altered metabolic pathways, and activation of chronic inflammatory responses. Senescent T cells exhibit characteristics such as genomic instability, loss of protein homeostasis, metabolic dysregulation, and epigenetic alterations. Direct cross-talk between senescent T cells and other immune cells further exacerbates the immunosuppressive TME. This immune-tumor cell interaction within the TME contributes to impaired tumor antigen recognition and surveillance by T cells. The presence of senescent T cells is often associated with poor prognosis and reduced efficacy of immunotherapies; thus, targeting the tumor-promoting mechanisms of T-cell senescence may provide novel insights into improving tumor immunotherapy and patient outcomes. This review explores the contributors to tumor-derived T-cell senescence, the link between T-cell senescence and tumor prognosis, and the potential for targeting T-cell senescence to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
6
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Cao M, Luan J, Zhai C, Liu H, Zhang Z, Guo N. Targeting leukocyte immunoglobulin‑like receptor B2 in the tumor microenvironment: A new treatment prospect for solid tumors (Review). Oncol Lett 2025; 29:181. [PMID: 39990807 PMCID: PMC11843431 DOI: 10.3892/ol.2025.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Leukocyte immunoglobulin-like receptor B2 (LILRB2) functions as an immunosuppressive receptor that has a prominent role in immune regulation. The expression of LILRB2 is higher in a variety of solid malignant tumors compared with that in corresponding normal tissues. LILRB2 can be expressed in tumor cells and tumor stromal cells within the tumor microenvironment. Upregulation of LILRB2 in tumors is significantly associated with a poorer tumor phenotype, increased tolerance to certain therapeutic drugs, tumor immune escape and shorter patient overall survival time. Therefore, LILRB2 can be utilized as a novel biomarker to predict the prognosis of patients with solid malignant tumors, and targeting LILRB2 may be an effective strategy for targeted cancer therapy. The present review provides a general overview of the role and mechanisms of LILRB2 in the microenvironment of solid tumors, and emphasizes the significance of targeting LILRB2 as a promising approach for tumor-specific therapy.
Collapse
Affiliation(s)
- Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
8
|
You L, Wu Q. Cellular senescence in tumor immune escape: Mechanisms, implications, and therapeutic potential. Crit Rev Oncol Hematol 2025; 208:104628. [PMID: 39864532 DOI: 10.1016/j.critrevonc.2025.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation. Chronic inflammation is exacerbated by cellular senescence through the upregulation of pro-inflammatory factors such as interleukin-1β, thereby augmenting the risk of tumorigenesis. Additionally, the interplay between autophagy and cellular senescence adds another layer of complexity. Autophagy, known to slow down the aging process by reducing p53/p21 levels, may be downregulated by cellular senescence. To harness the therapeutic potential of cellular senescence, targeting its immunological aspects has gained significant attention. Strategies such as immune checkpoint inhibitors and T-cell senescence inhibition are being explored in the context of cellular senescence immunotherapy. In this comprehensive review, we provide a compelling overview of the regulation of cellular senescence and delve into the influencing factors, including chronic inflammation, autophagy, and circadian rhythms, associated with senescence in the tumor microenvironment. We specifically focus on unraveling the enigmatic dual role of cellular senescence in tumor immune escape. By deciphering the intricate nature of cellular senescence in the tumor microenvironment, this review aims to advance our understanding and pave the way for leveraging senescence as a promising target for tumor immunotherapy applications.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
9
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Wang L, Wu Q, Zhang ZW, Zhang H, Jin H, Zhou XL, Liu JY, Li D, Liu Y, Fan ZS. Colony-stimulating factor 3 and its receptor promote leukocyte immunoglobulin-like receptor B2 expression and ligands in gastric cancer. World J Gastrointest Oncol 2025; 17:97858. [PMID: 39958563 PMCID: PMC11756009 DOI: 10.4251/wjgo.v17.i2.97858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Colony-stimulating factor 3 (CSF3) and its receptor (CSF3R) are known to promote gastric cancer (GC) growth and metastasis. However, their effects on the immune microenvironment remain unclear. Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) in GC. We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands, angiopoietin-like protein 2 (ANGPTL2) and human leukocyte antigen-G (HLA-G), contributing to immunosuppression. AIM To investigate the relationship between CSF3/CSF3R and LILRB2, as well as its ligands ANGPTL2 and HLA-G, in GC. METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed, stratifying patients by CSF3R expression. Differentially expressed genes and immune checkpoints were evaluated. Immunohistochemistry (IHC) was performed on GC tissues. Correlation analyses of CSF3R, LILRB2, ANGPTL2, and HLA-G were conducted using The Cancer Genome Atlas data and IHC results. GC cells were treated with CSF3, and expression levels of LILRB2, ANGPTL2, and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting. RESULTS Among 122 upregulated genes in high CSF3R expression groups, LILRB2 showed the most significant increase. IHC results indicated high expression of LILRB2 (63.0%), ANGPTL2 (56.5%), and HLA-G (73.9%) in GC tissues. Strong positive correlations existed between CSF3R and LILRB2, ANGPTL2, and HLA-G mRNA levels (P < 0.001). IHC confirmed positive correlations between CSF3R and LILRB2 (P < 0.001), and HLA-G (P = 0.010), but not ANGPTL2 (P > 0.05). CSF3 increased LILRB2, ANGPTL2, and HLA-G expression in GC cells. Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression, impacting CSF3's regulatory effects. CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands, with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
Collapse
Affiliation(s)
- Long Wang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Qi Wu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zong-Wen Zhang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hui Zhang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hui Jin
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xin-Liang Zhou
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Jia-Yin Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Dan Li
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yan Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zhi-Song Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
11
|
Xu B, Luo Z, Niu X, Li Z, Lu Y, Li J. Fungi, immunosenescence and cancer. Semin Cancer Biol 2025; 109:67-82. [PMID: 39788169 DOI: 10.1016/j.semcancer.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Fungal microbes are a small but immunoreactive component of the human microbiome, which may influence cancer development, progression and therapeutic response. Immunosenescence is a process of immune dysfunction that occurs with aging, including lymphoid organ remodeling, contributing to alterations in the immune system in the elderly, which plays a critical role in many aspects of cancer. There is evidence for the interactions between fungi and immunosenescence in potentially regulating cancer progression and remodeling the tumor microenvironment (TME). In this review, we summarize potential roles of commensal and pathogenic fungi in modulating cancer-associated processes and provide more-detailed discussions on the mechanisms of which fungi affect tumor biology, including local and distant regulation of the TME, modulating antitumor immune responses and interactions with neighboring bacterial commensals. We also delineate the features of immunosenescence and its influence on cancer development and treatment, and highlight the interactions between fungi and immunosenescence in cancer. We discuss the prospects and challenges for harnessing fungi and immunosenescence in cancer diagnosis and/or treatment. Considering the limited understanding and techniques in conducting such research, we also provide our view on how to overcome challenges faced by the exploration of fungi, immunosenescence and their interactions on tumor biology.
Collapse
Affiliation(s)
- Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China
| | - Zan Luo
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, China; Voylin Institute for Translation Medicine, Xiamen, Fujian 361000, China
| | - Zhi Li
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yeping Lu
- Department of Neurosurgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, China.
| | - Junyu Li
- Department of Radiation Oncology, Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi 330029, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
12
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Deng M, Tang F, Chang X, Zhang Y, Liu P, Ji X, Zhang Y, Yang R, Jiang J, He J, Miao J. A targetable OSGIN1 - AMPK - SLC2A3 axis controls the vulnerability of ovarian cancer to ferroptosis. NPJ Precis Oncol 2025; 9:15. [PMID: 39809873 PMCID: PMC11733211 DOI: 10.1038/s41698-024-00791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Despite advances in various chemotherapy regimens, current therapeutic options are limited for ovarian cancer patients. Oxidative stress-induced growth inhibitor 1 (OSGIN1), which is a tumor suppressor gene known to regulate the cellular stress response and apoptosis, is associated with ovarian cancer development. However, the underlying mechanisms involved in ferroptosis regulation have not been elucidated. Thus, this study aimed to investigate the effect and underlying regulatory mechanism of the OSGIN1 gene on ovarian cancer cells. Our results demonstrated that loss of the OSGIN1 gene promoted ovarian cancer growth and conferred resistance to drug-induced ferroptosis. Mechanistically, the loss of OSGIN1 activates AMPK signaling through ATM, leading to the upregulation of SLC2A3, which protects cells from ferroptosis and renders them insensitive to ferroptosis inducers. Notably, an SLC2A3-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on ovarian cancer patient-derived xenograft tumors. Overall, anti-SLC2A3 therapy is a promising method to improve ovarian cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yanqin Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, 266011, Shandong, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
| | - Junyi Jiang
- State Key Laboratry of Medical Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, 100006, Beijing, China
| | - Junqi He
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, 100006, Beijing, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100006, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, 100006, Beijing, China.
| |
Collapse
|
14
|
Ellerman DA. The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds. BioDrugs 2025; 39:75-102. [PMID: 39673023 DOI: 10.1007/s40259-024-00691-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
After decades of gradual progress from conceptualization to early clinical trials (1960-2000), the therapeutic potential of bispecific antibodies (bisp Abs) is now being fully realized. Insights gained from both successful and unsuccessful trials are helping to identify which mechanisms of action, antibody formats, and targets prove most effective, and which may benefit from further refinement. While T-cell engagers remain the most commonly used class of bisp Abs, current efforts aim to increase their effectiveness by co-engaging costimulatory molecules, reducing escape mechanisms, and countering immunosuppression. Strategies to minimize cytokine release syndrome (CRS) are also actively under development. In addition, novel antibody formats that are selectively activated within tumors are an exciting area of research, as is the precise targeting of specific T-cell subsets. Beyond T cells, the recruitment of macrophages and dendritic cells is attracting increasing interest, with researchers exploring various macrophage receptors to promote phagocytosis or to carry out specialized functions, such as the immunologically silent clearance of amyloid-beta plaques in the brain. While bisp Abs targeting B cells are relatively limited, they are primarily aimed at inhibiting B-cell activity in autoimmune diseases. Another evolving application involves the forced interaction between proteins. Beyond the successful development of Hemlibra for hemophilia, bispecific antibodies that mimic cytokine activity are being explored. Additionally, the recruitment of cell surface ubiquitin ligases and other enzymes represents a novel and promising therapeutic strategy. In regard to antibody formats, some applications such as the combination of T-cell engagers with costimulatory molecules are driving the development of trispecific antibodies, at least in preclinical settings. However, the increasing structural complexity of multispecific antibodies often leads to more challenging development paths, and the number of multispecific antibodies in clinical trials remains low. The clinical success of certain applications and well-established production methods position this therapeutic class to expand its benefits into other therapeutic areas.
Collapse
Affiliation(s)
- Diego A Ellerman
- Antibody Engineering Department, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
15
|
Zhang Y, Zhou J, Jin Y, Liu C, Zhou H, Sun Y, Jiang H, Gan J, Zhang C, Lu Q, Chang Y, Zhang Y, Li X, Ning S. Single-Cell and Bulk Transcriptomics Reveal the Immunosenescence Signature for Prognosis and Immunotherapy in Lung Cancer. Cancers (Basel) 2024; 17:85. [PMID: 39796714 PMCID: PMC11720133 DOI: 10.3390/cancers17010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Immunosenescence is the aging of the immune system, which is closely related to the development and prognosis of lung cancer. Targeting immunosenescence is considered a promising therapeutic approach. METHODS We defined an immunosenescence gene set (ISGS) and examined it across 33 TCGA tumor types and 29 GTEx normal tissues. We explored the 46,993 single cells of two lung cancer datasets. The immunosenescence risk model (ISRM) was constructed in TCGA LUAD by network analysis, immune infiltration analysis, and lasso regression and validated by survival analysis, cox regression, and nomogram in four lung cancer cohorts. The predictive ability of ISRM for drug response and immunotherapy was detected by the oncopredict algorithm and XGBoost model. RESULTS We found that senescent lung tissues were significantly enriched in ISGS and revealed the heterogeneity of immunosenescence in pan-cancer. Single-cell and bulk transcriptomics characterized the distinct immune microenvironment between old and young lung cancer. The ISGS network revealed the crucial function modules and transcription factors. Multiplatform analysis revealed specific associations between immunosenescence and the tumor progression of lung cancer. The ISRM consisted of five risk genes (CD40LG, IL7, CX3CR1, TLR3, and TLR2), which improved the prognostic stratification of lung cancer across multiple datasets. The ISRM showed robustness in immunotherapy and anti-tumor therapy. We found that lung cancer patients with a high-risk score showed worse survival and lower expression of immune checkpoints, which were resistant to immunotherapy. CONCLUSIONS Our study performed a comprehensive framework for assessing immunosenescence levels and provided insights into the role of immunosenescence in cancer prognosis and biomarker discovery.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Jiajun Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Yitong Jin
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China;
| | - Chenyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Han Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Qianyi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Yetong Chang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (J.Z.); (C.L.); (H.Z.); (Y.S.); (H.J.); (J.G.); (C.Z.); (Q.L.); (Y.C.); (Y.Z.)
| |
Collapse
|
16
|
Zhang X, Liu L. Senescent T Cells: The Silent Culprit in Acute Myeloid Leukemia Progression? Int J Mol Sci 2024; 25:12550. [PMID: 39684260 DOI: 10.3390/ijms252312550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors can evade immune surveillance and elimination through multiple mechanisms, with the induction of immune cell dysfunction serving as a crucial strategy. Mounting evidence indicates that T cell senescence constitutes the primary mechanism underlying T cell dysfunction in acute myeloid leukemia (AML) and represents one of the potential causes of immunotherapy failure. AML usually progresses rapidly and is highly susceptible to drug resistance, thereby resulting in recurrence and patient mortality. Hence, disrupting the immune interface within the bone marrow microenvironment of AML has emerged as a critical objective for synergistically enhancing tumor immunotherapy. In this review, we summarize the general characteristics, distinctive phenotypes, and regulatory signaling networks of senescent T cells and highlight their potential clinical significance in the bone marrow microenvironment of AML. Additionally, we discuss potential therapeutic strategies for alleviating and reversing T cell senescence.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Qiu Z, Fan J, He J, Huang X, Yang Z, Sheng Q, Jin L. Causal relationship between cancer and immune cell traits: A two-sample mendelian randomization study. Heliyon 2024; 10:e39732. [PMID: 39583800 PMCID: PMC11582454 DOI: 10.1016/j.heliyon.2024.e39732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Observational studies provide evidence of correlations between cancer and the immune system. Previous research has established associations between immune traits and the propensity for developing certain cancers. However, a systematic exploration of these connections remains largely uncharted. Therefore, further investigation is needed to examine the causal association between cancer and immune cell traits using Mendelian randomization (MR) approach. Methods We identified genetic instruments for breast cancer (BC), lung cancer (LC), endometrial cancer (EC), ovarian cancer (OC), prostate cancer (PC), and their subtype cancers to investigate their potential causal impact on immune traits. Data on cancer and immune cell traits were obtained from the IEU Open GWAS project. To assess whether these five cancer types and subtype cancers have a causal association with immune cell traits, we conducted two-sample MR analyses. Additionally, we conducted bidirectional MR analyses to examine the direction of causal relationships and adjusted for potentially related pleiotropy through multivariable MR analysis. Results We have identified several causal relationships between different types of cancer and immune traits. We found that breast cancer may influence 49 immune cell traits, endometrial cancer may influence 38, lung cancer may influence 25, ovarian cancer may influence 19, and prostate cancer may influence 28. Among these, breast cancer and lung cancer were associated with four common immune traits: CD25 on IgD- CD38dim, CD25 on sw mem, CD24 on IgD- CD38-, and CD25 on IgD- CD38-. Lung cancer and prostate cancer shared four immune traits: CD25 on IgD+ CD24+, CD25 on IgD+ CD38-, CD66b on CD66b++ myeloid cell, DN (CD4-CD8-) AC. Endometrial cancer and ovarian cancer shared two immune traits: TD DN (CD4-CD8-) %DN, EM DN (CD4-CD8-) %DN. Breast cancer and endometrial cancer shared one immune trait: CD20 on IgD- CD38dim. Endometrial cancer and prostate cancer shared one immune trait: CCR2 on myeloid DC. Lastly, breast cancer, lung cancer, and prostate cancer shared one immune trait: CD25 on CD24+ CD27+. Additionally, we identified specific immune traits that may serve as protective or risk factors for cancers. We found 14 immune traits may influence breast cancer, 9 immune traits may influence endometrial cancer, 22 immune traits may influence lung cancer, 9 immune traits may influence ovarian cancer, and 14 immune traits may influence prostate cancer. Among these, breast cancer and prostate cancer shared three immune traits: HLA DR++ monocyte %monocyte, HLA DR on plasmacytoid DC, and HLA DR on DC. Lung cancer and ovarian cancer shared one immune trait: CD62L- monocyte %monocyte. Prostate cancer and endometrial cancer shared one immune trait: HLA DR on CD33dim HLA DR + CD11b+. Lastly, ovarian cancer and prostate cancer shared one immune trait: CD3 on resting Treg. Conclusions Our MR study suggests a potential relationship between immune traits and cancers, particularly highlighting 14 immune traits that are simultaneously influenced by two or three of five cancer types, while also indicating that 6 immune traits may simultaneously contribute to the development of two of the cancers. This elucidation enables us to reveal a significant involvement of immune traits in cancer progression, providing critical insights into how immune traits affect cancer susceptibility.
Collapse
Affiliation(s)
- Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingxing Huang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Jin
- Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China
| |
Collapse
|
18
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
19
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Wang Y, Cao X, Yang C, Fan J, Zhang X, Wu X, Guo W, Sun S, Liu M, Zhang L, Li T. Ferroptosis and immunosenescence in colorectal cancer. Semin Cancer Biol 2024; 106-107:156-165. [PMID: 39419366 DOI: 10.1016/j.semcancer.2024.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.
Collapse
Affiliation(s)
- Yao Wang
- Inpatient ward 8, General Surgery, Harbin Medical University Affiliated Second Hospital, Harbin 150000, China
| | - Xinran Cao
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Chunbaixue Yang
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Jianchun Fan
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| | - Xueliang Wu
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China; Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, Zibo 255024, China.
| | - Ming Liu
- General Surgery, Harbin Medical University Affiliated Fourth Hospital, Harbin 150000, China.
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
Jiang Z, Huang Q, Chang Y, Qiu Y, Cheng H, Yang M, Ruan S, Ji S, Sun J, Wang Z, Xu S, Liang R, Dai X, Wu K, Li B, Li D, Zhao H. LILRB2 promotes immune escape in breast cancer cells via enhanced HLA-A degradation. Cell Oncol (Dordr) 2024; 47:1679-1696. [PMID: 38656573 DOI: 10.1007/s13402-024-00947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Increased expression of leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) is associated with immune evasion in breast cancer (BC). The aim of this study to elucidate the role of LILRB2 in BC progression. METHODS LILRB2 expression in tumor tissues was detected by immunohistochemical staining. Human leukocyte antigen A (HLA-A) expression in BC cells was detected by Western blotting, and HLA-A ubiquitination was detected by immunoprecipitation and histidine pulldown assay. An in-situ tumor model was established in nude BALB/c mice to verify the role of LILRB2 in immune escape. Finally, the functions and potential mechanisms of LILRB2 in BC progression were explored using in silico data. RESULTS LILRB2 was upregulated in BC tissues and cells, and correlated positively with poor prognosis. LILRB2 promoted BC progression by downregulating HLA-A expression. Mechanistically, LILRB2 facilitates the ubiquitination and subsequent degradation of HLA-A by promoting the interaction between the ubiquitin ligase membrane-associated ring finger protein 9 (MARCH9) and HLA-A. In syngeneic graft mouse models, LILRB2-expressing BC cells evaded CD8 + T cells and inhibited the secretion of cytokines by the cytotoxic CD8 + T cells. CONCLUSION LILRB2 downregulates HLA-A to promote immune evasion in BC cells and is a promising new target for BC treatment.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianru Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Chang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Qiu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Cheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Mengdi Yang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunyi Ruan
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suyuan Ji
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
| | - Zhiyu Wang
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China
| | - Shengyuan Xu
- College of Arts and Science, New York University, New York, USA
| | - Rui Liang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, 200025, Shanghai, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, China.
| |
Collapse
|
23
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
24
|
Yan M, Chen X, Li X, Liu Q, Yu B, Cen Y, Zhang W, Liu Y, Li X, Chen Y, Wang T, Li S. Transferrin receptor-targeted immunostimulant for photodynamic immunotherapy against metastatic tumors through β-catenin/CREB interruption. Acta Pharm Sin B 2024; 14:4118-4133. [PMID: 39309507 PMCID: PMC11413667 DOI: 10.1016/j.apsb.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 09/25/2024] Open
Abstract
The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments. In this work, a transferrin receptor (TfR) targeted immunostimulant (PTI) is fabricated for photodynamic immunotherapy against metastatic tumors by interrupting β-catenin signal pathway. To synthesize PTI, the photosensitizer conjugated TfR targeting peptide moiety (Palmitic-K(PpIX)-HAIYPRH) is unitized to encapsulate the transcription interrupter of ICG-001. On the one hand, the recognition of PTI and TfR can promote drug delivery into tumor cells to destruct primary tumors through photodynamic therapy and initiate an immunogenic cell death with the release of tumor-associated antigens. On the other hand, PTI will interrupt the binding between β-catenin and cAMP response element-binding protein (CREB), regulating the gene transcription to downregulate programmed death ligand 1 (PD-L1) while upregulating C-C motif chemokine ligand 4 (CCL4). Furthermore, the elevated CCL4 can recruit the dendritic cells to present tumor-specific antigens and promote T cells activation and infiltration, and the downregulated PD-L1 can avoid the immune evasion of tumor cells and activate systemic anti-tumor immunity to eradicate lung metastasis. This work may inspire the development of antibody antibody-free strategy to activate systemic immune response in consideration of immunosuppressive conditions.
Collapse
Affiliation(s)
- Mengyi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 511436, China
| | - Qianqian Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Zhang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yibin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, the first Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
25
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
26
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
27
|
Zhou R, Jia X, Li Z, Huang S, Feng W, Zhu X. Identifying an immunosenescence-associated gene signature in gastric cancer by integrating bulk and single-cell sequencing data. Sci Rep 2024; 14:17055. [PMID: 39048596 PMCID: PMC11269723 DOI: 10.1038/s41598-024-68054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
It has been believed that immunosenescence plays a crucial role in tumorigenesis and cancer therapy. Nevertheless, there is still a lack of understanding regarding its role in determining clinical outcomes and therapy selection for gastric cancer patients, due to the lack of a feasible immunosenescence signature. Therefore, this research aims to develop a gene signature based on immunosenescence, which is used for stratification of gastric cancer. By integrative analysis of bulk transcriptome and single-cell data, we uncovered immunosenescence features in gastric cancer. Random forest algorithm was used to select hub genes and multivariate Cox algorithm was applied to construct a scoring system to evaluate the prognosis and the response to immunotherapy and chemotherapy. The Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD) cohort was implemented as the training cohort and two independent cohorts from the Gene Expression Omnibus (GEO) database were used for validation. The model was further tested by our Fudan cohort. In this study, immunosenescence was identified as a hallmark of gastric cancer that is linked with transcriptomic features, genomic variations, and distinctive tumor microenvironment (TME). Four immunosenescence genes, including APOD, ADIPOR2, BRAF, and C3, were screened out to construct a gene signature for risk stratification. Higher risk scores indicated strong predictive power for poorer overall survival. Notably, the risk score signature could reliably predict response to chemotherapy and immunotherapy, with patients with high scores benefiting from immunotherapy and patients with low scores responding to chemotherapy. We report immunosenescence as a hitherto unheralded hallmark of gastric cancer that affects prognosis and treatment efficiency.
Collapse
Affiliation(s)
- Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Chen X, Yuan M, Zhong T, Wang M, Wu F, Lu J, Sun D, Xiao C, Sun Y, Hu Y, Wu M, Wang L, Yu J, Chen D. LILRB2 inhibition enhances radiation sensitivity in non-small cell lung cancer by attenuating radiation-induced senescence. Cancer Lett 2024; 593:216930. [PMID: 38705566 DOI: 10.1016/j.canlet.2024.216930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.
Collapse
Affiliation(s)
- Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Yuan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Zhong
- Clinical College of Medicine, Jining Medical University, Jining, Shandong, China
| | - Minglei Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dongfeng Sun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changyan Xiao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
| |
Collapse
|
29
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
31
|
Wang C, Chen Y, Yin X, Xu R, Ruze R, Song J, Hu C, Zhao Y. Immune-related signature identifies IL1R2 as an immunological and prognostic biomarker in pancreatic cancer. JOURNAL OF PANCREATOLOGY 2024; 7:119-130. [PMID: 38883575 PMCID: PMC11175735 DOI: 10.1097/jp9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/17/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Pancreatic cancer is one of the most aggressive malignancies, a robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and optimization of clinical decision-making. Methods A list of bioinformatic analysis were applied in public dataset to construct an immune-related signature. Furthermore, the most pivotal gene in the signature was identified. The potential mechanism of the core gene function was revealed through GSEA, CIBERSORT, ESTIMATE, immunophenoscore (IPS) algorithm, single-cell analysis, and functional experiment. Results An immune-related prognostic signature and associated nomogram were constructed and validated. Among the genes constituting the signature, interleukin 1 receptor type II (IL1R2) was identified as the gene occupying the most paramount position in the risk signature. Meanwhile, knockdown of IL1R2 significantly inhibited the proliferation, invasion, and migration ability of pancreatic cancer cells. Additionally, high IL1R2 expression was associated with reduced CD8+ T cell infiltration in pancreatic cancer microenvironment, which may be due to high programmed cell death-ligand-1 (PD-L1) expression in cancer cells. Finally, the IPS algorithm proved that patients with high IL1R2 expression possessed a higher tumor mutation burden and a higher probability of benefiting from immunotherapy. Conclusion In conclusion, our study constructed an efficient immune-related prognostic signature and identified the key role of IL1R2 in the development of pancreatic cancer, as well as its potential to serve as a biomarker for immunotherapy efficacy prediction for pancreatic cancer.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
| | - Yuan Chen
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Xinpeng Yin
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Ruiyuan Xu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Rexiati Ruze
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Jianlu Song
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Chenglin Hu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Yupei Zhao
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| |
Collapse
|
32
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
33
|
Sparling BA, Ng TT, Carlo-Allende A, McCarthy FM, Taylor RL, Drechsler Y. Immunoglobulin-like receptors in chickens: identification, functional characterization, and renaming to cluster homolog of immunoglobulin-like receptors. Poult Sci 2024; 103:103292. [PMID: 38100950 PMCID: PMC10764270 DOI: 10.1016/j.psj.2023.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The cluster homolog of immunoglobulin-like receptors (CHIRs), previously known as the "chicken homolog of immunogloublin-like receptors," represents is a large group of transmembrane glycoproteins that direct the immune response. However, the full repertoire of putatively activating, inhibitory, or dual function CHIRA, CHIRB, and CHIRAB on chickens' immune responses is poorly understood. Herein, the study objective was to determine the genes encoding CHIR proteins and predict their function by searching canonical protein structure. A bioinformatics pipeline based on previous work was employed to search for the CHIRs from the newly updated broiler and layer genomes. The categorization into CHIRA, CHIRB, and CHIRAB types was assigned through motif searches, multiple sequence alignment, and phylogeny. In total, 150 protein-encoding genes on Chromosome 31 were identified as CHIRs. Gene members of each functional group (CHIRA, CHIRB, CHIRAB) were classified in accordance with previously recognized proteins. The genes were renamed to "cluster homolog of immunoglobulin-like receptors" (CHIRs) to allow for the naming of orthologous genes in other avian species. Additionally, expression analysis of the classified CHIRs across various reinforces their importance as immune regulators and activation in inflammatory tissues. Furthermore, over 1,000 diverse and rare CHIRs variants associated with differential Marek's disease response (P < 0.05) emphasize the impact of CHIRs on shaping avian immune responses in diverse contexts. The practical applications of these findings encompass advancing immunology, improving poultry health management, optimizing breeding programs for disease resistance, and enhancing overall animal health through a deeper understanding of the roles and functions of CHIRA, CHIRB, and CHIRAB types in avian immune responses.
Collapse
Affiliation(s)
- Brandi A Sparling
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anaid Carlo-Allende
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
34
|
Hu Q, Wu G, Ma H, Zhang J, Yang Z. Signal sequence receptor subunit 3: A novel indicator of immunosuppressive tumor microenvironment and clinical benefits from immunotherapy. Cell Signal 2023; 111:110871. [PMID: 37652395 DOI: 10.1016/j.cellsig.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Signal sequence receptor subunit 3 (SSR3), a translocation-associated protein complex, plays a vital role in various diseases. However, its involvement in human cancers remains unclear. METHODS We conducted a comprehensive analysis by integrating data from multiple sources, including the Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia, Genotype Tissue Expression, Human Protein Atlas, cBioPortal, TIMER, and ImmuCellAI. Additionally, we incorporated data from a clinical trial, two immunotherapy cohorts, and in vitro experiments to investigate SSR3's impact on cancer prognosis and immune response. RESULTS Our findings revealed a significant correlation between elevated SSR3 expression and unfavorable prognosis across various cancer types. Amplification is the most common genetic alteration in SSR3. Furthermore, functional enrichment analysis highlighted SSR3's regulatory role in promoting proliferation. In addition, SSR3 also serves as a pivotal mediator bridging the innate and adaptive immune systems and several related signaling pathways. Moreover, the correlation of SSR3 expression with tumor mutation burden in five cancer types, as well as with microsatellite instability in nine cancer types, suggests the potential of SSR3 as a predictive marker for immunotherapy response. To validate this hypothesis, we examined data from patients who underwent immunotherapy treatment. Our analysis revealed that individuals with low SSR3 expression demonstrated higher response rates to immune checkpoint inhibitors and longer overall survival compared to those with high SSR3 expression. CONCLUSIONS Our study identifies SSR3 as a potential oncogene in humans, implicated in both tumorigenesis and cancer immunity. Elevated SSR3 expression is indicative of an immunosuppressive tumor microenvironment. Therefore, SSR3 holds promise as a potential prognostic biomarker and a target for immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Qin Hu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Gujie Wu
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huiyun Ma
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Jiaxin Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Zheng Yang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China.
| |
Collapse
|
35
|
Zhang H, Gao A, Liu Q, Zhang F, Wang S, Chen X, Shi W, Zhang Y, Liu Q, Zheng Y, Sun Y. ILT4 reprograms glucose metabolism to promote tumor progression in triple-negative breast cancer. J Cell Sci 2023; 136:jcs260964. [PMID: 37622462 DOI: 10.1242/jcs.260964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and poorly treated subtype of breast cancer. Identifying novel drivers and mechanisms for tumor progression is essential for precise targeted therapy of TNBC. Immunoglobulin-like transcript 4 (ILT4; also known as LILRB2) is a classic myeloid suppressor for their activation and immune response. Our recent results found that ILT4 is also highly expressed in lung cancer cells, where it has a role in promoting immune evasion and thus tumor formation. However, the expression and function of ILT4 in breast cancer remains elusive. Here, using our patient cohort and public database analysis, we found that TNBC displayed the most abundant ILT4 expression among all breast cancer subtypes. Functionally, enriched ILT4 promoted TNBC cell proliferation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Further mechanistic analysis revealed that ILT4 reprogrammed aerobic glycolysis of tumor cells via AKT-mTOR signaling-mediated glucose transporter 3 (GLUT3; also known as SLC2A3) and pyruvate kinase muscle 2 (PKM2, an isoform encoded by PKM) overexpression. ILT4 inhibition in TNBC reduced tumor progression and GLUT3 and PKM2 expression in vivo. Our study identified a novel driver for TNBC progression and proposed a promising strategy to combat TNBC by targeting ILT4.
Collapse
Affiliation(s)
- Haiqin Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013 Shandong, P. R. China
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117 Shandong, P. R. China
| | - Qiaohong Liu
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Fang Zhang
- Department of Oncology, Central hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Wenjing Shi
- Jinan Central Hospital, Shandong University, Jinan, 250013 Shandong, P. R. China
| | - Ye Zhang
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 250013 Shandong, P. R. China
| | - Qian Liu
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 250013 Shandong, P. R. China
| | - Yan Zheng
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 Shandong, P. R. China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
- Phase I Clinical Research Center, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong, P. R. China
| |
Collapse
|
36
|
Wang R, Hu Q, Wu Y, Guan N, Han X, Guan X. Intratumoral lipid metabolic reprogramming as a pro-tumoral regulator in the tumor milieu. Biochim Biophys Acta Rev Cancer 2023; 1878:188962. [PMID: 37541532 DOI: 10.1016/j.bbcan.2023.188962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yueyao Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nan Guan
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
37
|
Chen Y, Wu W, Jin C, Cui J, Diao Y, Wang R, Xu R, Yao Z, Li X. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq Data to Explore the Key Role of Fatty Acid Metabolism in Breast Cancer. Int J Mol Sci 2023; 24:13209. [PMID: 37686016 PMCID: PMC10487665 DOI: 10.3390/ijms241713209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaofeng Li
- Department of Epidemiology and Health Statistics, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
38
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
39
|
Wu G, Ren H, Hu Q, Ma H, Chen H, Zhou L, Xu K, Ding L. The circadian rhythm key gene ARNTL2: a novel prognostic biomarker for immunosuppressive tumor microenvironment identification and immunotherapy outcome prediction in human cancers. Front Immunol 2023; 14:1115809. [PMID: 37275880 PMCID: PMC10237319 DOI: 10.3389/fimmu.2023.1115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Background Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) belongs to the b HLH- PAS domain transcription factor family and is one of the key clock genes that control the circadian rhythm. ARNTL2 plays an important role in human biological functions. However, its role in various tumors, especially in the tumor immune microenvironment (TIME) and immunotherapy, remains unclear. Methods We integrated data from cancer patients from multiple databases, including the Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia, Genotype Tissue Expression, Human Protein Atlas, cBioPortal, TIMER, and ImmuCellAI, with data from a large clinical study, three immunotherapy cohorts, and in vitro experiments to investigate the involvement of ARNTL2 expression in cancer prognosis and immune response. Results ARNTL2 displayed abnormal expression within most malignant tumors, and is significantly associated with poorer survival and pathologic staging. Through gene-set enrichment analysis (GSEA) and gene-set variation analysis (GSVA), we found that ARNTL2 not only regulates cell cycle-related functions to promote cell proliferation but also regulates autoimmunity-related functions of the innate and adaptive immune systems, and other immune-related signaling pathways. In addition, ARNTL2 overexpression contributes to an immunosuppressive tumor microenvironment that plays a key role in immunosuppression-related features, such as the expression of immunosuppression-related genes and pathways and the number of immunosuppressive-infiltrating cells, including regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs). The group of patients with low ARNTL2 expression who received immune checkpoint inhibitors (ICI) therapy had better response rates and longer survival when compared to those with high ARNTL2 expression. Conclusion The findings of this study suggest that ARNTL2 is a potential human oncogene that plays an important role in tumorigenesis and cancer immunity. Elevated ARNTL2 expression indicates an immunosuppressive tumor microenvironment. Targeting ARNTL2 in combination with ICI therapy could bring more significant therapeutic benefits to patients with cancer. Our study sheds light on the remarkable potential of ARNTL2 in tumor immunity and provides a novel perspective for anti-tumor strategies.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hefei Ren
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qin Hu
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huiyun Ma
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongyu Chen
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lin Zhou
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Ding
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
40
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
42
|
Zhou Y, Wang H, Luo Y, Tuo B, Liu X, Li T. Effect of metabolism on the immune microenvironment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188861. [PMID: 36813054 DOI: 10.1016/j.bbcan.2023.188861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
Breast cancer (BC) is a highly prevalent primary malignancy worldwide with poor prognosis. Despite the development of aggressive interventions, mortality due to BC remains high. BC cells reprogram nutrient metabolism to adapt to the energy acquisition and progression of the tumor. The metabolic changes in cancer cells are closely related to the abnormal function and effect of immune cells and immune factors, including chemokines, cytokines, and other related effector molecules in the tumor microenvironment (TME), leading to tumor immune escape, whereby the complex crosstalk between immune cells and cancer cells has been considered the key mechanism regulating cancer progression. In this review, we summarized the latest findings on metabolism-related processes in the immune microenvironment during BC progression. Our findings showing the impact of metabolism on the immune microenvironment may suggest new strategies for regulating the immune microenvironment and attenuating BC through metabolic interventions.
Collapse
Affiliation(s)
- Yingming Zhou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University; Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University; Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
43
|
Pan-cancer transcriptomic analysis identified six classes of immunosenescence genes revealed molecular links between aging, immune system and cancer. Genes Immun 2023; 24:81-91. [PMID: 36807625 DOI: 10.1038/s41435-023-00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/19/2023]
Abstract
Aging is a complex process that significantly impacts the immune system. The aging-related decline of the immune system, termed immunosenescence, can lead to disease development, including cancer. The perturbation of immunosenescence genes may characterize the associations between cancer and aging. However, the systematical characterization of immunosenescence genes in pan-cancer remains largely unexplored. In this study, we comprehensively investigated the expression of immunosenescence genes and their roles in 26 types of cancer. We developed an integrated computational pipeline to identify and characterize immunosenescence genes in cancer based on the expression profiles of immune genes and clinical information of patients. We identified 2218 immunosenescence genes that were significantly dysregulated in a wide variety of cancers. These immunosenescence genes were divided into six categories based on their relationships with aging. Besides, we assessed the importance of immunosenescence genes in clinical prognosis and identified 1327 genes serving as prognostic markers in cancers. BTN3A1, BTN3A2, CTSD, CYTIP, HIF1AN, and RASGRP1 were associated with ICB immunotherapy response and served as prognostic factors after ICB immunotherapy in melanoma. Collectively, our results furthered the understanding of the relationship between immunosenescence and cancer and provided insights into immunotherapy for patients.
Collapse
|
44
|
Wang M, Zhu L, Yang X, Li J, Liu Y, Tang Y. Targeting immune cell types of tumor microenvironment to overcome resistance to PD-1/PD-L1 blockade in lung cancer. Front Pharmacol 2023; 14:1132158. [PMID: 36874015 PMCID: PMC9974851 DOI: 10.3389/fphar.2023.1132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lung cancer is the common malignant tumor with the highest mortality rate. Lung cancer patients have achieved benefits from immunotherapy, including immune checkpoint inhibitors (ICIs) therapy. Unfortunately, cancer patients acquire adaptive immune resistance, leading to poor prognosis. Tumor microenvironment (TME) has been demonstrated to play a critical role in participating in acquired adaptive immune resistance. TME is associated with molecular heterogeneity of immunotherapy efficacy in lung cancer. In this article, we discuss how immune cell types of TME are correlated with immunotherapy in lung cancer. Moreover, we describe the efficacy of immunotherapy in driven gene mutations in lung cancer, including KRAS, TP53, EGFR, ALK, ROS1, KEAP1, ZFHX3, PTCH1, PAK7, UBE3A, TNF-α, NOTCH, LRP1B, FBXW7, and STK11. We also emphasize that modulation of immune cell types of TME could be a promising strategy for improving adaptive immune resistance in lung cancer.
Collapse
Affiliation(s)
- Man Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lijie Zhu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxu Yang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiahui Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Ying Tang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Liu J, Zhang F, He J, Wang S, Wang L, Li J, Shi W, Han Y, Gao A, Sun Y. Tumor-derived Immunoglobulin-like transcript 4 facilitates angiogenesis of colorectal cancer. Am J Cancer Res 2023; 13:419-435. [PMID: 36895964 PMCID: PMC9989613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/24/2022] [Indexed: 03/11/2023] Open
Abstract
Current anti-angiogenic therapies have changed the paradigm of treating colorectal cancer (CRC) patients with advanced diseases. However, the clinical response rate is still low at less than 10% due largely to complex angiogenic factors released by tumor cells. Exploring novel mechanisms of tumor angiogenesis and identifying alternative targets for combination therapies are therefore essential to effective inhibition of tumor vascularization and CRC development. Immunoglobulin-like transcript 4 (ILT4), initially identified as a suppressor of myeloid cell activity, is enriched in solid tumor cells. ILT4 favors tumor progression by inducing tumor malignant biologies as well as an immunosuppressive microenvironment. However, whether and how tumor-derived ILT4 orchestrates tumor angiogenesis is still undetermined. Here we found that tumor-derived ILT4 was positively correlated with microvessel density in CRC tissues. ILT4 induced the migration and tube formation of HUVECs in vitro and angiogenesis in vivo. Mechanistically, the activation of MAPK/ERK signaling and subsequent up-regulation of vascular endothelial growth factor-A (VEGF-A) and fibroblast growth factor 1 (FGF-1) were responsible for ILT4-induced angiogenesis and tumor progression. Importantly, ILT4 inhibition suppressed tumor angiogenesis and enhanced the efficacy of Bevacizumab treatment in CRC. Our study has identified a novel mechanism for ILT4-mediated tumor progression, which signals a new therapeutic target and alternative combination strategies to combat CRC.
Collapse
Affiliation(s)
- Jing Liu
- Cheeloo College of Medicine, Shandong University Jinan 250012, Shandong, P. R. China.,Department of Oncology, Affiliated Hospital of Weifang Medical University Weifang 261031, Shandong, P. R. China
| | - Fang Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University Jinan 250013, Shandong, P. R. China
| | - Jie He
- Department of Oncology, People's Hospital of Zhangqiu District Jinan 250299, Shandong, P. R. China
| | - Shuyun Wang
- Phase I Clinical Study Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science Jinan 250117, Shandong, P. R. China
| | - Leirong Wang
- Phase I Clinical Study Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science Jinan 250117, Shandong, P. R. China
| | - Juan Li
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University Jinan 250013, Shandong, P. R. China
| | - Wenjing Shi
- Cheeloo College of Medicine, Shandong University Jinan 250012, Shandong, P. R. China
| | - Yali Han
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University Jinan 250012, Shandong, P. R. China
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University Jinan 250117, Shandong, P. R. China
| | - Yuping Sun
- Phase I Clinical Study Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science Jinan 250117, Shandong, P. R. China
| |
Collapse
|
46
|
Li Y, Fu W, Geng Z, Song Y, Yang X, He T, Wu J, Wang B. A pan-cancer analysis of the oncogenic role of ribonucleotide reductase subunit M2 in human tumors. PeerJ 2022; 10:e14432. [PMID: 36518297 PMCID: PMC9744174 DOI: 10.7717/peerj.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background Recent studies have identified ribonucleotide reductase subunit M2 (RRM2) as a putative promoter of tumors. However, no systematic analysis of its carcinogenicity has been conducted. Methods The potential functions of RRM2 in various tumor types were investigated using data from the Genotype-Tissue Expression (GTEx), the Clinical Proteomic Tumor Analysis Consortium (CPTAC), the Cancer Genome Atlas (TCGA), the Human Protein Atlas (HPA), cBioPortal, GEPIA, String, and Gene Set Enrichment Analysis (GSEA). We analyzed the difference in mRNA and protein expression, pathological stage, survival, mutation, tumor microenvironment (TME), and immune cell infiltration in relation to RRM2. Meanwhile, using TCGA and the Tumor Immune Estimation Resource 2 (TIMER 2), the associations between RRM2 expression, immune infiltration, and immune-related genes were assessed. Additionally, CCK-8, Edu and RT-PCR assays were used to validate that RRM2 acts as an oncogene in liver cancer cells and its association with HBx. A cohort of liver hepatocellular carcinoma (LIHC) patients (n=154) from Huashan Hospital was analyzed for the expression of RRM2 and the association between RRM2 and immune infiltration. Results Using the GTEx and TCGA databases, we discovered that 28 tumors expressed RRM2 at significantly higher levels than the corresponding normal tissues. Increased RRM2 expression may be predictive of a poor overall survival (OS) in patients with seven different cancers. GO, KEGG, and GSEA analyses revealed that the biological process of RRM2 was associated with the regulation of carcinogenic processes and immune pathways in a variety of tumor types. The expression of RRM2 was highly correlated with maker genes involved in immune activation and immunosuppression, immune checkpoints, DNA mismatch repair system (MMR), and the infiltration levels of Tregs and macrophages (TAMs), suggesting that the carcinogenic effect of RRM2 may be achieved by regulating immune related genes. Moreover, as demonstrated by CCK-8 and Edu assays, RRM2 was an oncogene in liver cancer cells. We confirmed for the first time that RRM2 was significantly upregulated by HBx, suggesting that RRM2 may be a key regulator of LIHC induced by HBV. IHC analysis validated the upregulated expression of RRM2 protein and its correlation with immune infiltration makers in a LIHC patient cohort. Conclusion RRM2 may be a valuable molecular biomarker for predicting prognosis and immunotherapeutic efficacy in pan-cancer, particularly in LIHC.
Collapse
Affiliation(s)
- Yaqun Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhuan Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zikai Geng
- Pharmacy School, Binzhou Medical University, Shandong, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xionggang Yang
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianye He
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Recent Advances in the Aging Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14204990. [PMID: 36291773 PMCID: PMC9599409 DOI: 10.3390/cancers14204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The incidence of breast cancer has increased rapidly in recent years. Aging is one of the risk factors for advanced breast cancer. More and more studies have been conducted on the influence of the aging microenvironment on breast cancer. In this review, we summarize the effects of physical changes in the aging microenvironment, senescence-associated secretory phenotypes, and senescent stromal cells on the initiation and progression of breast cancer and the underlying mechanisms. In addition, we also discuss potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. We hope this review can provide some directions for future research on the aging microenvironment in breast cancer. Abstract Aging is one of the risk factors for advanced breast cancer. With the increasing trend toward population aging, it is important to study the effects of aging on breast cancer in depth. Cellular senescence and changes in the aging microenvironment in vivo are the basis for body aging and death. In this review, we focus on the influence of the aging microenvironment on breast cancer. Increased breast extracellular matrix stiffness in the aging breast extracellular matrix can promote the invasion of breast cancer cells. The role of senescence-associated secretory phenotypes (SASPs) such as interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), in breast cancer cell proliferation, invasion, and metastasis is worthy of exploration. Furthermore, the impact of senescent fibroblasts, adipocytes, and endothelial cells on the mammary matrix is discussed in detail. We also list potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. In conclusion, this review offers an overview of the influence of the aging microenvironment on breast cancer initiation and progression, with the aim of providing some directions for future research on the aging microenvironment in breast cancer.
Collapse
|
48
|
Zhang J, He T, Yin Z, Shang C, Xue L, Guo H. Ascitic Senescent T Cells Are Linked to Chemoresistance in Patients With Advanced High-Grade Serous Ovarian Cancer. Front Oncol 2022; 12:864021. [PMID: 35875098 PMCID: PMC9301961 DOI: 10.3389/fonc.2022.864021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Senescent T cells are reported to be increased in patients with cancer and are poor prognostic indicators. However, the distribution of senescent T cells and their correlation with clinical features in high-grade serous ovarian cancer (HGSOC) is unknown. We detected the percentage of senescent T cells in the peripheral blood and ascites of patients with advanced HGSOC (n = 86) at diagnosis by flow cytometry. Compared with healthy donors, patients with HGSOC exhibited an accumulation of CD28−CD57+ (Tsen) CD8+ T cells in the peripheral blood and ascites. The frequency of Tsen CD8+ T cells in the peripheral blood was positively correlated with age and pretreatment serum CA125 and increased in patients with large volume ascites, whereas the frequency of Tsen CD8+ T cells in ascites was elevated in patients with lymph node metastasis. Patients with Tsen-high in ascites (>19.92%), but not in the peripheral blood, were more likely to be resistant to chemotherapy and had shorter progression-free survival. Tsen CD8+ T cells exhibited common senescence features including increased SA-β-gal activity, declines in proliferation, loss of CD27 and gain of KLRG-1, and the production of cytokines. In ascites, the percentage of Tsen CD8+ T cells was positively correlated with levels of interleukin-10 and granzyme B. This study suggests the potential of ascitic Tsen CD8+ T cells at diagnosis as a prognostic biomarker in HGSOC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zhongnan Yin
- Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongyan Guo, ; Lixiang Xue,
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongyan Guo, ; Lixiang Xue,
| |
Collapse
|
49
|
Wang S, Nie L, Song Y, Zhang F, Chen X, Shi W, Yang Z, Sun Y, Dang Q, Gao A. Neurturin promotes tumor cell motility and angiogenesis in colorectal cancer. Exp Cell Res 2022; 413:113049. [PMID: 35114191 DOI: 10.1016/j.yexcr.2022.113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Neurturin (NRTN) is one of the glial cell line-derived neurotrophic factor family ligands crucial for neuron growth, differentiation and maintenance. Recent studies showed NRTN promotes an aggressive pancreatic cancer phenotype, and predicts shorter survival in lung cancer patients. However, its expression and function in colorectal cancer (CRC) remain unclear. Herein, we found NRTN was enriched in CRC cells, and predicted poor patients outcomes. Upregulated NRTN enhanced the migration and invasion of CRC cells and vascularization of endothelial cells. In mechanism, NRTN promoted ZEB1/N-cadherin and vascular endothelial growth factor (VEGF)-A expression in CRC cells, which were responsible for tumor cell motility and angiogenesis, respectively. More importantly, NRTN inhibition prevented CRC metastasis and angiogenesis in vivo. In conclusion, NRTN promotes CRC cells motility and tumor angiogenesis via inducing ZEB1/N-cadherin and VEGF-A overexpression. It is a potential therapeutic target and negative prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Shuyun Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Limin Nie
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China; Department of Oncology, Caoxian People's Hospital, Heze, Shandong, PR China
| | - Yuxiao Song
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Fang Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xiaozheng Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Wenjing Shi
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Zijiang Yang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Qi Dang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| | - Aiqin Gao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
50
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|