1
|
Tang L, Xie B, Cao X, Zhang M, Shao Y. Transcriptional regulation of ATOX1 by PRRX2 impacts the progression and cuproptosis of hepatocellular carcinoma. Cell Signal 2025:111883. [PMID: 40393577 DOI: 10.1016/j.cellsig.2025.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
The copper chaperone antioxidant 1 (ATOX1) has been identified as a potential oncogene in certain types of cancer, and its increased expression is associated with poor prognoses. Nevertheless, its function in hepatocellular carcinoma (HCC) remains largely uninvestigated. An analysis of the UALCAN database and clinical specimens revealed an increase in ATOX1 expression in HCC tissues. In vitro studies showed that ATOX1 knockdown inhibited the proliferation and metastasis of HCC cells, as well as tumor growth in xenograft models. Silencing ATOX1 led to cuproptosis and mitochondrial dysfunction in HCC cells. In contrast, ATOX1 overexpression had opposite effects. The ATOX1 promoter region was predicted to contain several paired related homeobox 2 (PRRX2) binding sites based on the JASPAR database. Further experiments showed that PRRX2 directly bound to ATOX1's promoter and positively regulated its expression. The knockdown of PRRX2 led to the inhibition of cell proliferation, invasion, and EMT, while promoting cuproptosis in HCC cells. However, these effects were found to be partially blocked following the overexpression of ATOX1. The study showed that ATOX1, which is transcriptionally activated by PRRX2, contributes to HCC carcinogenesis by regulating cancer cell malignant behaviors, cuproptosis, and mitochondrial function. The PRRX2/ATOX1 axis could be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Xie
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Xiankui Cao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Mengze Zhang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Yang Shao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Zhang Y, Zhang H, Liu L. Integration of single-cell and bulk RNA sequencing identifies and validates T cell-related prognostic model in hepatocellular carcinoma. PLoS One 2025; 20:e0322706. [PMID: 40315269 PMCID: PMC12047759 DOI: 10.1371/journal.pone.0322706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/23/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy, and predicting patient prognosis remains a significant challenge in clinical treatment. T cells play a crucial role in the tumor microenvironment, influencing tumorigenesis and progression. In this study, we constructed a T cell-related prognostic model for HCC. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, we identified 6,281 T cells from 10 HCC patients and subsequently identified 855 T cell-related genes. Comprehensive analyses were conducted on T cells and their associated genes, including enrichment analysis, cell-cell communication, trajectory analysis, and transcription factor analysis. By integrating scRNA-seq and bulk RNA-seq data with prognostic information from The Cancer Genome Atlas (TCGA), we identified T cell-related prognostic genes and constructed a model using LASSO regression. The model, incorporating PTTG1, LMNB1, SLC38A1, and BATF, was externally validated using the International Cancer Genome Consortium (ICGC) database. It effectively stratified patients into high- and low-risk groups based on risk scores, revealing significant differences in immune cell infiltration between these groups. Differential expression levels of PTTG1 and BATF between HCC and adjacent non-tumor tissues were further validated by immunohistochemistry (IHC) in 25 patient tissue samples. Moreover, a Cox regression analysis was performed to integrate risk scores with clinical features, resulting in a nomogram capable of predicting patient survival probabilities. This study introduces a novel prognostic risk model for HCC patients, aimed at stratifying patients by risk, enhancing personalized treatment strategies, and offering new insights into the role of T cell-related genes in HCC progression.
Collapse
Affiliation(s)
- Yuzhi Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Haiyan Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
| |
Collapse
|
3
|
Zhang C, Hu S, Yin C, Wang G, Liu P. STAT3 orchestrates immune dynamics in hepatocellular carcinoma: A pivotal nexus in tumor progression. Crit Rev Oncol Hematol 2025; 207:104620. [PMID: 39818308 DOI: 10.1016/j.critrevonc.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms. Dysregulated STAT3 signaling, activated by various stimuli, including cytokines and growth factors, promotes an immunosuppressive milieu within HCC tumors, fostering tumor survival and proliferation while hindering immune surveillance. Non-coding RNAs and other molecules regulate this process, modulating STAT3 activity and influencing immune cell function. Moreover, therapeutic interventions targeting the STAT3 pathway, alongside advancements in radiotherapy, cancer vaccines, and diabetes-related drugs, offer promising strategies in HCC management. Integrating natural compounds with immunotherapy emerges as a novel approach, leveraging their ability to enhance antitumor immunity and counter immune evasion strategies. Understanding the multifaceted role of STAT3 and its interactions within the immune landscape of HCC is paramount for devising effective therapeutic interventions and improving patient outcomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songbai Hu
- Department of Cancer Center, Yuexi County Hospital, Anqing, Anhui Province 246600, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.
| |
Collapse
|
4
|
Ju M, Tong W, Bi J, Zeng X, Qi A, Sun M, Wen J, Zhao L, Wei M. Hydrogen Sulfide Promotes TAM-M1 Polarization through Activating IRE-1α Pathway via GRP78 S-Sulfhydrylation to against Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413607. [PMID: 39755930 PMCID: PMC11848574 DOI: 10.1002/advs.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Hydrogen sulfide (H2S)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC). Therefore, the aim is to investigate whether protein S-sulfhydration can regulate TAM reprogramming and its underlying mechanism in BC. The results showed that in BC, the CTH-H2S axis is positively correlated with the presence of an anti-tumor phenotype in TAMs. NaHS, as an H2S donor, repolarized TAMs into M1 macrophages to block the tumor-promoting activities of TAMs both in vitro and in vivo. Mechanistically, H2S-mediated S-sulfhydration of the protein chaperone glucose-regulated-protein 78 (GRP78) induced endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α) dissociation from GRP78, which enhanced the phosphatase activity of IRE-1α itself in BC-TAMs, while the Cys420 site mutation of GRP78 interfered with these effects. Collectively, GRP78 S-sulfhydrylation mediated by H2S at the Cys420 residue decreased the tumor burden and inhibited lung metastasis of BC through reprograming TAMs via activating the IRE-1α pathway, indicating that targeting GRP78 S-sulfhydration represents a promising intervention for TAM-M1 repolarization in BC.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Weiwei Tong
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Laboratory MedicineShengjing Hospital of China Medical UniversityShenyang110122China
| | - Jia Bi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Xianxin Zeng
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Aoshuang Qi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Mingli Sun
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Jian Wen
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Breast SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyang110122China
| | - Lin Zhao
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Minjie Wei
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- School of PharmacyQiqihar Medical UniversityQiqihar161006China
| |
Collapse
|
5
|
Xu Z, Pang C, Xu X. Establishment of prognostic risk model related to disulfidptosis and immune infiltration in hepatocellular carcinoma. Heliyon 2024; 10:e40405. [PMID: 39687103 PMCID: PMC11647807 DOI: 10.1016/j.heliyon.2024.e40405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Background Disulfidptosis is a newly discovered type of cell death. We aim to identify hub genes associated with both disulfidptosis and immune infiltration in hepatocellular carcinoma (HCC) patients, and to develop an individualized risk prediction model. Methods The TCGA-LIHC cohort was utilized as the training set to identify molecular subtypes associated with disulfidptosis and to perform immune infiltration analysis. WGCNA, univariate Cox, and LASSO algorithm were employed to select hub genes for constructing the prognostic model. ICGC-LIRI cohort was utilized as an independent testing set. Validation of the expression of hub genes was performed in vitro using qRT-PCR and Western blot. Results Cluster 1 was identified as the disulfidptosis associated molecular subtype, characterized by higher expression of disulfidptosis related genes (DRGs) and immune infiltration levels. ANXA2, MSC, and ST6GALNAC4 were identified as hub genes for calculating the risk score. The high-risk group were more likely to benefit from immunotherapy, targeted therapy and chemotherapy. A prognostic model was developed combining clinicopathological factors with satisfactory predictive accuracy. The hub genes were found upregulated in HCC cell line. Conclusions Our findings provide valuable theoretical support for prognostic prediction and the evaluation of therapeutic outcomes in relation to disulfidptosis and immune infiltration in HCC, highlighting the importance of conducting in-depth research on disulfidptosis-related mechanisms.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Chong Pang
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Xundi Xu
- Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
6
|
Duan J, Jiang R, Shen H, Xu X, Sun D. Analysis of nitrogen metabolism-related gene expression in hepatocellular carcinoma to establish relevant indicators for prediction of prognosis and guidance of immunotherapy. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39673385 DOI: 10.1080/10255842.2024.2438922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC). METHODS Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity. RESULTS A prognostic model, which included 12 NM genes (COLQ, GNE, ISCU, MSRA, SARS2, SPHK1, CBS, GOT2, CHST1, EXTL2, GCLM, YARS1), was constructed based on regression analysis. The robustness of the model was validated using multiple methods. The high-risk (HR) and low-risk (LR) groups had varying degrees of immune infiltration, according to an immunology-related study. Of these, B cells and Type_II_IFN_Response were greatly infiltrated in the LR group, whereas aCDs, Macrophages, and Treg were heavily infiltrated in the HR group (p < 0.05). Because of higher immunophenoscore, the low-risk group could benefit from immunotherapy more. Drug sensitivity predictions indicated that people with high CBS expression and low GOT2 and ISCU expression may benefit more from treatment with SCH-772984, Pimasertib, Cobimetinib (isomer1), TAK-733, LY-3214996, ARRY-162, Cladribine, Fludarabine, and Hydroxyurea. CONCLUSION This work created a 12-gene signature based on NM, preliminary investigated immune infiltration in two risk categories, and discovered some possible anti-tumor medications. To sum up, our study findings offer fresh perspectives on the roles played by NM-associated genes in HCC development, prognosis, immunological response, and medication screening.
Collapse
Affiliation(s)
- Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Hongbo Shen
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Da Sun
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| |
Collapse
|
7
|
Ma Y, Yi C, Cai N, Chen J. Integration of single-cell and spatial transcriptome sequencing identifies CDKN2A as a senescent biomarker in endothelial cells implicating hepatocellular carcinoma malignancy. J Cancer Res Clin Oncol 2024; 150:487. [PMID: 39503880 PMCID: PMC11541268 DOI: 10.1007/s00432-024-06017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/25/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE Highly complex tumor microenvironment makes hepatocellular carcinoma (HCC) as one of the most malignant tumors worldwide. The role of cellular senescence in HCC has been gradually recognized. The present study aimed to comprehensively elucidate the senescence-related features of HCC in single-cell and spatial dimension. METHODS Single-cell RNA sequencing (scRNA-Seq) data was used to clarify the heterogeneity of senescence-related genes (SRGs) among multiple cell types within HCC. Spatial transcriptome RNA sequencing (stRNA-Seq) data was used for depicting SRGs features in spatial dimension. A prognostic model based on SRGs was constructed by using of bulk sequencing (bulk-Seq) data of HCC. The cell-cell interaction of senescent endothelial cells (ECs) in tumor microenvironment was analyzed. Then, the role of senescent ECs was verified through in vitro and in vivo experiments. RESULTS The level of senescence demonstrated substantial heterogeneity among different cell types within tumor microenvironment of HCC, where ECs exhibited the most prominent senescent phenotype. Senescent ECs activated specific regulatory pathways through communicating with other cell types, with a potential impact on tumor progression. Spatial analysis revealed senescent ECs mainly located in the core region of HCC. The interaction of senescent ECs and immune cells implicated their role in tumor progression and immunotherapeutic response. In addition, CDKN2A was identified as an independent risk factor for HCC prognosis by constructing a prognostic model. Patients with high risk displayed an even worse outcome. The experimental verification indicated senescence of ECs determined by CDKN2A exhibited a secretory phenotype. Furthermore, senescent ECs with CDKN2A overexpression promote the proliferation and migration of HCC. CONCLUSION The present study recognizes the critical effect of senescent ECs defined by CDKN2A in the promotion of tumor progression, which sheds new light on the investigation of ECs senescence in HCC.
Collapse
Affiliation(s)
- Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China.
| |
Collapse
|
8
|
Xu J, Liu K, Gong Z, Liu J, Lin H, Lin B, Li W, Zhu M, Li M. IL-6/STAT3 signaling pathway induces prostate apoptosis response protein-4(PAR-4) to stimulate malignant behaviors of hepatocellular carcinoma cells. Ann Hepatol 2024; 29:101538. [PMID: 39147129 DOI: 10.1016/j.aohep.2024.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Zhixun Gong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Haifeng Lin
- Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China; Institution of Tumor, Hainan Medical University, Hiakou 570102, Hainan Province, PR China.
| |
Collapse
|
9
|
Ligi S, Ali A, Yang G. Cystathionine gamma-lyase deficiency exaggerates diethylnitrosamine-induced liver damage in mice. Nitric Oxide 2024; 151:1-9. [PMID: 39151724 DOI: 10.1016/j.niox.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cystathionine gamma-lyase (CSE) is a key enzyme in reverse transsulfuration pathway and contributes to the majority of H2S generation in liver tissues via cysteine metabolism. Dysfunction of the CSE/H2S system is linked to both chronic and acute liver damage. This study investigated the regulatory role of CSE deficiency on diethylnitrosamine (DEN)-induced liver damage in mice. A single injection of DEN was administered into 4-week-old male CSE knockout (CSE-KO) mice and wild-type (WT) littermates, and the mice were sacrificed at 28 weeks of age. Compared to age-matched WT mice, CSE-KO mice spontaneously developed steatosis with increased oxidative stress and higher expressions of inflammation and fibrosis-related genes at 28-weeks of age. Following DEN injection, CSE-KO mice experienced more severe liver damage in comparison with the WT group as reflected by elevated levels of lipid accumulation, increased activities of alanine aminotransferase and aspartate aminotransferase, higher oxidative stress and fibrosis development, and increased expressions of inflammation and fibrosis-related genes. No visible tumors were observed in both types of mice with DEN treatment. In addition, the expression levels of the three H2S-generating proteins (CSE, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase) and the H2S production rate in liver tissues were unaffected by DEN. Taken together, our study demonstrates that CSE provides a significant hepatoprotective effect and deficiency of CSE exaggerates DEN-induced liver damage in mice. Based on these findings, it can be suggested that targeting the CSE/H2S signaling pathway could be a potential therapeutic target for the treatment of liver diseases.
Collapse
Affiliation(s)
- Samantha Ligi
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Arm Ali
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
10
|
Fu J, Zhang Q, Zhang N, Zhou S, Fang Y, Li Y, Yuan L, Chen L, Xiang C. Human Menstrual Blood-Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation. Biomolecules 2024; 14:671. [PMID: 38927074 PMCID: PMC11201965 DOI: 10.3390/biom14060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine β-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using β-cell lines (MIN6, β-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of β-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.
Collapse
Affiliation(s)
- Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China;
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
11
|
Li A, Xie J, Lv L, Zheng Z, Yang W, Zhuo W, Yang S, Cai D, Duan J, Liu P, Min J, Wei J. RPL9 acts as an oncogene by shuttling miRNAs through exosomes in human hepatocellular carcinoma cells. Int J Oncol 2024; 64:58. [PMID: 38639179 PMCID: PMC11087036 DOI: 10.3892/ijo.2024.5646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 04/20/2024] Open
Abstract
The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA‑binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC‑derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR‑24‑3p and miR‑185‑5p were most differentially expressed, as verified by reverse transcription‑quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR‑24‑3p in cells increased the accumulation of miR‑24‑3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR‑24‑3p in exosomes also increased their bioactivity. Exosome‑mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co‑transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.
Collapse
Affiliation(s)
- Ang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Jiyan Xie
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Lihong Lv
- Clinical Trial Institution of Pharmaceuticals and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Zhihua Zheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Weibang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 528406, P.R. China
| | - Sijia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Diankui Cai
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Jinxin Duan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| | - Jinxing Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120
| |
Collapse
|
12
|
Hu D, Shen X, Gao P, Mao T, Chen Y, Li X, Shen W, Zhuang Y, Ding J. Multi-omic profiling reveals potential biomarkers of hepatocellular carcinoma prognosis and therapy response among mitochondria-associated cell death genes in the context of 3P medicine. EPMA J 2024; 15:321-343. [PMID: 38841626 PMCID: PMC11147991 DOI: 10.1007/s13167-024-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Background Cancer cell growth, metastasis, and drug resistance are major challenges in treating liver hepatocellular carcinoma (LIHC). However, the lack of comprehensive and reliable models hamper the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) strategy in managing LIHC. Methods Leveraging seven distinct patterns of mitochondrial cell death (MCD), we conducted a multi-omic screening of MCD-related genes. A novel machine learning framework was developed, integrating 10 machine learning algorithms with 67 different combinations to establish a consensus mitochondrial cell death index (MCDI). This index underwent rigorous evaluation across training, validation, and in-house clinical cohorts. A comprehensive multi-omics analysis encompassing bulk, single-cell, and spatial transcriptomics was employed to achieve a deeper insight into the constructed signature. The response of risk subgroups to immunotherapy and targeted therapy was evaluated and validated. RT-qPCR, western blotting, and immunohistochemical staining were utilized for findings validation. Results Nine critical differentially expressed MCD-related genes were identified in LIHC. A consensus MCDI was constructed based on a 67-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. MCDI correlated with immune infiltration, Tumor Immune Dysfunction and Exclusion (TIDE) score and sorafenib sensitivity. Findings were validated experimentally. Moreover, we identified PAK1IP1 as the most important gene for predicting LIHC prognosis and validated its potential as an indicator of prognosis and sorafenib response in our in-house clinical cohorts. Conclusion This study developed a novel predictive model for LIHC, namely MCDI. Incorporating MCDI into the PPPM framework will enhance clinical decision-making processes and optimize individualized treatment strategies for LIHC patients. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00362-8.
Collapse
Affiliation(s)
- Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Xu Shen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Peng Gao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Tiantian Mao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Yuan Chen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
- University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xiaofeng Li
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Weifeng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| |
Collapse
|
13
|
Xu CY, Jiang J, An Y, Ye PF, Zhang CC, Sun NN, Miao SN, Chai MQ, Liu WM, Yang M, Zhu WH, Yu JJ, Yu MM, Sun WY, Qiu H, Zhang SH, Wei W. Angiotensin II type-2 receptor signaling facilitates liver injury repair and regeneration via inactivation of Hippo pathway. Acta Pharmacol Sin 2024; 45:1201-1213. [PMID: 38491160 PMCID: PMC11130245 DOI: 10.1038/s41401-024-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Collapse
Affiliation(s)
- Chang-Yong Xu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yue An
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Peng-Fei Ye
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Cun-Cun Zhang
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Ning-Ning Sun
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Sai-Nan Miao
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Meng-Qi Chai
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Wen-Min Liu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei-Hua Zhu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Jing Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
14
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
15
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Yu X, Qian F, Zhang X, Zhu Y, He G, Yang J, Wu X, Zhou Y, Shen L, Shi X, Zhang H, Liu X. Promotion effect of FOXCUT as a microRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway. Chin Med J (Engl) 2024; 137:105-114. [PMID: 38178324 PMCID: PMC10766298 DOI: 10.1097/cm9.0000000000002700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer. METHODS Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. RESULTS lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. CONCLUSION Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiao'an Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
17
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Shuyue G, Jiamin C, Niansong Q. Lymphocyte subsets and inflammatory factors as predictors of immunotherapy efficacy in patients with hepatocellular carcinoma. Sci Rep 2023; 13:22480. [PMID: 38110467 PMCID: PMC10728101 DOI: 10.1038/s41598-023-49810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
We aimed to investigate the correlation between lymphocyte subpopulations expressing inhibitor receptors, IL-6 levels, and the efficacy of immunotherapy in patients with hepatocellular carcinoma. Blood samples were prospectively collected before and after immunotherapy from patients with intermediate and advanced hepatocellular carcinoma who were treated with immunotherapy at the Fifth Medical Center of the PLA General Hospital from August 2022 to October 2023. According to the efficacy of the patients, patients were divided into effective and ineffective groups, with 40 in the effective group and 44 in the ineffective group. We compared changes in lymphocyte subsets and IL-6 levels between the two groups. Optimal cut-off value was determined using ROC curves. Then, patients were categorized into high and low groups based on cut-off value, and the disease control rates and progression free survival were compared. Before immunotherapy, there were no significant differences in the baseline levels of lymphocyte subsets (PD1 + TIM3 + T/T, TIGIT + T/T, TIM3 + T/T, CTLA4 + T/T, LAG3 + T/T, PD1 + T/T) and IL-6 between the two groups (P > 0.05). After immunotherapy, the levels of PD1 + TIM3 + T/T, TIGIT + T/T, and IL-6 in the effective group were lower than those in the ineffective group and these differences were statistically significant (P = 0.001, P = 0.008, P = 0.000). However, the levels of other lymphocyte subsets showed no significant difference. Using the ROC curve to assess efficacy prediction, PD1 + TIM3 + T/T, TIGIT + T/T and IL-6 demonstrated high predictive ability (AUC = 0.79, AUC = 0.81, AUC = 0.78). The predictive value of efficacy was further improved when all three factors were combined (AUC = 0.92, P = 0.000). Based on the ROC curve, we identified optimal cut-off value for three factors. Notably, patients with values below the optimal cut-off value had higher disease control rate and progression free survival. The levels of PD1 + TIM3 + T/T, TIGIT + T/T, and IL-6 after 2 cycles of immunotherapy may serve as predictors of treatment efficacy in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gao Shuyue
- The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Cheng Jiamin
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Niansong
- Department of Respiratory, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Oncology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572000, Hainan, China.
| |
Collapse
|
19
|
Liang D, Luo L, Wang J, Liu T, Guo C. CENPA-driven STMN1 Transcription Inhibits Ferroptosis in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1118-1129. [PMID: 37577230 PMCID: PMC10412702 DOI: 10.14218/jcth.2023.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims The growing knowledge of ferroptosis has suggested the regulatory role of ferroptosis in hepatocellular carcinoma (HCC), but the pertinent molecular mechanisms remain unclear. Herein, this study investigated the mechanistic basis of ferroptosis-related genes (ferrGenes) in the growth of HCC. Methods Differentially expressed human ferrGenes and tumor-related transcription factors (TFs) were obtained from the The Cancer Genome Atlas (TCGA) dataset and the GTEx dataset. Spearman method-based correlation analysis were conducted to construct TF-ferrGene coexpression regulatory network. Key genes associated with prognosis were singled out with Lasso regression and multivariate Cox analysis to construct the prognostic risk model. Then the accuracy and independent prognostic ability of the model were evaluated. Expression of CENPA and STMN1 was determined in clinical HCC tissues and HCC cells, and their binding was analyzed with dual-luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, ectopic expression and knockdown assays were performed in HCC cells to assess the effect of CENPA and STMN1 on ferroptosis and malignant phenotypes. Results The prognostic risk model constructed based on the eight TF-ferrGene regulatory network-related genes accurately predicted the prognosis of HCC patients. It was strongly related to the clinical characteristics of HCC patients. Moreover, CENPA/STMN1 might be a key TF-ferrGene regulatory network in ferroptosis of HCC. CENPA and STMN1 were overexpressed in HCC tissues and cells. Additionally, CENPA facilitated STMN1 transcription by binding to STMN1 promoter, thus facilitating the malignant phenotypes and suppressing the ferroptosis of HCC cells. Conclusions Taken together, CENPA curbs the ferroptosis of HCC cells by upregulating STMN1 transcription, thereby promoting HCC growth.
Collapse
Affiliation(s)
- Daomiao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Lanzhu Luo
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Jiang Wang
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Tongyu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| |
Collapse
|
20
|
Yuan S, Zhu T, Wang J, Jiang R, Shu A, Zhang Z, Zhang P, Feng X, Zhao L. miR-22 promotes immunosuppression via activating JAK/STAT3 signaling in cutaneous squamous cell carcinoma. Carcinogenesis 2023; 44:549-561. [PMID: 37466677 DOI: 10.1093/carcin/bgad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Immunotherapy is the only approved systemic therapy for advanced cutaneous squamous cell carcinoma (cSCC), however, roughly 50% of patients do not respond to the therapy and resistance often occurs over time to those who initially respond. Immunosuppression could have a critical role in developing treatment resistance, thus, understanding the mechanisms of how immunosuppression is developed and regulated may be the key to improving clinical diagnosis and treatment strategies for cSCC. Here, through using a series of immunocompetent genetically engineered mouse models, we demonstrate that miR-22 promotes cSCC development by establishing regulatory T cells (Tregs)-mediated immunosuppressive tumor microenvironment (TME) in a tumor cell autonomous manner. Mechanism investigation revealed that miR-22 elicits the constitutive activation of JAK/STAT3 signaling by directly targeting its suppressor SOCS3, which augments cancer cell-derived chemokine secretion and Tregs recruitment. Epithelial-specific and global knockouts of miR-22 repress papilloma and cSCC development and progression, manifested with reduced Tregs infiltration and elevated CD8+ T cell activation. Transcriptomic analysis and functional rescue study confirmed CCL17, CCL20 and CCL22 as the main affected chemokines that mediate the chemotaxis between miR-22 highly expressing keratinocyte tumor cells and Tregs. Conversely, overexpression of SOCS3 reversed miR-22-induced Tregs recruitment toward tumor cells. Clinically, gradually increasing Tregs infiltration during cSCC progression was negatively correlated with SOCS3 abundance, supported by previously documented elevated miR-22 levels. Thus, our study uncovers a novel miR-22-SOCS3-JAK/STAT3-chemokines regulatory mechanism in defining the immunosuppressive TME and highlights the promising clinical application value of miR-22 as a common targeting molecule against JAK/STAT3 signaling and immune escape in cSCC.
Collapse
Affiliation(s)
- Shukai Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tong Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jianan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Aofeng Shu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenlei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Peitao Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Xuequan Feng
- Neurosurgical Department, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
21
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
22
|
Tu S, Qiu Y. Molecular subtypes and scoring tools related to Foxo signaling pathway for assessing hepatocellular carcinoma prognosis and treatment responsiveness. Front Pharmacol 2023; 14:1213506. [PMID: 37693891 PMCID: PMC10483071 DOI: 10.3389/fphar.2023.1213506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Transcription factors in Foxo signaling pathway influence hepatocellular carcinoma metastasis through epithelial mesenchymal transition-related pathways. Prognostic factors in the Foxo signaling pathway are feasible for HCC prognosis and therapeutic management. Methods: Based on the differentially expressed genes and Foxo signaling pathway genes in HCC, the ConsensusClusterPlus package was conducted to identify Foxo signaling pathway-related molecular subtypes in HCC. Based on the DEGs in the FMSs, the optimal prognostic factors in HCC were screened by cox and least absolute shrinkage and selection operator (LASSO) cox analysis to form the Foxo prognosis score (FPS). The prognostic predictive effectiveness of FPS was assessed by Kaplan Meier (K-M) analysis and Receiver Operating Characteristic (ROC) analysis. Additionally, tumor microenvironment (TME) score, tumor mutation burden (TMB) and treatment sensitivity differences in FMSs and FPS groups were also evaluated. Results: There were low, medium and high Foxo signaling pathway activity molecular subtypes in HCC named FMS 1, FMS 2 and FMS 3, respectively. FMS 1 with lowest Foxo signaling pathway activity presented an excellent survival advantage, while FMS 3 with highest Foxo signaling pathway activity exhibited an inhibitory TME status. According to FPS grouping, low FPS exhibited favorable survival, low TMB and anti-tumor activity. Patients in the low FPS group were mostly in the early stage of cancer. Moreover, we found that patients with high and low FPS exhibited different sensitivity to chemotherapy, and patients with low FPS were more sensitive to immunotherapy. Conclusion: We revealed a novel molecular subtype and prognostic tool based on Foxo signaling pathway signature, which could potentially provide a direction for accurate and effective assessment of potential personalized treatment options and prognostic management for HCC patients.
Collapse
Affiliation(s)
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Ding Y, Gong Y, Zeng H, Song G, Yu Z, Fu B, Liu Y, Huang D, Zhong Y. ZNF765 is a prognostic biomarker of hepatocellular carcinoma associated with cell cycle, immune infiltration, m 6A modification, and drug susceptibility. Aging (Albany NY) 2023; 15:6179-6211. [PMID: 37400985 PMCID: PMC10373972 DOI: 10.18632/aging.204827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yongqi Ding
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Gelin Song
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Liu S, Wang H, Shao X, Chen H, Chao S, Zhang Y, Gao Z, Yao Q, Zhang P. Advances in PD-1 signaling inhibition-based nano-delivery systems for tumor therapy. J Nanobiotechnology 2023; 21:207. [PMID: 37403095 PMCID: PMC10318732 DOI: 10.1186/s12951-023-01966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
In recent years, cancer immunotherapy has emerged as an exciting cancer treatment. Immune checkpoint blockade brings new opportunities for more researchers and clinicians. Programmed cell death receptor-1 (PD-1) is a widely studied immune checkpoint, and PD-1 blockade therapy has shown promising results in a variety of tumors, including melanoma, non-small cell lung cancer and renal cell carcinoma, which greatly improves patient overall survival and becomes a promising tool for the eradication of metastatic or inoperable tumors. However, low responsiveness and immune-related adverse effects currently limit its clinical application. Overcoming these difficulties is a major challenge to improve PD-1 blockade therapies. Nanomaterials have unique properties that enable targeted drug delivery, combination therapy through multidrug co-delivery strategies, and controlled drug release through sensitive bonds construction. In recent years, combining nanomaterials with PD-1 blockade therapy to construct novel single-drug-based or combination therapy-based nano-delivery systems has become an effective mean to address the limitations of PD-1 blockade therapy. In this study, the application of nanomaterial carriers in individual delivery of PD-1 inhibitors, combined delivery of PD-1 inhibitors and other immunomodulators, chemotherapeutic drugs, photothermal reagents were reviewed, which provides effective references for designing new PD-1 blockade therapeutic strategies.
Collapse
Affiliation(s)
- Songlin Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
- Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinzhe Shao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Haonan Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Shushu Chao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Yanyan Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Zhaoju Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| | - Pingping Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China.
| |
Collapse
|
25
|
Sankar K, Pearson AN, Worlikar T, Perricone MD, Holcomb EA, Mendiratta-Lala M, Xu Z, Bhowmick N, Green MD. Impact of immune tolerance mechanisms on the efficacy of immunotherapy in primary and secondary liver cancers. Transl Gastroenterol Hepatol 2023; 8:29. [PMID: 37601739 PMCID: PMC10432235 DOI: 10.21037/tgh-23-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023] Open
Abstract
The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley N. Pearson
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D. Perricone
- Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erin A. Holcomb
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil Bhowmick
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael D. Green
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Liu X, Zhang L, Chen L. Establishment of a novel cytokine-related 8-gene signature for distinguishing and predicting the prognosis of triple-negative breast cancer. Front Med (Lausanne) 2023; 10:1189361. [PMID: 37332770 PMCID: PMC10275569 DOI: 10.3389/fmed.2023.1189361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a common carcinoma in women, and the prognosis of TNBC is the worst. Using data from The Cancer Genome Atlas (TCGA) database, we analyzed the functional roles of cytokine-related genes in TNBC. Methods The clinical and transcriptome data of TNBC patients were downloaded from TCGA database. A systematical analyses of the data from TCGA database were conducted to screen the prognostic genes and identify the main cytokine-related pathways related to TNBC. Results We identified 499 prognostic genes in TNBC patients from TCGA database and the cytokine-related pathways closely related to TNBC. TCGA-TNBC patients were divided into the high-risk cluster (C1) group and the low-risk cluster (C2) group based on the cytokine-related genes. The C1 group patients exhibited tumor metastasis and an advanced tumor stage. The functional analysis revealed that the upregulated differentially expressed genes (DEGs) in the C1 group were mainly associated with the extracellular matrix (ECM)-receptor interaction, stem cell proliferation, focal adhesion, and cyclic adenosine monophosphate (cAMP) signaling pathway, while the downregulated DEGs in the C1 group were mainly associated with cytokine and cytokine receptors, T-helper 17 (Th17) cell differentiation, and primary immunodeficiency. The immune activity of C1 group was lower than that of C2 group, and the identified half-maximal inhibitory concentration scores of 3 chemotherapy drugs (i.e., doxorubicin, methotrexate, and paclitaxel) were lower in C2 group than C1 group. More importantly, we constructed a novel prognostic signature and identified the following 8 genes: CCL25, CXCL13, IL12RB2, IL21, TNFRSF13C, TNFRSF8, CCL7 and GDF5. Conclusion The status of the cytokine-related pathway was closely related to tumor classification and immune activity in the TNBC patients. The gene signature of the cytokine-related genes showed an good performance in predicting the prognosis of TNBC patients, and could predict the prognosis of TNBC patients.
Collapse
|
27
|
Yang J, He J, Feng Y, Xiang M. Obesity contributes to hepatocellular carcinoma development via immunosuppressive microenvironment remodeling. Front Immunol 2023; 14:1166440. [PMID: 37266440 PMCID: PMC10231659 DOI: 10.3389/fimmu.2023.1166440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
It is generally recognized that the initiation of obesity-related hepatocellular carcinoma (HCC) is closely associated with hepatic inflammation. However, the paradoxical role of inflammation in the initiation and progression of HCC is highlighted by the fact that the inflammatory HCC is accompanied by significant immune effector cells infiltration compared to non-inflammatory HCC and HCC with enhanced immune response exhibits better survival. Importantly, the cancer progression has been primarily attributed to the immunosuppression, which can also be induced by obesity. Furthermore, the increased risk of viral infection and thus viral-HCC in obese individuals supports the view that obesity contributes to HCC via immunosuppression. Here, we have reviewed the various mechanisms responsible for obesity-induced tumor immune microenvironment and immunosuppression in obesity-related HCC. We highlight that the obesity-induced immunosuppression originates from lipid disorder as well as metabolic reprogramming and propose potential therapeutic strategy for HCC based on the current success of immunotherapy.
Collapse
|
28
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
29
|
Ji L, Zhang Q, Cao Y, Liu L. A prognostic risk model, tumor immune environment modulation, and drug prediction of ferroptosis and amino acid metabolism-related genes in hepatocellular carcinoma. Hum Cell 2023; 36:1173-1189. [PMID: 36892792 DOI: 10.1007/s13577-023-00885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
The prognosis of hepatocellular carcinoma (HCC) is challenging due to its heterogeneity. Ferroptosis and amino acid metabolism have been shown to be closely related to HCC. We obtained HCC-related expression data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. We then crossed differentially expressed genes (DEGs), amino acid metabolism genes, and ferroptosis-related genes (FRGs) to obtain amino acid metabolism-ferroptosis-related differentially expressed genes (AAM-FR DEGs). Moreover, we developed a prognostic model using Cox analysis, followed by a correlation analysis of risk scores with clinical characteristics. We also performed an immune microenvironment analysis and drug sensitivity analysis. Finally, the expression levels of model genes were verified by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical assays. We found that the 18 AAM-FR DEGs were mainly enriched to the alpha-amino acid metabolic process and amino acid biosynthesis pathways. Cox analysis identified CBS, GPT2, SUV39H1, and TXNRD1 as prognostic biomarkers for the risk model construction. Our results showed that the risk scores differed between pathology stage, pathology T stage, and HBV, and the number of HCC patients in the two groups. In addition, the expression of PD-L1 and CTLA-4 was high in the high-risk group, and the half-maximal inhibitory concentration (IC50) of sorafenib also differed between the two groups. Finally, the experimental validation demonstrated that the expression of biomarkers was consistent with the study analysis. Therefore, in this study, we constructed and validated a prognostic model (CBS, GPT2, SUV39H1, and TXNRD1) related to ferroptosis and amino acid metabolism and examined their prognostic value for HCC.
Collapse
Affiliation(s)
- Lina Ji
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- Department of Digestive Oncology, Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qianqian Zhang
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Cao
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China.
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
30
|
Zhang G, Xu X, Zhu L, Li S, Chen R, Lv N, Li Z, Wang J, Li Q, Zhou W, Yang P, Liu J. A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories. Stem Cells Int 2023; 2023:2826815. [PMID: 37964983 PMCID: PMC10643041 DOI: 10.1155/2023/2826815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2023] Open
Abstract
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Collapse
Affiliation(s)
- Guanghao Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luojiang Zhu
- Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China
| | - Sisi Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wang Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
Zhang CH, Jiang ZL, Meng Y, Yang WY, Zhang XY, Zhang YX, Khattak S, Ji XY, Wu DD. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic agents for liver cancer. Cell Signal 2023; 106:110628. [PMID: 36774973 DOI: 10.1016/j.cellsig.2023.110628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequent human cancer and the world's third most significant cause of cancer mortality. HCC treatment has recently improved, but its mortality continues to increase worldwide due to its extremely complicated and heterogeneous genetic abnormalities. After nitric oxide (NO) and carbon monoxide (CO), the third gas signaling molecule discovered is hydrogen sulfide (H2S), which has long been thought to be a toxic gas. However, numerous studies have proven that H2S plays many pathophysiological roles in mammals. Endogenous or exogenous H2S can decrease cell proliferation, promote apoptosis, block cell cycle, invasion and migration through various cellular signaling pathways. This review analyzes and discusses the recent literature on the function and molecular mechanism of H2S and H2S donors in HCC, so as to provide convenience for the scientific research and clinical application of H2S in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yuan Meng
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Wen-Yan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yu Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
32
|
Yang L, Zhao Q, Wang X, Pilapong C, Li Y, Zou J, Jin J, Rong J. Investigation on the regulatory T cells signature and relevant Foxp3/STAT3 axis in esophageal cancer. Cancer Med 2023; 12:4993-5008. [PMID: 36226375 PMCID: PMC9972178 DOI: 10.1002/cam4.5194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) have an important role in accelerating the immunosuppression of tumor. Tregs regulation is a hopeful strategy to improve the dismal prognosis of Esophageal cancer (EC), while its mechanisms have not yet been fully clarified. METHODS To characterize the role of Tregs in EC, we comprehensively explored its prognostic value, clinical pathology partnership, related biological functions and potential mechanisms at transcriptome level. Through the integrated analysis of GEO and TCGA datasets, we comprehensively evaluated the Tregs infiltration patterns in EC patients. The correlation between Tregs infiltration and genomic characteristics, as well as biological functions were analyzed by a variety of computational algorithms. RESULTS We observed that Tregs were significantly upregulated in EC and involved in various immune processes. According to TCGA and GEO transcriptional classification schemes, Tregs specific genes were observed to be highly expressed in tumor samples, as well as were closely associated with poor prognosis and worse clinical outcomes. In addition, EC patients can be stratified into high-risk and low-risk immune subgroups according to Tregs/macrophages infiltration level, and the results showed significant differences in tumor development, biological processes and probe gene expression pattern. The multi-variate analysis revealed that the interaction between STAT3 and Foxp3 was a potential prognostic signature of Tregs in EC, especially the modulation effect of STAT3 on Foxp3 expression, which has not been well studied in EC. We also identified that STAT3 and Foxp3 expression presented a high accuracy in predicting Tregs infiltration level in EC patients (AUC: 0.817; 95% CI: 0.756-0.878). CONCLUSIONS Our results revealed that Tregs have the potential to predict prognosis and tumor deterioration in EC patients. A comprehensive landscape of Tregs regulation mechanisms will help us interpret the immunosuppression of tumor microenvironment (TME) and novel strategies for EC immunotherapy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China.,Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xing Wang
- Shichuan Nursing Vocational College, Chengdu, People's Republic of China
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| | - Jun Zou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| | - Jinfeng Rong
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, People's Republic of China
| |
Collapse
|
33
|
Ma N, Jin A, Sun Y, Jin Y, Sun Y, Xiao Q, Sha X, Yu F, Yang L, Liu W, Gao X, Zhang X, Li L. Comprehensive investigating of MMR gene in hepatocellular carcinoma with chronic hepatitis B virus infection in Han Chinese population. Front Oncol 2023; 13:1124459. [PMID: 37035153 PMCID: PMC10079871 DOI: 10.3389/fonc.2023.1124459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hepatocellular carcinoma associated with chronic hepatitis B virus infection seriously affects human health. Present studies suggest that genetic susceptibility plays an important role in the mechanism of cancer development. Therefore, this study focused on single nucleotide polymorphisms (SNPs) of MMR genes associated with HBV-HCC. Five groups of participants were included in this study, which were healthy control group (HC), spontaneous clearance (SC), chronic hepatitis B group (CHB), HBV-related liver cirrhosis group (LC) and HBV-related hepatocellular carcinoma group (HBV-HCC). A total of 3128 participants met the inclusion and exclusion criteria for this study. 20 polymorphic loci on MSH2, MSH3 and MSH6 were selected for genotyping. There were four case-control studies, which were HC vs. HCC, SC vs. HCC, CHB vs. HCC and LC vs. HCC. We used Hardy-Weinberg equilibrium test, unconditional logistic regression, haplotype analysis, and gene-gene interaction for genetic analysis. Ultimately, after excluding confounding factors such as age, gender, smoking and drinking, 12 polymorphisms were found to be associated with genetic susceptibility to HCC. Haplotype analysis showed the risk haplotype GTTT (rs1805355_G, rs3776968_T, rs1428030_C, rs181747_C) was more frequent in the HCC group compared with the HC group. The GMDR analysis showed that the best interaction model was the three-factor model of MSH2-rs1981928, MSH3-rs26779 and MSH6-rs2348244 in SC vs. HCC group (P=0.001). In addition, we found multiplicative or additive interactions between genes in our selected SNPs. These findings provide new ideas to further explore the etiology and pathogenesis of HCC. We have attempted to explain the molecular mechanisms by which certain SNPs (MSH2-rs4952887, MSH3-rs26779, MSH3-rs181747 and MSH3-rs32950) affect genetic susceptibility to HCC from the perspectives of eQTL, TFBS, cell cycle and so on. We also explained the results of haplotypes and gene-gene interactions. These findings provide new ideas to further explore the etiology and pathogenesis of HCC.
Collapse
Affiliation(s)
- Ning Ma
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ao Jin
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yitong Sun
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yiyao Jin
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yucheng Sun
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qian Xiao
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - XuanYi Sha
- Hebei Key Laboratory of Environment and Human Health, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fengxue Yu
- The Hebei Key Laboratory of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xia Gao
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaolin Zhang, ; Lu Li,
| | - Lu Li
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaolin Zhang, ; Lu Li,
| |
Collapse
|
34
|
Liu B, Wang S, Xu M, Ma Y, Sun R, Ding H, Li L. The double-edged role of hydrogen sulfide in the pathomechanism of multiple liver diseases. Front Pharmacol 2022; 13:899859. [PMID: 36588686 PMCID: PMC9800830 DOI: 10.3389/fphar.2022.899859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
In mammalian systems, hydrogen sulfide (H2S)-one of the three known gaseous signaling molecules in mammals-has been found to have a variety of physiological functions. Existing studies have demonstrated that endogenous H2S is produced through enzymatic and non-enzymatic pathways. The liver is the body's largest solid organ and is essential for H2S synthesis and elimination. Mounting evidence suggests H2S has essential roles in various aspects of liver physiological processes and pathological conditions, such as hepatic lipid metabolism, liver fibrosis, liver ischemia‒reperfusion injury, hepatocellular carcinoma, hepatotoxicity, and acute liver failure. In this review, we discuss the functions and underlying molecular mechanisms of H2S in multiple liver pathophysiological conditions.
Collapse
Affiliation(s)
- Bihan Liu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ming Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Ma
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Sun
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Li Y, Mo H, Jia S, Wang J, Ma Y, Liu X, Tu K. Comprehensive analysis of the amino acid metabolism-related gene signature for prognosis, tumor immune microenvironment, and candidate drugs in hepatocellular carcinoma. Front Immunol 2022; 13:1066773. [PMID: 36582227 PMCID: PMC9792509 DOI: 10.3389/fimmu.2022.1066773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Metabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC). Methods Transcriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells. Results A total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1. Conclusions Our study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siying Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Ma
- Department of Cardiovascular Medicine, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Xin Liu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Xin Liu, ; Kangsheng Tu,
| |
Collapse
|
36
|
Jiayu F, Jiang Y, Zhou X, Zhou M, Pan J, Ke Y, Zhen J, Huang D, Jiang W. Comprehensive analysis of prognostic value, relationship to cell cycle, immune infiltration and m6A modification of ZSCAN20 in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:9550-9578. [PMID: 36462500 PMCID: PMC9792207 DOI: 10.18632/aging.204312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common tumor across the globe with a high mortality rate. ZSCAN20 is a ZNF transcription factor, a key determinant of gene expression. Nonetheless, the mechanism of ZSCAN20 as a potential clinical biomarker and therapeutic target for HCC is not understood. Here, TIMER, TCGA, ICGC databases and immunohistochemical (IHC) and Western Blot found ZSCAN20 mRNA and protein levels were upregulated. Additionally, Kaplan-Meier Plotter, GEPIA and TCGA databases showed high ZSCAN20 expression was related to the short survival time of HCC patients. Multivariate Cox analysis exposed that ZSCAN20 can act as an independent prognostic factor. We observed methylation level of ZSCAN20 was associated with the clinicopathological characteristics and prognosis of HCC patients through UALCAN. Furthermore, enrichment examination exposed functional association between ZSCAN20 and cell cycle, immune infiltration. Functional experiments showed that interference with ZSCAN20 significantly reduced the invasion, migration and proliferation abilities of HCC cells. An immune infiltration analysis showed that ZSCAN20 was associated with immune cells, particularly T cells. The expression of ZSCAN20 was correlated with poor prognosis in the Regulatory T-cell. And Real-Time RT-PCR analysis found interference with ZSCAN20 significantly reduced the expression of some chemokines. Finally, the TCGA and ICGC data analysis suggested that the ZSCAN20 expression was greatly related to m6A modifier related genes. In conclusion, ZSCAN20 can serve as a prognostic biomarker for HCC and provide clues about cell cycle, immune infiltration, and m6A modification.
Collapse
Affiliation(s)
- Fang Jiayu
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weifan Jiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Muacevic A, Adler JR, Hirabata A, Tanaka T, Otsuka F, Okada H. Increased CCR4+ and Decreased Central Memory CD4+ T Lymphocytes in the Background Gastric Mucosa of Patients Developing Gastric Cancer After Helicobacter pylori Eradication: An Exploratory Study. Cureus 2022; 14:e31713. [PMID: 36569708 PMCID: PMC9768248 DOI: 10.7759/cureus.31713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
The composition of lymphocytes in the gastric mucosa following the eradication of Helicobacter pylori (H. pylori) in patients with and without gastric cancer has not been compared. This study performed a single spot analysis of gastric mucosal lymphocytes after H. pylori eradication in patients with (n = 13) and without (n = 20) gastric cancer. Our comprehensive analysis of lymphocyte composition in the gastric mucosa revealed that: i) the proportion of CD8+/CD3+ cells was relatively higher in the peri-tumor mucosa than in the background mucosa; ii) the proportion of CCR4+/CD3+ cells was higher, and the ratio of CD62L+/CD3+CD4+ cells was relatively lower in the gastric mucosa of cancer patients than in non-cancer patients; and iii) the proportion of CD45RA-CD62L+/CD3+CD4+ cells, namely, the central memory CD4+ T-cell fraction, was lower in the gastric mucosa of cancer patients than in non-cancer patients. Although the exact mechanism of the altered proportions of CCR4+/CD3+ and central memory CD4+ cells in the gastric mucosa of patients with cancer is unknown, focusing on lymphocytes in the gastric mucosa might help improve our understanding of gastric cancer development after H. pylori eradication.
Collapse
|
38
|
Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel) 2022; 14:5244. [PMID: 36358663 PMCID: PMC9657918 DOI: 10.3390/cancers14215244] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/11/2023] Open
Abstract
Pediatric primary brain tumors represent a real challenge in the oncology arena. Besides the psychosocial burden, brain tumors are considered one of the most difficult-to-treat malignancies due to their sophisticated cellular and molecular pathophysiology. Notwithstanding the advances in research and the substantial efforts to develop a suitable therapy, a full understanding of the molecular pathways involved in primary brain tumors is still demanded. On the other hand, the physiological nature of the blood-brain barrier (BBB) limits the efficiency of many available treatments, including molecular therapeutic approaches. Hydrogen Sulfide (H2S), as a member of the gasotransmitters family, and its synthesizing machinery have represented promising molecular targets for plentiful cancer types. However, its role in primary brain tumors, generally, and pediatric types, particularly, is barely investigated. In this review, the authors shed the light on the novel role of hydrogen sulfide (H2S) as a prominent player in pediatric brain tumor pathophysiology and its potential as a therapeutic avenue for brain tumors. In addition, the review also focuses on the challenges and opportunities of several molecular targeting approaches and proposes promising brain-delivery strategies for the sake of achieving better therapeutic results for brain tumor patients.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Capital City, Cairo 11835, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Yousra Ahmed Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Miriam Mokhtar Abdelhalim
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
39
|
Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L, Cui D. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:307. [PMID: 36266731 PMCID: PMC9583503 DOI: 10.1186/s13046-022-02518-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ferroptosis is a novel form of iron-dependent cell death and participates in the malignant progression of glioblastoma (GBM). Although circular RNAs (circRNAs) are found to play key roles in ferroptosis via several mechanisms, including regulating iron metabolism, glutathione metabolism, lipid peroxidation and mitochondrial-related proteins, there are many novel circRNAs regulating ferroptosis need to be found, and they may become a new molecular treatment target in GBM. METHODS The expression levels of circLRFN5, PRRX2 and GCH1 were detected by qPCR, western blotting, and immunohistochemistry. Lentiviral-based infections were used to overexpress or knockdown these molecules in glioma stem cells (GSCs). The biological functions of these molecules on GSCs were detected by MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium), the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell, neurosphere formation assays, Extreme Limiting Dilution Analysis (ELDA) and xenograft experiments. The content of ferroptosis levels in GSCs was detected by BODIPY 581/591 C11 assay, glutathione (GSH) assay and malondialdehyde (MDA) assay. The regulating mechanisms among these molecules were studied by RNA immunoprecipitation assay, RNA pull-down assay, ubiquitination assay, dual-luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS We found a novel circRNA circLRFN5 is downregulated in GBM and associated with GBM patients' poor prognosis. CircLRFN5 overexpression inhibits the cell viabilities, proliferation, neurospheres formation, stemness and tumorigenesis of GSCs via inducing ferroptosis. Mechanistically, circLRFN5 binds to PRRX2 protein and promotes its degradation via a ubiquitin-mediated proteasomal pathway. PRRX2 can transcriptionally upregulate GCH1 expression in GSCs, which is a ferroptosis suppressor via generating the antioxidant tetrahydrobiopterin (BH4). CONCLUSIONS Our study found circLRFN5 as a tumor-suppressive circRNA and identified its role in the progression of ferroptosis and GBM. CircLRFN5 can be used as a potential GBM biomarker and become a target for molecular therapies or ferroptosis-dependent therapy in GBM.
Collapse
Affiliation(s)
- Yang Jiang
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Junshuang Zhao
- grid.443573.20000 0004 1799 2448Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000 China
| | - Rongqing Li
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yingliang Liu
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Lin Zhou
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Chengbin Wang
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Caihong Lv
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Liang Gao
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Daming Cui
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
40
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009&set/a 845351627+823089559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32:800-814. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022. [DOI: 10.1016/j.tcb.2022.02.009
expr 919953342 + 844571884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
43
|
Gao DZ, Yang YS, Wang Z, Zhao XF. Expression profile and prognostic significance of HOXB13 in rectal cancer. Int J Biol Markers 2022; 37:140-148. [PMID: 35296171 DOI: 10.1177/17246008221076151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study aimed to investigate the expression pattern and prognostic significance of HOXB13 in rectal cancer. METHODS HOXB13 expression in rectal cancer and normal adjacent tissues was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, and its clinicopathological characteristics and prognosis were statistically tested. Furthermore, we evaluated the association between tumor immune infiltrating cells and HOXB13 using the tumor immune estimation resource (TIMER) database. The potential biological mechanism associated with HOXB13 overexpression was investigated by gene set enrichment analysis (GSEA). RESULTS The expression of HOXB13 messenger RNA and protein in human rectal cancer tissues were significantly higher than those in the normal adjacent tissues (P < 0.05). HOXB13 expression was significantly correlated with depth of invasion, lymphatic invasion, lymph node metastasis, distant metastasis, and pathological tumor node metastasis stage (P < 0.05). Kaplan-Meier survival curves confirmed that HOXB13 overexpression was correlated negatively with overall survival and disease-free survival in rectal cancer (P < 0.05). Also, multivariate Cox regression analysis demonstrated that HOXB13 expression, age, and lymphatic invasion were independent prognostic factors in rectal cancer (P < 0.05). Plus, the results from the TIMER database indicated that HOXB13 expression has a significant association with several immune cell infiltrates. Finally, the GSEA results indicated that HOXB13 participated in the various immune-associated processes, including natural killer cell-mediated cytotoxicity and the T-cell receptor signaling pathway. CONCLUSION Our study showed an essential role of HOXB13 in rectal cancer immunity and prognosis. Significantly, the overexpression of HOXB13 leads to the worse prognosis for patients with rectal cancer, which will contribute to understanding molecular mechanisms associated with tumor pathogenesis and prognosis in this disease.
Collapse
Affiliation(s)
- Da-Zhi Gao
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Yu-Shen Yang
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Zhun Wang
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Xue-Feng Zhao
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| |
Collapse
|
44
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
45
|
Mitochondrial-Related Transcriptome Feature Correlates with Prognosis, Vascular Invasion, Tumor Microenvironment, and Treatment Response in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1592905. [PMID: 35535359 PMCID: PMC9078845 DOI: 10.1155/2022/1592905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, which was highly correlated with metabolic dysfunction. Nevertheless, the association between nuclear mitochondrial-related transcriptome and HCC remained unclear. Materials and Methods A total of 147 nuclear mitochondrial-related genes (NMRGs) were downloaded from the MITOMAP: A Human Mitochondrial Genome Database. The training dataset was downloaded from The Cancer Genome Atlas (TCGA), while validation datasets were retrieved from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). The univariate and multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were applied to construct a NMRG signature, and the value of area under receiver operating characteristic curve (AUC) was utilized to assess the signature and nomogram. Then, data from the Genomics of Drug Sensitivity in Cancer (GDSC) were used for the evaluation of chemotherapy response in HCC. Results Functional enrichment of differentially expressed genes (DEGs) between HCC and paired normal tissue samples demonstrated that mitochondrial dysfunction was significantly associated with HCC development. Survival analysis showed a total of 35 NMRGs were significantly correlated with overall survival (OS) of HCC, and the LASSO Cox regression analysis further identified a 25-NMRG signature and corresponding prognosis score based on their transcriptional profiling. HCC patients were divided into high- and low-risk groups according to the median prognosis score, and high-risk patients had significantly worse OS (median OS: 27.50 vs. 83.18 months, P < 0.0001). The AUC values for OS at 1, 3, and 5 years were 0.79, 0.77, and 0.77, respectively. The prognostic capacity of NMRG signature was verified in the GSE14520 dataset and ICGC-HCC cohort. Besides, the NMRG signature outperformed each NMRG and clinical features in prognosis prediction and could also differentiate whether patients presented with vascular invasions (VIs) or not. Subsequently, a prognostic nomogram (C-index: 0.753, 95% CI: 0.703~0.804) by the integration of age, tumor metastasis, and NMRG prognosis score was constructed with the AUC values for OS at 1, 3, and 5 years were 0.82, 0.81, and 0.82, respectively. Notably, significant enrichment of regulatory and follicular helper T cells in high-risk group indicated the potential treatment of immune checkpoint inhibitors for these patients. Interestingly, the NMRG signature could also identify the potential responders of sorafenib or transcatheter arterial chemoembolization (TACE) treatment. Additionally, HCC patients in high-risk group appeared to be more sensitive to cisplatin, vorinostat, and methotrexate, reversely, patients in low-risk group had significantly higher sensitivity to paclitaxel and bleomycin instead. Conclusions In summary, the development of NMRG signature provided a more comprehensive understanding of mitochondrial dysfunction in HCC, helped predict prognosis and tumor microenvironment, and provided potential targeted therapies for HCC patients with different NMRG prognosis scores.
Collapse
|
46
|
Xu J, Lin H, Wu G, Zhu M, Li M. IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma. Front Oncol 2021; 11:760971. [PMID: 34976809 PMCID: PMC8714735 DOI: 10.3389/fonc.2021.760971] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor of which the occurrence and development, the tumorigenicity of HCC is involving in multistep and multifactor interactions. Interleukin-6 (IL-6), a multifunctional inflammatory cytokine, has increased expression in HCC patients and is closely related to the occurrence of HCC and prognosis. IL-6 plays a role by binding to the IL-6 receptor (IL-6R) and then triggering the Janus kinase (JAK) associated with the receptor, stimulating phosphorylation and activating signal transducer and activator of transcription 3 (STAT3) to initiate downstream signals, participating in the processes of anti-apoptosis, angiogenesis, proliferation, invasion, metastasis, and drug resistance of cancer cells. IL-6/STAT3 signal axes elicit an immunosuppressive in tumor microenvironment, it is important to therapy HCC by blocking the IL-6/STAT3 signaling pathway. Recent, some inhibitors of IL-6/STAT3 have been development, such as S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb), Madindoline A (Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes), C188-9 and Curcumin (Inhibits STAT3 phosphorylation), etc. for treatment of cancers. Overall, consideration of the IL-6/STAT3 signaling pathway, and its role in the carcinogenesis and progression of HCC will contribute to the development of potential drugs for targeting treatment of liver cancer.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Gang Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
- Institution of Tumour, Hainan Medical College, Haikou, China
| |
Collapse
|